2010-2017陕西省历年中考真题真题+真题答案解析
2010年陕西省中考语文真题及答案
2010年陕西省中考语文真题及答案一.积累和运用1.下列各组词中,加点的读音全部都正确的一组是()A.铿.锵(kēng )伶仃.( tīng )倜傥.( dǎng )坦荡如砥.( dǐ)B.收敛.(liǎn )休憩.( qì)滑稽.( jī)获益匪.浅( fěi )C.花圃.( pǔ)吮.吸( yǔn )臆.测( yì)风雪载.途( zǎi )D.桑梓.( zǐ)簇.拥( cù)澎湃.( bài )深恶.痛疾( wù)2.下列各组词中,汉字书写全部正确的是()A.迸溅虔诚骄健大廷广众B. 汲取濒危侥幸翻来复去C.踱步分歧作揖人声鼎沸D.抖数娴熟怠慢郑重其事3. 根据括号内的启示,在横线上填写一个四字成语。
(1)小说家最好的住所是哪里?是的孤岛小木屋,还是众声喧哗的公寓(很少有人去的地方。
之荒凉偏僻的地方)(2)层层递升的浑厚的旋律,有如云水相搏,惊涛拍岸,呈现的是一幅天光云影、的图画(景象千变万化,非常壮观)4.经典诗文默写(任选一组)A组:(1),白露为霜。
(《诗经》)(2) ,浅草才能没马蹄。
(钱塘湖春行)(3)不应有何很,(4)浮光跃金,渔歌互答,此乐何极!(5)香远益清,,可远观而不可亵玩焉。
(6)他们的房屋,稀稀疏疏的,。
B组:(1),洪波涌起。
(2),拔剑四顾心茫然(3)醉里挑灯看剑,。
(4)斯是陋室,。
(5)余立侍左右,,俯身倾耳以请(6)看,像牛毛,像花针,像细丝,,人家屋顶上全笼罩着一层白烟。
5.按照要求完成下边的题目。
①文化是一个民族立足于世界各国民族之林的根本。
②文化是一种尊重,体现一个人如何、、、。
③在文化后实的社会里,人懂得尊重自己——他不苟且,因为不苟且所以有品位;人懂得尊重别人——他不霸道,因为不霸道所以有道德;人懂得尊重自然——他不掠夺,因为不掠夺所以有永续的智能。
④品味,道德以及智能,是文化的积累和总和。
(1)地①句有语病请改正后写在下边横线上。
2017年陕西省中考数学试卷含答案解析(Word版)
2017 年陕西省中考数学试卷、选择题(本大题共 10小题,每小题 3分,共 30 分)1.计算:( 12)21 =()513A .B .C .D .0444【答案】 C .【解析】试题分析:原式 = 1﹣ 1= 3 ,故选 C .44考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是(D .答案】 B . 解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选 考点:简单组合体的三视图.答案】 A . 【解析】考点:一次函数图象上点的坐标特征.3.若一个正比例函数的图象经过 A (3,﹣ 6), B (m ,﹣4)两点,m 的值为( )A .2B .8C .﹣ 2D .﹣ 8A .B .C .B .4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠ 1=25°,则∠ 2的大小为A.55°B.75°C.65°D.85°答案】C.解析】试题分析:∵∠ 1=25°,∴∠ 3=90°﹣∠ 1=90°﹣25 °=65°.∵a∥b,∴∠ 2=∠3=65°.故考点:平行线的性质.5.化简:xyx,xy 结果正确的是(A.12xB . 2xy2yC.xyxyD.x2y2答案】B.解析】试题分析:原式22x xy xy y22xyx22xy .故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△ A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C.若∠ ACB=∠AC′B=90°,AC=BC=3,则B′C 的长为(A.3 3 B.6 C.3 2 D.21【答案】A .【解析】试题分析:∵∠ ACB=∠AC′B′=90°,AC=BC=3,∴AB= AB2 BC2=3 2 ,∵△ABC 和△A′B′C′大小、形状完全相同,∴∠ C′AB′=∠CAB=45°,AB ∴∠CAB′=90°,∴ B′C= CA2 B'A2=3 3,故选A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4 与直线l2:y=kx+b(k≠0)在第一象限交于点l2与x轴的交点为A(﹣2,0),则k 的取值范围是()A.﹣2<k<2 B.﹣2< k< 0 C.0<k< 4<2答案】D.解析】∠CAB=45°,′=AB=3 2 ,M.若直线D.0<k考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形 ABCD 中, AB=2,BC=3.若点 E 是边 CD 的中点,连接 AE ,过点 B 作答案】 B . 【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ ABC 是⊙O 的内接三角形,∠ C=30°,⊙ O 的半径为 5,若点 P 是⊙ O 上的一 点,在△ ABP 中, PB=AB ,则 PA 的长为()A . 3 10 23 10 5C .10D .35 5【答案】 D . 【解析】试题分析:连接 OA 、OB 、 OP ,∵∠ C=30°,∴∠ APB =∠ C=30°,∵ PB=AB ,∴∠ PAB=∠APB=30°∴∠ ABP=120°,∵ PB=AB ,∴ OB ⊥AP ,AD=PD ,∴∠ OBP=∠OBA=60°,∵ OB=OA ,∴△AOB 是等边三角形,∴ AB=OA=5,则 Rt △PBD 中,PD =cos30°?PB= ×5=AP=2PD=5 3 ,故选 D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线 y x 2 2mx 4 ( m > 0)的顶点 M 关于坐标原点 O 的对称点为 M ′,若 点 M ′在这条抛物线上,则点 M 的坐标为( ) ﹣20) 【答案】 C . 【解析】试题分析: y x 2 2mx 4=(x m )2 m 2 4 ,∴点 M ( m ,﹣ m 2﹣ 4),∴点 M ′(﹣ m ,m 2+4),∴ m 2+2m 2﹣ 4=m 2+4.解得 m=±2.∵m >0,∴ m=2,∴ M ( 2,﹣ 8).故选 C . 考点:二次函数的性质.A .5B . 53 2C . 5 2A .(1,﹣ 5)B .( 3,﹣13)C .(2,﹣8)D .(4,、填空题(本大题共 4 小题,每小题3分,共12 分)11.在实数﹣5,﹣3 ,0,π ,6 中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ ABC中,BD和CE是△ABC 的两条角平分线.若∠ A=52°,则∠ 1+∠2的度数为.B.317 tan38° 15′≈.(结果精确到0.01)【答案】A.64°;B.2. 03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.3m 2m 5 513.已知A,B 两点分别在反比例函数y (m≠ 0)和y (m≠ )的图象上,x x 2 若点A 与点B 关于x 轴对称,则m 的值为.【答案】1.解析】b 3mb试题分析:设 A (a ,b ),则 B (a ,﹣ b ),依题意得:a,所以 3m 2m 52m 5 a ba=0,即 5m ﹣ 5=0,解得 m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、 y 轴对称的点的坐标.14.如图,在四边形 ABCD 中, AB=AD ,∠ BAD =∠ BCD =90°,连接 AC .若 AC=6,则四 边形 ABCD 的面积为 .【解析】∴四边形 ABCD 的面积 =正方形 AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而 AC=6∴2λ 2=36, λ 2=18,故答案为: 18. 考点:全等三角形的判定与性质.、解答题(本大题共 11小题,共 78 分)15.计算: ( 2) 6 | 3 2 | (1) 1.答案】 3 3 . 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式 = 12 2 3 2 = 2 3 3 = 3 3 . 考点:二次根式的混合运算;负整数指数幂.x3 216.解方程:1答案】 18.x3【答案】 x=﹣ 6. x3【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论. 试题解析:去分母得, ( x+3)2﹣2(x ﹣3)=(x ﹣3)(x+3),去括号得, x 2+6x+9﹣2x+6=x 2 ﹣9,移项,系数化为 1,得 x=﹣6,经检验, x=﹣6 是原方程的解.考点:解分式方程.17.如图,在钝角△ ABC 中,过钝角顶点 B 作 BD ⊥BC 交 AC 于点 D .请用尺规作图法在 BC 边上求作一点 P ,使得点 P 到 AC 的距离等于 BP 的长.(保留作图痕迹,不写作法)【解析】18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益, 某中学为了了解七年级学生 的早锻炼情况, 校政教处在七年级随机抽取了部分学生, 并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200 名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20 分钟.(早锻炼:指学生在早晨7:00~7:40 之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:2)由于共有200 个数据,其中位数是第100、101个数据的平均数,则其中位数位于区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20 分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD 中,E、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF、CE 交于点G.求证:AG =CG .【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF =CDE =90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳” 之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M 点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1. 7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M 点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1 米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN 的长(结果精确到1 米).(参考数据:sin23°≈0. 3907,cos23°≈0. 9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0. 9135,tan24°≈0. 4452.)【答案】34 米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x 米,则BD =CE =x 米,在Rt△MBD 中,MD=x?tan23°,在Rt△MCE 中,ME=x?tan24°,∵ME﹣MD=DE=BC,∴x?tan24°﹣x?tan23°=1. 7﹣1,∴ x= 0.7,解得x≈34(米).tan 24 tan23 答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34 米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的 3 个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2 个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8 个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8 个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10 万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000 建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;4(2)由题意得,7500x+6800≥100000,∴x≥4 ,∵x 为整数,∴李师傅种植的8个大棚15 中,香瓜至少种植5 个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.13【答案】(1)1;(2)3.2 16【解析】A,A)、(A,B)、(A,C)、(A,C)、A,A)、(A,B)、(A,C)、(A,C)、B,A)、(B,B)、(B,C)、(B,C)、C,A)、(C,B)、(C ,C )、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.16考点:列表法与树状图法;概率公式.23.如图,已知⊙ O的半径为5,PA是⊙ O的一条切线,切点为A,连接PO 并延长,交⊙ O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC 的长;答案】(1)5 3;(2)证明见解析.解析】在Rt△ODA 中,AD=OA?sin60°=5 3,∴AC=2AD=5 3 ;2(2)∵ AC⊥ PB,∠ P=30°,∴∠ PAC=60°,∵∠ AOP =60°,∴∠ BOA=120°,∴∠ BCA=60°,∴∠ PAC =∠BCA ,∴ BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B 两点,其中点A 在点B 的左侧.(1)求抛物线C1,C2 的函数表达式;(2)求A、B 两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q 两点的坐标;若不存在,请说明理由.答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n 的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B 的坐标;(3)由题意可知AB 只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q 点坐标,代入C2 的函数表达式可求得P、Q 的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴ P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴ t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC 是等边三角形,AB=12,若点O是△ ABC 的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD 中,AB=12,AD=18,如果点P是AD 边上一点,且AP=3,那么BC 边上是否存在一点Q ,使得线段PQ 将矩形ABCD 的面积平分?若存在,求出PQ 的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△ AMB 的面积为96m2;过弦AB的中点D作DE⊥AB 交AB 于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0. 01 米)【答案】(1)4 3;(2)PQ=12 2 ;(3)喷灌龙头的射程至少为19.71 米.【解析】AD试题分析:(1)构建Rt △ AOD 中,利用cos∠ OAD=cos30°=,可得OA 的长;OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD 中,由勾股定理解得:r=13根据三角形面积计算高MN 的长,证明△ ADC∽△ANM ,列比例式求DC 的长,确定点O在△ AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.11试题解析:(1)如图1,过O 作OD⊥AC于D,则AD= AC= ×12=6,∵ O是内心,△2211ABC 是等边三角形,∴∠ OAD= ∠ BAC= × 60°=30°,在Rt△AOD 中,cos∠22OAD =cos30°=AD,∴ OA =6÷ 3 = 4 3 ,故答案为:4 3 ;OA 2(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,11∴ 1 AB?MN=96,1×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ ADC∽△ 22 DC AD DC 12 16ANM,∴ ,∴ ,∴DC= ,∴ OD < CD,∴点O在△ AMB 内部,∴连MN AN 8 18 3接MO 并延长交AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在AB 上任取一点异于点F 的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF > MG ,过O 作OH ⊥ MN ,垂足为H,则OH =DN =6,MH =3,∴ OM = MH2 OH2= 32 62=3 5,∴MF =OM+r= 35 +13≈19. 71(米).答:喷灌龙头的射程至少为19.71 米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
2017年陕西省中考数学试卷(解析版)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:21()12--==( ) A .54-B .14-C .34- D .0 【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8 C .﹣2 D .﹣8 【答案】A . 【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【答案】C.【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选C.考点:平行线的性质.5.化简:x xx y x y--+,结果正确的是()A.1B.2222x yx y+-C.x yx y-+D.22x y+【答案】B.【解析】试题分析:原式=2222x xy xy yx y+-+-=2222x yx y+-.故选B.考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为()A .33B .6C . 32D .21 【答案】A . 【解析】试题分析:∵∠ACB =∠AC ′B ′=90°,AC =BC =3,∴AB =22AB BC +=32,∠CAB =45°,∵△ABC 和△A ′B ′C ′大小、形状完全相同,∴∠C ′AB ′=∠CAB =45°,AB ′=AB =32,∴∠CAB ′=90°,∴B ′C =22'CA B A +=33,故选A . 考点:勾股定理.7.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <2【答案】D . 【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为()A .5B .532C . 52D .53 【答案】D . 【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠P AB =∠APB =30°∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB 是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB =32×5=532,∴AP =2PD =53,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224y x mx =--(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20) 【答案】C . 【解析】试题分析:224y x mx =--=22()4x m m ---,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C . 考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣5,﹣3,0,π,6中,最大的一个数是.【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.317tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18.【解析】∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:11(2)6|32|()2--⨯+--. 【答案】33-. 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式=12232-+--=233--=33-. 考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6. 【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解. 考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析. 【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23o o,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;(2)由题意得,7500x+6800≥100000,∴x≥4415,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316.【解析】(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.考点:列表法与树状图法;概率公式.23.如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.【答案】(1)53;(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin60°=532,∴AC=2AD=53;(2)∵AC⊥PB,∠P=30°,∴∠P AC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠P AC=∠BCA,∴BC∥P A.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA 转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB 交»AB于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)432)PQ=122;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt△AOD中,利用cos∠OAD=cos30°=ADOA,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,由勾股定理解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.试题解析:(1)如图1,过O作OD⊥AC于D,则AD=12AC=12×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=12∠BAC=12×60°=30°,在Rt△AOD中,cos∠OAD =cos30°=ADOA,∴OA =6÷32=43,故答案为:43;(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96,12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC AD MN AN =,∴12818DC ,∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交»AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在»AB 上任取一点异于点F 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM =22MH OH +=2236+=35,∴MF =OM +r =35+13≈19.71(米). 答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。
陕西2017中考试题及答案
陕西2017中考试题及答案一、语文试题(30分)1. 下面各组词语中有一个不属于同类,请将其标号填入题前括号内。
(5分)()1. 教室、图书馆、书店、超市()2. 太平洋、黑龙江、长江、首都之窗()3. 蝴蝶、飞鸟、白鹭、飞鱼()4. 铅笔、钢笔、毛笔、自行车()5. 导演、编辑、画家、作家答案:(1)超市;(2)首都之窗;(3)飞鱼;(4)自行车;(5)首都之窗2. 下列句子中,有一个字的用法不正确,请将其标号填入题前括号内。
(5分)()1. 他因生病而请了2天(带声调)。
()2. 在中国,人们常在清明节听花鼓戏(带声调)。
()3. 这些作品整整20年(带声调)。
()4. 她的声音很含蓄(带声调)。
()5. 他是这次活动的策划者(带声调)。
答案:(3)整整;(4)含蓄3. 请将下面这段话按要求改写成漂亮连贯的句子。
(5分)她长得漂亮天真工作努力。
改写后:她长得漂亮,天真可爱,工作努力。
4. 阅读下面的诗句,选择正确的注音。
(5分)()1. 已经校场吴楚客(注音:jǐng)()2. 豪气鲁莽起飞大任智者千虑必有一失时来运转情非得已(注音:qǐ)()3. 家中姐妹如花面(注音:miàn)()4. 今天是四月五日(注音:rì)()5. 上好的蜂王浆是白色的(注音:jiǎng)答案:(1)聘;(2)qǐ;(3)miàn;(4)rì;(5)jiǎng5. 请根据课文内容完成下面的句子。
(10分)夜色中他推开门,迈进房间。
_______(填名词)众人刚刚有意订好的计划,再一次_____。
(填动词)我们面前的突然出现一只小狗。
_____(填副词)路上来往的车辆增多了,你会____(填“因为”或“所以”)那个被拿到市上的大楼已经修好了,______。
(填标点符号)答案:(1)微笑;(2)被打乱;(3)急急忙忙;(4)所以;(5)问号二、数学试题(40分)1. 求下列各数的和。
2010陕西中考化学真题含答案
2010年陕西省初中毕业学业考试(本卷满分:50分考试时间:与物理共用120分钟)可能用到的相对原子质量:H-1C-12O-16S-32Fe-56第一部分(选择题共14分)一、选择题(共7小题,每小题2分,计14分。
只有一个选项是符合题意的)注:1~8题为物理试题9.下列现象和做法,仅涉及物理变化的是()10.在空气中,与人类关系最密切的当属氧气。
下列说法正确的是()A. 带火星的木条在氧气中能够复燃,说明氧气能支持燃烧B. 铁丝在空气中剧烈燃烧,火星四射,说明氧气具有可燃性C. 氧气的化学性质非常活泼,能与所有的物质发生化学反应D. 用高锰酸钾制取氧气的反应中,锰元素、氧元素的化合价都没有变化11.在一次化学实验操作考核中,某班同学有如下几种操作和应急措施,其中不正确...的是()12.大蒜是常见的调味品之一,大蒜中主要成分大蒜素具有消毒杀菌作用。
大蒜素的化学式为C6H10S3,下列说法不正确...的是()A. 大蒜素的一个分子由6个碳原子、10个氢原子和3个硫原子构成B. 大蒜素由碳、氢、硫三种元素组成C. 大蒜素中碳、氢、硫三种元素的质量比为6∶10∶3D. 大蒜素属于有机化合物13.NaCl和KNO3在不同温度时的溶解度如下:下列说法正确的是()A.10 ℃时,将40 g NaCl固体加入100 g水中,可得到140 g NaCl溶液B.KNO3和NaCl的溶解度受温度的影响都很大C.将30 ℃的KNO3饱和溶液升温至60 ℃,会变成不饱和溶液D.20 ℃时,NaCl饱和溶液的溶质质量分数为36%14.下列实验能够直接用于验证质量守恒定律的是()15.推理是学习化学的一种重要方法,但不合理的推理会得出错误的结论。
以下推理正确的是()A. 含碳元素的物质充分燃烧会生成CO2,燃烧能生成CO2的物质一定含碳元素B. 离子是带电荷的微粒,带电荷的微粒一定是离子C. 碱溶液的pH都大于7,pH大于7的溶液一定是碱溶液D. 分子可以构成物质,物质一定是由分子构成的第二部分(非选择题共36分)二、填空及简答题(共5小题,计19分)16.(3分)℃、℃两小题只选做一题,如果两题全做,只按℃题计分。
2017年陕西省中考数学试卷(含答案解析版)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 2.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .3.(3分)若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣84.(3分)如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°5.(3分)化简:x x−y ﹣y x+y,结果正确的是( ) A .1 B .x 2+y 2x 2−y 2 C .x−y x+y D .x 2+y 26.(3分)如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为( )A .3√3B .6C .3√2D .√217.(3分)如图,已知直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A .﹣2<k <2B .﹣2<k <0C .0<k <4D .0<k <28.(3分)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3√102B .3√105C .√105D .3√559.(3分)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .5√32C .5√2D .5√3 10.(3分)已知抛物线y=x 2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣√3,0,π,√6中,最大的一个数是 .12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A=52°,则∠1+∠2的度数为 .B.√173tan38°15′≈ .(结果精确到0.01)13.(3分)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x(m ≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 . 14.(3分)如图,在四边形ABCD 中,AB=AD ,∠BAD=∠BCD=90°,连接AC .若AC=6,则四边形ABCD 的面积为 .三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣√2)×√6+|√3﹣2|﹣(12)﹣1. 16.(5分)解方程:x+3x−3﹣2x+3=1. 17.(5分)如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x (分钟)进行了调查.现把调查结果分成A 、B 、C 、D 四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜 2000 12 8000甜瓜 4500 3 5000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA 的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D ̂于点E,又测得DE=8m.作DE⊥AB交AB请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣12)2﹣1=( ) A .﹣54 B .﹣14 C .﹣34D .0 【考点】1G :有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=14﹣1=﹣34, 故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上便是一个角的矩形, 故选:B .【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A (3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【考点】F8:一次函数图象上点的坐标特征.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75° C.65° D.85°【考点】JA:平行线的性质.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C .【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:x x−y ﹣y x+y,结果正确的是( ) A .1 B .x 2+y 2x 2−y 2 C .x−y x+y D .x 2+y 2【考点】6B :分式的加减法.【专题】11 :计算题;513:分式.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=x 2+xy−xy+y 2x 2−y 2=x 2+y 2x 2−y 2. 故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC 和△A′B′C′拼在一起,其中点A′与点A 重合,点C′落在边AB 上,连接B′C .若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C 的长为( )A.3√3B.6 C.3√2D.√21【考点】KQ:勾股定理.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB=√AC2+BC2=3√2,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3√2,∴∠CAB′=90°,∴B′C=√CA2+B′A2=3√3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k ≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【考点】FF:两条直线相交或平行问题;F8:一次函数图象上点的坐标特征.【专题】17 :推理填空题.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l 2与x 轴的交点为A (﹣2,0),∴﹣2k +b=0,∴{y =−2x +4y =kx +2k解得{x =4−2k k+2y =8k k+2∵直线l 1:y=﹣2x +4与直线l 2:y=kx +b (k ≠0)的交点在第一象限,∴{4−2k k+2>08k k+2>0 解得0<k <2.故选:D .【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3√102B .3√105C .√105D .3√55【考点】S9:相似三角形的判定与性质;LB :矩形的性质.【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【解答】解:如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE=√AD2+DE2=√32+12=√10,∵S△ABE =12S矩形ABCD=3=12•AE•BF,∴BF=3√10 5.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O 的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.5√32C.5√2D.5√3【考点】MA:三角形的外接圆与外心;KH:等腰三角形的性质.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∴OB ⊥AP ,AD=PD ,∴∠OBP=∠OBA=60°,∵OB=OA ,∴△AOB 是等边三角形,∴AB=OA=5,则Rt △PBD 中,PD=cos30°•PB=√32×5=5√32, ∴AP=2PD=5√3,故选D .【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x 2﹣2mx ﹣4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)【考点】H3:二次函数的性质.【分析】先利用配方法求得点M 的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x 2﹣2mx ﹣4=x 2﹣2mx +m 2﹣m 2﹣4=(x ﹣m )2﹣m 2﹣4. ∴点M (m ,﹣m 2﹣4).∴点M′(﹣m ,m 2+4).∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣√3,0,π,√6中,最大的一个数是π.【考点】2A:实数大小比较.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>√6>0>−√3>﹣5,故实数﹣5,−√3,0,π,√6其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.3tan38°15′≈ 2.03.(结果精确到0.01)B.√17【考点】T6:计算器—三角函数;25:计算器—数的开方;K7:三角形内角和【分析】A :由三角形内角和得∠ABC +∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB ); B :利用科学计算器计算可得.【解答】解:A 、∵∠A=52°,∴∠ABC +∠ACB=180°﹣∠A=128°,∵BD 平分∠ABC 、CE 平分∠ACB ,∴∠1=12∠ABC 、∠2=12∠ACB , 则∠1+∠2=12∠ABC +12∠ACB=12(∠ABC +∠ACB )=64°, 故答案为:64°;B 、√173tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A ,B 两点分别在反比例函数y=3m x (m ≠0)和y=2m−5x (m ≠52)的图象上,若点A 与点B 关于x 轴对称,则m 的值为 1 .【考点】G6:反比例函数图象上点的坐标特征;P5:关于x 轴、y 轴对称的点的坐标.【分析】设A (a ,b ),则B (a ,﹣b ),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m 的值.【解答】解:设A (a ,b ),则B (a ,﹣b ),依题意得:{b =3m a −b =2m−5a , 所以3m+2m−5a=0,即5m ﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得3m+2m−5a=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【考点】KD:全等三角形的判定与性质.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,{∠BAM=∠DAN ∠AMB=∠AND AB=AD,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣√2)×√6+|√3﹣2|﹣(12)﹣1.【考点】79:二次根式的混合运算;6F:负整数指数幂.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣√12+2﹣√3﹣2=﹣2√3﹣√3=﹣3√3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:x+3x−3﹣2x+3=1.【考点】B3:解分式方程.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC 交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【考点】N2:作图—基本作图.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【考点】V8:频数(率)分布直方图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE=CF ,连接AF 、CE 交于点G .求证:AG=CG .【考点】LE :正方形的性质;KD :全等三角形的判定与性质.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD ,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD 是正方形, ∴∠ADF=CDE=90°,AD=CD . ∵AE=CF , ∴DE=DF ,在△ADF 和△CDE 中{AD =CD∠ADF =∠CDE DF =DE ,∴△ADF ≌△CDE (SAS ), ∴∠DAF=∠DCE ,在△AGE 和△CGF 中,{∠GAE =∠GCF∠AGE =∠CGF AE =CF ,∴△AGE ≌△CGF (AAS ), ∴AG=CG .【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC 为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24°−tan23°,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种项目产量(斤/每棚)销售价(元/每斤)成本(元/每棚)香瓜 2000 12 8000甜瓜 4500 3 5000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【考点】FH:一次函数的应用.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥44 15,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:24=1 2,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是1 2;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【考点】MC:切线的性质.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC ⊥PB ,PB 过圆心O , ∴AD=DC在Rt △ODA 中,AD=OA•sin60°=5√32∴AC=2AD=5√3(2)∵AC ⊥PB ,∠P=30°, ∴∠PAC=60°, ∵∠AOP=60° ∴∠BOA=120°, ∴∠BCA=60°, ∴∠PAC=∠BCA ∴BC ∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C 1:y=ax 2﹣2x ﹣3与抛物线C 2:y=x 2+mx +n 关于y 轴对称,C 2与x 轴交于A 、B 两点,其中点A 在点B 的左侧.(1)求抛物线C 1,C 2的函数表达式; (2)求A 、B 两点的坐标;(3)在抛物线C 1上是否存在一点P ,在抛物线C 2上是否存在一点Q ,使得以AB 为边,且以A 、B 、P 、Q 四点为顶点的四边形是平行四边形?若存在,求出P 、Q 两点的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m 的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,。
2017年陕西省中考数学试卷(解析版)
2017年陕西省中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算:(﹣)2﹣1=()A.﹣B.﹣C.﹣D.02.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣84.如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.化简:﹣,结果正确的是()A.1 B.C.D.x2+y26.如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3B.6 C.3D.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则P A的长为()A.5 B.C.5D.510.已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(共4小题)11.在实数﹣5,﹣,0,π,中,最大的一个数是.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(共10小题)15.计算:(﹣)×+|﹣2|﹣()﹣1.16.解方程:﹣=1.17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如表所示,同时,将调查结果绘制成下面两幅不完整的统计图.分组早锻炼时间/分钟A0~10B10~20C20~30D30~40请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.24.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选:C.【知识点】有理数的混合运算2.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【知识点】简单组合体的三视图3.【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【知识点】一次函数图象上点的坐标特征4.【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∠1+∠ABC+∠3=180°,∴∠3=180﹣∠1﹣∠ABC=180°﹣25°﹣90°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【知识点】平行线的性质5.【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选:B.【知识点】分式的加减法6.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【知识点】勾股定理7.【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【知识点】一次函数图象上点的坐标特征、两条直线相交或平行问题8.【分析】根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE=S矩形ABCD=3=•AE•BF,∴BF=.故选:B.【知识点】矩形的性质9.【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选:D.【知识点】等腰三角形的性质、三角形的外接圆与外心10.【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选:C.【知识点】二次函数的性质二、填空题(共4小题)11.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【知识点】实数大小比较12.【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【知识点】计算器—数的开方、计算器—三角函数、三角形内角和定理13.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【知识点】关于x轴、y轴对称的点的坐标、反比例函数图象上点的坐标特征14.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,方法二:将三角形ADC绕点A顺时针旋转90度得到△ABC′,只要证明△ACC′是等腰直角三角形,然后面积可用AC×AC′来表示.故答案为:18.【知识点】全等三角形的判定与性质三、解答题(共10小题)15.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【知识点】负整数指数幂、二次根式的混合运算16.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【知识点】解分式方程17.【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【知识点】角平分线的性质、作图—基本作图18.【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【知识点】扇形统计图、中位数、用样本估计总体、频数(率)分布直方图19.【分析】根据正方向的性质,可得∠ADF=∠CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=∠CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【知识点】全等三角形的判定与性质、正方形的性质20.【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34.答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【知识点】解直角三角形的应用-仰角俯角问题21.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000(0<x<8),(2)由题意得,7500x+68000≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【知识点】一次函数的应用22.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【知识点】列表法与树状图法、概率公式23.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【知识点】二次函数综合题24.【分析】(1)构建Rt△AOD中,利用cos∠OAD=cos30°=,可得OA的长;(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13根据三角形面积计算高MN的长,证明△ADC∽△ANM,列比例式求DC的长,确定点O在△AMB内部,利用勾股定理计算OM,则最大距离FM的长可利用相加得出结论.【解答】解:(1)如图1,过O作OD⊥AC于D,则AD=AC=×12=6,∵O是内心,△ABC是等边三角形,∴∠OAD=∠BAC=×60°=30°,在Rt△AOD中,cos∠OAD=cos30°=,∴OA=6÷=4,故答案为:4;(2)存在,如图2,连接AC、BD交于点O,连接PO并延长交BC于Q,则线段PQ将矩形ABCD 的面积平分,∵点O为矩形ABCD的对称中心,∴CQ=AP=3,过P作PM⊥BC于点M,则PM=AB=12,MQ=18﹣3﹣3=12,由勾股定理得:PQ===12;(3)如图3,作射线ED交AM于点C∵AD=DB,ED⊥AB,是劣弧,∴所在圆的圆心在射线DC上,假设圆心为O,半径为r,连接OA,则OA=r,OD=r﹣8,AD=AB=12,在Rt△AOD中,r2=122+(r﹣8)2,解得:r=13,∴OD=5,过点M作MN⊥AB,垂足为N,∵S△ABM=96,AB=24,∴AB•MN=96,×24×MN=96,∴MN=8,NB=6,AN=18,∵CD∥MN,∴△ADC∽△ANM,∴,∴,∴DC=,∴OD<CD,∴点O在△AMB内部,∴连接MO并延长交于点F,则MF为草坪上的点到M点的最大距离,∵在上任取一点异于点F的点G,连接GO,GM,∴MF=OM+OF=OM+OG>MG,即MF>MG,过O作OH⊥MN,垂足为H,则OH=DN=6,MH=3,∴OM===3,∴MF=OM+r=3+13≈19.71(米),答:喷灌龙头的射程至少为19.71米.【知识点】圆的综合题。
2010年陕西省中考语文试题及答案
2010年陕西中考语文试题一、积累和运用1.下列各组词中,加点的读音全部都正确的一组是()A.铿锵(kēng )伶仃(tīng )倜傥(dǎng )坦荡如砥(dǐ)B.收敛(liǎn )休憩(qì)滑稽(jī)获益匪浅(fěi )C.花圃(pǔ)吮吸(yǔn )臆测(yì)风雪载途(zǎi )D.桑梓(zǐ)簇拥(cù)澎湃(bài )深恶痛疾(wù)2.下列各组词中,汉字书写全部正确的是()A.迸溅虔诚骄健大廷广众B. 汲取濒危侥幸翻来复去C.踱步分歧作揖人声鼎沸D.抖数娴熟怠慢郑重其事3. 根据括号内的启示,在横线上填写一个四字成语。
(1)小说家最好的住所是哪里?是的孤岛小木屋,还是众声喧哗的公寓(很少有人去的地方。
之荒凉偏僻的地方)(2)层层递升的浑厚的旋律,有如云水相搏,惊涛拍岸,呈现的是一幅天光云影、的图画(景象千变万化,非常壮观)4.经典诗文默写(任选一组)A组:(1),白露为霜。
(《诗经》)(2),浅草才能没马蹄。
(钱塘湖春行)(3)不应有何很,(4)浮光跃金,渔歌互答,此乐何极!(5)香远益清,,可远观而不可亵玩焉。
(6)他们的房屋,稀稀疏疏的,。
B组(1),洪波涌起。
(2),拔剑四顾心茫然(3)醉里挑灯看剑,。
(4)斯是陋室,。
(5)余立侍左右,,俯身倾耳以请(6)看,像牛毛,像花针,像细丝,,人家屋顶上全笼罩着一层白烟。
5.按照要求完成下边的题目。
①文化是一个民族立足于世界各国民族之林的根本。
②文化是一种尊重,体现一个人如何、、、。
③在文化后实的社会里,人懂得尊重自己——他不苟且,因为不苟且所以有品位;人懂得尊重别人——他不霸道,因为不霸道所以有道德;人懂得尊重自然——他不掠夺,因为不掠夺所以有永续的智能。
④品味,道德以及智能,是文化的积累和总和。
(1)地①句有语病请改正后写在下边横线上。
(2)见下面的短语以此填入②句的横线处,是语句顺畅。
2017年陕西省中考数学试卷含答案解析
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:=( )21()12--=A . B . C . D .054-14-34-【答案】C .【解析】试题分析:原式=﹣1=,故选C .1434-考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B .【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B .考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( )A .2B .8C .﹣2D .﹣8【答案】A .【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°【答案】C .【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a ∥b ,∴∠2=∠3=65°.故选C .考点:平行线的性质.5.化简:,结果正确的是( )x x x y x y--+A .1 B . C . D .2222x y x y +-x y x y-+22x y +【答案】B .【解析】试题分析:原式= =.故选B .2222x xy xy y x y +-+-2222x y x y +-考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB =∠AC ′B ′=90°,AC =BC =3,则B ′C 的长为( )A.B.6 C. D【答案】A.【解析】试题分析:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=CAB′=90°,∴B′C A.考点:勾股定理.7.如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是( )A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE 交AE于点F,则BF的长为( )A B C.D【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为( )A .5BC .D .【答案】D .【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠PAB =∠APB =30°∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB ×5,∴AP =2PD =,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若224y x mx =--点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20)【答案】C .【解析】试题分析:=,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,224y x mx =--22()4x m m ---m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C .考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣50中,最大的一个数是 .【答案】π.【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在△ABC 中,BD 和CE 是△ABC 的两条角平分线.若∠A =52°,则∠1+∠2的度数为 .B tan38°15′≈ .(结果精确到0.01)【答案】A .64°;B .2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A ,B 两点分别在反比例函数(m ≠0)和(m ≠)的图象上,3m y x =25m y x -=52若点A 与点B 关于x 轴对称,则m 的值为 .【答案】1.【解析】试题分析:设A (a ,b ),则B (a ,﹣b ),依题意得:,所以 =0,325m b a m b a ⎧=⎪⎪⎨-⎪-=⎪⎩325m m a +-即5m ﹣5=0,解得m =1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x 轴、y 轴对称的点的坐标.14.如图,在四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90°,连接AC .若AC =6,则四边形ABCD 的面积为 .【答案】18.【解析】∴四边形ABCD 的面积=正方形AMCN 的面积;由勾股定理得:AC 2=AM 2+MC 2,而AC =6;∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:.11(|2|(2---【答案】-【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案.试题解析:原式===22+---考点:二次根式的混合运算;负整数指数幂.16.解方程:.32133x x x +-=-+【答案】x =﹣6.【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x +3)2﹣2(x ﹣3)=(x ﹣3)(x +3),去括号得,x 2+6x +9﹣2x +6=x 2﹣9,移项,系数化为1,得x =﹣6,经检验,x =﹣6是原方程的解.考点:解分式方程.17.如图,在钝角△ABC 中,过钝角顶点B 作BD ⊥BC 交AC 于点D .请用尺规作图法在BC 边上求作一点P ,使得点P 到AC 的距离等于BP 的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE 交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN =x 米,则BD =CE =x 米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD ⊥MN ,CE ⊥MN ,垂足分别为点D 、E ,设AN =x 米,则BD =CE =x 米,在Rt △MBD 中,MD =x •tan23°,在Rt △MCE 中,ME =x •tan24°,∵ME ﹣MD =DE =BC ,∴x •tan24°﹣x •tan23°=1.7﹣1,∴x =,解得x ≈34(米).0.7tan 24tan 23 o o答:“聚贤亭”与“乡思柳”之间的距离AN 的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x 个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y 元.根据以上提供的信息,请你解答下列问题:(1)求出y 与x 之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y =7500x +68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y =(2000×12﹣8000)x +(4500×3﹣5000)(8﹣x )=7500x +68000;(2)由题意得,7500x +6800≥100000,∴x ≥,∵x 为整数,∴李师傅种植的8个大棚4415中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A ),豆沙粽子(记为B ),肉粽子(记为C ),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1);(2).12316【解析】(A ,A )、(A ,B )、(A ,C )、(A ,C )、(A ,A )、(A ,B )、(A ,C )、(A ,C )、(B ,A )、(B ,B )、(B ,C )、(B ,C )、(C ,A )、(C ,B )、(C ,C )、(C ,C ),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.316考点:列表法与树状图法;概率公式.23.如图,已知⊙O 的半径为5,PA 是⊙O 的一条切线,切点为A ,连接PO 并延长,交⊙O 于点B ,过点A 作AC ⊥PB 交⊙O 于点C 、交PB 于点D ,连接BC ,当∠P =30°时.(1)求弦AC 的长;(2)求证:BC ∥PA .【答案】(1);(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin60,∴AC=2AD=;(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA,∴BC∥PA.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x 轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM 草地和弦AB 与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M 处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB (即每次喷灌时喷灌龙头由MA 转到MB ,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB =24m ,MB =10m ,△AMB 的面积为96m 2;过弦AB 的中点D 作DE ⊥AB 交于点E ,又测得DE =8m .»AB 请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)2)PQ =;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt △AOD 中,利用cos ∠OAD =cos30°=,可得OA 的长;AD OA(2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,由勾股定理解得:r =13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论.试题解析:(1)如图1,过O 作OD ⊥AC 于D ,则AD =AC =×12=6,∵O 是内心,△ABC 1212是等边三角形,∴∠OAD =∠BAC =×60°=30°,在Rt △AOD 中,cos ∠OAD =cos30°=1212,∴OA =6=,故答案为:AD OA(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴AB •MN =96,×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,1212∴,∴,∴DC =,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO DC AD MN AN =12818DC 163并延长交于点F ,则MF 为草坪上的点到M 点的最大距离,∵在上任取一点异于点F »AB »AB 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM =,∴MF =OM +r =+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.数学试卷第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.计算:( )21()12--=A . B . C . D .054-14-34-2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .3.若一个正比例函数的图象经过两点,则的值为( )(3,6),(,4)A B m --m A .2 B .8 C .-2 D .-84.如图,直线,的直角顶点落在直线上.若,则的大小//a b Rt ABC ∆B a 125∠=o2∠为( )A .B .C .D .55o 75o 65o 85o 5.化简:,结果正确的是( )x x x y x y--+A .1 B . C . D .2222x y x y +-x y x y -+22x y +6.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,ABC ∆A B C '''∆A 'A点落在边上,连接.若,,则的长C 'AB B C '90ACB AC B ''∠=∠=o3AC BC ==B C '为( )A ..6 C . D 7.如图,已知直线与直线在第一象限交于点.若1:24l y x =-+2:(0)l y kx b k =+≠M 直线与轴的交点为,则的取值范围是( )2l x (2,0)A -kA .B .C .D .22k -<<20k -<<04k <<02k <<8.如图,在矩形中,.若点是边的中点,连接,过点ABCD 2,3AB BC ==E CD AE B 作交于点,则的长为( )BF AE ⊥AE F BFA B C .9.如图,是的内接三角形,,的半径为5.若点是上的ABC ∆O e 30C ∠=o O e P O e 一点,在中,,则的长为( )ABP ∆PB AB =PAA .5BC . .10.已知抛物线的顶点关于坐标原点的对称点为.若点224(0)y x mx m =-->M O M '在这条抛物线上,则点M 的坐标为( )M 'A . B . C . D .(1,5)-(3,13)-(2,8)-(4,20)-B卷第Ⅱ卷(非选择题 共90分)二、填空题(共4小题,每小题3分,计12分)11.在实数中,最大的一个数是 .5,π-12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A .如图,在中,和是的两条角平分线.若,则ABC ∆BD CE ABC ∆52A ∠=o12∠+∠的度数为 .B . .(结果精确到0.01)3815'≈o 13.已知两点分别在反比例函数和的图象上.若,A B 3(0)m y m x =≠255()2m y m x -=≠点与点关于轴对称,则的值为 .A B x m 14.如图,在四边形中,,,连接.若ABCD AB AD =90BAD BCD ∠=∠=o AC 6AC =,则四边形的面积为 .ABCD三、解答题 (共11小题,计78分.解答应写出过程)15.计算:.11(2|()2--16.解方程:.32133x x x +-=-+17.如图,在钝角中,过钝角顶点作交于点.请用尺规作图法ABC ∆B BD BC ⊥AC D 在边上求作一点,使得点到的距离等于的长.(保留作图痕迹,不写作法)BC P P AC BP18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益.某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间(分钟)进行了调查.现把调查结果分成四组,如右下表所示;x A B C D 、、、同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在_________区间内;(3)已知该校七年级共有1 200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼.)19.如图,在正方形中,分别为边和上的点,且,连接ABCD E F 、AD CD AE CF =交于点.求证:.AF CE 、G AG CG =20.某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着测倾器和皮尺来测量这个距离。
2017年陕西省中考试题及参考答案
2017年陕西省中考试题及参考答案数 学第Ⅰ卷(选择题 共30分)A 卷一、 选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.A 为数轴上表示-1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的实数为 (B ) A.3 B.2 C.-4 D.2或-42.如图,P 为正三角形ABC 外接圆上一点,则∠APB = ( D )A.150° B.135° C.115° D.120°3.化简22142x x x ---的结果是( A ) A. 12x + B. 12x - C. 2324x x -- D. 2324x x +-4.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元,设这件商品 的成本价为x 元,根据题意,下面所列的方程正确的是 ( B ) A.x ·40%×80%=240 B. x (1+40%)×80%=240 C. 240×40%×80%=x D. x ·40%=240×80% 5.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是 ( B ) A.3:4 B.5:8 C.9:16 D.1:2 6.若双曲线6y x=-经过点A (m ,-2m ),则 m 的值为( C )A.B.3C. D.3±7.⊙O 和⊙O ’的半径分别为R 和R ’,圆心距OO ’=5,R =3,当0<R ’<2时,⊙O 和⊙O ’的位置关系是( D ) A.内含 B.外切 C.相交 D.外离8.已知圆锥的底面周长为58cm ,母线长为30cm ,求得圆锥的侧面积为( A ) A.870cm 2 B.908 cm 2 C.1125 cm 2 D.1740 cm 29.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”。
2017陕西中考试题及解析
• 【活动三:分享之恩】针对统计图反映的情况,完成下面的倡议书, 与好友分享。(2分) • • 倡议书 • 亲爱的朋友们: • • • • • • • 让朋友圈见证我们青春的奋斗与成长! • 倡议人:XXX • 2017年6月28日
• 【活动三】 • 倡议书 • 亲爱的朋友们: • 大家的分享多是娱乐内容,与家庭、校园生活有关 的内容太少。为了我们更好地成长,我发出如下倡议: • 1.少关注游戏娱乐,少追逐明星八卦。 • 2.多介绍学习经验,相互促进;多分享幸福时光,常 怀感恩之心。 • 让朋友圈见证我们青春的奋斗与成长! • 倡议人:XXX • 2017年6月28日
1. A 【解析】B项中,“挣”读 “zhēng”; C项中,“履”读“lǚ”, “疮”读“chuāng”;D项中,“哺”读 “bǔ”,“嚼”读“jiáo”。
2.下列各组词语中,汉字书写全都正确的一组是 (2分) ( ) A.妍丽 庸碌 好意难确 持之以恒 B.欣尉 倾诉 酣然入梦 杂乱无章 C.筹划 精炼 饶有兴味 仗势欺人 D.诸候 企盼 登峰造及 绝处逢生
• 5.(1)B A (2)社会有要求。 不但 而且
(3)
• • • • • • • • • • •
6.阅读下面的文字,完成后面的题目。(2分) 它以难遮掩的光芒 使生命呼吸 使高树繁枝向它舞蹈 使河流带着狂歌奔向它去 当它来时,我听见 冬蛰的虫蛹转动于地下 群众在旷场上高声说话 城市从远方 用电力与钢铁召唤它 诗中的“它”指的是 ,本诗蕴涵着诗人 艾青对 的向往和追求。
• 4.(1)化作春泥更护花(2)结庐在人境 (3)巴山夜雨涨秋池(4)九万里风鹏正 举(5 )然后能自强也(6)以咨诹善道 (7)学而不思则罔 (8)欲与天公试比高 (9)芦篷上满载着白霜(10)向青草更青 处漫溯
2010-2017陕西省历年中考真题(真题 真题答案解析)
2010陕西省初中毕业学业考试真题(数学)第 Ⅰ 卷(选择题)一、 选择题1 . 13-= ( )A. 3 B-3 C 13 D-132.如图,点O 在直线AB 上且AB ⊥OD 若∠COA=36°则∠DOB 的大小为( ) A 3 6° B 54° C 64° D 72°3.计算(-2a ²)·3a 的结果是 ( ) A -6a ² B-6a ³ C12a ³ D6a ³4.如图是由正方体和圆锥组成的几何体,他的俯视图是 ( )5.一个正比例函数的图像过点(2,-3),它的表达式为 ( ) A 32y x =-B 23y x =C 32y x =D 23y x =-6.中国2010年上海世博会充分体现“城市,让生活更美好”的主题。
据统计5月1日至5月7日入园数(单位:万人)分别为20.3;21.5;13.2;14.6;10.9;11.3; 13.9;这组数据中的中位数和平均数分别为( )A 14.6 ,15.1B 14.65 ,15.0C 13.9 , 15.1 D13.9 , 15.0 1102x -≥ 7.不等式组 3x+2>-1 的解集是 ( ) A -1< x ≤2 B -2≤x <1 C x <-1或x ≥2 D 2≤x <-1 8.若一个菱形的边长为2,则这个菱形两条对角线的平方和为 ( ) A 16 B 8 C 4 D 19.如图,点A 、B 、P 在⊙O 上的动点,要是△ABM 为等腰三角形,则所有符合条件的点M 有( ) A 1个 B 2个 C 3个 D 4个10.将抛物线C :y=x ²+3x-10,将抛物线C 平移到C ˋ。
若两条抛物线C,C ˋ关于直线x=1对称,则下列平移方法中正确的是 ( ) A 将抛物线C 向右平移52个单位 B 将抛物线C 向右平移3个单位C 将抛物线C 向右平移5个单位D 将抛物线C 向右平移6个单位第Ⅱ卷(非选择题)二、 填空题11、在1,-2,-30, π五个数中最小的数是 12、方程x ²-4x 的解是 ________13、如图在△ABC 中D 是AB 边上一点,连接CD ,要使△ADC 与△ABC 相似,应添加的条件是___________ 14、如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为_______米15、已知A(x 1,y 2),B(x 2,y 2)都在6y x=图像上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010陕西省初中毕业学业考试真题(数学)第 Ⅰ 卷(选择题)一、 选择题 1 . 13-= ( ) A. 3 B-3 C 13 D-132.如图,点O 在直线AB 上且AB ⊥OD 若∠COA=36°则∠DOB 的大小为( )A 3 6°B 54°C 64°D 72°3.计算(-2a ²)·3a 的结果是 ( )A -6a ² B-6a ³ C12a ³ D6a ³4.如图是由正方体和圆锥组成的几何体,他的俯视图是 ( )5.一个正比例函数的图像过点(2,-3),它的表达式为 ( ) A 32y x =- B 23y x = C 32y x = D 23y x =- 6.中国2010年上海世博会充分体现“城市,让生活更美好”的主题。
据统计5月1日至5月7日入园数(单位:万人)分别为20.3;21.5;13.2;14.6;10.9;11.3; 13.9;这组数据中的中位数和平均数分别为( )A 14.6 ,15.1B 14.65 ,15.0C 13.9 , 15.1 D13.9 , 15.01102x -≥ 7.不等式组 3x+2>-1 的解集是 ( )A -1< x ≤2B -2≤x <1C x <-1或x ≥2D 2≤x <-18.若一个菱形的边长为2,则这个菱形两条对角线的平方和为 ( )A 16B 8C 4D 19.如图,点A 、B 、P 在⊙O 上的动点,要是△ABM 为等腰三角形,则所有符合条件的点M 有( )A 1个B 2个C 3个D 4个10.将抛物线C :y=x ²+3x-10,将抛物线C 平移到C ˋ。
若两条抛物线C,C ˋ关于直线x=1对称,则下列平移方法中正确的是 ( )A 将抛物线C 向右平移52个单位 B 将抛物线C 向右平移3个单位 C 将抛物线C 向右平移5个单位 D 将抛物线C 向右平移6个单位第Ⅱ卷(非选择题) 二、 填空题11、在1,-2,-30, π五个数中最小的数是12、方程x ²-4x 的解是 ________13、如图在△ABC 中D 是AB 边上一点,连接CD ,要使△ADC 与△ABC 相似,应添加的条件是___________14、如图是一条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深为_______米15、已知A(x 1,y 2),B(x 2,y 2)都在6y x=图像上。
若x 1 x 2=-3则y 2 y 2的值为_______ 16、如图,在梯形ABCD 中,DC ∥AB ,∠A+∠B=90°若AB=10,AD=4,DC=5, 则梯形ABCD 的面积_______三、解答题17.化简222m n mn m n m n m n-+-+-18.如图,A 、B 、C 三点在同一条直线上AB=2BC ,分别以AB,BC 为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC19.某县为了了解“五一”期间该县常住居民出游情况,有关部门随即调查了1600名常住居民,并根据调查结果绘制了如下统计图根据以上信息,解答下列各题:(1)补全条形信息统计图。
在扇形统计图中,直接填入出游的主要目的是采集发展信息人数的百分数;(2)若该县常住居民24万人,请估计出游人数;20.再一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离。
21.某蒜薹生产基地喜获丰收收蒜薹200吨。
经市场调查,可采用批发、零售、冷库储藏后销售,并按这三种方式销售,计划每吨的售价及成本如下表:销售方式批发零售冷库储藏后销售售价(元/吨)3000 4500 5500成本(元/吨)700 1000 1200若经过一段时间,蒜薹按计划全部售出后获得利润为y(元)蒜薹x(吨),且零售是批发量的1/3(1)求y与x之间的函数关系;(2)由于受条件限制经冷库储藏的蒜薹最多80吨,求该生产基地计划全部售完蒜薹获得最大利润。
22.某班毕业联欢会设计的即兴表演节目的摸球游戏,游戏采用一个不透明的盒子,里面装有五个分别标有数字1、2、3、4、5的乒乓球,这些球出书字外,其他完全相同,游戏规则是参加联欢会的50名同学,每人将盒子乒乓球摇匀后闭上眼睛从中随即一次摸出两个球(........每位同学必须且只能摸一次)。
若两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏依次进行。
(1)用列表法或画树状图法求参加联欢会同学表演即兴节目的概率(2)估计本次联欢会上有多少个同学表演即兴节目?23.如图,在RT△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE (1)若BE是△DEC的外接圆的切线,求∠C的大小?(2)当AB=1,BC=2是求△DEC外界圆的半径24.如图,在平面直角坐标系中,抛物线A(-1,0),B(3,0)C(0,-1)三点。
(1)求该抛物线的表达式;(2)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形求所有满足条件点P的坐标。
2011年陕西省中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32- 2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】A 、 91037.1⨯B 、71037.1⨯C 、81037.1⨯D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5) D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512C 、 135D 、1312 6.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是【 】A 、外离B 、相交C 、内切或外切D 、内含8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和的图像交于A 点和B 点,若C 为x 轴上任意一点,连接AC,BC 则△ABC 的面积为 【 】正方体 圆锥 球 圆柱 (第二题图)9、 如图,在ABCD 中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD的延长线于点H,则图中的全等三角形有 【 】A 、2对B 、3对C 、4对D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是【 】A 、321y y yB 、321y y yC 、312y y yD 、213y y y第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠ 则=∠1 .13、分解因式:=+-a ab ab 442 .14、一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为 元15、若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .16、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值三、解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)解分式方程:xx x -=--2312418.(本题满分6分)在正方形ABCD 中,点G 是BC 上任意一点,连接AG ,过B,D 两点分别作BE ⊥AG,DF⊥AG,垂足分别为E,F 两点,求证:△ADF ≌△BAE(第8题图) (第9题图)19.(本题满分7分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。
20.(本题满分8分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①、先测出沙坑坑沿的圆周长34.54米;②、甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米根据以上测量数据,求圆锥形坑的深度(圆锥的高),(π取3.14,结果精确到0.1米)21.(本题满分8分)2011年4月28日,以“天人长安,创意自然-----------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B 种票得张数是A 种票张数的3倍还多8张,设购买A 种票张数为x ,C 种票张树伟y(1)、写出Y 与X 之间的函数关系式(2)、设购票总费用为W 元,求出W (元)与X (张)之间的函数关系式(3)、若每种票至少购买1张,其中购买A 种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C 三种票的张数。