前列腺老鼠模型TRAP
前列腺癌分子机制及其动物模型
前列腺癌分子机制及其动物模型张富娟 赵旭东 孙彬(四川大学华西医院 肿瘤动物模型创制及应用研究室,四川 成都 610041)·专题笔谈· 在生命体发育和衰老的过程中,细胞在特定的信号调控下有序地进行生长、分化和(或)凋亡。
然而,细胞分裂过程中自然积累的突变和许多外界因素,如射线、化学致癌物、病毒等诱导的突变可导致癌基因激活、抑癌基因失活,从而破坏了正常的细胞调控网络,引起细胞异常增殖与持续分裂,导致肿瘤产生。
前列腺癌是指发生于前列腺腺体的恶性肿瘤,是前列腺腺泡细胞异常无序生长的结果,常起源于前列腺的背侧叶。
前列腺癌可分为腺癌(腺泡腺癌)、导管腺癌、尿路上皮癌、鳞状细胞癌、腺鳞癌,其中腺癌占95%以上。
研究表明,在对前列腺癌患者5年的随访中有10%~20%会发展为去势抵抗性前列腺癌(castration-resistant prostate cancer,CRPC),其中84%会发生转移,而转移去势抵抗性前列腺癌(metastatic castration-resistant prostate cancer,mCRPC)5年生存率仅31%[1]。
美国癌症协会统计,2020年前列腺癌的发病率居男性恶性肿瘤之首,死亡率仅次于肺癌[2]。
随着测序技术的发展,前列腺癌的组学研究取得了很大进展,基因组学研究使前列腺癌在分子水平上的发病机制更加清楚,如雄激素受体(androgen receptor,AR)、MYC的过表达,NKX 3.1、磷酸酶和张力蛋白同源物(phosphatase and tensin homolog,PTEN)、TP53下调等[3];蛋白质组学发现新的肿瘤标志物,如前列腺癌抗原3、人激肽释放酶2等[4];代谢组学研究发现肿瘤微环境的变化,半胱氨酸、蛋氨酸、烟酰胺腺嘌呤二核苷酸代谢和己糖胺的生物合成在前列腺癌中存在异常[5]。
高效的诊断手段如直肠指检、肿瘤标志物、影像学诊断、穿刺活检(前列腺癌诊断的金标准)等,以及有效的治疗方法如靶向雄激素信号化合物(醋酸阿比特龙、恩杂鲁胺)、化学疗法(多西他赛、卡巴他赛)、免疫疗法等显著延长了前列腺癌患者的生存期。
免疫缺陷动物模型总结
缺陷的 Beigenude-xid
小鼠
利用 基因 编辑
技 术, 用人 类正 常或 突变 基因 置换 小鼠 同类 基因
1、去 除小鼠 免疫细
胞 2、破 坏造血 细胞: X 射线 辐照, 杀死小 鼠自身 大部分 骨髓造 血干细 胞(辐 照前后 给一个 周期抗 生素, 避免感 染死 亡) 3、回 输人类 造血干 细胞
BRG (BALB/c-
Rag2-/IL2rg-/-)
小鼠
CBA/N Beige 小鼠
(XID)小鼠
BNX 小鼠
基因 人源 化小
鼠
细胞人 源化小
鼠
CB17 近交系小鼠(通
过连续的回交把来自
C57BL/6 小鼠所携带
的 Ighb 亚型等位基因
C57BL/6 自发突变
来
导入 BALB/c 小鼠, Swiss 封闭群
免疫缺陷动物模型总结 南方医 13 级张念泽整理,致洪畅泽
裸小鼠(Nude mice)
CB17-SCID(Severe Combined
ImmunoDeficient Mice)小鼠
NOD(Non Obese
Diabetes)小 鼠
NOD-SCID(NonObese Diabetic and Severe Combined ImmunoDeficiency
缺乏 T 细胞和 B 细 胞,同时具备固有免 疫缺陷(NK 细胞活性 低),无循环补体、巨 噬细胞和抗原呈递细
胞功能损害
T 细胞和 B 细胞 发育和功能严重 受损,且 NK 细 胞发育被完全阻
断
缺乏 NK 细 胞且 T、B 淋巴 细胞 减少
T 细胞和 B 细胞的 缺乏
SIRT1通过CREB
网络出版时间:2023-06-1514:11:33 网络出版地址:https://kns.cnki.net/kcms2/detail/34.1086.R.20230614.1545.021.htmlSIRT1通过CREB/BDNF通路调控吗啡诱导大鼠条件位置偏爱的机制研究刘 奔1,涂婉玉1,张腾腾1,姚志军2,易善勇1,赵 营3,雒国胜1,贾文歌1,李晨晨1,赵 斌1,魏 来1(新乡医学院1.法医学院、2.基础医学院、3.药学院,河南新乡 453003)收稿日期:2023-02-20,修回日期:2023-04-12基金项目:国家自然科学基金资助项目(NoU2004111,81701862);河南省教育厅高校重点科研项目(No18A310024,18A310025);河南省生物精神病学重点实验室开放课题(NoZDSYS2018007)作者简介:刘 奔(1997-),男,硕士生,研究方向:药物成瘾机制,E mail:2693198771@qq.com;赵 斌(1978-),男,博士,副教授,研究方向:药物成瘾机制,通信作者,E mail:rodphine@xxmu.edu.cn;魏 来(1982-),男,博士,副教授,研究方向:药物成瘾机制,通信作者,E mail:weilai@xxmu.edu.cndoi:10.12360/CPB202208096文献标志码:A文章编号:1001-1978(2023)07-1263-08中国图书分类号:R 332;R322 81;R338 2;R971 2;R977 6摘要:目的 研究腹外侧眶皮层(ventrolateralorbitalcortex,VLO)内微量注射sirtuin1(SIRT1)抑制剂EX527对吗啡诱导大鼠条件位置偏爱(conditionedplacepreference,CPP)的影响,并探讨CREB/BDNF通路在其中的作用。
方法 应用脑立体定位术在大鼠双侧VLO内留置导管,建立吗啡诱导大鼠CPP模型,d1为适应,d2~4为前测,d5~14为条件性训练,隔日交替腹腔注射吗啡(1mL·kg-1,5mg·kg-1)或生理盐水(1mL·kg-1),提前30min通过导管向双侧VLO内微量注射EX527(1μL,5g·L-1)或DMSO(1%,1μL),d15为测试。
前列腺炎动物模型研究进展
前列腺炎动物模型研究进展[摘要]前列腺炎动物模型有两大类即细菌性和非细菌性。
前者主要用大肠杆菌注入实验动物前列腺器官中制得;后者主要用化学制剂或生物制剂诱导而成。
其中,生物制剂诱导的前列腺炎动物模型具有较高的特异性,是较为理想的模型,它的造模方法主要有雌激素诱导法和大鼠前列腺蛋白结合免疫佐剂法两种。
这些模型为前列腺炎相关的探索性研究和开发应用性研究打下了必不可少的坚实基础。
[关键词]前列腺炎;细菌性;非细菌性;动物模型【】q95—33 【】a 【】1004—8448(20xx)03—021 1-04前列腺炎是男性的常见病和多发病,国外研究表明:其发生率约为4%---l1%,且多发生于青壮年,可严重影响患者的家庭生活和精神生活。
由于研究方法、选择的研究对象不同,前列腺炎概念的内涵各异。
另外,前列腺炎的流行病学研究也有待于深入。
1995年,美国国立卫生研究院fnih)对前列腺炎进行了重新分型,即i型:急性细菌性前列腺炎;ii型:慢性细菌性前列腺炎;ⅲ型:慢性非细菌性前列腺炎/慢性骨盆疼痛综合征;ⅳ型:无症状的炎症性前列腺炎。
四型前列腺炎中,只有i型的病因是较明确的,临床治疗效果也确切,占前列腺炎病人的2%~3%,其他三型的前列腺炎发病原因都不清楚。
其中,ⅱi型前列腺炎占临床发病率的9o%以上,是前列腺炎中最常见的类型,又可进一步分为ⅲa型和ⅲb型。
因此前列腺炎疾病的发生机制具有深入探讨的必要性。
为了给探索性研究和开发应用性研究打下必不可少的坚实基础,众多学者研究制作了各种前列腺(】20xx-01—17【作者简介】李冬梅(1 970一),女,硕士研究生,从事前列腺炎药理毒理学研究【通讯作者】孙祖越,email:sunzy64@ 1 63.corn炎的动物模型,归纳起来主要分两大类川:一类为细菌性前列腺炎模型,另一类为非细菌性前列腺炎模型。
现将这两大类前列腺炎动物模型制作的研究进展综述如下。
细菌性前列腺炎模型临床上细菌性前列腺炎约占所有前列腺炎病人的5%以下,主要致病菌为革兰阴性细菌,急性期感染的细菌对抗生素敏感者,易被治愈。
前列腺炎疼痛对背根神经节细胞兴奋性的影响及P2X_3表达的变化
龙源期刊网 前列腺炎疼痛对背根神经节细胞兴奋性的影响及P2X_3表达的变化
作者:杨纲
来源:《饮食与健康·下旬刊》2015年第09期
【摘要】目的:观察和分析前列腺炎疼痛对背部神经元P2X3受体表达变化量与背根神经节细胞兴奋性的影响。
方法:选择我院实验动物中心提供的46只大鼠为研究对象,将其随机分为实验组(23例)与对照组(23例)。
采用蛋白免疫印迹技术与膜片钳全细胞记录技术对实验动物急性分离的背根神经节细胞所激发的自发防电反应与P2X3蛋白表达进行检测。
结果:根据实验组与对照组大鼠模型的不同实验要求,在临床实验中采取相应的处理方式。
对照组23例实验大鼠当中,前列腺炎症疼痛3d的大鼠,神经元膜电位波动幅度都较小,不能自发性产生动作电位。
前列腺炎症疼痛10d的大鼠,神经元膜电位波动明显,部分神经元膜电位波动幅度较大,明显达到了产生自发动作电位的阀值;实验组23例实验大鼠,前列腺炎症疼痛3d后,大鼠背根神经元P2X3蛋白表达的变化量有所增加,实验结果与对照组无明显差异,前列腺炎症疼痛10d后,大鼠背根神经元P2X3蛋白表达的变化量明显高于对照组。
结论:相应背根神经节细胞的兴奋性与P2X3受体表达的变化量往往会对前列腺炎疼痛患者产生极大的影响,在临床治疗过程中值得重视。
【关键词】前列腺炎疼痛;细胞兴奋性;P2X3受体表达。
前列腺癌鼠模型
生 、 展 的 机 制 仍 缺 乏 足 够 的 认识 , 发 主要 原 因 如 下 : 前 列 腺 组 ①
织 由不 同 的 细胞 和 结 构 组 成 , 分 复 杂 ; 前 列 腺 癌 具 有 异 质 性 成 ②
和 转 移性 ; 缺 乏 研 究 前列 腺 癌 不 同 发展 阶 段 的 鼠模 型 。 ⑧
Y NG Z iWe , A h— i ’WA i AN — e 2 HOU J n G ag 2 NG J n,P G Da R n,Z a i - u n ̄ a
1 e igIstt o Boeho g,B in 80 2 F j n A r ut e ad Frs yU ie i , uhu 30 0 ; h a .B in ntu f i c nl y e ig 10 5 ; . ui gi l r n oet nvr t F zo 5 02 C i j ie t o j 0 a c u r sy n
代 培 养 , 生 出 了许 多能 够 产 生 转 移 性肿 瘤 的 细胞 系 , A - 、 衍 如 T 3
A 一 、 A — u和 MA - u等细 胞 系 。 T 6M T L T IL y
2 异 种 移 植 鼠 模 型
异种 移植 鼠模 型 ,即 用 已建 立 的人 前 列 腺 癌 细 胞 株 种 植 于
生
.
73 4
文 章 编号 : 0 9 0 0 (0 80 — 7 3 0 1 0 — 0 2 0 )5 0 4 — 3 2
综
述
前 列腺癌 鼠模 型
杨志伟 , 王健 , 大仁 , 潘 周建 光
1 .军 事 医 学科 学 院 生 物 工程 研 究 所 , 京 10 5 ;2 北 0 80 .福 建 农 林 大 学 , 建 福 州 3 00 福 502 [ 要 ] 前 列 腺癌 鼠模 型 是 研 究前 列腺 癌 的重 要 工 具 , 摘 目前 常 见 以 下 4类 : 自发 和诱 发 鼠模 型 , 种 移 植 鼠模 型 , 基 因 鼠 异 转
基于用GFP标记的大肠杆菌构建大鼠可视化细菌性前列腺感染模型
G F P ) 标记 的大肠 杆菌构 建大 鼠细 菌性前 列腺 炎模 型 , 观察 细菌在组 织中的侵 袭路径和机体免疫反应 , 并建 立感 染菌在 体直接定量 的分析方法 。方 法 于 分组大 鼠左侧 前列 腺背 叶注入大肠杆 菌 K 8 8 一 G F P液 ( 1 . 4 9×1 0 c f u・ ml ) 0 . 0 5 n i l , 采用腺体表 面荧光成像及组 织切片荧光显微镜观察 , 研究荧 光菌 的感染侵 袭过程以及机体的免疫反应 , 建立 可视 化细菌 性前列腺炎模 型。结果 ① 通 过表面拍 照和病理切 片肠杆菌 K 8 8构建可视化 细菌性前 列腺炎模型 , 研究 细菌性前列 腺炎模 型大鼠的前 列腺 腺体 内 致病菌侵袭 的过程并使其可视化 , 以及建立感染 菌组 织 内原 位定量分析 的评价方法 , 为研 究细菌性 前列腺炎的治疗和药 物筛选提供基础 和新思路 。
基于 用 G F P标 记 的 大 肠 杆 菌 构 建 大 鼠 可视 化 细菌性前 列腺感染模型
张晓燕 , 陈慧慧 , 王海鹰 , 姚银辉 , 鲁澄宇
( 1 . 广 州白云 山和记黄埔 中药有 限公 司现代 中药研 究院 , 广东 广州 5 1 0 5 1 5 ; 2 . 广 东医学院药理学教研 室 ,
1 . 4 仪器
E p p e n d o r f 5 4 1 7 R高速 冷冻 离心 机( E p p e n d o r f 公
司) , 生物组织摊烤 片机 ( 武汉 俊杰 电子有 限公 司 ) , 组织 包
埋机 ( 武 汉 俊 杰 电子 有 限 公 司 ) , L E I C A MO D E L L R M 2 2 4 5切
・
1 0 2 2・
中 国 药理 学通 报
大鼠前列腺间质增生模型的建立
大鼠前列腺间质增生模型的建立前列腺间质增生是指前列腺的非腺体部分纤维化、增生或增厚,是一种常见的前列腺疾病。
建立大鼠前列腺间质增生模型是深入探究前列腺间质增生病理生理机制及药物治疗的重要手段。
本文将介绍建立大鼠前列腺间质增生模型的步骤。
1. 动物选择选择健康的成年雄性SD大鼠,体重200g~250g左右,具体标准根据实验室的实际情况来定。
确保饲养条件和实验室操作符合国家动物保护法规要求。
2. 麻醉和固定大鼠在无菌实验室下,给大鼠注射肌肉麻醉剂,如异丙酚。
然后固定大鼠,使其处于仰卧位。
用石膏或医用绳索将其前肢绑住,以便在手术时保持固定。
3. 操作前期准备将手术器材准备好,如手术刀、止血夹、缝合线等。
还需准备生理盐水、0.9%氯化钠注射液、氯霉素等。
4. 确定手术部位用消毒棉球消毒大鼠的下腹部皮肤,然后剃掉下腹部毛发。
再次消毒后,用手掌面按压整个下腹部,确定前列腺位置。
5. 切开膀胱和前列腺囊对大鼠进行剖腹手术,切开膀胱和前列腺囊。
在囊壁处加压,将前列腺突出。
使用显微镜,可以识别出前列腺区域的腺体和间质。
6. 给予诱导剂和药物给予诱导剂,如雌二醇、睾酮等,用以诱导前列腺间质的增生。
然后,根据实验设计的要求,对大鼠分组,给予不同药物的处理,如天然植物提取物、化学药物等。
7. 手术后处理给予术后抗生素预防感染。
备用的绷带和止血夹可能需要用到,如果必要,应该在手术结束后使用。
本文介绍了建立大鼠前列腺间质增生模型的步骤,帮助研究人员深入探究前列腺疾病的机制及药物治疗。
在操作中,需要注意动物的保护和实验的合法性,合理使用药物和手术器材,确保实验的顺利进行。
trap2小鼠原理
trap2小鼠原理
TRAP2 小鼠是一种用于研究细胞凋亡的重要模型小鼠,其基因敲除或突变会导致细胞凋亡的减缓或停止。
这种小鼠通常使用凋亡酶活化蛋白 2(APAF-1) 作为标记,APAF-1 是细胞凋亡激活的重要蛋白。
TRAP2 小鼠的原理是,当细胞受到外界因素 (如化学物质、病毒、射线等) 刺激时,细胞凋亡会发生激活,进而引起细胞凋亡。
TRAP2 小鼠的细胞凋亡激活后,会释放出一种称为 APAF-1 的蛋白。
APAF-1 是一种凋亡酶活化蛋白,能够激活凋亡酶 (如 caspase-3) 从而引起细胞凋亡。
TRAP2 小鼠的优点是,可以通过检测 APAF-1 的释放来监测细胞凋亡的激活情况。
TRAP2 小鼠的 APAF-1 表达水平通常与细胞凋亡的程度成正比,因此可以通过检测 TRAP2 小鼠的 APAF-1 表达水平来评估细胞凋亡的情况。
此外,TRAP2 小鼠还可以用于研究 APAF-1 与其他凋亡酶之间的相互作用,以及细胞凋亡信号通路的调节机制。
TRAP2 小鼠是一种重要的细胞凋亡研究工具,能够帮助研究者更好地理解细胞凋亡的生物学机制,并在疾病诊断和治疗方面提供新的思路和方法。
trap2小鼠原理
trap2小鼠原理Trap-2 (Toxin Trap-2)是一种用于实验室小鼠的毒药,具有高效和可靠的毒杀作用。
Trap-2小鼠毒性测试是用来评估一种新药的毒性,并确定其安全剂量范围的关键步骤。
该测试方法有助于检测和评估药物的毒性,并为进一步的研究提供了重要信息。
Trap-2小鼠原理基于在小鼠试验中使用的特定毒物和方法。
它通过评估小鼠对特定化合物的反应来评估其毒性。
下面将介绍Trap-2小鼠原理的关键步骤:1.实验设计:首先,根据实验需要确定所需的小鼠数量。
通常使用同种性别和同龄的小鼠进行实验。
小鼠应该在符合伦理标准的条件下饲养和处理。
2.毒物注射:接下来,根据实验设计,将特定化合物溶解于适当的溶剂中,并通过适当的注射方法将其注射到小鼠体内。
通常使用静脉、皮下或腹腔注射等方法。
3.形态学观察:在毒物注射后,对小鼠进行密切观察,记录任何异常症状或行为。
观察时间取决于毒物的特性和预期的毒性效应。
4.体重测量:在注射后的一段时间内,定期测量小鼠的体重变化。
通过比较前后体重可以评估毒物对食欲和消化能力的影响。
5.血液样本采集:在适当的时间点,通过剖腹法或尾静脉切开法采集小鼠的血液样本。
血液样本将用于评估毒物对血液参数、肝脏功能和肾功能等的影响。
6.组织取样:在实验结束后,通过解剖小鼠体内的特定器官,如肝脏和肾脏,以评估毒物对组织结构和功能的影响。
7.数据分析:通过比较不同实验组之间的数据,如体重变化、血液参数和器官病理学,可以评估并判定化合物的毒性作用。
数据分析将提供了解药物毒性和安全性的重要信息。
Trap-2小鼠原理的优点在于它是一种常用的实验方法,具有高度标准化和重复性,可以准确评估化合物的毒性和安全剂量范围。
然而,Trap-2小鼠原理也有一些局限性。
首先,小鼠并非人类,其生理和代谢过程与人类有所不同,因此结果的可靠性存在一定局限性。
此外,小鼠是一种较小的生物模型,在评估一些疾病状态或药物的毒性时可能存在局限性。
TRIB3激活Wnt
doi:10.3969/j.issn.1000-484X.2023.12.023TRIB3激活Wnt/β-catenin信号通路对喉癌TU686细胞体外生长增殖及移植瘤小鼠外周免疫抑制分子表达的影响①程忠强蒋成义王伟强化龙詹晓东②袁润生(蚌埠医学院第一附属医院耳鼻咽喉头颈外科,蚌埠 233003)中图分类号R739.65 文献标志码 A 文章编号1000-484X(2023)12-2595-06[摘要]目的:探讨TRIB3激活Wnt/β-catenin信号通路对喉癌TU686细胞体外生长增殖及移植瘤小鼠外周免疫抑制分子表达的影响。
方法:分别在体外细胞(人永生化表皮细胞系HaCat及喉癌细胞TU686)及组织(喉癌及癌旁组织)中检测TRIB3蛋白及RNA表达,随后将TU686细胞分为阴性对照组(NC组)及敲低TRIB3组(sh-TRIB3组),提取细胞总蛋白及RNA,验证两组细胞中TRIB3表达水平。
验证成功后,CCK-8、集落克隆实验及流式细胞术检测TU686细胞的增殖能力;Western blot 检测两组细胞中Wnt、Cyclin-D1、C-myc、β-catenin、p-β-catenin蛋白表达水平,相关性分析验证TRIB3与Wnt、Cyclin-D1、C-myc、β-catenin、p-β-catenin蛋白表达的相关性。
利用敲低TRIB3的核心质粒构建低表达TRIB3的裸鼠移植瘤模型(TRIB3 sgRNA 组),并设置平行对照组(Control sgRNA组),观察瘤体的生长体积及重量,ELISA测定移植瘤小鼠血清免疫抑制分子表达。
结果:与HaCat细胞及正常癌旁组织相比,TU686细胞及喉癌组织高表达TRIB3。
与阴性对照组相比,敲低TRIB3后TU686细胞增殖能力被显著抑制,细胞生长被阻滞于G1/S期;Wnt/β-catenin信号通路相关蛋白Wnt、Cyclin-D1、C-myc、β-catenin表达明显下降,p-β-catenin表达明显上升,TRIB3与Wnt、Cyclin-D1、β-catenin、p-β-catenin蛋白表达存在明显相关性。
自发性前列腺癌动物模型
自发性前列腺癌动物模型前列腺癌(adenocarcinomar of prostate)是西方国家男性中第二位常见的恶性肿瘤,是美国和斯堪的纳维亚地区最常见的男性恶性肿瘤,也是美国男性癌症死亡的第二位原因。
在我国及其他亚洲国家前列腺癌的发病率近年也有增高的趋势。
目前认为前列腺癌的自然进程较难预测,许多局限性前列腺癌即使不治疗对生存时间和生活质量也无影响。
在尸解或因其他原因进行前列腺切除而检出的隐匿前列腺癌在50岁以上男性中发现率极高,这表明前列腺癌的转归差异很大。
有关前列腺癌发病的家族聚集性的报道支持遗传因素在前列腺癌发病中起重要作用的观点。
父兄之一患前列腺癌的男人,其患前列腺癌的风险将增加2~3倍,若其一级亲属中有两个或两个以上患前列腺癌则其患前列腺癌的风险将增加5倍。
动物自发前列腺癌的很少,目前见诸报道的仅是Lobund-Wistar(L-W)大鼠。
一、发现经过据pollard 1977年报道,1974年前就已在老年无菌的Lobund-Wistar大鼠(L-W)体内发现了自发性前列腺癌,癌肿随着淋巴液的流动转移至肺部等其他内脏器官。
通过细胞和组织培养从这一品系的3只大鼠中获得3株肿瘤细胞株,分别命名为肿瘤Ⅰ、Ⅱ、Ⅲ型。
随之在无菌的雄雌性L-W大鼠皮下种植这些肿瘤细胞,观察到细胞可以再生形成腺癌。
种植的癌肿结构与在人体中观察到的转移性前列腺癌结构相似,但若用其他来源Wistar大鼠试验,则肿瘤受排斥,从而证明L-W大鼠是前列腺癌瘤株的宿主。
继而,Pollard又在1985年报道,从无菌衰老L-W大鼠四类前列腺癌获得原发性肿瘤模式系统,可用于肿瘤的生长、转移及治疗的研究。
二、临床症状与病理学变化给幼鼠种植肿瘤细胞,10 d内种植部位的皮下出现小结节,10 d后结节增大并出现溃疡,癌细胞排列成线样或片状,主要分布在结缔组织间质中,未观察到淋巴细胞浸润。
随着肿瘤的增大,中心部分出现变性,但周边细胞完好。
SD大鼠前列腺上皮Kv1_3表达的实验研究
为探讨钾离子通道在前列腺某些疾病的发病机制中的作用,我们应用SP(过氧化物酶标记的链霉卵白素,Streptavidin/Peroxidase)法免疫组化染色技术,对60例SD大鼠的前列腺标本进行Kv1.3钾离子通道的检测,为某些前列腺疾病的病因、发病机制以及治疗提供新的启发。
1材料与方法1.1动物的选择选择由安徽省动物实验中心提供的3个月龄和20个月龄的雄性SD大鼠各30只,CO2吸入处死,无菌取出其前列腺组织经组织学证实后做成SD大文章编号:1005-8982(2007)04-0420-04・论著・SD大鼠前列腺上皮Kv1.3表达的实验研究*周正兴,梁朝朝,张贤生,唐智国,郝宗耀,郭清奎(安徽医科大学第一附属医院泌尿外科,安徽合肥230022)摘要:目的探讨Kv1.3钾离子通道在前列腺疾病发病机制中的作用。
方法选择年轻的和老年的SD大鼠各30只,先取出前列腺,使用光学显微镜观察其HE切片的组织学特点,应用SP法对其进行免疫组化染色,分别检测Kv1.3钾离子通道在SD大鼠前列腺上皮细胞中的表达。
结果30例老年SD大鼠前列腺标本中Kv1.3钾离子通道强表达的有19例,中表达的8例,低表达的3例;30例年轻SD大鼠前列腺标本中Kv1.3钾离子通道强表达的有6例,中表达的9例,低表达的15例;χ2=14.819,P=0.001,两组间差别有统计学意义。
结论Kv1.3钾离子通道在SD大鼠前列腺上皮细胞中表达有明显差异,钾离子通道的改变可能参与某些前列腺疾病的发生的机制之一。
关键词:前列腺疾病;前列腺上皮;钾离子通道;免疫组化中图分类号:R697.3文献标识码:AExperimentalstudyonKv1.3expressionofSDratprostaticepithelialcells*ZHOUZheng-xing,LIANGChao-zhao,ZHANGXian-sheng,TANGZhi-guo,HAOZong-yao,GUOQing-kui(DepartmentofUrology,theFirstAffiliatedHospital,AnhuiMedicalUniversity,Hefei,Anhui230022,P.R.China)Abstract:【Objective】ToinvestigatethefunctionofKv1.3potassiumionchannelinthepathogenesisoftheprostaticdisease.【Methods】60SDratprostatespecimenswerecollectedincluding30youngand30old,postop-erationoftheirprostatespecimens,Bythelightmicroscopy,the60hematoxylin-eosinstainedslideswereobserved.Kv1.3potassiumionchannelexpressioninSDratprostaticepitheliawasdetectedbythemethodofSPimmunohis-tochemistry.【Results】In30oldSDratsprostatespecimens,therewere19caseshavingstrongexpressionofKv1.3potassiumoinchannel,8caseshavingmediumexpression,3caseshavinglowexpression.In30youngSDratspro-tatespecimens,therewere6caseshavmgstrongexpression,9casesmediumexpression,15caseslowexpression.Therewasstatisticaldifferencebetweenthetwogroups,(χ2=14.819,P=0.001).【Conclusions】Kv1.3potassiumionchannelexpressioninSDratprostaticepitheliahassignificantdifference,thechangeofthepotassiumionchannelmaybeoneofthemechanismsoftheprostaticdisease.Keywords:prostaticdisease;prostaticepithelialcells;potassiumionchannel;immunohistochemistry收稿日期:2006-09-28*基金项目:国家自然科学基金资助项目(项目批准号:30471724)[通讯作者]梁朝朝,Email:ahykdxcz@mail.hf.ah.cn第17卷第4期中国现代医学杂志Vol.17No.42007年2月ChinaJournalofModernMedicineFeb.2007鼠前列腺标本蜡块60例。
大鼠前列腺炎模型中L6~S1背根神经节TRPV1和NGF的表达
大鼠前列腺炎模型中L6~S1背根神经节TRPV1和NGF的表达陈勇;张建华;赵涛;孙伟【期刊名称】《重庆医学》【年(卷),期】2012(041)004【摘要】Objective To investigate the express of TRPV1 (transient receptor potential vanilloid-1) and NGF (nerve growth factor)in L6 -S1 dorsal root ganglia(DRG)of chronic prostatitis model in rat. Methods The rat prostatitis model was made by injecting CFA to prostate. The alteration of the express of TRPV1 and NGF in L6 -S1 DRG were observed by Western blot and RT-PCR. Results The express of TRPV1 in L6-S1 DRG of chronic prostatitis model on 7,14 d was significantly higher than that of control group(P<0. 01) , whereas, the express of TRPVl on 7,14 d had no obvious difference. Conclusion Up-regulation of TR-PV1 and NGF in Lg -Si DRG may play an important role in cross organ sensitization following chronic prostatitis.%目的观察大鼠前列腺炎疼痛模型中L6~S1节段背根神经节(DRG)瞬时感受器电位香草酸受体1(TRPV1)和神经生长因子(NGF)的表达变化.方法取30只SPF雄性Wistar大鼠随机分为实验组和对照组,分别设0、7、14 d 3个时相,共6组,每组5只,通过前列腺完全弗氏佐剂和生理盐水注射制作大鼠前列腺痛模型和对照组,解剖L6~S1节段DRG组织行蛋白质印迹和逆转录-聚合酶链反应(RT-PCR)检测TRPV1和NGF的表达.结果慢性前列腺痛大鼠中L6~S1节段DRG的TRPV1和NGF表达在7 d和14 d高于对照组和0 d组,差异有统计学意义(P<0.01);TRPV1表达在7 d和14 d组间差异无统计学意义(P>0.05);NGF表达14 d低于7 d(P<0.05).结论慢性前列腺炎导致的跨器官痛觉致敏与腰骶段DRG神经元的TRPV1和NGF高表达密切相关.【总页数】3页(P325-326,329)【作者】陈勇;张建华;赵涛;孙伟【作者单位】重庆市涪陵中心医院泌尿外科,408000;重庆市涪陵中心医院泌尿外科,408000;重庆市涪陵中心医院泌尿外科,408000;重庆市涪陵中心医院泌尿外科,408000【正文语种】中文【相关文献】1.痛泻安肠方对腹泻型肠易激综合征模型大鼠NGF/PLC-γ/TRPV1信号通路表达的干预效应 [J], 韩亚飞;李军祥;石磊;贾博宜;毛堂友;郭一;王允亮;谢添弘;陈晨;谭祥2.疏肝和胃方对胃食管反流大鼠模型背根神经节中TRPV1表达的影响 [J], 曹会杰;刘春芳;程艳梅;张秀莲;王宏伟;朱生樑3.外源性鼠NGF对大鼠糖尿病神经痛模型中NGF表达及机械痛阈影响的实验研究 [J], 高志峰;冯艺;鞠辉;杨拔贤4.子宫内膜异位症模型大鼠背根神经节神经元中TRPV1、TRPA1表达及其意义[J], 刘建刚;王晓波5.脉冲射频背根神经节对CCI模型大鼠脊髓中Iba1和TRPV1表达的影响 [J], 徐雪汝;林星武;傅少雄;施小妹;刘荣国因版权原因,仅展示原文概要,查看原文内容请购买。
前列腺炎动物模型研制进展
前列腺炎动物模型研制进展李玉。
梁朝朝+,张贤生(安徽医科大学第一附属医院,合肥230022)・综述与讲座・关键词:前列腺炎;动物模型中图分类号:R697.33;R332文献标志码:A文章编号:1002-266X{2009)46-0111-02前列腺炎,尤其慢性前列腺炎(CP)是一种好发于男性青壮年的常见病,多发病,其发病机制至今尚未阐明。
前列腺炎动物模型的技术成功应用为其进一步病因学研究及开发新的特异性药物治疗提供了基础。
现将前列腺炎动物模型的制作原理及方法作一综述。
1细菌性前列腺炎动物模型临床上细菌性前列腺炎约占所有前列腺炎的5%,主要致病菌为C一细菌。
通常引起细菌性前列腺炎的细菌有大肠杆菌、变形杆菌、克雷伯菌、假单孢菌、金黄色葡萄球菌等,其中80%为大肠杆菌。
结核杆菌和真菌也可致病。
目前细菌性前列腺炎的动物模型的制作多采用前列腺内注射标准致病大肠埃希菌的方法建立。
1.1感染诱导的急性细菌性前列腺炎(ABP)动物模型将SD大鼠10%水合氯醛(350mg/kg)腹腔麻醉,备皮,元菌条件下取下腹正中切口,直达腹腔,棉签轻轻挑起膀胱,暴露附于膀胱颈外侧的前列腺,于前列腺背叶注入标准大肠埃希菌液(5.2X10mdu/L)0.05ml,术后l、3、5、7d分批解剖观察。
结果造模1d可见腺腔和间质有些水肿,问质有炎症细胞浸润;造模3d,腺腔、间质水肿,腺腔和间质均有大量炎症细胞浸润;造模5d,腔内和间质炎症细胞浸润增多,有脓肿形成,腺腔上皮细胞明显压扁,少数被破坏;造模7d,腔内和间质弥漫着炎症细胞,多数腺腔形成脓肿,部分腺腔上皮细胞被破坏,仅剩腺腔的轮廓。
造模3d后前列腺即有明显炎症反应,损伤严重,这可能与选用5.2x1010cfu/L的菌液造模,注射菌量过多,细菌对其前列腺损伤过于严重有关…。
Elkahwaji等B1用小鼠造模,每只小鼠从前列腺背叶注入2×106cfu/L或2×105cfu/L的大肠杆菌20出,5d后,C3H/HeJ、C3H/HeouJ小鼠呈现ABP表现。
前列泰对大白鼠前列腺增生模型的影响及机理探讨
前列泰对大白鼠前列腺增生模型的影响及机理探讨Ξ张雪梅1,李 娜2,王晓亚1(1.泰山医学院,山东泰安 271000;21泰山疗养院,山东泰安 271000)摘要:目的 观察前列泰水煎剂对前列腺增生的治疗效果。
方法 将雄性(SD)大白鼠去势7天后,皮下注射溶解于橄榄油的丙酸睾丸素015mg/011ml/rat;同时开始用前列泰对大鼠灌肠(1ml/rat)处理,并用苯甲酸雌二醇灌肠作为阳性对照,每日一次,连续一个月。
于末次用药24h后处死动物,测量前列腺的重量、体积和密度;并在光镜下观察前列腺的组织细胞形态结构。
结果 给药一月后前列泰组的前列腺体积明显减小;前列腺的重量各组间未观察到显著性的差异,但前列腺腺体密度增大。
光镜下实验组腺体的组织细胞形态与睾酮组相比,呈现出一定程度的缩小变化。
结论 前列泰水煎剂对前列腺增生有一定抑制作用。
关键词:前列腺增生;动物模型;前列泰中图分类号:R977.6 文献标识码:A 文章编号:100427115(2001)0420288203Studies on the effect and mechanism of Q ianlietai on BPH ratsZHA N G X ue2mei1,L I N a2,W A N G Xiao2ya1(1.Taishan Medical College,Taian271000,China;2.Taishan Sanitorium of Shangdong Province,Taian271000,China)Abstract:Objective:To investigate into the effect of Qianlietai decocta on prostatic hyperplasia.Methods:Seven days after the male S prague-Dawley rats were castrated,testoterone propionate(0.5mg/0.1ml/rat)dissolved in olive oil was injected subcutaneously in the rats.Meanwhile,the rats were given an enema with Qianlietai decocta(1ml/rat) and benzhormovarine(the positive control)once a day,and the treatment continued for one month.Twenty-four hours after the final treatment,the rats were put to death,and the weight,volume and density of prostates were measured.The construction of prostate cells were also observed under light microscope.Results:In the Qianlietai decocta group,the volume of the prostate was significantly decreased and the densitysignificantly increased compared with the control.No significant differences were found in the weight of prostates among the groups.The atrophy of the prostatic gland was found under the microscope in the decocta group.Conclusion:The Qianlietai decocta can inhibit prostatic hyperplasia to some extent.K ey w ords:prostatic hyperplasia of;animal model;Qianlietai 前列腺良性增生症是中老年男性的常见病,随着老龄人口的增多,其患病人数逐渐增加,手术治疗有较大的风险和痛苦,医药界一直在寻找有效的治疗方法。
常用鼠前列腺癌动物模型的研究进展
常用鼠前列腺癌动物模型的研究进展
梁前俊;樊松;梁朝朝
【期刊名称】《现代泌尿生殖肿瘤杂志》
【年(卷),期】2017(9)1
【摘要】前列腺癌是常见的男性泌尿生殖系统肿瘤,在美国的发病率已经超过肺癌,严重威胁到男性的身体健康[1]。
在我国,前列腺癌发病率比欧美国家要低,近些年来,随着卫生条件的改善及前列腺癌筛查手段的普及,前列腺癌的发病率逐年升高并呈显著低龄化趋势[2]。
随着分子生物学的发展及相关标志物的应用,前列腺癌的诊断方法日趋完善。
【总页数】3页(P55-57)
【作者】梁前俊;樊松;梁朝朝
【作者单位】230032合肥,安徽医科大学第一附属医院泌尿外科;230032合肥,安徽医科大学第一附属医院泌尿外科;230032合肥,安徽医科大学第一附属医院泌尿外科
【正文语种】中文
【相关文献】
1.前列腺癌骨转移动物模型研究进展 [J], 齐思勇;施明;高江平
2.前列腺癌骨转移动物模型研究进展 [J], 张林琳;罗勇;贺大林
3.人前列腺癌淋巴转移动物模型的研究进展 [J], 张树江;孙祖越
4.前列腺癌动物模型的研究进展 [J], 黄烨清;陈明
5.人前列腺癌移植性转移动物模型的研究进展 [J], 储剑虹;孙祖越
因版权原因,仅展示原文概要,查看原文内容请购买。
BNP、PKG在慢性非细菌性前列腺炎大鼠模型L6-S1背神经节中的表达及其意义
BNP、PKG在慢性非细菌性前列腺炎大鼠模型L6-S1背神经节中的表达及其意义目的:通过前列腺内注射完全弗氏佐剂(Complete Freund’s adjuvant,CFA)建立稳定的大鼠慢性非细菌性前列腺炎(Chronic nonbacterialprostatitis,CNP)模型,采用实时荧光定量PCR、Western-blot检测实验组及对照组脊髓L6-S1背神经节(Dorsal ganglion,DRG)中脑钠尿肽(B-type Natriuretic peptides,BNP)、蛋白激酶G(Protein Kinase G,PKG)的表达和大鼠慢性非细菌性前列腺炎模型BNP鞘内注射后L6-S1背神经节中PKG的表达,初步探讨BNP、PKG与慢性前列腺炎/骨盆疼痛综合征(CP/CPPS)之间的关系。
方法:第一部分:1、选择雄性SD大鼠80只,适应性饲养1周后,随机分为8组,每组10只:对照组:给予前列腺内注射0.1ml生理盐水,包含3d组、7d组、10d组、14d 组四个亚组;实验组:给予前列腺内注射0.1ml CFA,包含3d组、7d组、10d组、14d组四个亚组。
2、通过荧光定量PCR、Western-blot检测实验组、对照组SD大鼠脊髓L6-S1背神经节中BNP、PKG的表达情况。
第二部分:1、选择雄性SD大鼠150只,适应性饲养1周后,随机分为三组:前列腺内注射CFA+鞘内注射生理盐水组、前列腺内注射CFA+鞘内注射BNP组、前列腺内注射生理盐水+鞘内注射生理盐水组。
于CFA前列腺内注射后第7天建立稳定的慢性非细菌性前列腺炎模型(CNP)后给予鞘内注射,每组包含5个亚组,分别给予连续鞘内注射1d、2d、3d、4d、5d。
2、BNP组给予鞘内注射BNP,其余各组均给予鞘内注射生理盐水,连续注射1d、2d、3d、4d、5d后分别提取L6-S1脊髓背神经节。
3、采用实时荧光定量PCR、Western-blot检测各组大鼠在连续鞘内注射1d、2d、3d、4d、5d后脊髓L6-S1背神经节中PKG的表达变化。
黄酮哌酯对前列腺增生模型大鼠的保护作用机制研究
黄酮哌酯对前列腺增生模型大鼠的保护作用机制研究杜丽芬;陈镜楼【期刊名称】《中国药房》【年(卷),期】2016(27)31【摘要】目的:研究黄酮哌酯对前列腺增生(BPH)模型大鼠的保护作用机制。
方法:将大鼠随机分为假手术组、模型组和黄酮哌酯高、低剂量组(80、40mg/kg),每组8只。
除假手术组外,其余各组大鼠通过去势和注射丙酸睾酮复制BPH模型,丙酸睾酮注射1 h后每组大鼠ig相应药物,每日1次,连续4周。
末次给药后,考察前列腺指数;采用天狼星红和Masson染色检测前列腺胶原沉积;免疫组化检测前列腺Ⅰ型胶原、纤维连接蛋白(FN)和上皮钙黏着蛋白(E-cadherin)的表达;酶联免疫吸附法检测前列腺组织中超氧化物歧化酶(SOD)、谷胱甘肽过氧化酶(GPx)、丙二醛(MDA)、表皮生长因子(EGF)和血管内皮生长因子(VEGF)的水平;实时荧光定量聚合酶链反应法检测微小RNA21(miR-21)和转化生长因子β1(TGF-β1)水平。
结果:与假手术组比较,模型组大鼠前列腺胶原沉积增多,前列腺指数、FN表达、MDA含量和VEGF、EGF、miR-21、TGF-β1水平均升高(P<0.05),E-cadherin表达、SOD和GPx活力均降低(P<0.05)。
与模型组比较,黄酮哌酯高、低剂量组大鼠前列腺胶原沉积减少,前列腺指数、FN表达、MDA含量和VEGF、EGF、miR-21、TGF-β1水平均降低(P<0.05),E-cadherin表达、SOD和GPx活力均升高(P<0.05)。
结论:黄酮哌酯抗BPH的机制可能与下调miR-21和TGF-β1表达,抑制氧化应激和血管生成,改善上皮-间质转化有关。
%OBJECTIVE:To study the protective mechanism of flavoxate on prostatic hyperplasia in model rats.METHODS:The rats were randomly divided into sham operationgroup,model group and flavoxate high-dose and low-dose groups (80,40 mg/kg),with 8 rats in each group. Except for sham operation group,those groups were emasculated and given sterandryl to induce BPH model. They were given relevant medicine intragastrically 1 h after administration of sterandryl,once a day,for consecutive 4 weeks. Sirius red and Masson staining were used to detect the precipitation of collagen inprostate;immunohistochemistry was used to detect the expressions of prostatic type Ⅰ collagen,FN and E-cadherin;ELISA assay was used to determine the levels of SOD, GPx,MDA,EGF and VEGF in prostate. qPCR assay was used to detect the levels of miR-21 and TGF-β1. RESULTS:Compared with the sham operation group,the prostatic collagen was accumulated;prostatic index,the expression of FN,MDA content and levels of VEGF,EGF,miR-21 and TGF-β1 were increased(P<0.05);the expression of E-cadherin,and the activity of SOD and GPx were decreased (P<0.05). Compared with model group,the precipitation of prostatic collagen was decreased;prostatic in-dex,the expression of FN,MDA content,the levels of VEGF,EGF,miR-21 and TGF-β1 were decreased in flavoxate high-dose and low-dose groups (P<0.05);while the expression of E-cadherin and the activity of SOD and GPx were increased (P<0.05). CONCLUSIONS:Flavoxate can inhibit BPH,the mechanism of which may associated with down-regulating the expressions of miR-21 and TGF-β1,inhibiting oxidative stress and angiogenesis and improving epithelial-mesenchymal transition.【总页数】3页(P4357-4359)【作者】杜丽芬;陈镜楼【作者单位】华中科技大学同济医学院附属普爱医院药学部,武汉 430033;华中科技大学同济医学院附属普爱医院药学部,武汉 430033【正文语种】中文【中图分类】R965【相关文献】1.坦洛新联合黄酮哌酯治疗良性前列腺增生症的疗效观察 [J], 潘锋君;吴小芬2.黄芩茎叶总黄酮对高甘油三酯血清致人脐静脉内皮细胞氧化损伤的保护作用及机制研究 [J], 王锦淳;苏佩清;孙丹丹;俞霞;周晓霞3.矮地茶黄酮对大鼠肝纤维化保护作用及机制研究 [J], 曹庆生; 李志超; 韩立旺4.葛根黄酮对大强度运动大鼠骨骼肌氧化应激损伤的保护作用及其机制研究 [J], 朱晓东5.葛根黄酮对大强度运动大鼠骨骼肌氧化应激损伤的保护作用及其机制研究 [J], 朱晓东因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
well-differentiated adenocarcinomas by 18 weeks of age. Poorly-differentiated tumors are observed subsequently, and tumors with a neuroendocrine phenotype, and metastases to the lymph nodes and lungs can be observed TRAMP mice over 30 weeks of age. Thisprogression of disease has provided a valuable model for studying various treatmentinterventions, and in particular has provided a model for the investigation of immune-based treatments (3–6).While it is a useful animal model in which prostate cancers develop and progress quickly,enabling intervention studies, a disadvantage of the TRAMP model is the small size of the mouse prostate, limiting the amount of tissue available for analyses. In addition, the mouse prostate is anatomically different from primate prostate, and does not express some of the same tissue-specific markers used for human prostate cancer evaluation such as prostate-specific antigen (PSA) or prostatic acid phosphatase (PAP). Historically, rats have served as models for human prostate cancer and prostatitis given the observations that rats develop prostate inflammation with age and changes in hormone exposure (7–9) and can develop prostate tumors upon exposure to carcinogens (10). In addition, the rat prostate shares some features with human prostate, including the expression of a tissue-specific acid phosphatase(11). Consequently, to provide an autochthonous model of prostate cancer development in the rat, Shirai and colleagues developed a model similar to the TRAMP in which the SV40TAg was under the probasin promoter in transgenic Sprague Dawley rats (12). These investigators demonstrated that these transgenic male rats (TRAP, transgenic ratadenocarcinoma of the prostate) demonstrated atypical epithelial cell proliferation in the prostate by 4 weeks of age, and by 15 weeks of age there was a 100% incidence of prostate adenocarcinomas (12). Unlike TRAMP mice, development of prostate carcinomas in these rats was exquisitely androgen-dependent since castration of TRAP rats at 5 weeks of age prevented the development tumors, and castration at 20 weeks of age promoted tumor involution (12,13). The TRAP rat model has been used as a model for several different intervention approaches (14,15).The Sprague Dawley strain is an outbred strain, and hence has been poorly characterized genetically and immunologically. As an immunology model, the Lewis strain has been best characterized, including identification of the peptide binding specificities for strain-specific MHC class I and II molecules (16,17). Consequently, the Lewis strain of rats has been used as a model for autoimmune disease and tolerance (18) and antigen-specific vaccination (19).In addition, the development of age-dependent prostatitis in this strain has led it to be specifically evaluated as a model for T-cell mediated prostatitis (20,21). Finally, thepresence of the tissue-specific PAP protein has led us to use the Lewis strain as a model for vaccine strategies targeting PAP (22,23). In particular, we have recently identified a RT1.A l MHC class I epitope specific for human PAP that is recognized in Lewis rats following human PAP-specific immunization (24). Given these findings, we sought to generate anautochthonous model of prostate cancer progression in the Lewis rat that might ultimately be useful as a tumor vaccine model. In the current study, we backcrossed the Sprague Dawley SV40 TAg+ rats onto the Lewis strain and characterized this strain (Lew-TRAP) withrespect to tumor development. In addition, we developed prostate epithelial cell lines from this strain. Finally, we report that immunization of Lew-TRAP rats with a plasmid DNA vaccine encoding PAP can elicit PAP-specific, RT1.A l -restricted immune responses,demonstrating its usefulness as an experimental immunology model.Materials and methodsAnimals Transgenic Sprague Dawley rats with the SV40 TAg gene downstream of the prostate-specific probasin promoter were previously described (12). Breeders of this strain were NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptgenerously provided by Dr. T. Shirai (Nagoya City University Medical School, Nagoya,Japan) via Dr. C. Lamartiniere (University of Alabama, Birmingham, AL, USA).Heterozygous SV40 TAg+ female breeders were crossed with non-transgenic Lewis strain males (Charles River, Wilmington, MA, USA) for 10 generations to develop a transgenic rat with the Lewis strain background (Lew-TRAP). At 21 days of age, offspring were weaned and ear punched for screening for the transgene. Tissue was digested with 50 mM NaOH at 95 °C for 1–3 hours. A PCR-based screening assay was performed to evaluate transgene incorporation, as previously described (12). Rats were fed a chow diet (8604 Teklab, Harlan Laboratories, Madison, WI, USA), consumed distilled water ad libitum , and maintained on a 12-hour dark/12-hour light schedule. They were housed in an American Association for the Accreditation of Laboratory Animal Care (AAALAC)-accredited facility. All experimental protocols were received and approved by the University of Wisconsin-Madison Institutional Animal Care and Use Committee (IACUC).Growth curve and tumor developmentSV40 TAg+ transgenic and wild type (non-transgenic) littermates from Lewis and Sprague Dawley rat strains underwent necropsy at 4, 10, 12, 15, 20, 25, 30, and 35 weeks of age.Whole body mass, and mass of the genitourinary (GU) complex (prostate, seminal vesicles,and bladder), were measured. Prostate tissues were placed in 10% buffered formalin for histopathological evaluation. The presence of metastatic tumors was determined by gross observation. Where indicated, some groups of Lew-TRAP rats underwent surgical castration at 20 weeks of age prior to tumor development surveillance at 30 weeks of age.HistopathologyTissue sections containing both the ventral and dorsal lateral lobes of the prostate were stained with hematoxylin and eosin (University of Wisconsin Experimental PathologyLaboratory). Tumor development was scored in a blinded fashion with respect to animal age and genotype using the following grading scale: Grade 1 (benign), Grade 2 (prostaticintraepithelial neoplasia, PIN), Grade 3 (moderately-to-well-differentiated adenocarcinoma),and Grade 4 (poorly differentiated carcinoma), using the same criteria as used for grading murine prostate tumor models (25). For tumors containing multiple histopathological grades per section, the histopathological grade reported was based on the most advanced grade observed.ImmunohistochemistryImmunohistochemistry was performed as previously described (6). For AR and SV40immunohistochemistry, tissue sections were stained with the primary antibodies (AR: clone R/NR3C4, R&D systems, Minneapolis, MN, USA; SV40: clone PAb 101, BD Biosciences,San Jose, CA, USA) and developed using the LSAB+system-HRP (Dako, Carpinteria, CA,USA) and Metal Enhanced DAB substrate kit (Thermo Fisher Scientific, Rockford, IL,USA). Slides were imaged using an Olympus BX51 microscope (Olympus, Center Valley,PA, USA) in combination with SPOT analysis software (SPOT Imaging Solutions, Sterling Heights, MI, USA).Generation of Lewis rat prostate tumor cell linesTissue samples of ventral prostate tumors were obtained from Lew-TRAP rats at 32 weeks of age. Tissues were minced into small sections and cultured in BRFF medium (Athena Enzyme Systems, Baltimore, MD, USA) supplemented with 20% fetal bovine serum and penicillin streptomycin at 37 °C in an atmosphere of 5% CO 2. Cell lines were evaluated for SV40 and androgen receptor (AR) expression by Western blot (SV40: clone PAb 101 BD Biosciences, San Jose, CA, USA; AR: clone EP670Y Novus, Littleton, CO, USA) as NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscriptpreviously described (6). The presence of prostatic acid phosphatase in tumor cell linelysates was determined by using a tartrate-inhibited phosphatase activity assay as described previously (26).Immunization studiesSeven week old, male Lew-TRAP rats were immunized six times intradermally at weekly intervals with 100 μg of pTVGHP or pTVG4. Two weeks after the last immunization (at fourteen weeks of age), the rats were euthanized. Spleens and sera were obtained under sterile conditions for immunological analyses.Analysis of immune responsesAntigen-specific T-cell proliferation—Splenocytes harvested from immunized animals were evaluated using methods previously described (22,24). Specifically, 2×105 cells were cultured with 2 μg/mL human PAP protein (Chemicon Int., Temecula, CA, USA), 2 μg/mL individual peptides (HP 201–215 or RP 200–214), or 10 μg/mL phytohemaglutinin (PHA)(Sigma, St. Louis, MO, USA) for 72 hours at 37 °C in an atmosphere of 5% CO 2. Then,cultures were pulsed with 1 μM BrdU (BD Biosciences, San Jose, CA, USA) for eight to twelve hours. Antigen-specific, proliferating (BrdU+) CD4+ or CD8+ T cells were detected using an intracellular flow cytometric staining method (BD Flow kit, BD Biosciences)according to the manufacturer’s standard protocol, and BrdU incorporation was measured and analyzed as previously described (22).Interferon gamma (IFN γ) enzyme-linked immunosorbent assay (ELISA)—Splenocytes from immunized rats were cultured with the human PAP protein, individual peptides (HP 201–215 or RP 200–214), or PHA for 72 hours as described above. The presence of IFN γ in the culture media was determined using a quantitative capture ELISA specific for rat IFN γ as described previously (22,24). Results are reported as the mean IFN γconcentration and standard deviation from multiple replicates.Antigen-specific antibodies—The presence of antibodies specific to human PAP (or ovalbumin, negative control) in the sera of immunized rats was determined by indirect ELISA, as described previously (22).ResultsProbasin/SV40 TAg+ transgenic rats on the Lewis background strain develop age-dependent prostate tumors with high penetranceWe sought to develop an autochthonous model of prostate tumor development in the Lewis rat strain, a strain that has been well characterized immunologically with respect to MHC restriction (16,17), autoimmune disease development (18,27), experimental models of prostatitis (8,21), and immunological evaluation following vaccination (19,23,24). A transgenic rat model of prostate cancer, in which the SV40 TAg is expressed under the prostate-specific probasin promoter, TRAP, has been previously described (12). However,the strain used was the outbred Sprague Dawley strain, and investigators demonstrated that the development of prostate tumors differed with respect to genetic strain background from F1 crosses (28). In order to characterize prostate tumor development in the Lewis strain, we crossed transgenic TRAP female breeders on the Sprague Dawley background with male Lewis strain rats for 10 generations prior to inbreeding within the transgenic Lewis strain.Tumor development was then characterized both grossly and histologically with respect to age. As shown in Figure 1, there were detectable differences in GU complex mass with respect to total body mass between the SV40 TAg+ transgenic and non-transgeniclittermates in both the Lewis and Sprague Dawley strain backgrounds by 20 weeks of age,NIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author Manuscriptand this was significantly different by 35 weeks of age. Tumor development in the prostate tissues (both ventral and dorsolateral lobes) from the Lewis and Sprague Dawley SV40+transgenic rats and their littermates were histopathologically scored in blinded fashion (Figure 2 and Table 1). As demonstrated, areas of atypical hyperplasia and PIN wereidentifiable as early as 4 weeks of age in Lew-TRAP rats, with invasive carcinoma identified by 12 weeks of age and poorly differentiated tumors seen as early as 25 weeks of age (Table1). The overall disease progression was similar for the Lewis strain as for the SpragueDawley strain. Tumors were not seen in the seminal vesicles of the transgenic rats regardless of age (data not shown). In addition, no overt evidence of metastasis was noted, however ~20% of the Lew-TRAP rats over 30 weeks of age had locally invasive disease withhydronephrosis. The presence of taste bud tumors was observed in <5% of animals, as has been reported for Sprague Dawley TRAP rats (28).Prostate carcinomas in Lew-TRAP rats are primarily androgen-dependentLew-TRAP rats (n=5) were castrated at 20 weeks of age and then euthanized at 30 weeks of age for tumor evaluation. Adenocarcinomas were not observed in 4 out of 5 transgenic rats,suggesting that the tumor development is mostly androgen dependent, at least to 20 weeks of age (Figure 2E). A poorly differentiated tumor was observed in 1 of 5 animals (Figure 2F).]Prostate epithelial cell lines derived from Lew-TRAP rats Prostate tumors obtained from the ventral lobes of prostates of 32-week-old animals were cultured in vitro to establish transplantable cell lines. Tumor cell lines were established that express the SV40 TAg (Figure 3A) and the androgen receptor (not shown), demonstrating it is of prostate origin. In addition, these cell lines were found to express prostatic acid phosphatase as determined by the expression of tartrate-inhibited phosphatase activity in cell lysates (Figure 3B). Subcutaneous implantation of cell lines in wild type Lewis rats did not lead to tumor growth (data not shown).Immunization of Lew-TRAP rats with a DNA vaccine encoding PAP elicited a PAP-specific immune responseLewis rats have been evaluated as a model of age- and vaccine-dependent prostateinflammation (20,21). We have previously characterized immune responses to the human prostatic acid phosphatase (hPAP) antigen in Lewis rats, and identified an MHC class I restricted epitope derived from hPAP in this strain (22–24). Consequently we sought to characterize whether the presence of prostate tumors in Lew-TRAP rats affected the ability to develop PAP-specific immune responses, and hence whether this transgenic model might be further developed as a tumor immunology model. Seven-week-old, male Lew-TRAP rats were immunized six times intradermally with 100 μg of pTVG-HP or pTVG4 (control vector) as previously described (24). As shown in Figure 4, PAP-specific T-cell immune responses were detected by antigen-specific proliferation (panels A and B) and by IFN γ-specific release (panel C). Of note, responses were specifically observed to the RT1.A l MHC class I epitope HP 201–215. Antibodies to hPAP protein were also detected, as wereported previously for wild type Lewis rats (Figure 4D) (22). The findings suggest that the Lew-TRAP rat could be used as a prostate cancer immunology model, and specifically as a model to investigate the efficacy of immunotherapies targeting the PAP antigen.DiscussionWe report here the development of an autochthonous transgenic model of prostate cancer in the Lewis rat, derived from a transgenic strain previously characterized in the SpragueDawley outbred strain (12,28). Tumors in this strain shared several characteristics with those of the parental strain; however, there were notable differences. For example, unlike what NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscripthad been observed using F1 hybrids from other strains, tumors developed in these animals with 100% penetrance by 25 weeks of age, and with a similar progression to the parental Sprague Dawley strain (28). Similar to the Sprague Dawley strain, these tumors werepredominantly androgen-sensitive, as castration at 20 weeks prevented the progression of tumors in the majority of animals. However, while this was not extensively evaluated, we did observe tumor recurrence with a poorly differentiated phenotype in 1 of 5 animals, a finding not previously observed with the Sprague Dawley strain, and more analogous to what has been observed with TRAMP mice (29). This difference may be due to theadvanced age of the animals, at a time when poorly differentiated tumors might have arisen.However, given this finding in an inbred strain, it is also conceivable that the development of poorly-differentiated tumors arise under the pressure of androgen deprivation rather than necessarily deriving from a different cell type, as has been previously suggested (12). This remains to be determined, however, as we did not further evaluate these poorly-differentiated tumors for markers of tissue specificity or differentiation (such as androgen receptor, chromogranin A, synaptophysin expression), and we did not evaluate the effects of castration at an earlier age. Similar to the Sprague Dawley strain, and in contradistinction to the murine TRAMP model, we did not identify gross metastatic disease.The goal of our study was to generate an autochthonous model of prostate cancer in the Lewis strain of rats, an inbred strain particularly amenable to immunological ing a plasmid DNA vaccine encoding PAP, we found that these rats were able to be immunized, with immune responses analogous to what we have observed in non-tumor bearing Lewis rats (22,24). In particular, MHC class I epitope-specific T cells were identified specific for the Lewis strain (24). In addition, we generated prostate cancer epithelial cell lines from this strain. While we were unable to use these as transplantabletumor cell lines in wild type Lewis rats, the presence of tumor cell lines potentially provides an additional in vitro model. The ability of these cell lines to form tumors in Lew-TRAP rats, which should be tolerant of the SV40 TAg, remains to be determined.In summary, we report the generation of a prostate cancer tumor model in Lewis rats,generated by backcrossing of the SV40 TAg+ transgenic model developed in the Sprague Dawley outbred rat strain. We found that animals developed prostate tumors with 100%penetrance with age, that tumors were androgen sensitive, and that animals could beimmunized with a human prostate-specific tumor antigen. Future studies will explore, using vaccines targeting rat prostate-specific tumor antigens, whether this can be used as a model to characterize anti-tumor immune responses within prostate tumors directly.AcknowledgmentsGrant support was provided by the National Institutes of Health (R01 CA142608 and P20 CA103697) and by the US Army Medical Research and Materiel Command Prostate Cancer Research Program (W81XWH-08-1-0341).References1. Sim HG, Cheng CW. Changing demography of prostate cancer in Asia. Eur J Cancer. 2005;41:834–45. [PubMed: 15808953]2. Greenberg NM, DeMayo F, Finegold MJ, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A. 1995; 92:3439–43. [PubMed: 7724580]3. Hurwitz AA, Foster BA, Kwon ED, et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000; 60:2444–8. [PubMed:10811122]4. Ahmad S, Casey G, Sweeney P, et al. Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Mol Ther. 2009; 17:1101–8. [PubMed:19337234]NIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author Manuscript5. Anderson MJ, Shafer-Weaver K, Greenberg NM, et al. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J Immunol. 2007; 178:1268–76. [PubMed: 17237372]6. Olson BM, Johnson LE, McNeel DG. The androgen receptor: a biologically relevant vaccine target for the treatment of prostate cancer. Cancer Immunol Immunother. 2012 [Epub ahead of print].7. Robinette CL. Sex-hormone-induced inflammation and fibromuscular proliferation in the rat lateral prostate. Prostate. 1988; 12:271–86. [PubMed: 2453862]8. Naslund MJ, Strandberg JD, Coffey DS. The role of androgens and estrogens in the pathogenesis of experimental nonbacterial prostatitis. J Urol. 1988; 140:1049–53. [PubMed: 3172358]9. Morón G, Maletto B, Rópolo A, et al. Effect of aging on experimental autoimmune prostatitis:differential kinetics of development. Clin Immunol Immunopathol. 1998; 87:256–65. [PubMed:9646835]10. Shirai T, Imaida K, Masui T, et al. Effects of testosterone, dihydrotestosterone and estrogen on 3,2′-dimethyl-4-aminobiphenyl-induced rat prostate carcinogenesis. Int J Cancer. 1994; 57:224–8.[PubMed: 8157361]11. Roiko K, Jänne OA, Vihko P. Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases. Gene. 1990; 89:223–9. [PubMed: 2373368]12. Asamoto M, Hokaiwado N, Cho YM, et al. Prostate carcinomas developing in transgenic rats with SV40 T antigen expression under probasin promoter control are strictly androgen dependent.Cancer Res. 2001; 61:4693–700. [PubMed: 11406539]13. Said MM, Hokaiwado N, Tang M, et al. Inhibition of prostate carcinogenesis in probasin/SV40 T antigen transgenic rats by leuprorelin, a luteinizing hormone-releasing hormone agonist. Cancer Sci. 2006; 97:459–67. [PubMed: 16734723]14. Seeni A, Takahashi S, Takeshita K, et al. Suppression of prostate cancer growth by resveratrol in the transgenic rat for adenocarcinoma of prostate (TRAP) model. Asian Pac J Cancer Prev. 2008;9:7–14. [PubMed: 18439064]15. Takahashi S, Takeshita K, Seeni A, et al. Suppression of prostate cancer in a transgenic rat model via gamma-tocopherol activation of caspase signaling. Prostate. 2009; 69:644–51. [PubMed:19143023]16. Reizis B, Schild H, Stefanović S, et al. Peptide binding motifs of the MHC class I molecules (RT1.Al) of the Lewis rat Immunogenetics. 1997; 45:278–9.17. Reizis B, Mor F, Eisenstein M, et al. The peptide binding specificity of the MHC class II I-Amolecule of the Lewis rat, RT1. BI Int Immunol. 1996; 8:1825–32.18. McIntosh KR, Linsley PS, Bacha PA, et al. Immunotherapy of experimental autoimmunemyasthenia gravis: selective effects of CTLA4Ig and synergistic combination with an IL2-diphtheria toxin fusion protein. J Neuroimmunol. 1998; 87:136–46. [PubMed: 9670855]19. Thygesen P, Christensen HB, Hougen HP, et al. Immunity to experimental Salmonellatyphimurium infections in rats. Transfer of immunity with primed CD45RC+ and CD45RC− CD4T-cell subpopulations. APMIS. 1996; 104:750–4. [PubMed: 8980626]20. Lundgren R, Holmquist B, Hesselvik M, et al. Treatment of prostatitis in the rat. Prostate. 1984;5:277–84. [PubMed: 6728728]21. Liu KJ, Chatta GS, Twardzik DR, et al. Identification of rat prostatic steroid-binding protein as atarget antigen of experimental autoimmune prostatitis: implications for prostate cancer therapy. J Immunol. 1997; 159:472–80. [PubMed: 9200488]22. Johnson LE, Frye TP, Arnot AR, et al. Safety and immunological efficacy of a prostate cancerplasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine. 2006; 24:293–303.[PubMed: 16115700]23. Johnson LE, Frye TP, Chinnasamy N, et al. Plasmid DNA vaccine encoding prostatic acidphosphatase is effective in eliciting autologous antigen-specific CD8+ T cells. Cancer Immunol Immunother. 2007; 56:885–95. [PubMed: 17102977]24. Johnson LE, Frye TP, McNeel DG. Immunization with a prostate cancer xenoantigen elicits axenoantigen epitope-specific T-cell response. Oncoimmunology. 2012 [Epub ahead of print].25. Kaplan-Lefko PJ, Chen TM, Ittmann MM, et al. Pathobiology of autochthonous prostate cancer ina preclinical transgenic mouse model. Prostate. 2003; 55:219–37. [PubMed: 12692788]NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript26. Choe BK, Pontes EJ, Bloink S, et al. Human prostatic acid phosphatases: I. Isolation Arch Androl.1978; 1:221–6.27. Zou LP, Ma DH, Levi M, et al. Antigen-specific immunosuppression: nasal tolerance to P0 protein NIH-PA Author Manuscriptpeptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. JNeuroimmunol. 1999; 94:109–21. [PubMed: 10376943]28. Asamoto M, Hokaiwado N, Cho YM, et al. Effects of genetic background on prostate and taste budcarcinogenesis due to SV40 T antigen expression under probasin gene promoter control.Carcinogenesis. 2002; 23:463–7. [PubMed: 11895861]29. Gingrich JR, Barrios RJ, Kattan MW, et al. Androgen-independent prostate cancer progression inthe TRAMP model. Cancer Res. 1997; 57:4687–91. [PubMed: 9354422] NIH-PA Author ManuscriptNIH-PA Author ManuscriptFigure 1.Probasin/SV40 TAg+ transgenic rats on both Sprague Dawley and Lewis background strains develop prostate tumors with age. Probasin/SV40 TAg+ transgenic rats and non-transgenic littermate controls in both Sprague Dawley (SD-TRAP, panel A) and Lewis (Lew-TRAP,panel B) strain backgrounds underwent necropsy at 4, 10, 12, 15, 20, 25, 30, and 35 weeks of age. Rats were weighed and the genitourinary complexes were excised and weighed. Each dot represents the ratio of genitourinary complex mass to body mass for an individual rat at each time point. Closed circles represent SV40 TAg+ transgenic rats (SV40 TAg+) and the open circles represent the non-transgenic littermates (WT). Comparisons of the means between groups were made with an unpaired t-test and P-values are shownNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptFigure 2.Representative prostate tissue sections from Lew-TRAP rats at multiple time points. Shown are representative prostate tissue sections (stained with hematoxylin and eosin) from Lew-TRAP rats. Panel A. Atypical hyperplasia noted at 4 weeks old. Panel B: PIN observed at 12weeks of age; Panel C. Moderately-to well-differentiated adenocarcinoma observed at 15weeks old; Panel D. Poorly-differentiated carcinoma observed at 35 weeks of age; Panels E and F. Lew-TRAP prostate tissue obtained at 30 weeks of age following castration at 20weeks, with no tumor observed in one animal (panel E), and poorly-differentiated tumor observed in another (panel F). Prostate tumors from 25-week old animals were stained for SV40 TAg (panel G) or androgen receptor (panel H)NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptFigure 3.Characterization of prostate tumor cell lines derived from Lew-TRAP rats. Prostate tumorcell lines were established from the ventral lobe of a 32-week old, Lew-TRAP rat. Theexpression of SV40 TAg (Panel A) was detected by Western blot. [Lane 1: mouse TRAMPcell line (6); lanes 2–4 individual Lew-TRAP prostate cell lines.] The arrow indicates theexpected size of the TAg band. Panel B: Prostatic acid phosphatase activity in lysates of thesame individual Lew-TRAP cell lines or the AR-deficient human prostate cancer cell line,DU145 (negative control). Shown is the tartrate-inhibited acid phosphatase activity per mgprotein lysate. The data are representative of two to three replicate experiments NIH-PA Author ManuscriptNIH-PA Author ManuscriptFigure 4.I-mmunization of Lew-TRAP rats with a DNA vaccine encoding PAP elicited a PAP-specific immune response. Seven-week old, male Lew-TRAP rats received six intradermalimmunizations with 100 μg of pTVG4 (n=5) or pTVG-HP (n=6) at weekly intervals.Splenocytes were cultured with media alone, human PAP protein (PAP), PAP peptides(HP 201–215 or RP 200–214), or PHA for 72 hours, and then pulsed with BrdU for 8–12 hours.Cells were then assessed for antigen-specific CD8+ (panel A) or CD4+ (panel B)proliferation by flow cytometry. Supernatants of splenocyte cultures were assessed for IFN γrelease by quantitative ELISA (Panel C). Each dot represents the frequency of BrdU+ Tcells of each rat or the average IFN γ release of each rat as determined in triplicate.Comparisons of the means between the groups were made with an unpaired t-test and P-values are shown. Sera from immunized rats were evaluated for the presence of anti-humanPAP or anti-OVA (negative control) antibodies using an indirect ELISA (Panel D). Eachpoint represents the average absorbance difference and standard deviation from the sera ofpTVG4 (n=5) and pTVG-HP (n=6) immunized ratsNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscript。