压轴题目突破练——函数与导数

合集下载

高考数学压轴大题规范练(2)——函数与导数.docx

高考数学压轴大题规范练(2)——函数与导数.docx

高中数学学习材料马鸣风萧萧*整理制作专题分层训练(三十三) 压轴大题规范练(2)——函数与导数1.已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图象上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +ax (x >0), F ′(x )=1x -a x 2=x -ax 2.∵a >0,由F ′(x )>0⇒x ∈(a ,+∞), ∴F (x )在(a ,+∞)上是增函数. 由F ′(x )<0⇒x ∈(0,a ), ∴F (x )在(0,a )上是减函数. 综上,F (x )的单调递减区间为(0,a ), 单调递增区间为(a ,+∞).(2)由F ′(x )=x -a x 2(0<x ≤3),得k =F ′(x )=x -a x 2≤12(0<x 0≤3)恒成立⇒a ≥-12x 20+x 0(0<x 0≤3)恒成立.∵当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即实数a 的最小值为12.2.(2015·重庆卷)设函数f (x )=3x 2+axe x (a ∈R ).(1)若f (x )在x =0处取得极值,确定a 的值,并求此时曲线y =f (x )在点(1,f (1))处的切线方程;(2)若f (x )在[3,+∞)上为减函数,求a 的取值范围. 解 (1)对f (x )求导得f ′(x )=(6x +a )e x -(3x 2+ax )e x (e x )2=-3x 2+(6-a )x +a e x, 因为f (x )在x =0处取得极值, 所以f ′(0)=0,即a =0.当a =0时,f (x )=3x 2e x ,f ′(x )=-3x 2+6x e x , 故f (1)=3e ,f ′(1)=3e ,从而f (x )在点(1,f (1))处的切线方程为y -3e =3e (x -1), 化简得3x -e y =0.(2)由(1)知f ′(x )=-3x 2+(6-a )x +ae x , 令g (x )=-3x 2+(6-a )x +a ,由g (x )=0解得x 1=6-a -a 2+366,x 2=6-a +a 2+366. 当x <x 1时,g (x )<0,即f ′(x )<0, 故f (x )为减函数;当x 1<x <x 2时,g (x )>0,即f ′(x )>0, 故f (x )为增函数;当x >x 2时,g (x )<0,即f ′(x )<0, 故f (x )为减函数.由f (x )在[3,+∞)上为减函数, 知x 2=6-a +a 2+366≤3, 解得a ≥-92,故a 的取值范围为⎣⎢⎡⎭⎪⎫-92,+∞.3.已知f (x )=x 3+ax 2-a 2x +2.(1)若a =1,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)若a ≠0,求函数f (x )的单调区间;(3)若不等式2x ln x ≤f ′(x )+a 2+1恒成立,求实数a 的取值范围. 解 (1)∵a =1,∴f (x )=x 3+x 2-x +2, ∴f ′(x )=3x 2+2x -1,∴k =f ′(1)=4,又f (1)=3,∴切点坐标为(1,3), ∴所求切线方程为y -3=4(x -1), 即4x -y -1=0.(2)f ′(x )=3x 2+2ax -a 2=(x +a )(3x -a ), 由f ′(x )=0,得x =-a 或x =a3. ①当a >0时,由f ′(x )<0,得-a <x <a3. 由f ′(x )>0,得x <-a 或x >a3, 此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. ②当a <0时,由f ′(x )<0,得a3<x <-a . 由f ′(x )>0,得x <a3或x >-a ,此时f (x )的单调递减区间为⎝ ⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和(-a ,+∞).综上,当a >0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫-a ,a 3,单调递增区间为(-∞,-a )和⎝ ⎛⎭⎪⎫a 3,+∞. 当a <0时,f (x )的单调递减区间为⎝⎛⎭⎪⎫a 3,-a ,单调递增区间为⎝ ⎛⎭⎪⎫-∞,a 3和()-a ,+∞. (3)依题意x ∈(0,+∞),不等式2x ln x ≤f ′(x )+a 2+1恒成立,等价于2x ln x ≤3x 2+2ax +1在(0,+∞)上恒成立,可得a ≥ln x -32x -12x 在(0,+∞)上恒成立, 设h (x )=ln x -3x 2-12x ,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2. 令h ′(x )=0,得x =1,x =-13(舍), 当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0. 当x 变化时,h ′(x )与h (x )变化情况如下表x (0,1) 1 (1,+∞)h ′(x ) + 0 - h (x )单调递增-2单调递减∴当x =1时,h (x )取得最大值,h (x )max =-2, ∴a ≥-2,即a 的取值范围是[-2,+∞). 4.(2015·全国卷Ⅱ)设函数f (x )=e mx +x 2-mx .(1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.解 (1)f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0.所以,f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m ,f (x )在[-1,0]单调递减,在[0,1]单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e-1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.① 设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)单调递减,在(0,+∞)单调递增. 又g (1)=0,g (-1)=e -1+2-e<0, 故当t ∈[-1,1]时,g (t )≤0.当m ∈[-1,1],g (m )≤0,g (-m )≤0,即①式成立;当m >1时,由g (t )的单调性,g (m )>0,即e m -m >e -1,不符题意; 当m <-1时,g (-m )>0,即e -m +m >e -1,不符题意. 综上,m 的取值范围是[-1,1].5.(2015·全国卷Ⅰ)已知函数f (x )=x 3+ax +14,g (x )=-ln x . (1)当a 为何值时,x 轴为曲线y =f (x )的切线;(2)用min{m ,n }表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )}(x >0),讨论h (x )零点的个数.解 (1)设曲线y =f (x )与x 轴相切于点(x 0,0), 则f (x 0)=0,f ′(x 0)=0,即⎩⎨⎧x 30+ax 0+14=0,3x 20+a =0.解得x 0=12,a =-34.因此,当a =-34时,x 轴为曲线y =f (x )的切线. (2)当x ∈(1,+∞)时,g (x )=-ln x <0, 从而h (x )=min{f (x ),g (x )}≤g (x )<0, 故h (x )在(1,+∞)上无零点. 当x =1时,若a ≥-54,则f (1)=a +54≥0,h (1)=min{f (1),g (1)}=g (1)=0, 故x =1是h (x )的零点;若a <-54,则f (1)<0,h (1)=min{f (1),g (1)}=f (1)<0, 故x =1不是h (x )的零点. 当x ∈(0,1)时,g (x )=-ln x >0.所以只需考虑f (x )在(0,1)上的零点个数.①若a ≤-3或a ≥0,则f ′(x )=3x 2+a 在(0,1)上无零点,故f (x )在(0,1)上单调.而f (0)=14,f (1)=a +54,所以当a ≤-3时,f (x )在(0,1)上有一个零点; 当a ≥0时,f (x )在(0,1)上没有零点.②若-3<a <0,则f (x )在⎝⎛⎭⎪⎫0,-a 3上单调递减,在⎝⎛⎭⎪⎫-a 3,1上单调递增,故在(0,1)中,当x = -a3时,f (x )取得最小值,最小值为f ⎝⎛⎭⎪⎫-a 3=2a 3-a 3+14.a .若f ⎝ ⎛⎭⎪⎫-a 3>0,即-34<a <0,f (x )在(0,1)上无零点; b .若f ⎝⎛⎭⎪⎫-a 3=0,即a =-34,则f (x )在(0,1)上有唯一零点;c .若f ⎝ ⎛⎭⎪⎫-a 3<0,即-3<a <-34,由于f (0)=14,f (1)=a +54,所以当-54<a <-34时,f (x )在(0,1)上有两个零点;当-3<a ≤-54时,f (x )在(0,1)上有一个零点.综上,当a >-34或a <-54时,h (x )有一个零点;当a =-34或a =-54时,h (x )有两个零点;当-54<a <-34时,h (x )有三个零点.。

高考数学压轴专题最新备战高考《函数与导数》技巧及练习题附答案

高考数学压轴专题最新备战高考《函数与导数》技巧及练习题附答案

数学《函数与导数》期末复习知识要点一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.三个数0.20.40.44,3,log 0.5的大小顺序是 ( )A .0.40.20.43<4log 0.5< B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.3.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .4.已知函数()32f x x x x a =--+,若曲线()y f x =与x 轴有三个不同交点,则实数a的取值范围为( ) A .11,27⎛⎫-∞- ⎪⎝⎭B .()1,+?C .5,127⎛⎫-⎪⎝⎭D .11,127⎛⎫-⎪⎝⎭【答案】C 【解析】 【分析】根据曲线()y f x =与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点,即可求出实数a 的取值范围. 【详解】Q 函数()32f x x x x a =--+与x 轴有三个不同交点,可转化为函数()32g x x x x =-++与y a =的图象有三个不同的交点.又()2321(31)(1)g x x x x x '=-++=-+-Q ,∴在1,,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭上,()0g x '<;在1,13⎛⎫- ⎪⎝⎭上,()0g x '>.∴()15327g x g ⎛⎫=-=- ⎪⎝⎭极小值,()()11g x g ==极大值,5127a ∴-<<.故选:C 【点睛】本题考查函数的零点及导数与极值的应用,考查了转化思想和数形结合思想,属于中档题.5.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.6.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B 【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k+->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5,∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.7.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2-B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >,所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.8.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -, 所以正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<, 所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫ ⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C. 【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.11.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.12.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( ) A .()()()0.31.130. 20.54f f log f <<B .()()()0.31.130. 240.5f f f log << C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.13.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.14.函数()32xy x x =-⋅的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】排除法:根据函数()32xy x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可. 【详解】函数()32xy x x =-⋅为奇函数,故图象关于原点对称,故排除D ; 函数有1-,0,1三个零点,故排除A ;当2x =时,函数值为正数,故排除B .故选:C .【点睛】本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.15.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( )A .12e -B .2e -C .1-D .e【答案】B【解析】【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e =求得结果.【详解】由题意得:()()121f x f x''=+ 令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+ 12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.16.若函数()()sin x f x ex a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞B .[)1,+∞C .()1,+∞D .()+∞ 【答案】B【解析】【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化为2sin 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(2sin 1,24x a a a π⎛⎫⎤++∈-++ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 2sin 4x x x f x e x a e x e x a π⎛⎫⎛⎫'=++=++ ⎪ ⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立 又0x e > 2sin 04x a π⎛⎫∴++≥ ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ 2sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦ (2sin 1,24x a a a π⎛⎫⎤∴++∈-++ ⎪⎦⎝⎭ 10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.17.函数()1ln f x x x ⎛⎫=- ⎪⎝⎭的图象大致是( ) A . B .C .D .【答案】B【解析】【分析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果.【详解】当2x =时,110x x-=>,函数有意义,可排除A ; 当2x =-时,1302x x -=-<,函数无意义,可排除D ; 又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=-⎪⎝⎭单调递增,可排除C ; 故选:B.【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.18.设函数()xf x x e =⋅,则( ) A .()f x 有极大值1e B .()f x 有极小值1e- C .()f x 有极大值eD .()f x 有极小值e -【答案】B【解析】【分析】 利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论.【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-. 当1x <-时,()0f x '<;当1x >-时,()0f x '>.所以,函数()x f x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B.【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.19.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016B .20162017C .20172018D .20182019【答案】D【解析】【分析】 求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.20.对于任意性和存在性问题的处理,遵循以下规则:。

高考数学压轴专题新备战高考《函数与导数》全集汇编附答案

高考数学压轴专题新备战高考《函数与导数》全集汇编附答案

数学《函数与导数》复习知识点一、选择题1.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.2.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =UD .()U M N ⊆ð【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.4.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.5.已知定义在R 上的函数()f x 满足()01f =,且()f x 的导函数'()f x 满足'()1f x >,则不等式()()ln ln f x ex <的解集为( ) A .()0,1 B .()1,eC .()0,eD .(),e +∞【答案】A 【解析】 【分析】设()()g x f x x =-,由题得()g x 在R 上递增,求不等式()()ln ln f x ex <的解集,即求不等式(ln )(0)g x g <的解集,由此即可得到本题答案. 【详解】设()()g x f x x =-,则(0)(0)01g f =-=,()()1g x f x '='-, 因为()1f x '>,所以()0g x '>,则()g x 在R 上递增,又(ln )ln()1ln f x ex x <=+,所以(ln )ln 1f x x -<,即(ln )(0)g x g <, 所以ln 0x <,得01x <<. 故选:A 【点睛】本题主要考查利用导数研究函数的单调性,以及利用函数的单调性解不等式,其中涉及到构造函数.6.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.7.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) A.13+ B.3C.23+ D.3【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 3f x f π⎛⎫==⎪⎝⎭.【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.8.函数()2log ,0,2,0,x x x f x x ⎧>=⎨≤⎩则函数()()()2384g x f x f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.9.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.10.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k . 在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++ 4n 4mm n⋅=17+8=25,当且仅当m =n 15=时取等号,故则41m n+的最小值为25,故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.13.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+- D .(]2ln2,2-【答案】A 【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln 3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解,令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.14.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x xf x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0xe > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.16.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥17.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.18.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.19.设123log 2,ln 2,5a b c -===则 A .a b c << B .b c a <<C .c a b <<D .c b a <<【答案】C 【解析】 【分析】由ln 2ln 2ln 3a b =<=及311log ,22a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <.又3311log 2log 3,2254a c =>==<=.∴a c >.综上可知:c a b << 故选C. 【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.20.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.。

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

核心素养提升系列(一)1.(导学号14577259)(理科)(2018·湘西州一模)已知函数f (x )=x -a ln x ,g (x )=-1+ax,其中a ∈R ,e =2.718……(1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,求a 的取值X 围. 解:(1)函数h (x )=x -a ln x +1+ax的定义域为(0,+∞),h ′(x )=1-a x -1+a x 2=x +1[x -1+a ]x 2.①当1+a ≤0,即a ≤-1时,h ′(x )>0,故h (x )在(0,+∞)上是增函数; ②当1+a >0,即a >-1时,x ∈(0,1+a )时,h ′(x )<0;x ∈(1+a ,+∞)时,h ′(x )>0,故h (x )在(0,1+a )上是减函数,在(1+a ,+∞)上是增函数. (2)由(1)令h (x 0)=f (x 0)-g (x 0),x 0∈[1,e], ①当a ≤-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2; ②当-1<a ≤0时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2;③当0<a ≤e-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1+a )=1+a -a ln(1+a )+1<0,无解;④当e -1<a 时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (e)=e -a +1+ae<0, 解得,a >e 2+1e -1.综上所述,a 的取值X 围为(-∞,-2)∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.1.(导学号14577260)(文科)(2017·某某某某市名校联考)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,某某数m 的取值X 围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数).解:(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,∴切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x-2x =-2x +1x -1x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e2<0,∴g (e )<g ⎝ ⎛⎭⎪⎫1e,∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e2,∴实数m 的取值X 围是⎝⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2ln x 1-ln x 2x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x-2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2ln x 1-ln x 2x 1-x 2. 下证4x 1+x 2-2ln x 1-ln x 2x 1-x 2<0(*),即证明2x 2-x 1x 1+x 2+ln x 1x 2<0,令t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=21-tt +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2t +1-21-t t +12+1t =t +12-4tt t +12=t -12t t +12,又0<t <1,∴u ′(t )>0,∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2x 2-x 1x 1+x 2+ln x 1x 2<0,故(*)式<0,即f ′⎝⎛⎭⎪⎫x 1+x 22<0成立.2.(导学号14577261)(文科)(2018·某某市一模)已知函数f (x )=(x 2-ax +a +1)e x. (1)讨论函数f (x )的单调性;(2)函数f (x )有两个极值点,x 1,x 2(x 1<x 2),其中a >0.若mx 1-f x 2e x 2>0恒成立,某某数m 的取值X 围.解:(1)f ′(x )=[x 2+(2-a )x +1]e x, 令x 2+(2-a )x +1=0(*),①Δ=(2-a )2-4>0,即a <0或a >4时, 方程(*)有2根,x 1=a -2-a 2-4a2,x 2=a -2+a 2-4a2,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减. ②Δ≤0时,即0≤a ≤4时,f ′(x )≥0在R 上恒成立, 函数f (x )在R 递增.综上,a <0或a >4时,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减;0≤a ≤4时,函数f (x )在R 递增.(2)∵f ′(x )=0有2根x 1,x 2且a >0,∴a >4且⎩⎪⎨⎪⎧x 1+x 2=a -2x 1x 2=1,∴x 1>0,mx 1-f x 2e x 2>0恒成立等价于m >f x 2x 1e x 2=x 22-ax 2+a +1x 1恒成立,即m >-x 22+2x 2+1恒成立. 令t =a -2(t >2),则x 2=a -2+a 2-4a2.令g (t )=t +t 2-42,t >2时,函数g (t )=t +t 2-42递增,g (t )>g (2)=1,∴x 2>1,∴-x 22+2x 2+1<2, 故m 的X 围是[2,+∞).2.(导学号14577262)(理科)(2018·某某市二模)已知三次函数f (x )的导函数f ′(x )=-3x 2+3且f (0)=-1,g (x )=x ln x +ax(a ≥1).(1)求f (x )的极值;(2)求证:对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).解:(1)依题意得f (x )=-x 3+3x -1,f ′(x )=-3x 2+3=-3(x +1)(x -1), 知f (x )在(-∞,-1)和(1,+∞)上是减函数,在(-1,1)上是增函数, ∴f (x )极小值=f (-1)=-3,f (x )极大值=f (1)=1. (2)证明:法一:易得x >0时,f (x )最大值=1,依题意知,只要1≤g (x )(x >0)⇔1≤x ln x +a x(a ≥1)(x >0). 由a ≥1知,只要x ≤x 2ln x +1(x >0)⇔x 2ln x +1-x ≥0(x >0). 令h (x )=x 2ln x +1-x (x >0),则h ′(x )=2x ln x +x -1, 注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=0即h (x )≥0.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法二:易得x >0时,f (x )最大值=1,由a ≥1知,g (x )≥x ln x +1x(x >0),令h (x )=x ln x +1x(x >0)则h ′(x )=ln x +1-1x 2=ln x +x 2-1x2.注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=1,所以h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法三:易得x >0时,f (x )最大值=1.由a ≥1知,g (x )≥x ln x +1x (x >0),令h (x )=x ln x +1x (x >0),则h ′(x )=ln x +1-1x2(x >0).令φ(x )=ln x +1-1x 2(x >0),则φ′(x )=1x +1x3>0,知φ(x )在(0,+∞)递增,注意到φ(1)=0,所以,h (x )在(0,1)上是减函数,在(1,+∞)是增函数, 有h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).3.(导学号14577263)(理科)(2018·东北三省(某某、某某、某某、某某四城市)联考)定义在R 上的函数f (x )满足f (x )=f ′12·e2x -2+x 2-2f (0)x ,g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a .(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)如果s 、t 、r 满足|s -r |≤|t -r |,那么称s 比t 更靠近r . 当a ≥2且x ≥1时,试比较e x和e x -1+a 哪个更靠近ln x ,并说明理由.解:(1)f ′(x )=f ′(1)e2x -2+2x -2f (0),所以f ′(1)=f ′(1)+2-2f (0),即f (0)=1. 又f (0)=f ′12·e -2,所以f ′(1)=2e 2,所以f (x )=e 2x+x 2-2x .(2)∵f (x )=e 2x-2x +x 2,∴g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a =e x +14x 2-x -14x 2+(1-a )x +a =e x-a (x -1),∴g ′(x )=e x -a .①当a ≤0时,g ′(x )>0,函数f (x )在R 上单调递增; ②当a >0时,由g ′(x )=e x-a =0得x =ln a , ∴x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减;x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.综上,当a ≤0时,函数g (x )的单调递增区间为 (-∞,+∞);当a >0时,函数g (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ). (3)设p (x )=e x-ln x ,q (x )=e x -1+a -ln x ,∵p ′(x )=-e x 2-1x<0,∴p (x )在x ∈[1,+∞)上为减函数,又p (e)=0,∴当1≤x ≤e 时,p (x )≥0,当x >e 时,p (x )<0. ∵q ′(x )=ex -1-1x ,q ″(x )=e x -1+1x2>0,∴q ′(x )在x ∈[1,+∞)上为增函数,又q ′(1)=0,∴x ∈[1,+∞)时,q ′(x )≥0,∴q (x )在x ∈[1,+∞)上为增函数,∴q (x )≥q (1)=a +2>0.①当1≤x ≤e 时,|p (x )|-|q (x )|=p (x )-q (x )=e x -e x -1-a ,设m (x )=e x-e x -1-a ,则m ′(x )=-e x2-e x -1<0,∴m (x )在x ∈[1,+∞)上为减函数, ∴m (x )≤m (1)=e -1-a ,∵a ≥2,∴m (x )<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .②当x >e 时,设n (x )=2ln x -ex -1-a ,则n ′(x )=2x -e x -1,n ″(x )=-2x2-e x -1<0,∴n ′(x )在x >e 时为减函数,∴n ′(x )<n ′(e)=2e-e e -1<0,∴n (x )在x >e 时为减函数,∴n (x )<n (e)=2-a -e e -1<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .综上:在a ≥2,x ≥1时,e x比e x -1+a 更靠近ln x .3.(导学号14577264)(文科)(2018·某某市三调)已知函数f (x )=1x+a ln x (a ≠0,a∈R ).(1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,某某数a 的取值X 围. 解:(1)因为f ′(x )=-1x 2+a x =ax -1x2,当a =1,f ′(x )=x -1x 2. 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:所以x =1f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)∵f ′(x )=ax -1x 2,(a ≠0,a ∈R ). 令f ′(x )=0,得到x =1a.若在区间[0,e]上存在一点x 0,使得f (x 0)<0成立, 其充要条件是f (x )在区间(0,e]上的最小值小于0即可.①当x =1a<0,即a <0时,f ′(x )<0对x ∈(0,+∞)成立,∴f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e=1e+a . 由1e +a <0,得a <-1e . ②当x =1a>0,即a >0时,(ⅰ)若e≤1a,则f ′(x )≤0对x ∈(0,e]成立,∴f (x )在区间(0,e]上单调递减,∴f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e +a >0,显然,f (x )在区间(0,e]上的最小值小于0不成立. (ⅱ)若1<1a <e ,即a >1e时,则有∴f (x )在区间[0,e]上的最小值为f ⎝ ⎛⎭⎪⎫a =a +a ln a.由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a=a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞). 综上,由①②可知:a ∈⎝⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).4.(导学号14577265)(理科)(2018·某某市一模)已知函数f (x )=a ln x -x -ax+2a (其中a 为常数,a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,是否存在实数a ,使得当x ∈[1,e]时,不等式f (x )>0恒成立?如果存在,求a 的取值X 围;如果不存在,说明理由(其中e 是自然对数的底数,e =2.718 28…)解:(1)由于f (x )=a ln x -x -a x+2a ,(x >0), 则f ′(x )=-x 2+ax +ax2, ①a ≤0时,f ′(x )<0恒成立,于是f (x )的递减区间是(0,+∞). ②a >0时,令f ′(x )>0,解得:0<x <a +a 2+4a2,令f ′(x )<0,解得:x >a +a 2+4a2,故f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,+∞递减.(2)a >0时,①若a +a 2+4a2≤1,即0<a ≤12,此时f (x )在[1,e]递减,f (x )min =f (e)=3a -e -a e=⎝ ⎛⎭⎪⎫3-1e a -e≤⎝⎛⎭⎪⎫3-1e ×12-e <0,f (x )>0恒成立,不合题意.②若a +a 2+4a2>1,a +a 2+4a2<e ,即12<a <e2e +1时,此时f (x )在⎝ ⎛⎭⎪⎫1,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,e 递减.要使在[1,e]恒有f (x )>0恒成立,则必有⎩⎪⎨⎪⎧f1>0fe >0,则⎩⎪⎨⎪⎧a -1>03a -e -ae >0,解得e 23e -1<a <e2e +1.③若a +a 2+4a2≥e,即a ≥e2e +1时,f (x )在[1,e]递增,令f (x )min =f (1)=a -1>0,解得a ≥e2e +1.综上,存在实数a ∈⎝ ⎛⎭⎪⎫e 23e -1,+∞,使得f (x )>0恒成立.4.(导学号14577266)(文科)(2018·某某市二模)已知函数f (x )=x 2-a2ln x 的图象在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线斜率为0. (1)讨论函数f (x )的单调性;(2)若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,某某数m 的取值X 围.解:(1)f (x )=x 2-a 2ln x 的定义域为(0,+∞),f ′(x )=2x -a 2x .因为f ′⎝ ⎛⎭⎪⎫12=1-a=0,所以a =1,f (x )=x 2-12ln x ,f ′(x )=2x -12x=2x -12x +12x .令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫12,+∞,单调递减区间是⎝ ⎛⎭⎪⎫0,12. (2)g (x )=x 2-12 ln x +12mx ,由g ′(x )=2x -12x +m 2=4x 2+mx -12x=0,得x =-m +m 2+168.设x 0=-m +m 2+168,所以g (x )在(0,x 0]上是减函数,在[x 0,+∞)上为增函数.因为g (x )在区间(1,+∞)上没有零点,所以g (x )>0在(1,+∞)上恒成立. 由g (x )>0,得12m >ln x 2x -x ,令y =ln x 2x -x ,则y ′=2-2ln x 4x 2-1=2-2ln x -4x24x 2. 当x >1时,y ′<0,所以y =ln x2x -x 在(1,+∞)上单调递减,所以当x =1时,y max =-1,故12m ≥-1,即m ∈[-2,+∞).。

《导数大题压轴题难点突破》(PDF)

《导数大题压轴题难点突破》(PDF)

《难点突破》压轴题----函数与导数常考题型一、要点归纳1.曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+.2.若可导函数()y f x =在x x =处取得极值,则0()0f x '=.反之,不成立.3.对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。

4.函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈,()f x '0≥(0)≤恒成立(()f x '不恒为0).5.函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。

(若()f x '为二次函数且I=R ,则有0∆>).6.()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立.7.若x I ∀Î,()f x 0>恒成立,则min ()f x 0>;若x I ∀∈,()f x 0<恒成立,则max ()f x 0<.8.若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I∃∈,使得0()f x 0<,则min ()f x 0<.9.设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.10.若对11x I ∀∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.11.已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆.12.若三次函数f(x)有两个极值点,当且仅当方程()0f x '=一定有两个不等实根12x x 、,若三次函数f(x)没有极值点,则方程()0f x '=有两个相等的实根或没实根..13.证题中常用的不等式:①1xe x≥+②1xex-≥-③xeex ≥④316xex >⑤ln +1(1)x x x ≤>-()⑥ln 1(1)12x x x x -<>+⑦22ln 11(0)22x x x x <->⑧111ln ()1(1)2x x x x x x x-≤≤-≤-≥⑨ln 11(0)x x x x≤->二、常考题型:题型一:恒成立求参数的最值或取值范围问题1.1()010.1xax f x e x x y x-==+-=+已知函数在处的切线方程为(Ⅰ)求a 的值;(Ⅱ)()1,f x <若求x 的取值范围.2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.3.已知函数ln(1)()(0)x f x x x+=>(Ⅰ)判断函数()f x 的单调性;(Ⅱ)是否存在实数a 使得关于x 的不等式ln(1)x ax +<在(0,)+∞上恒成立?若存在,求出a 的取值范围,若不存在,试说明理由.4.已知函数1ln ()xf x x+=.(Ⅰ)设a >0,若函数)(x f 在区间1(,2a a +上存在极值,求实数a 的取值范围;(Ⅱ)如果当x ≥1时,不等式2()1k kf x x -≥+恒成立,求实数k 的取值范围.5.已知函数2()23.xf x e x x =+-(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果当1x ≥时,不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.6.设()ln af x x x x=+,32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若存在12,[0,2]x x ∈,使12()()g x g x M-≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.7.设函数(),x f x xe =2().g x ax x =+(Ⅰ)若()f x 与()g x 具有完全相同的单调区间,求a 的值;(Ⅱ)若当0x ≥时恒有()(),f x g x ≥求a 的取值范围.8.已知函数()xf x e =,()1g x x =+(Ⅰ)判断函数()()f x g x -零点的个数,并说明理由;(Ⅱ)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.9.已知函数32()31()f x ax x a x R =++∈,.(Ⅰ)当0a <时,求函数f(x)的极值.(Ⅱ)设函数'1()()(21)13h x f x a x =+-+,(1,](1)x b b ∈->-,如果存在(,1],a ∈-∞-,对任意(1,]x b ∈-都有()0h x ≥成立,试求b 的最大值.10.设函数2()ln ,,f x a x bx a b R =-∈(Ⅰ)若函数()f x 在1x =处与直线12y =-相切,①求实数,a b 的值;②求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦的最大值;(Ⅱ)当0b =时,若不等式()f x m x ≥+对所有的(230,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,求实数m 的取值范围.11.已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(1)f x m a >-成立,求实数m 的取范围.12.已知函数()()()3212f x x a x a a x=+--+()a ∈R ,()'f x 为()f x 的导数.(Ⅰ)当3a =-时,证明()y f x =在区间()1,1-上不是单调....函数;(Ⅱ)设()19163g x x =-,是否存在实数a ,对于任意的[]11,1x ∈-,存在[]20,2x ∈,使得()()1122f x ax g x '+=成立?若存在,求出a 的取值范围;若不存在,说明理由.13.已知函数2()ln (1).xf x a x x a a =+->(Ⅰ)求()f x 的单调增区间;(Ⅱ)若存在[]12,1,1,x x ∈-使得12()()1(f x f x e e a -≥-是自然数),求实数的取值.范围14.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.15.已知函数R a x x axx x f ∈-+-+=,1)1ln()(.(Ⅰ)当0>a 时,求函数)(x f 的单调区间;(Ⅱ)若存在0>x ,使)(11)(Z a x xx x f ∈+-<++成立,求a 的最小值.16.设函数()1.xf x e -=-(Ⅰ)证明:当1,();1x x f x x >-≥+时(Ⅱ)当0,()1xx f x ax ≥≤+时恒成立,求a 的取值范围.17.已知函数2()(1)(1).x f x x e x x =-->(Ⅰ)试判断方程()0f x =根的个数.(Ⅱ)()(1,),k k f x k ≤+∞若为整数,且不等式在上恒成立求的最大值.18.设函数()2xf x e ax =--(Ⅰ)求()f x 的单调区间(Ⅱ)若1,a k =为整数,且当0x >时,'()()10,x k f x x -++>求k 的最大值.题型二:导数与函数的切线问题19.已知函数312()ln ,()23f x x x g x ax x e=⋅=--.(Ⅰ)求()f x 的单调增区间和最小值;(Ⅱ)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值;(Ⅲ)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.20.已知函数()ln().f x x a ax =-+(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若(,1),a ∈-∞-函数'()()g x a f x =的图象上存在12,P P 两点,其横坐标满足1216x x -<<<,且()g x 的图象在此两点处的切线互相垂直,求a 的取值范围.21.已知在函数321253y x x x =--+的曲线上存在唯一点P 00(,)x y ,过点P 作曲线的切线l 与曲线有且只有一个公共点P,则切线l 的斜率k =______________.22.已知函数2(),.xf x e ax ex a R =+-∈(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .题型三:导数与函数的零点及零点关系问题23.已知函数3()sin (),[0]22f x ax x a R π=-∈且在,上的最大值.π-3为2(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()f x 在(0,)π内的零点个数,并加以证明.24.已知函数()xf x x ae=-()a R Î有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明12x x +随着a 的减小而增大.25.已知函数()2ln ()2a f x x x x x a a R =--+Î,在其定义域内有两个不同的极值点.(Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112e x x ll+<×恒成立,求λ的取值范围.26.已知函数()(0)axf x x e a =->.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点12,x x ,且12x x <,试证明12x ae x <.27.已知函数()f x =1x x e-(x ∈R)(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当x >2时,()f x >()g x ;(Ⅲ)如果1x ≠2x ,且1()f x =2()f x ,证明:12x x +>4.28.已知函数2)1(2)(-+-=x a e x x f x)(有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:x 1+x 2<2.29.已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=-+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;32.已知()()ln ().f x x x mx m R =-∈(Ⅰ)当1m =时,()f x 的图象在()1,1-处的切线l 恰与函数(01)xy a a a =>≠且的图象相切,求实数a 的值.(Ⅱ)若函数21()ln 212F x x x mx =+-+的两个极值点为1212,,x x x x <且,求证:21()1()f x f x <-<.33.设函数'()ln(1),()(),0,f x x g x xf x x =+=≥其中'()f x 是()f x 的导函数.(Ⅰ)令11()(),()(()),,n n g x g x g x g g x n N ++==∈求()n g x 的表达式;(Ⅱ)若()()f x ag x ≥恒成立,求实数a 的取值范围;(Ⅲ)设n N +∈,比较(1)(2)()g g g n ++⋅⋅⋅+与()n f n -的大小,并加以证明.34.已知函数f(x)=e x-kx,x∈R.(Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k 的取值范围;(Ⅲ)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()122nn e++(n∈N *).《难点突破》(答案)压轴题----函数与导数常考题型二、常考题型:题型一:恒成立求参数的最值或取值范围问题2.解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)

压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。

压轴题04 函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04  函数与导数常见经典压轴大题(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题04函数与导数常见经典压轴大题函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.考向一:导数与数列不等式的综合问题考向二:双变量问题考向三:证明不等式考向四:零点问题考向五:不等式恒成立问题考向六:极值点偏移问题与拐点偏移问题考向七:导数中的同构问题考向八:导数与三角函数结合问题1、对称变换主要用来解决与两个极值点之和、积相关的不等式的证明问题.其解题要点如下:(1)定函数(极值点为0x ),即利用导函数符号的变化判断函数单调性,进而确定函数的极值点0x .(2)构造函数,即根据极值点构造对称函数0()()(2)F x f x f x x =--,若证2120x x x >,则令02()()()x F x f x f x=-.(3)判断单调性,即利用导数讨论()F x 的单调性.(4)比较大小,即判断函数()F x 在某段区间上的正负,并得出()f x 与0(2)f x x -的大小关系.(5)转化,即利用函数()f x 的单调性,将()f x 与0(2)f x x -的大小关系转化为x 与02x x -之间的关系,进而得到所证或所求.【注意】若要证明122x x f +⎛⎫' ⎪⎝⎭的符号问题,还需进一步讨论122x x +与x 0的大小,得出122x x +所在的单调区间,从而得出该处导数值的正负.构造差函数是解决极值点偏移的一种有效方法,函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效2121212ln ln 2x x x x x x -+<-证明极值点偏移:①由题中等式中产生对数;②将所得含对数的等式进行变形得到1212ln ln x x x x --;③利用对数平均不等式来证明相应的问题.3、比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.1.(2023·全国·校联考二模)已知函数()()2ln R 2a f x x x x x a a =--+∈,()f x '为()f x 的导函数.(1)当12a =时,若()()g x f x ='在[[],1(0)t t t +>上的最大值为()h t ,求()h t ;(2)已知12,x x 是函数f (x )的两个极值点,且12x x <,若不等式112e mmx x +<恒成立,求正数m的取值范围.2.(2023·河南·校联考二模)已知函数()22ln f x x x x =+.(1)求()f x 的极值;(2)若不等式()2e x f x x m x≥+在1,e ∞⎡⎫+⎪⎢⎣⎭上恒成立,求实数m 的取值范围.3.(2023·全国·模拟预测)已知函数()21ln (0)2f x x x x a a=-+>.(1)若1a =,求函数()f x 在点()()1,1f 处的切线方程;(2)若函数()21ln (0)2f x x x x a a=-+>在其定义域上有唯一零点,求实数a 的值.4.(2023·广西柳州·柳州高级中学校联考模拟预测)已知函数()ln eaf x x x =-(其中a ∈R ,e 为自然对数的底数).(1)若函数()f x 存在极大值,且极大值不小于1,求a 的取值范围;(2)当e a =时,证明()121e 2102x x f x x -⎛⎫+-++< ⎪⎝⎭.5.(2023·湖北·校联考模拟预测)已知函数2sin ()π,[0,π]ex xf x x x x =-+∈.(1)求()f x 在(0,(0))f 处的切线方程;(2)若()f x m =存在两个非负零点12,x x ,求证:212ππ1mx x -≤-+.6.(2023·上海静安·统考二模)已知函数()()211ln 2f x x a x a x =-++.(其中a 为常数)(1)若2a =-,求曲线()y f x =在点(2,(2))f 处的切线方程;(2)当a<0时,求函数()y f x =的最小值;(3)当01a ≤<时,试讨论函数()y f x =的零点个数,并说明理由.7.(2023·河北沧州·统考模拟预测)已知函数()()ln 1f x x ax a =--∈R .(1)若函数()y f x =在区间[)1,+∞上单调递减,求实数a 的取值范围;(2)若方程()20f x +=有两个实根1x ,2x ,且212x x >,求证:212332e x x >.参考数据:ln 20.693≈,ln 3 1.099≈.8.(2023·广东湛江·统考一模)已知函数()e cos 2xf x x =+-.(1)证明:函数()f x 只有一个零点;(2)在区间()0,∞+上函数()sin f x ax x >-恒成立,求a 的取值范围.9.(2023·重庆九龙坡·统考二模)已知函数()ln ax ax f x x=+-,函数()2ln 2e 2e 12xx x a g x a x x-=+-+.(1)当0a >时,求()f x 的单调区间;(2)已知12a ≥,1e 2x x>,求证:()0g x <;(3)已知n 为正整数,求证:11111ln 212212n n n n n+++⋅⋅⋅+>++-.10.(2023·广东梅州·统考二模)已知函数()1e ln -=-xf x a x ,其中R a ∈.(1)当1a =时,讨论()f x 的单调性;(2)当[]0,πx ∈时,()21cos 1f x x +-≥恒成立,求实数a 的取值范围.11.(2023·上海松江·统考二模)已知0x >,记()e xf x =,()xg x x =,()ln ()h x g x =.(1)试将()y f x =、()y g x =、()y h x =中的一个函数表示为另外两个函数复合而成的复合函数;(2)借助(1)的结果,求函数()2y g x =的导函数和最小值;(3)记()()()f x h x H x x a x-=++,a 是实常数,函数()y H x =的导函数是()y H x '='.已知函数()()y H x H x =⋅'有三个不相同的零点123x x x 、、.求证:1231x x x ⋅⋅<.12.(2023·浙江宁波·统考二模)已知函数2()ln f x x ax =-.(1)讨论函数()f x 的单调性:(2)若12,x x 是方程()0f x =的两不等实根,求证:(i )22122e x x +>;(ii )12x x >13.(2023·河北保定·统考一模)已知函数()()sin ln 1f x x a x =-+.(1)当1a =时,证明:当[]0,1x ∈时,()0f x ≥;(2)当[]0,πx ∈时,()2e 2xf x ≤-恒成立,求a 的取值范围.14.(2023·浙江金华·模拟预测)已知函数()()sin ln 1,R f x a x x a =-+∈.(1)若对(1,0]x ∀∈-时,()0f x ≥,求正实数a 的最大值;(2)证明:221sinln 2ni i =<∑;(3)若函数()()1e sin x g x f x a x +=+-的最小值为m ,证明:方程()1eln 10x mx +--+=有唯一的实数根,(其中e 2.71828= 是自然对数的底数)15.(2023·青海西宁·统考二模)已知()()e ln R xf x a x a =-∈.(1)若()f x 在[)1,+∞上单调递增,求a 的取值范围,(2)证明:当21e a ≥时,()0f x >.16.(2023·江西·统考模拟预测)已知函数()ln af x x x=+的图象在1x =处的切线方程为y b =.(1)求a ,b 的值及()f x 的单调区间.(2)已知()()2e e x x xf x mxF x x x-+=-,是否存在实数m ,使得曲线()y F x =恒在直线1y x =+的上方?若存在,求出实数m 的值;若不存在,请说明理由.17.(2023·山东德州·统考一模)已知1()sin (1)1f x a x x x x =-+>-+,且0为()f x 的一个极值点.(1)求实数a 的值;(2)证明:①函数()f x 在区间(1,)-+∞上存在唯一零点;②22111sin 121nk n k=-<<+∑,其中*N n ∈且2n ≥.18.(2023·江西吉安·统考一模)已知函数()()ln ,e e x xf x xg x -=-=-.(1)若[]()()0,1,x g x f a ∃∈>成立,求实数a 的取值范围;(2)证明:()()πcos 2e x h x f x =+有且只有一个零点0x,且20π1e cos e 2e x g -⎛⎫<< ⎝⎭19.(2023·河南·郑州一中校联考模拟预测)已知函数()1ln m f x m x x x+=++.(1)求函数()f x 的单调区间;(2)当1m =时,证明:()23e x xf x x <+.20.(2023·陕西渭南·统考二模)已知函数()()1ln e ,xxf xg x m x+==-.()m ∈R (1)证明:()1f x x ≥+;(2)若()()f x g x ≥,求实数m 的取值范围;(3)证明:11e e 1knk k =⎛⎫< ⎪-⎝⎭∑.()N n +∈21.(2023·全国·东北师大附中校联考模拟预测)已知函数()()ln 10f x x ax a =-->.(1)当1a =时,求过原点且与()f x 相切的直线方程;(2)若()()()e 0ax g x x f x a =+⋅>有两个不同的零点()1212,0x x x x <<,不等式212e mx x ⋅>恒成立,求实数m 的取值范围.22.(2023·青海·校联考模拟预测)已知函数()()21e xf x ax x =+-.(1)当12a =-时,讨论函数()f x 在()0,∞+上的单调性;(2)当0x >时,()1f x <,求实数a 的取值范围.23.(2023·天津·校联考一模)设函数()()()21e 2,R x f x x m x m =+++∈.(1)讨论()f x 的单调性;(2)若当[2,)x ∈-+∞时,不等式()()213e f x m x x -≥+-恒成立,求m 的取值范围.。

高考数学压轴专题(易错题)备战高考《函数与导数》基础测试题附答案

高考数学压轴专题(易错题)备战高考《函数与导数》基础测试题附答案

【高中数学】单元《函数与导数》知识点归纳一、选择题1.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.2.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.3.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是A .M N N =IB .()U M N =∅I ðC .M N U =UD .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.4.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.5.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.6.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e 1e ln 1e x x x x a --=+-()0x >,则方程()1e 1e ln 1e x x x x a --=+-在()0,∞+上有解,即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e ex x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q ,令()=e 1xm x x --,则()=e 10xm x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立, ∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x eϕϕ>=-, 所以11ea >-, 故选:D 【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.7.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

高考数学压轴专题专题备战高考《函数与导数》难题汇编含答案

高考数学压轴专题专题备战高考《函数与导数》难题汇编含答案

一、选择题1.函数()||()af x x a R x=-∈的图象不可能是( ) A . B .C .D .【答案】C 【解析】 【分析】变成分段函数后分段求导,通过对a 分类讨论,得到函数的单调性,根据单调性结合四个选项可得答案. 【详解】,0(),0a x x x f x a x x x ⎧->⎪⎪=⎨⎪--<⎪⎩,∴221,0()1,0a x xf x a x x ⎧+>⎪⎪=⎨⎪-+<⎩'⎪.(1)当0a =时,,0(),0x x f x x x >⎧=⎨-<⎩,图象为A;(2)当0a >时,210ax+>,∴()f x 在(0,)+∞上单调递增,令210ax-+=得x a =∴当x a <,210ax -+<,当0a x <<时,210ax-+>,∴()f x 在(,a -∞上单调递减,在(,0)a 上单调递增,图象为D; (3)当0a <时,210ax-+<,∴()f x 在(,0)-∞上单调递减, 令210ax+=得x a =-∴当x >时,210ax +>,当0x <<,210ax+<,∴()f x 在上单调递减,在)+∞上单调递增,图象为B; 故选:C. 【点睛】本题考查了分段函数的图像的识别,考查了分类讨论思想,考查了利用导数研究函数的单调性,属于中档题.2.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<,3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.3.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.4.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .5.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( ) A . B .C .D .【答案】A 【解析】Q ()21f cos 4x x x =+,()()1'sin ,'2f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.三个数22323ln a b ln c e ===,,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.7.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.8.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.9.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0xx x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,2)-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】11.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.()263,034,0x x x x f x x ⎧---≤=⎨->⎩,则函数()y f f x =⎡⎤⎣⎦的零点个数为( )A .3B .5C .6D .7 【答案】D 【解析】 【分析】作出()f x 的图像,将()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,令()t f x =,解()0f t =有三个实数根,再结合图像即可得到答案.【详解】由题意,()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数, 作()f x 的图像如图所示,设()t f x =,则()0f t =,当0t ≤时,即2630t t ---=,解得,1236,36t t =-=- 当0t >时,即340t -=,解得33log 4t =; 结合图像知,()36f x =-()36f x =-+3()log 4f x =时有三个根,所以()0f f x =⎡⎤⎣⎦有7个根,即()y f f x =⎡⎤⎣⎦的零点个数为7. 故选:D 【点睛】本题主要考查函数的零点问题、解函数值以及一元二次函数和指数函数的图像,考查学生数形结合的思想,属于中档题.13.已知函数2()f x x m =+与函数1()ln3g x x x =--,1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,则实数m 的取值范围是( ) A .5ln )4[2,2+ B .5[2ln 2,ln 2)4-+ C .5(ln 2,2ln 2)4+- D .(]2ln2,2-【答案】A 【解析】 【分析】将问题转化为()()f x g x =-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,令()()()h x f x g x =+,将问题转化为()h x 在1,22⎡⎤⎢⎥⎣⎦上有两个零点的问题,利用导数可求得()h x 的单调性,进而确定区间端点值和最值,由此构造不等式求得结果. 【详解】()f x Q 与()g x 在1,22x ⎡∈⎤⎢⎥⎣⎦的图象上恰有两对关于x 轴对称的点,()()f x g x ∴=-在1,22⎡⎤⎢⎥⎣⎦恰有两个不同的解,即221ln3ln 30x m x x x x m x +--=+-+=在1,22⎡⎤⎢⎥⎣⎦上恰有两个不同的解, 令()2ln 3h x x x x m =+-+,则()()()2211123123x x x x h x x x x x---+'=+-==, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<;当()1,2x ∈时,()0h x '>,()h x ∴在1,12⎛⎫⎪⎝⎭上单调递减,在()1,2上单调递增,又15ln 224h m ⎛⎫=--+⎪⎝⎭,()12h m =-,()2ln 22h m =-+, 原问题等价于()h x 在1,22⎡⎤⎢⎥⎣⎦上恰有两个零点,则5ln 2024m m --+≥>-,解得:5ln 224m +≤<,即m 的取值范围为5ln 2,24⎡⎫+⎪⎢⎣⎭.故选:A . 【点睛】本题考查根据函数零点个数求解参数范围的问题,关键是能够将两函数图象对称点个数的问题转化为方程根的个数的问题,进一步通过构造函数的方式将问题转化为函数零点个数的问题.14.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=,且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==.又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==.所以(2019)(2024)5f f +=.故选:B.【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.15.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1 【答案】C【解析】【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞当43a --≤≤ 时,()21f x -#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤-所以a 的最大值为2-.故选:C.【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.16.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥17.已知函数()2f x x x =+,且()1231ln log 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( ) A .a c b << B .b c a <<C .c a b <<D .b a c << 【答案】A【解析】【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=, 所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=, 根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A . 【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.18.40cos2d cos sin x x x xπ=+⎰( )A .1)B 1C 1D .2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e +∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.。

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03--函数与导数常见经典压轴小题(解析版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题03函数与导数常见经典压轴小题1、导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2、应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考向一:函数、零点嵌套问题考向二:函数整数解问题考向三:等高线问题考向四:零点问题考向五:构造函数解不等式考向六:导数中的距离问题考向七:导数的同构思想考向八:最大值的最小值问题(平口单峰函数、铅锤距离)1、分段函数零点的求解与判断方法:(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.2、由于三次函数的导函数为我们最熟悉的二次函数,所以基本的研究思路是:借助导函数的图象来研究原函数的图象.如借助导函数的正负研究原函数的单调性;借助导函数的(变号)零点研究原函数的极值点(最值点);综合借助导函数的图象画出原函数的图象并研究原函数的零点,具体来说,对于三次函数()()32 0f x ax bx cx d a =+++>,其导函数为()()232 0f x ax bx c a '=++>,根的判别式()243b ac ∆=-.a >()232f x ax bx c'=++判别式∆>0∆=0∆<图象()32f x ax bx cx d=+++单调性增区间:()1, x -∞,()2, x +∞;减区间:()12, x x 增区间:(), -∞+∞增区间:(), -∞+∞图象(1)当0∆≤时,()0f x '≥恒成立,三次函数()f x 在R 上为增函数,没有极值点,有且只有一个零点;(2)当0∆≥时,()0f x '=有两根1x ,2x ,不妨设12x x <,则1223bx x a+=-,可得三次函数()f x 在()1, x -∞,()2, x +∞上为增函数,在()12, x x 上为减函数,则1x ,2x 分别为三次函数()32f x ax bx cx d =+++的两个不相等的极值点,那么:①若()()120f x f x ⋅>,则()f x 有且只有1个零点;②若()()120f x f x ⋅<,则()f x 有3个零点;③若()()120f x f x ⋅=,则()f x 有2个零点.特别地,若三次函数()()32 0f x ax bx cx d a =+++>存在极值点0x ,且()00f x =,则()f x 地解析式为()()()20f x a x x x m =--.同理,对于三次函数()()32 0f x ax bx cx d a =+++<,其性质也可类比得到.3、由于三次函数()()32 0f x ax bx cx d a =+++≠的导函数()232f x ax bx c '=++为二次函数,其图象变化规律具有对称性,所以三次函数图象也应当具有对称性,其图象对称中心应当为点, 33bb faa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,此结论可以由对称性的定义加以证明.事实上,该图象对称中心的横坐标正是三次函数导函数的极值点.4、恒成立(或存在性)问题常常运用分离参数法,转化为求具体函数的最值问题.5、如果无法分离参数,可以考虑对参数或自变量进行分类讨论,利用函数性质求解,常见的是利用函数单调性求解函数的最大、最小值.6、当不能用分离参数法或借助于分类讨论解决问题时,还可以考虑利用函数图象来求解,即利用数形结合思想解决恒成立(或存在性)问题,此时应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数图象之间的关系,得出答案或列出条件,求出参数的范围.7、两类零点问题的不同处理方法利用零点存在性定理的条件为函数图象在区间[a ,b ]上是连续不断的曲线,且()()0f a f b ⋅<..①直接法:判断-一个零点时,若函数为单调函数,则只需取值证明()()0f a f b ⋅<.②分类讨论法:判断几个零点时,需要先结合单调性,确定分类讨论的标准,再利用零点存在性定理,在每个单调区间内取值证明()()0f a f b ⋅<.8、利用导数研究方程根(函数零点)的技巧(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置.(3)利用数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.9、已知函数零点个数求参数的常用方法(1)分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分类讨论法:结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围.1.(2023·江西宜春·统考模拟预测)已知函数()()()ln 1,ln (0)1m xf x xg x x m x m=+-=+>+,且()()120f x g x ==,则()2111em x x -+的最大值为()A .1B .eC .2eD .1e【答案】A【解析】()()()()()ln 10,ln 10,1ln 1,11m mf x x x m x x x x =+-=+-==++++()ln0,e ,x xg x x m x m=+==由题意知,()()21121ln 1e ,x x x x m ++==即()()2221121ln 1e e ln e ,x x xx x x m ++===因为0m >,所以21e 1,11xx >+>,设()ln ,1p x x x x =>,则()1ln 0p x x '=+>,()()211e ,xp x p m +==所以211e x x +=,所以()22121111e e e ex m m m x x x m---+==,1(),0e m m t m m -=>,则11(),e m m t m --'=当01m <<时,()0;t m '>当1m >时,()0;t m '<所以()t m 在()0,1时单调递增,在()1,+∞时单调递减,所以max ()(1)1,t m t ==故选:A.2.(2023·湖南岳阳·统考二模)若函数()22ln 2e 2ln x xf x a x ax -=-+有两个不同的零点,则实数a 的取值范围是()A .(),e -∞-B .(],e -∞-C .()e,0-D .()【答案】A【解析】函数()f x 的定义域为(0,)+∞,()()222ln 22ln 2e 2ln e 2ln x x x x f x a x ax a x x --=-+=+-,设2()2ln (0)h x x x x =->,则22(1)(1)()2x x h x x x x+-'=-=,令()01h x x '>⇒>,令()001h x x '<⇒<<,所以函数()h x 在(0,1)上单调递减,在(1,)+∞上单调递增,且(1)1h =,所以min ()(1)1h x h ==,所以()1h x ≥,函数()f x 有两个不同的零点等价于方程()0f x =有两个不同的解,则()222ln 2ln 22e e 2ln 02ln x x x x a x x a x x--+-=⇒-=-,等价于函数y a =-与22ln 2e 2ln x xy x x-=-图象有两个不同的交点.令22ln x x t -=,()1e ,tg t tt =>,则函数y a =-与()1e ,tg t tt =>图象有一个交点,则()()22e 1e e 0tt t t t g t t t '--==>,所以函数()g t 在(1,)+∞上单调递增,所以()()1e g t g >=,且t 趋向于正无穷时,()e tg t t=趋向于正无穷,所以e a ->,解得e a <-.故选:A.3.(2023·江西吉安·统考一模)已知,R,0,0x y x y ∈>>,且2x y xy +=,则8e y x-的可能取值为()(参考数据: 1.1e 3≈, 1.2e 3.321≈)A .54B .32C .e 1-D .e【答案】D【解析】由2x y xy +=,可得844x y =-且1y >,所以84e e 4y yx y-=+-,令()()4e 4,1,yg y y y =+-∈+∞,可得()24e y g y y='-,令()24e yh y y =-,可得()38e 0yh y y '=+>,()h y 为单调递增函数,即()g y '单调递增,又()()1.1 1.222441.1e 0, 1.2e 01.1 1.2g g =--'<'=>,所以存在()0 1.1,1.2y ∈,使得()00204e 0yg y y =-=',所以()()0min 002000444e 44, 1.1,1.2yg g y y y y y ==+-=-∈,设()0200444f y y y =+-,则()0320084f y y y =--',因为()0 1.1,1.2y ∈,所以()00f y '<,所以()0f y 在()1.1,1.2上单调递减,所以()()0191.229f y f >=>,又因为()22e 2e g =->,()g y 在()0,y ∞+上递增,所以D 正确.故选:D.4.(2023·河南开封·开封高中校考一模)若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-【答案】D 【解析】由11e x ax +⎛⎫+≥ ⎪⎝⎭两边取对数可得 1()ln 11x a x ⎛⎫++≥ ⎪⎝⎭①,令11,t x +=则11x t =-,因为[)1,x ∞∈+,所以(1,2]t ∈,则①可转化得1ln 11a t t ⎛⎫+≥⎪-⎝⎭,因为ln 0t >,11ln 1a t t ∴≥--因为存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,所以存在(1,2]t ∈,11ln 1a t t ≥--成立,故求11ln 1t t --的最小值即可,令11(),(1,2]ln 1g x x x x =-∈-2211()(ln )(1)g x x x x '∴=-+⋅-2222(ln )(1)(1)(ln )x x x x x x ⋅--=-2222222(1)1(ln )(ln )2(1)(ln )(1)(ln )x x x x x x x x x x ----+==--,令()h x 21(ln )2,(1,2]x x x x=--+∈212ln 11()2ln 1x x x h x x x xx-+'∴=⋅-+=,令1()2ln ,(1,2]x x x x xϕ=-+∈,2222121()1x x x x x x ϕ-+-'∴=--=22(1)0x x --=<,所以()ϕx 在(1,2]上单调递减,所以()(1)0x ϕϕ<=,()0h x '∴<,所以()h x 在(1,2]上单调递减,所以()(1)0,()0,h x h g x '<=∴<()g x ∴在(1,2]上单调递减,1()(2)1ln 2g x g ∴≥=-,11ln 2a ∴≥-,所以实数a 的最小值为11ln 2-故选:D5.(2023·河北石家庄·统考一模)已知210x x a -=在()0,x ∈+∞上有两个不相等的实数根,则实数a 的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,2e ⎛⎫⎪⎝⎭C .12e 1,e ⎛⎤ ⎥⎝⎦D .12e 1,e ⎛⎫ ⎪⎝⎭【答案】D【解析】由()0,x ∈+∞,则210x x a =>,故2ln ln xa x=,要使原方程在()0,x ∈+∞有两个不等实根,即2ln ()xf x x =与ln y a =有两个不同的交点,由432ln 12ln ()x x x x f x x x --'==,令()0f x '>,则120e x <<,()0f x '<,则12e x >,所以()f x 在12(0,e )上递增,12(e ,)+∞上递减,故12max 1()(e )2e f x f ==,又x 趋向于0时,()f x 趋向负无穷,x 趋向于正无穷时,()f x 趋向0,所以,要使()f x 与ln y a =有两个不同的交点,则10ln 2ea <<,所以12e 1e a <<.故选:D6.(2023·吉林·统考三模)已知不等式22e ln ln x x λλ+≥在()0,x ∈+∞上恒成立,则实数λ的取值范围是()A .10,2e ⎛⎤ ⎥⎝⎦B .10,4e ⎛⎤ ⎥⎝⎦C .1,2e ∞⎡⎫+⎪⎢⎣⎭D .1,4e ⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】由22e ln ln x x λλ+≥得22e ln ln lnxxx λλλ≥-=,即22e lnxxxx λλ≥,令()e t f t t =,()0,t ∈+∞,则()()1e 0tf t t '=+>,所以()e tf t t =在()0,∞+上单调递增,而ln22e lnlne xxxxxx λλλλ≥=等价于()2ln x f x f λ⎛⎫≥ ⎪⎝⎭,∴2lnxx λ≥,即2e xx λ≥令()2e x g x x =,()0,x ∈+∞,则()212e xg x x-'=,所以()g x 在10,2x ⎛⎫∈ ⎪⎝⎭时()0g x '>,为增函数;在在1,2x ⎛⎫∈+∞ ⎪⎝⎭时()0g x '<,为减函数,所以()g x 最大值为1122e g ⎛⎫= ⎪⎝⎭,∴12e λ≥.故选:C7.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)设()f x 是定义在R 上的可导函数,()f x 的导函数为()f x ',且()()32f x f x x '⋅>在R 上恒成立,则下列说法中正确的是()A .()()20232023f f <-B .()()20232023f f >-C .()()20232023f f <-D .()()20232023f f >-【答案】D【解析】由题设32()()4f x f x x ⋅>',构造24()()g x f x x =-,则3()2()()40g x f x f x x =-'>',所以()g x 在R 上单调递增,则(2023)(2023)g g >-,即2424(2023)2023(2023)(2023)f f ->---,所以22(2023)(2023)f f >-,即()()20232023f f >-.故选:D8.(2023·四川广安·统考二模)若存在[]01,2x ∈-,使不等式()022002e 1ln e 2ex ax a x +-≥+-成立,则a 的取值范围是()A .21,e 2e ⎡⎤⎢⎥⎣⎦B .221,e e ⎡⎤⎢⎥⎣⎦C .421,e e ⎡⎤⎢⎥⎣⎦D .41,e e ⎡⎤⎢⎥⎣⎦【答案】D【解析】()022002e 1ln e 2e x a x a x +-≥+-⇔()()222e 1ln e 12e x a a x ---≥-()()()000022222 e 1ln e 1ln e 2 e 1ln 2e e x x x x a a a a e ⇔---≥-⇔-≥-令ex at =,即()2e 1ln 220t t --+≥,因为0[1,2]x ∈-,所以21,e e a a t -⎡⎤∈⎢⎥⎣⎦,令()2()e 1ln 22f t t t =--+.则原问题等价于存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.()22e 12e 1()2t f t t t---'=-=令()0f t '<,即()2e 120,t --<解得2e 12t ->,令()0f t '>,即()2e 120,t -->解得2e 102t -<<,所以()f t 在2e 10,2⎛⎫- ⎪⎝⎭上单调递增,在2e 1,2⎛⎫-+∞⎪⎝⎭上单调递减.又因为()()2222(1)0,e e 1ln e 2e 2f f ==--+222e 22e 20=--+=而22e 11e 2-<<,∴当21e t ≤≤时,()0f t ≥.若存在21,e e a a t -⎡⎤∈⎢⎥⎣⎦,使得()0f t ≥成立.只需22e e a ≤且11e a -≥,解得4ea ≤且1e a ≥,所以41e ea ≤≤.故a 的取值范围为41,e e ⎡⎤⎢⎥⎣⎦.故选:D9.(2023·河南郑州·统考二模)函数()ln ,01,0x x x f x x x >⎧=⎨+≤⎩,若关于x 的方程()()()210f x m f x m -++=⎡⎤⎣⎦恰有5个不同的实数根,则实数m 的取值范围是()A .10em -<<B .10em -<≤C .10em -≤<D .10em -≤≤【答案】A【解析】由()2[()]1()[()][()1]0f x m f x m f x m f x -++=--=,可得()f x m =或()1f x =,令ln y x x =且定义域为(0,)+∞,则ln 1y x ¢=+,当1(0,ex ∈时0'<y ,即y 递减;当1(,)ex ∈+∞时0'>y ,即y 递增;所以min 1e y =-,且1|0x y ==,在x 趋向正无穷y 趋向正无穷,综上,根据()f x 解析式可得图象如下图示:显然()1f x =对应两个根,要使原方程有5个根,则()f x m =有三个根,即(),f x y m =有3个交点,所以10em -<<.故选:A10.(2023·贵州·统考模拟预测)已知函数()f x 在R 上满足如下条件:(1)()()0f x f x -+=;(2)()20f -=;(3)当()0,x ∈+∞时,()()f x f x x'<.若()0f a >恒成立,则实数a 的值不可能是()A .3-B .2C .4-D .1【答案】B 【解析】设()()f x g x x =,则()()()2xf x f x g x x'-'=,因为当()0,x ∈+∞时,()()f x f x x'<,所以当0x >时,有()()0xf x f x '-<恒成立,即此时()g x '<0,函数()g x 为减函数,因为()f x 在R 上满足()()0f x f x -+=,所以函数()f x 是奇函数,又()20f -=,所以()20f =,又()()()()()f x f x f x g x g x x x x---====--,故()g x 是偶函数,所以()()220g g =-=,且()g x 在(),0x ∈-∞上为增函数,当0a >时,()0f a >,即()()0f a ag a =>,等价为()0g a >,即()()2g a g >,得02a <<;当a<0时,()0f a >,即()()0f a ag a =>,等价为()0g a <,即()()2g a g <-,此时函数()g x 为增函数,得2a <-,综上不等式()0f a >的解集是()(),20,2-∞- ,结合选项可知,实数a 的值可能是3-,4-,1.故选:B11.(2023·广西·统考三模)已知2()cos f x x x =+,若3441e ,ln ,54a f b f c f -⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b c a <<B .c a b<<C .c b a<<D .a c b<<【答案】A【解析】因为2()cos ,R f x x x x =+∈,定义域关于原点对称,()22()()cos()cos f x x x x x f x -=-+-=+=,所以()f x 为R 上的偶函数,当0x ≥时,()2sin ,f x x x '=-,设()2sin g x x x =-,则()2cos g x x =-',1cos 1x -≤≤ ,()0g x '∴>,所以()g x 即()f x '在[0,)+∞上单调递增,所以()(0)0f x f ''≥=,所以()f x 在[0,)+∞上单调递增,又因为()f x 为偶函数,所以()f x 在(,0]-∞上单调递减,又因为41ln0,054<-<,所以445ln ln ln 554b f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,1144c f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭又因为31411ee e 4-->=>,因为141ln e 4=,41445e e, 2.4e 4⎛⎫⎛⎫=≈< ⎪ ⎪⎝⎭⎝⎭,所以145e 4>,所以145ln e ln 4>,即15ln 44>,所以3415eln 44->>,所以3441e 5ln 4f f f -⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即a c b >>.故选:A.12.(2023·天津南开·统考一模)已知函数()()216249,1,11,1,9x x x f x f x x ⎧-+≤⎪=⎨->⎪⎩则下列结论:①()1*9,Nn f n n -=∈②()()10,,x f x x∞∀∈+<恒成立③关于x 的方程()()R f x m m =∈有三个不同的实根,则119m <<④关于x 的方程()()1*9N n f x n -=∈的所有根之和为23n n +其中正确结论有()A .1个B .2个C .3个D .4个【答案】B【解析】由题意知,()()()()1211111219999n n f n f n f n f n n --=-=-==--=⎡⎤⎣⎦ ,所以①正确;又由上式知,要使得()()10,,x f x x∞∀∈+<恒成立,只需满足01x <≤时,()1f x x <恒成立,即2116249x x x-+<,即321624910x x x -+-<恒成立,令()(]32162491,0,1g x x x x x =-+-∈,则()248489g x x x '=-+,令()0g x '=,解得14x =或34x =,当1(0,4x ∈时,()0g x '>,()g x 单调递增;当13(,)44x ∈时,()0g x '<,()g x 单调递减;当3(,)4x ∈+∞时,()0g x '>,()g x 单调递增,当14x =时,函数()g x 取得极大值,极大值11101444g f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,所以②不正确;作出函数()f x 的图象,如图所示,由图象可知,要使得方程()()R f x m m =∈有三个不同的实根,则满足()()21f m f <<,即119m <<,所以③正确;由()1(1)9f x f x =-知,函数()f x 在(),1n n +上的函数图象可以由()1,n n -上的图象向右平移一个单位长度,再将所有点的横坐标不变,纵坐标变为原来的19倍得到,因为216249y x x =-+的对称轴为34x =,故()09f x =的两根之和为32,同理可得:()19f x =的两个之和为322+, ,()19nf x -=的两个之和为32(1)2n +-,故所有根之和为23333(2)[2(1)]2222n n n +++++-=+,所以④不正确.故选:B.13.(2023·山东济南·一模)函数()()()221xxx f x a a a =++-+(0a >且1a ≠)的零点个数为()A .1B .2C .3D .4【答案】B【解析】由()0f x =可得22011x x a a a a +⎛⎫⎛⎫+-= ⎪ ⎪++⎝⎭⎝⎭,即11112011x xa a ⎛⎫⎛⎫-++-= ⎪ ⎪++⎝⎭⎝⎭,因为0a >且1a ≠,则1110,,1122a ⎛⎫⎛⎫∈ ⎪ ⎪+⎝⎭⎝⎭,令11t a =+,令()()()112x xg x t t =-++-,则()()010g g ==,()()()()()1ln 11ln 1xxg x t t t t '=--+++,令()()()()()1ln 11ln 1xxh x t t t t =--+++,则()()()()()221ln 11ln 10xxh x t t t t '=--+++>⎡⎤⎡⎤⎣⎦⎣⎦,所以,函数()g x '在R 上单调递增,因为()()()()20ln 1ln 1ln 1ln10g t t t'=-++=-<=,()()()()()11ln 11ln 1g t t t t '=--+++,令()()()()()1ln 11ln 1p t t t t t =--+++,其中01t <<,则()()()ln 1ln 10p t t t '=+-->,所以,函数()p t 在()0,1上单调递增,所以,()()()100g p t p >'==,由零点存在定理可知,存在()00,1x ∈,使得()00g x '=,且当0x x <时,()0g x '<,此时函数()g x 单调递减,当0x x >时,()0g x '>,此时函数()g x 单调递增,所以,()()()0010g x g g <==,所以,函数()g x 的零点个数为2,即函数()f x 的零点个数为2.故选:B.14.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()222g x f x a f x a =---⎡⎤⎣⎦恰有5个零点,则a 的取值范围是()A .()3e,0-B .470,e ⎛⎫ ⎪⎝⎭C .473e,e ⎛⎫- ⎪⎝⎭D .()0,3e 【答案】B【解析】函数()g x 恰有5个零点等价于关于x 的方程()()()2220f x a f x a ⎡⎤---=⎣⎦有5个不同的实根.由()()()2220f x a f x a ⎡⎤---=⎣⎦,得()f x a =或()2f x =-.因为()()25e x f x x x =+-,所以()()234e x f x x x '=+-()()41e xx x =+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减.因为()474e f -=,()13e f =-,当x →+∞时,()f x →+∞,当x →-∞时,()0f x →,所以可画出()f x 的大致图象:由图可知()2f x =-有2个不同的实根,则()f x a =有3个不同的实根,故470,e a ⎛⎫∈ ⎪⎝⎭,故A ,C ,D 错误.故选:B.15.(2023·山东枣庄·统考二模)已知()f x =,a ∈R ,曲线cos 2y x =+上存在点()00,x y ,使得()()00f f y y =,则a 的范围是()A .()8,18ln 3+B .[]8,18ln 3+C .()9,27ln 3+D .[]9,27ln 3+【答案】B【解析】因为[]cos 1,1x ∈-,所以[]cos 21,3y x =+∈,由题意cos 2y x =+上存在一点()00,x y 使得()()00f f y y =,即[]01,3y ∈,只需证明()00f y y =,显然()f x =假设()00f y y c =>,则()()()()000f f y f c c y f y ==>>不满足()()00f f y y =,同理()00f y c y =<不满足()()00f f y y =,所以()00f y y =,那么函数()[]1,3f x =即函数()f x x =在[]1,3x ∈有解,x =,可得[]2ln 9,1,3x x a x x +-=∈,从而[]2ln 9,1,3x x x a x +-=∈,令()[]2ln 9,1,3h x x x x x =+-∈,则()2119292x x h x x x x+-'=+-=,令()0h x '=,即21920x x +-=,解得12993,044x x -=>=(舍去),()0h x '>时03x <<<()0h x '<时x >所以()h x 在[]1,3单调递增,所以()()()13h h x h ≤≤,()1ln1918h =+-=,()3ln 3279ln 318h =+-=+,所以()h x 的取值范围为[]8,ln 318+,即a 的取值范围为[]8,ln 318+.故选:B.16.(2023·四川绵阳·盐亭中学校考模拟预测)已知()(0)ln kxx k xϕ=>,若不等式()11e kxxx ϕ+<+在()1+∞,上恒成立,则k 的取值范围为()A .1e⎛⎫+∞ ⎪⎝⎭,B .()ln2+∞,C .()0,eD .()0,2e 【答案】A【解析】由题意知,(1,)x ∀∈+∞,不等式11e ln kx x kx x+<+恒成立,即()(1,),1eln e(1)ln kxkxx x x ∀∈+∞+>+成立.设()(1)ln (1)f x x x x =+>,则()e ()kxf f x >.因为11()ln ln 10x f x x x x x+'=+=++>,所以()f x 在()1+∞,上单调递增,于是e kx x >对任意的()1x ∈+∞,恒成立,即ln xk x >对任意的()1x ∈+∞,恒成立.令ln ()(1)x g x x x=>,即max ()k g x >.因为21ln ()xg x x-'=,所以当(1,e)x ∈时,()0g x '>;当()e x ∈+∞,时,()g x '<0,所以()g x 在(1,e)上单调递增,在()e ,+∞上单调递减,所以max 1()(e)eg x g ==,所以1ek >.故选:A .17.(2023·江西·校联考模拟预测)已知()ee 1ln x x a x+>有解,则实数a 的取值范围为()A .21,e ⎛⎫-+∞ ⎪⎝⎭B .1,e⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e⎛⎫-∞ ⎪⎝⎭【答案】A【解析】不等式()e e 1ln x x a x+>可化为()e ln 1x a x x x ++>,()()e ln e 1x x a x x +>,令e x t x =,则ln 1at t +>且0t >,由已知不等式ln 1t at +>在()0,∞+上有解,所以1ln ta t ->在()0,∞+上有解.令()1ln t f t t -=,则()2ln 2t f t t ='-,当20e t <<时,()0f t '<,()f t 在()20,e 上单调递减;当2t e >时,()0f t '>,()f t 在()2e ,+∞单调递增,所以()min f t =()221e e f =-,所以21e a >-,所以a 的取值范围为21,e ⎛⎫-+∞ ⎪⎝⎭,故选:A.18.(2023·辽宁朝阳·校联考一模)设0k >,若不等式()ln e 0xk kx -≤在0x >时恒成立,则k 的最大值为()A .eB .1C .1e -D .2e 【答案】A【解析】对于()ln e 0xk kx -≤,即()e ln x kx k≤,因为()ln y kx =是e xy k =的反函数,所以()ln y kx =与e xy k =关于y x =对称,原问题等价于e x x k≥对一切0x >恒成立,即e xk x≤;令()e x f x x =,则()()'21e x x f x x -=,当01x <<时,()()'0,f x f x <单调递减,当1x >时,()()'0,f x f x >单调递增,()()min 1e f x f ==,e k ∴≤;故选:A.19.(2023·四川南充·统考二模)已知函数()()2ln ln 1212x x h x t t x x ⎛⎫=--+- ⎪⎝⎭有三个不同的零点123,,x x x ,且123x x x <<.则实数11ln 1x x ⎛-⎝)A .1t -B .1t -C .-1D .1【答案】D 【解析】令ln x y x =,则21ln xy x-'=,当(0,e)x ∈时0'>y ,y 是增函数,当(e,)x ∈+∞时0'<y ,y 是减函数;又x 趋向于0时y 趋向负无穷,x 趋向于正无穷时y 趋向0,且e 1|ex y ==,令ln xm x=,则2()()(12)12h x g m m t m t ==--+-,要使()h x 有3个不同零点,则()g m 必有2个零点12,m m ,若11(0,e m ∈,则21em =或2(,0]m ∞∈-,所以2(12)120m t m t --+-=有两个不同的根12,m m ,则2Δ(12)4(12)0t t =--->,所以32t <-或12t >,且1212m m t +=-,1212m m t =-,①若32t <-,12124m m t +=->,与12,m m 的范围相矛盾,故不成立;②若12t >,则方程的两个根12,m m 一正一负,即11(0,)em ∈,2(,0)m ∞∈-;又123x x x <<,则12301e x x x <<<<<,且121ln x m x =,32123ln ln x x m x x ==,故11ln 1x x ⎛⎫- ⎪⎝⎭(()()221111m m m =-=--12121()1m m m m =-++=.故选:D20.(2023·陕西咸阳·武功县普集高级中学统考二模)已知实数0a >,e 2.718=…,对任意()1,x ∈-+∞,不等式()e e 2ln xa ax a ⎡⎤++⎣⎦≥恒成立,则实数a 的取值范围是()A .10,e ⎛⎤⎥⎝⎦B .1,1e⎡⎫⎪⎢⎣⎭C .20,e⎛⎫⎪⎝⎭D .2,1e⎛⎫ ⎪⎝⎭【答案】A【解析】因为()e e 2ln xa ax a ⎡⎤++⎣⎦≥,所以()()1e2ln 2ln 2ln ln(1)x a ax a a a ax a a a a a x -⎡⎤++=++=+++⎣≥⎦,即11e 2ln ln(1)x a x a-⋅++≥+,即1ln 11ln e e 2ln ln(1)e 2ln ln(1)x x a a a x a x ---⋅+++⇔+≥++≥,所以1ln e 1ln ln(1)1x a x x a x --+≥--+++,令()e ,(1,)x f x x x =+∈-+∞,易知()f x 在()1,x ∈-+∞上单调递增,又因为ln(1)[ln(1)]e ln(1)1ln(1)x f x x x x ++=++=+++,所以(1ln )[ln(1)]f x a f x --≥+,所以1ln ln(1),(1,)x a x x --≥+∈-+∞,所以ln 1ln(1),(1,)a x x x ≤--+∈-+∞,令()1ln(1),(1,)g x x x x =--+∈-+∞,则1()111x g x x x '=-=++,所以当(1,0)x ∈-时,()0g x '<,()g x 单调递减;当,()0x ∈+∞时,()0g x '>,()g x 单调递增;所以min ()(0)1g x g ==-,所以ln 1a ≤-,解得10ea <≤.故选:A21.(2023·陕西榆林·统考二模)已知函数()()25e xf x x x =+-,若函数()()()()0g x f f x a a =->,则()g x 的零点个数不可能是()A .1B .3C .5D .7【答案】D【解析】令()0g x =,即()()f f x a =,因为()()25e xf x x x =+-,所以()2()34e x f x x x '=+-,由()0f x ¢>,得<4x -或1x >,由()0f x '<,得41x -<<,则()f x 在(),4-∞-和()1,+∞上单调递增,在()4,1-上单调递减,因为()474e f -=,()13e f =-,当+x →∞时,()+f x →∞,当x →-∞时,()0f x →,令()0f x =,解得1212x -=或1212x -=,所以可画出()f x 的大致图像,设()t f x =,则()f t a =,第一种情况:当470e a <<时,()f t a =有三个不同的零点1t ,2t ,3t ,不妨设123t t t <<,则14t <-,2142t -<<-,312t ->,①讨论()1f x t =根的情况:当13e t <-时,()1f x t =无实数根,当13e t =-时,()1f x t =有1个实数根,当13e 4t -<<-时,()1f x t =有2个实数根,②讨论()2f x t =根的情况:因为2142t -<<-,所以()2f x t =有2个实数根,③讨论()3f x t =根的情况:因为3t >47e>,所以()3f x t =只有1个实数根,第二种情况:当47e a =时,()f t a =有2个实数根44t =-,51212t ->,则()4f x t =有2个实数根,()5f x t =有1个实数根,故当47ea =时,()()f f x a =有3个实数根;第三种情况:当47e a >时,()f t a =有一个实数根612t ->,则()6f x t =有1个实数根,综上,当470ea <<时,()()f f x a =可能有3个或4个或5个实数根;当47e a =时,()()f f x a =有3实数根;当47e a >时,()()f f x a =有1个实数根;综上,()g x 的零点个数可能是1或3或4或5.故选:D .22.(多选题)(2023·河北唐山·开滦第二中学校考一模)若关于x 的不等式1ln ln e e ex m xm -+≥在(),m +∞上恒成立,则实数m 的值可能为()A .21e B .22e C .1eD .2e【答案】CD【解析】因为不等式1ln ln ee e x m x m -+≥在(),m +∞上恒成立,显然0x m >>,1x m >,ln 0xm>,因此ln 1ln ln 1ee ln e ln e ln e e e xx x x x mm x x x x x m x x m m m m m-+≥⇔≥⇔≥⇔≥⋅,令()e ,0x f x x x =>,求导得()(1)0x f x x e '=+>,即函数()f x 在(0,)+∞上单调递增,ln e ln e ()(ln xxm x x x f x f m m ≥⋅⇔≥,于是ln x x m ≥,即e e xx x x m m ≥⇔≥,令(),0e x xg x x =>,求导得1()ex x g x -'=,当01x <<时,()0g x '>,当1x >时,()0g x '<,因此函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,max 1()(1)eg x g ==,因为0x m >>,则当01m <<时,()g x 在(,1)m 上单调递增,在(1,)+∞上单调递减,1()(1)eg x g ≤=,因此要使原不等式成立,则有11em ≤<,当m 1≥时,函数()g x 在(,)m +∞上单调递减,()()()11eg x g m g <≤=,符合题意,所以m 的取值范围为1[,)e+∞,选项AB 不满足,选项CD 满足.故选:CD23.(多选题)(2023·山东·沂水县第一中学校联考模拟预测)已知函数()()()32e 04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩,其中e 是自然对数的底数,记()()()2h x f x f x a =-+⎡⎤⎣⎦,()()()3g x f f x =-,则()A .()g x 有唯一零点B .方程()f x x =有两个不相等的根C .当()h x 有且只有3个零点时,[)2,0a ∈-D .0a =时,()h x 有4个零点【答案】ABD【解析】因为32()461(0)f x x x x =-+≥,所以2()121212(1)(0)f x x x x x x '=-=-≥,所以(0,1)x ∈时,()0f x '<,(1,)x ∈+∞时,()0f x '>所以()()()32e04610x x f x x x x ⎧<⎪=⎨-+≥⎪⎩的图像如下图,选项A ,因为()()()3g x f f x =-,令()f x t =,由()0g x =,得到()3f t =,由图像知,存在唯一的01t >,使得()3f t =,所以0()1f x t =>,由()f x 的图像知,存在唯一0x ,使00()f x t =,即()()()3g x f f x =-只有唯一零点,所以选项A 正确;选项B ,令()g x x =,如图,易知()g x x =与()y f x =有两个交点,所以方程()f x x =有两个不相等的根,所以选项B 正确;选项C ,因为()()()2h x f x f x a =-+⎡⎤⎣⎦,令()f x m =,由()0h x =,得到20m m a -+=,当()h x 有且只有3个零点时,由()f x 的图像知,方程20m m a -+=有两等根0m ,且0(0,1)m ∈,或两不等根12,m m ,1210,1m m -<<>,或121,1m m =-=(舍弃,不满足韦达定理),所以140a ∆=-=或Δ140(0)0(1)0(1)0a f f f =->⎧⎪<⎪⎨->⎪⎪<⎩即14a =或14020a a aa ⎧<⎪⎪⎪<⎨⎪-<⎪<⎪⎩,所以14a =或20a -<<,当14a =时,12m =,满足条件,所以选项C 错误;选项D ,当0a =时,由()0h x =,得到()0f x =或()1f x =,由()f x 的图像知,当()0f x =时,有2个解,当()1f x =时,有2个解,所以选项D 正确.故选:ABD.24.(多选题)(2023·全国·模拟预测)已知函数()21ln 1f x a x x =++.若当()0,1x ∈时,()0f x >,则a 的一个值所在的区间可能是()A .()12,11--B .()0,1C .()2,3D .()24e ,e 【答案】ABC 【解析】设21t x =,因为01x <<,所以1t >,则211ln 1ln 12a x t a t x ++=-+.设()1ln 12g t t a t =-+,则()12ag t t'=-.若2a ≤,则()0g t '>,所以()g t 在()1,+∞上单调递增,所以()()120g t g >=>,则A ,B 符合题意.若2a >,则当1,2a t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,所以()g t 单调递减;当,2a t ⎛⎫∈+∞ ⎪⎝⎭时,()0g t '>,所以()g t 单调递增.所以()ln 12222a a a ag t g ⎛⎫≥=-+ ⎪⎝⎭.设()()ln 11h x x x x x =-+>,则()ln 0h x x '=-<,所以()h x 在()1,+∞上单调递减,且3533ln 02222h ⎛⎫=-> ⎪⎝⎭,所以若()2,3a ∈,则()30222a a g t g h h ⎛⎫⎛⎫⎛⎫≥=>> ⎪ ⎪⎝⎭⎝⎭⎝⎭,当()0,1x ∈时,()0f x >,C 符合题意.因为()h x 在()1,+∞上单调递减,且()22e e 10h =-+<,所以若()24e ,e a ∈,则24e e ,222a ⎛⎫∈ ⎪⎝⎭,取22e a =,则()2e 022a a g h h ⎛⎫⎛⎫=<< ⎪ ⎝⎭⎝⎭,此时存在()1,t ∈+∞,使得()0g t <,即存在()0,1x ∈时,使得()0f x <,D 不符合题意.故选:ABC .25.(多选题)(2023·全国·本溪高中校联考模拟预测)已知函数()f x 是定义在()0,∞+上的函数,()f x '是()f x 的导函数,若()()122e xx f x xf x '+=,且()e 22f =,则下列结论正确的是()A .函数()f x 在定义域上有极小值.B .函数()f x 在定义域上单调递增.C .函数()()eln H x xf x x =-的单调递减区间为()0,2.D .不等式()12e e 4x f x +>的解集为()2,+∞.【解析】令()()m x xf x =,则()()()m x f x xf x ''=+,又()()22e xx f x xf x '+=得:()()2e xf x xf x x'+=,由()()m x f x x =得:()()()()()()()22222e xm x x m x xf x x f x m x m x f x x x x ''⋅-+--'===,令()()2e xh x m x =-得:()()2222e e e 2e 222x x x xx h x m x x x -''=-=-=⎛⎫ ⎪⎝⎭,当()0,2x ∈时,()0h x '<,()h x 单调递减;当()2,x ∈+∞时,()0h x '>,()h x 单调递增,所以()()()()2e 2e 220h x h m f ≥=-=-=,即()0f x '≥,所以()f x 单调递增,所以B 正确,A 不正确;由()()eln H x m x x =-且定义域为()0,∞+得:()()2e e e x H x m x xx-''=-=,令()0H x '<,解得02x <<,即()H x 的单调递减区间为()0,2,故C 正确.()12ee 4xf x +>的解集等价于()2e e 4x x x xf x +>的解集,设()()2e e 44xx x x m x ϕ=--,则()()222ee ee e 11424424x xx x x x m x x ϕ⎛⎫⎛⎫''=-+-=-+- ⎪ ⎪⎝⎭⎝⎭2282e e 84x x x x --=⋅-,当()2,x ∈+∞时,2820x x --<,此时()0x ϕ'<,即()x ϕ在()2,+∞上递减,所以()()()22e 0x m ϕϕ<=-=,即()2e e 4x x x xf x +<在()2,+∞上成立,故D 错误.26.(多选题)(2023·山东泰安·统考一模)已知函数()()()ln f x x x ax a =-∈R 有两个极值点1x ,2x ()12x x <,则()A .102a <<B .2112x a<<C .21112x x a->-D .()10<f x ,()212f x >-【答案】ACD【解析】对于A :()()()ln f x x x ax a =-∈R ,定义域()0,x ∈+∞,()()ln 120f x x ax x '=+->,函数()f x 有两个极值点1x ,2x ,则()f x '有两个变号零点,设()()ln 120g x x ax x =+->,则()1122axg x a xx-'=-=,当0a ≤时,()0g x '>,则函数()f x '单调递增,则函数()f x '最多只有一个变号零点,不符合题意,故舍去;当0a >时,12x a <时,()0g x '>,12x a>时,()0g x '<,则函数()f x '在10,2a ⎛⎫⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞⎪⎝⎭上单调递减,若()f x '有两个变号零点,则102f a ⎛⎫'> ⎪⎝⎭,解得:12a <,此时x 由正趋向于0时,()f x '趋向于-∞,x 趋向于+∞时,()f x '趋向于-∞,则()f x '有两个变号零点,满足题意,故a 的范围为:102a <<,故A 正确;对于B :函数()f x 有两个极值点1x ,2x ()12x x <,即()f x '有两个变号零点1x ,2x ()12x x <,则1212x x a<<,故B 错误;对于C :当102a <<时,()1120f a '=->,则12112x x a <<<,即212x a >,11x ->-,则21112x x a->-,故C 正确;对于D :()f x '有两个变号零点1x ,2x ()12x x <,且函数()f x '先增后减,则函数()f x 在()10,x 与()2,x +∞上单调递减,在()12,x x 上单调递增,121x x << ,且102a <<,()()()()1210112f x f a f x f a ⎧<=-<⎪∴⎨>=->-⎪⎩,故D 正确;故选:ACD.27.(多选题)(2023·吉林·东北师大附中校考二模)已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<【答案】BCD【解析】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=,或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln (),()0,e,x xQ x Q x x x x -'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e ()e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x ak a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f x g x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--。

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题

函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x 22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.02证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .3(2024·上海松江·二模)已知函数y =x ⋅ln x +a (a 为常数),记y =f (x )=x ⋅g (x ).(1)若函数y =g (x )在x =1处的切线过原点,求实数a 的值;(2)对于正实数t ,求证:f (x )+f (t -x )≥f (t )-t ln2+a ;(3)当a =1时,求证:g (x )+cos x <e x x.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x ∈D ,m ≤f x ⇔m ≤f x min ;(2)∀x ∈D ,m ≥f x ⇔m ≥f x max ;(3)∃x ∈D ,m ≤f x ⇔m ≤f x max ;(4)∃x ∈D ,m ≥f x ⇔m ≥f x min .3、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-axe x a∈R.(1)讨论f x 的单调性;(2)若关于x的不等式f x >a1-x无整数解,求a的取值范围.2(2024·黑龙江哈尔滨·一模)已知函数f x =xe x-ae x,a∈R.(1)当a=0时,求f x 在x=1处的切线方程;(2)当a=1时,求f x 的单调区间和极值;(3)若对任意x∈R,有f x ≤e x-1恒成立,求a的取值范围.3(2024·陕西安康·模拟预测)已知函数f x =ln x+1,g x =e x-1.(1)求曲线y=f x 与y=g x 的公切线的条数;(2)若a>0,∀x∈-1,+∞,f x+1≤a2g x +a2-a+1,求a的取值范围.04零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x轴(或直线y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x-1,g x =ln x+b.(1)求函数F x =x-1f x 的单调区间;(2)若总存在两条直线和曲线y=f x 与y=g x 都相切,求b的取值范围.2(2024·北京房山·一模)已知函数f(x)=e ax+1 x.(1)当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设g(x)=f (x)⋅x2,求函数g(x)的极大值;(3)若a<-e,求函数f(x)的零点个数.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.2(2024·河北沧州·一模)已知函数f x =x a e2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.3(2024·全国·模拟预测)已知函数f (x )=e x -sin x .(1)若f (x )≥ax 2+1对于任意x ∈[0,+∞)恒成立,求a 的取值范围;(2)若函数f (x )的零点按照从大到小的顺序构成数列x n ,n ∈N *,证明:2ni =1x i <-2n 2+n π;(3)对于任意正实数x 1,x 2,证明:e x 2-x 2-1 e x 1>sin x 1+x 2 -sin x 1-x 2cos x 1.1已知函数f x =ax -ln x x ,a >0.(1)若f x 存在零点,求a 的取值范围;(2)若x 1,x 2为f x 的零点,且x 1<x 2,证明:a x 1+x 2 2>2.2已知函数f x =3ln x -ax .(1)讨论f x 的单调性.(2)已知x 1,x 2是函数f x 的两个零点x 1<x 2 .(ⅰ)求实数a 的取值范围.(ⅱ)λ∈0,12 ,f x 是f x 的导函数.证明:f λx 1+1-λ x 2 <0.3如图,对于曲线Γ,存在圆C 满足如下条件:①圆C 与曲线Γ有公共点A ,且圆心在曲线Γ凹的一侧;②圆C 与曲线Γ在点A 处有相同的切线;③曲线Γ的导函数在点A 处的导数(即曲线Γ的二阶导数)等于圆C 在点A 处的二阶导数(已知圆x -a 2+y -b 2=r 2在点A x 0,y 0 处的二阶导数等于r 2b -y 0 3);则称圆C 为曲线Γ在A 点处的曲率圆,其半径r 称为曲率半径.(1)求抛物线y =x 2在原点的曲率圆的方程;(2)求曲线y =1x的曲率半径的最小值;(3)若曲线y =e x 在x 1,e x 1 和x 2,e x 2x 1≠x 2 处有相同的曲率半径,求证:x 1+x 2<-ln2.4已知函数f x =ax2+x-ln x-a.(1)若a=1,求f x 的最小值;(2)若f x 有2个零点x1,x2,证明:a x1+x22+x1+x2>2.5已知函数f x =12e2x+a-2e x-2ax.(1)若曲线y=f x 在0,a-32处的切线方程为4ax+2y+1=0,求a的值及f x 的单调区间.(2)若f x 的极大值为f ln2,求a的取值范围.(3)当a=0时,求证:f x +5e x-52>32x2+x ln x.6已知函数f x =12x2+x+a ln x+1,a∈R.(1)讨论f x 的单调性;(2)证明:当a<-1时,a2+f x >1.7已知函数f x =x ln x+ax+1a∈R.(1)若f x ≥0恒成立,求a的取值范围;(2)当x>1时,证明:e x ln x>e(x-1).(1)判断函数f(x)的单调性(2)证明:①当a≥0时,f(x)≤0;②sin1n+1+sin1n+2+⋯+sin12n<ln2,n∈N*.9牛顿迭代法是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法.比如,我们可以先猜想某个方程f x =0的其中一个根r在x=x0的附近,如图6所示,然后在点x0,f x0处作f x 的切线,切线与x轴交点的横坐标就是x1,用x1代替x0重复上面的过程得到x2;一直继续下去,得到x0,x1,x2,⋯,x n.从图形上我们可以看到x1较x0接近r,x2较x1接近r,等等.显然,它们会越来越逼近r.于是,求r近似解的过程转化为求x n,若设精度为ε,则把首次满足x n-x n-1<ε的x n称为r的近似解.已知函数f x =x3-x+1,a∈R.(1)试用牛顿迭代法求方程f x =0满足精度ε=0.5的近似解(取x0=-1,且结果保留小数点后第二位);(2)若f x +3x2+6x+5+ae x≤0对任意x∈R都成立,求整数a的最大值.(计算参考数值:e≈2.72,e1.35≈3.86,e1.5≈4.48,1.353≈2.46,1.352≈1.82)(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.11已知函数f x =x2-2a ln x-2(a∈R).(1)讨论f x 的单调性;(2)若不等式f x ≤2ln x2+x2-2x在区间(1,+∞)上有解,求实数a的取值范围.12已知函数f x =xe x,其中e=2.71828⋯为自然对数的底数.(1)求函数f x 的单调区间;(2)证明:f x ≤e x-1;(3)设g x =f x -e2x+2ae x-4a2+1a∈R,若存在实数x0使得g x0≥0,求a的最大值.13已知函数f x =e x-1-ax a∈R.(1)若函数f x 在点1,f1处的切线与直线x+2ey+1=0垂直,求a的值;(2)当x∈0,2时,讨论函数F x =f x -x ln x零点的个数.14已知函数f(x)=e2x-(2a-1)e x-ax.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.15已知函数f x =e x-x2+a,x∈R,φx =f x +x2-x.(1)若φx 的最小值为0,求a的值;(2)当a<0.25时,证明:方程f x =2x在0,+∞上有解.16已知f (x )=x ex,g (x )=ln x x .(1)求函数y =f (x )、y =g (x )的单调区间和极值;(2)请严格证明曲线y =f (x )、y =g (x )有唯一交点;(3)对于常数a ∈0,1e,若直线y =a 和曲线y =f (x )、y =g (x )共有三个不同交点x 1,a 、x 2,a 、x 3,a ,其中x 1<x 2<x 3,求证:x 1、x 2、x 3成等比数列.17已知函数f x =sin x -ax ⋅cos x ,a ∈R .(1)当a =1时,求函数f x 在x =π2处的切线方程;(2)x ∈0,π2时;(ⅰ)若f x +sin2x >0,求a 的取值范围;(ⅱ)证明:sin 2x ⋅tan x >x 3.18f(x)=2sin(x+φ)-a+e-x,φ∈0,π2,已知f(x)的图象在(0,f(0))处的切线与x轴平行或重合.(1)求φ的值;(2)若对∀x≥0,f(x)≤0恒成立,求a的取值范围;(3)利用如表数据证明:157k=1sinkπ314<106.eπ314e-π314e78π314e-78π314e79π314e-79π314 1.0100.990 2.1820.458 2.2040.45419数值线性代数又称矩阵计算,是计算数学的一个重要分支,其主要研究对象包括向量和矩阵.对于平面向量a =(x ,y ),其模定义为|a |=x 2+y 2.类似地,对于n 行n 列的矩阵A nn =a 11a 12a 13⋯a 1n a 21a 22a 23⋯a 2n a 31a 32a 33⋯a 3n ⋮⋮⋮⋮,其模可由向量模拓展为A =∑ni =1∑nj =1a 2ij12(其中a ij为矩阵中第i 行第j 列的数,∑为求和符号),记作A F,我们称这样的矩阵模为弗罗贝尼乌斯范数,例如对于矩阵A 22=a 11a 12a21a 22=2435,其矩阵模A F =∑n i =1∑nj =1a 2ij12=22+42+32+52=3 6.弗罗贝尼乌斯范数在机器学习等前沿领域有重要的应用.(1)∀n ∈N *,n ≥3,矩阵B nn =100⋯0020⋯0003⋯0⋮⋮⋮⋮00⋯n,求使B F >35的n 的最小值.(2)∀n ∈N *,n ≥3,,矩阵C nn =1cos θcos θcos θ⋯cos θcos θ0-sin θ-sin θcos θ-sin θcos θ⋯-sin θcos θ-sin θcos θ00sin 2θsin 2θcos θ⋯sin 2θcos θsin 2θcos θ⋮⋮⋮⋮⋮⋮0000⋯(-1)n -2sin n -2θ(-1)n -2sin n -2θcos θ0000⋯0(-1)n -1sin n -1θ求C F.(3)矩阵D mn =ln n +2n +100⋅⋅⋅0ln n +1n 22ln n +1n 220⋅⋅⋅0⋮ln 43n -1n -1ln 43 n -1n -1ln 43 n -1n -1⋅⋅⋅0ln 32 n n ln 32 n n ln 32 nn ⋅⋅⋅ln 32nn,证明:∀n ∈N *,n ≥3,D F >n 3n +9.20已知函数f x =sin x -ln 1+ax .(1)若x ∈0,π2时,f x ≥0,求实数a 的取值范围;(2)设n ∈N *,证明:sin 13+ln 32-ln n +2n +1<nk =1sin 1k k +2 <34.1函数与导数经典常考压轴大题命题预测本节内容在高考中通常以压轴题形式出现,常见的有函数零点个数问题、不等式证明问题、不等式存在性问题等,综合性较强,难度较大.在求解导数综合问题时,通常要综合利用分类讨论、构造函数、等价转化、设而不求等思想方法,同时联系不等式、方程等知识,思维难度大,运算量不低.可以说,只要考生啃下本节这个硬骨头,就具有了强大的逻辑推理、数学运算、数据分析、直观想象等核心素养.预计预测2024年高考,函数与导数是高中数学的重要考查内容,同时也是高等数学的基础,其试题的难度呈逐年上升趋势,通过对近十年的高考数学试题,分析并归纳出五大考点:(1)含参函数的单调性、极值与最值;(2)函数的零点问题;(3)不等式恒成立与存在性问题;(4)函数不等式的证明.(5)导数中含三角函数形式的问题其中,对于函数不等式证明中极值点偏移、隐零点问题、含三角函数形式的问题探究和不等式的放缩应用这四类问题是目前高考函数与导数压轴题的热点.高频考法(1)双变量问题(2)证明不等式(3)不等式恒成立与有解问题(4)零点问题(5)导数与三角函数结合问题01双变量问题破解双参数不等式的方法:一是转化,即由已知条件入手,寻找双参数满足的关系式,并把含双参数的不等式转化为含单参数的不等式;二是巧构函数,再借用导数,判断函数的单调性,从而求其最值;三是回归双参的不等式的证明,把所求的最值应用到双参不等式,即可证得结果.1(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;2(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【解析】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4(t +1)2=(t -1)2t (t +1)>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.2(2024·四川·模拟预测)已知函数f x =a +1 e x -12x 2+1a ∈R .(1)当a =1时,求曲线y =f x 在点0,f 0 处的切线方程;(2)设x 1,x 2x 1<x 2 是函数y =f x 的两个零点,求证:x 1+x 2>2.【解析】(1)当a =1时,f x =2e x -12x 2+1,f x =2e x -x ,则f 0 =3,f 0 =2,则切线方程为y -3=2x ,因此曲线y =f x 在点0,f 0 处的切线方程为2x -y +3=0.(2)证明:函数f x =a +1 e x -x ,x 1,x 2是y =f x 的两个零点,所以x 1=a +1 e x 1,x 2=a +1 e x 2,则有x 1+x 2=a +1 e x 1+e x 2,且x 2-x 1=a +1 e x 2-e x1,由x 1<x 2,得a +1=x 2-x 1e x 2-ex 1.要证x 1+x 2>2,只要证明a +1 e x 1+e x 2>2,即证x 2-x 1 e x 2+ex1e x 2-ex 1>2.记t =x 2-x 1,则t >0,e t >1,因此只要证明t ⋅e t +1e t -1>2,即t -2 e t +t +2>0.记h t =t -2 e t +t +2(t >0),则h t =t -1 e t +1,令φt =t -1 e t +1,则φ t =te t ,当t >0时,φ t =te t >0,3所以函数φt =t -1 e t +1在0,+∞ 上递增,则φt >φ0 =0,即h t >h 0 =0,则h t 在0,+∞ 上单调递增,∴h t >h 0 =0,即t -2 e t +t +2>0成立.3(2024·四川德阳·二模)已知函数f x =ln x +x 2-2ax ,a ∈R ,(1)当a >0时,讨论f x 的单调性;(2)若函数f x 有两个极值点x 1,x 2x 1<x 2 ,求2f x 1 -f x 2 的最小值.【解析】(1)因为f x =ln x +x 2-2ax ,x >0,所以f(x )=1x +2x -2a =2x 2-2ax +1x,令g (x )=2x 2-2ax +1,则Δ=4a 2-8=4a 2-2 ,因为a >0,当0<a ≤2时,Δ≤0,则g (x )≥0,即f (x )≥0,此时f (x )在(0,+∞)上单调递增,当a >2时,Δ>0,由g (x )=0,得x 3=a -a 2-22,x 4=a +a 2-22,且x 3<x 4,当0<x <x 3或x >x 4时,g (x )>0,即f (x )>0;当x 3<x <x 4时,g (x )<0,即f (x )<0,所以f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减;综上,当0<a ≤2时,f (x )在(0,+∞)上单调递增,当a >2时,f (x )在0,x 3 ,x 4,+∞ 上单调递增,在x 3,x 4 上单调递减,其中x 3=a -a 2-22,x 4=a +a 2-22.(2)由(1)可知,x 3,x 4为f (x )的两个极值点,且x 3<x 4,所以x 1=x 3,x 2=x 4,且x 1,x 2是方程2x 2-2ax +1=0的两不等正根,此时a >2,x 1+x 2=a >0,x 1⋅x 2=12,所以x 1∈0,22 ,x 2∈22,+∞ ,且有2ax 1=2x 21+1,2ax 2=2x 22+1,则2f x 1 -f x 2 =2ln x 1+x 21-2ax 1 -ln x 2+x 22-2ax 2=2ln x 1+x 21-2x 21-1 -ln x 2+x 22-2x 22-1 =-2x 21+2ln x 1-ln x 2+x 22-1=x 22-212x 22+2ln12x 2-ln x 2-1=x 22-12x 22-32ln x 22-2ln2-1令t =x 22,则t ∈12,+∞ ,令g t =t -12t -32ln t -2ln2-1,则g t =1+12t 2-32t =2t -1 t -1 2t 2,当t ∈12,1 时,g t <0,则g t 单调递减,当t ∈1,+∞ 时,g t >0,则g t 单调递增,所以g t min =g 1 =-1+4ln22,所以2f x 1 -f x 2 的最小值为-1+4ln22.402证明不等式利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式f x >g x (或f x <g x )转化为证明f x -g x >0(或f x -g x <0),进而构造辅助函数h x =f x -g x ;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(4)对数单身狗,指数找基友(5)凹凸反转,转化为最值问题(6)同构变形1(2024·青海·模拟预测)已知质数f x =me x -x 2+mx -m ,且曲线y =f x 在点2,f 2 处的切线方程为4e 2x -y -4e 2=0.(1)求m 的值;(2)证明:对一切x ≥0,都有f x ≥e 2x 2.【解析】(1)f x =me x -2x +m ,f 2 =me 2-4+m ,f 2 =me 2-4+m ,则有4e 2=me 2-4+m ,4e 2×2-me 2-4+m -4e 2=0,解得m =4;(2)由m =4,故f x =4e x -x 2+4x -4,要证对一切x ≥0,都有f x ≥e 2x 2,即证4e x ≥e 2+1 x 2-4x +4对一切x ≥0恒成立,即证e 2+1 x 2-4x +4e x ≤4对一切x ≥0恒成立,令g x =e 2+1 x 2-4x +4e x,gx =2e 2+1 x -4-e 2+1 x 2+4x -4e x =-e 2+1 x 2+2e 2+3 x -8e x=-e 2+1 x -4 x -2 e x ,则当x ∈0,4e 2+1 ∪2,+∞ 时,g x <0,则当x ∈4e 2+1,2时,g x >0,即g x 在0,4e 2+1 、2,+∞ 上单调递减,在4e 2+1,2上单调递增,又g 0 =4e 0=4,g 2 =4e 2+1 -4×2+4e 2=4e 2+4-8+4e 2=4,故g x ≤4对一切x ≥0恒成立,即得证.2(2024·山西晋城·二模)已知函数f (x )=(x -a )e x +x +a (a ∈R ).(1)若a =4,求f (x )的图象在x =0处的切线方程;(2)若f x ≥0对于任意的x ∈0,+∞ 恒成立,求a 的取值范围;(3)若数列a n 满足a 1=1且a n +1=2a n a n +2(n ∈N *),记数列a n 的前n 项和为S n ,求证:S n +13<ln (n +1)(n +2) .【解析】(1)当a =4时,f (x )=(x -4)e x +x +4,则f (x)=(x-3)e x+1,得f (0)=-2,又f(0)=0,所以f(x)在x=0处的切线为y=-2x;(2)f(x)=(x-a)e x+x+a≥0对∀x∈[0,+∞)恒成立,f (x)=(x+1-a)e x+1,设g(x)=(x+1-a)e x+1(x≥0),则g (x)=(x+2-a)e x,当2-a≥0即a≤2时,g (x)≥0,g(x)在[0,+∞)上单调递增,且g(0)=2-a≥0,所以g(x)≥0,即f (x)≥0,此时f(x)在[0,+∞)上单调递增,且f(0)=0,所以f(x)≥0对∀x∈[0,+∞)恒成立.当2-a<0即a>2时,令g (x)<0⇒0<x<a-2,g (x)>0⇒x>a-2,所以函数g(x)在(0,a-2)上单调递减,在(a-2,+∞)上单调递增,则g(x)min=g(a-2)=1-e a-2<0,又g(0)=2-a<0,所以在(0,a-2)上恒有g(x)<0,即f (x)<0,函数f(x)在(0,a-2)上单调递减,且f(0)=0,则在(0,a-2)上有f(x)<0,不符合题意.综上,a≤2,即实数a的取值范围为(-∞,2](3)由a n+1=2a na n+2,得1a n+1-1a n=12,又1a1=1,所以数列1a n是以1为首项,以12为公差的等差数列,故1a n=1+12(n-1)=n+12,所以a n=2n+1.当n=1时,S1+13=a1+13=43<ln6恒成立;当n≥2时,先证:2n+1<ln n+2n,即证2n+1<ln n+1+1n+1-1=ln1+1n+11-1n+1,设x=1n+1,则0<x<1,即证2x<ln1+x1-x(0<x<1),令h(x)=2x-ln 1+x1-x(0<x<1),则h (x)=2-1x+1-11-x=-2x21-x2<0,所以h(x)在(0,1)上单调递减,故h(x)<h(0)=0,即2x<ln 1+x1-x,即2n+1<ln n+2n.所以当n≥2时,S n+13=13+23+24+⋯+2n+1<ln6+ln42+ln53+⋯+ln n+2n=ln6×4×5×⋯×n(n+1)(n+2)2×3×4×5×⋯×n=ln[(n+1)(n+2)].综上,S n+13<ln[(n+1)(n+2)].3(2024·上海松江·二模)已知函数y=x⋅ln x+a(a为常数),记y=f(x)=x⋅g(x).(1)若函数y=g(x)在x=1处的切线过原点,求实数a的值;(2)对于正实数t,求证:f(x)+f(t-x)≥f(t)-t ln2+a;(3)当a=1时,求证:g(x)+cos x<e xx.【解析】(1)由题意,函数y=x⋅ln x+a,且y=f(x)=x⋅g(x),可得g(x)=f(x)x=ln x+ax,x>0,则g (x)=1x-ax2=x-ax2,5所以g (1)=1-a,又因为g(1)=ln1+a=a,所以g x 在x=1处的切线方程为y=(1-a)(x-1)+a,又因为函数y=g(x)在x=1处的切线过原点,可得0=(1-a)⋅(0-1)+a,解得a=1 2 .(2)设函数h x =f x +f t-x,t>0,可得h x =x ln x+(t-x)ln(t-x)+2a,其中0<x<t,则h x =ln x+1-ln(t-x)-1=lnxt-x,令h x >0,可得xt-x>1,即2x-tt-x>0,即2x-tx-t<0,解得t2<x<t,令h x <0,可得0<xt-x<1,解得0<x<t2,所以h x 在t2,t上单调递增,在0,t2上单调递减,可得h x 的最小值为ht2,所以h x ≥h t2 ,又由ht2=f t2 +f t-t2=t ln t2+2a=f t -t ln2+a,所以f x +f t-x≥f t -t ln2+a.(3)当a=1时,即证ln x+1x <e xx-cos x,由于cos x∈[-1,1],所以e xx-cos x≥e xx-1,只需证ln x+1x<e xx-1,令k x =ln x+1x-e xx+1,x>0,只需证明k x <0,又由k x =1x-1x2-e x(x-1)x2=(1-e x)(x-1)x2,因为x>0,可得1-e x<0,令k x >0,解得0<x<1;令k x <0,解得x>1,所以k x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以k x 在x=1处取得极大值,也时最大值,所以k x max=k1 =2-e<0,即k x <0,即a=1时,不等式g(x)+cos x<e xx恒成立.03不等式恒成立与有解问题1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f x ⇔m≤f x min;(2)∀x∈D,m≥f x ⇔m≥f x max;(3)∃x∈D,m≤f x ⇔m≤f x max;(4)∃x∈D,m≥f x ⇔m≥f x min.673、不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数y =f x ,x ∈a ,b ,y =g x ,x ∈c ,d .(1)若∀x 1∈a ,b ,∀x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x min ;(2)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x max <g x max ;(3)若∃x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 <g x 2 成立,则f x min <g x max ;(4)若∀x 1∈a ,b ,∃x 2∈c ,d ,有f x 1 =g x 2 成立,则f x 的值域是g x 的值域的子集.1(2024·北京朝阳·一模)已知函数f x =1-ax e x a ∈R .(1)讨论f x 的单调性;(2)若关于x 的不等式f x >a 1-x 无整数解,求a 的取值范围.【解析】(1)f x =1-a -ax e x ,当f x =0,得x =1-aa ,当a >0时,x ∈-∞,1-a a时,fx >0,f x 单调递增,x ∈1-a a,+∞ 时,f x <0,f x 单调递减,当a <0时,x ∈-∞,1-aa时,f x <0,f x 单调递减,x ∈1-a a,+∞ 时,f x >0,f x 单调递增,当a =0时,f x =e x ,函数f x 在R 上单调递增,综上可知,a >0时,函数f x 的单调递增区间是-∞,1-a a,单调递减区间是1-aa ,+∞ ,a <0时,函数f x 的单调递减区间是-∞,1-a a ,单调递增区间是1-aa ,+∞ ,a =0时,函数f x 的增区间是-∞,+∞ ,无减区间.(2)不等式1-ax e x >a 1-x ,即a x -x -1e x<1,设h x =x -x -1e x ,h x =1-2-x e x =e x +x -2e x,设t x =e x +x -2,t x =e x +1>0,所以t x 单调递增,且t 0 =-1,t 1 =e -2>0,所以存在x 0∈0,1 ,使t x 0 =0,即h x 0 =0,当x ∈-∞,x 0 时,h x <0,h x 单调递减,当x ∈x 0,+∞ 时,h x >0,h x 单调递增,所以h x ≥h x 0 =x 0e x-x 0+1ex,因为e x≥x +1,所以h x ≥h x 0 =x 0e x-x 0+1e x 0≥x 0x 0+1 -x 0+1e x 0=x 20+1ex>0,当x ≤0时,h x ≥h 0 =1,当x ≥1时,h x ≥h 1 =1,不等式1-ax e x >a 1-x 无整数解,即a x -x -1e x<1无整数解,若a ≤0时,不等式恒成立,有无穷多个整数解,不符合题意,若a ≥1时,即1a≤1,因为函数h x 在-∞,0 上单调递减,在1,+∞ 上单调递增,所以x ∈Z 时,h x ≥min h 0 ,h 1 =1≥1a ,所以h x <1a 无整数解,符合题意,当0<a <1时,因为h 0 =h 1 =1<1a ,显然0,1是a ⋅h x <1的两个整数解,不符合题意,8综上可知,a ≥1.2(2024·黑龙江哈尔滨·一模)已知函数f x =xex -ae x ,a ∈R .(1)当a =0时,求f x 在x =1处的切线方程;(2)当a =1时,求f x 的单调区间和极值;(3)若对任意x ∈R ,有f x ≤e x -1恒成立,求a 的取值范围.【解析】(1)当a =0时,f x =xex ,则f x =1-x ex,f 1 =0,f 1 =1e ,所以切线方程为y =1e.(2)当a =1时,f x =xe -x -e x ,f x =1-x e -x -e x =1-x -e 2xex.令g x =1-x -e 2x ,g x =-1-2e 2x<0,故g x 在R 上单调递减,而g 0 =0,因此0是g x 在R 上的唯一零点即:0是f x 在R 上的唯一零点当x 变化时,f x ,f x 的变化情况如下表:x-∞,0 00,+∞f x +0-f x↗极大值↘f x 的单调递减区间为:0,+∞ ;递增区间为:-∞,0 f x 的极大值为f 0 =-1,无极小值(3)由题意知xe -x-ae x≤e x -1,即a ≥xe -x -e x -1e x,即a ≥x e2x -1e ,设m x =x e 2x -1e ,则mx =e 2x -2xe 2x e 2x2=1-2x e 2x ,令m x =0,解得x =12,当x ∈-∞,12 ,m x >0,m x 单调递增,当x ∈12,+∞ ,m x <0,m x 单调递减,所以m x max =m 12 =12e -1e =-12e,所以a ≥-12e3(2024·陕西安康·模拟预测)已知函数f x =ln x +1,g x =e x -1.(1)求曲线y =f x 与y =g x 的公切线的条数;(2)若a >0,∀x ∈-1,+∞ ,f x +1 ≤a 2g x +a 2-a +1,求a 的取值范围.【解析】(1)设f x =ln x +1,g x =e x -1的切点分别为x 1,f x 1 ,x 2,g x 2 ,则f x =1x,g (x )=e x ,故f x =ln x +1,g x =e x -1在切点处的切线方程分别为y =1x 1x -x 1 +ln x 1+1⇒y =1x 1x +ln x 1,y =e x 2x -x 2 +e x 2-1⇒y =e x 2x -x 2e x 2+e x2-1则需满足;91x 1=ex 2ln x 1=-x 2ex 2+e x 2-1,故ln1ex 2=-x 2e x 2+e x 2-1⇒e x 2-1 x 2-1 =0,解得x 2=0或x 2=1,因此曲线y =f x 与y =g x 有两条不同的公切线,(2)由f x +1 ≤a 2g x +a 2-a +1可得ln x +1 +1≤a 2e x -1 +a 2-a +1,即ln x +1 ≤a 2e x -a 对于∀x ∈-1,+∞ 恒成立,ln 0+1 ≤a 2e 0-a ,结合a >0,解得a ≥1设m (x )=ln x -x +1,,则当x >1时m (x )=1x-1<0,m x 单调递减,当0<x <1时,m (x )>0,m x 单调递增,故当m (x )≤m 1 =0,故ln x ≤x -1,因此ln x +1 ≤x ,x >-1 ,令F x =x -a 2e x +a ,x >-1 ,则F x =1-a 2e x ,令F x =1-a 2e x =0,得x =-2ln a ,当-2ln a ≤-1时,此时a ≥e ,F x =1-a 2e x <0,故F x 在x >-1上单调递减,所以F x <F -1 =-1-a 2e +a =-a 2+ea -e e =-a -e 2 2+e 24-e e≤-e -e 22+e 24+ee=e -2<0,所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,当-2ln a >-1时,此时1<a <e ,令F x =1-a 2e x >0,解得-1<x <-2ln a ,F x 单调递增,令F x =1-a 2e x <0,解得x >-2ln a ,F x 单调递减,故F x ≤F x max =F -2ln a =-2ln a -1+a ,令p a =-2ln a -1+a ,则p a =-2a +1=a -2a ,由于1<a <e ,所以p a =-2a +1=a -2a<0,故p a 在1<a <e 单调递减,故p a <p 1 ,即可p a <0,因此F x ≤F x max =F -2ln a =-2ln a -1+a <0⇒F x <0所以F x =x -a 2e x +a <0,由于ln x +1 ≤x 进而ln (x +1)-a 2e x +a <0,满足题意,综上可得a ≥104零点问题函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y =k )在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.1(2024·四川泸州·三模)设函数f x =e x -1,g x =ln x +b .(1)求函数F x =x -1 f x 的单调区间;10(2)若总存在两条直线和曲线y =f x 与y =g x 都相切,求b 的取值范围.【解析】(1)F x =x -1 f x =x -1 e x -1,F x =xe x -1,令F x >0,得x >0,令F x <0,得x <0,所以函数F x 的单调递增区间为0,+∞ ,单调递减区间为-∞,0 ;(2)∵f x =e x -1∴f x =e x -1在m ,e m -1 处的切线方程为y =e m -1x +1-m e m -1,∵g x =1x,∴g x =ln x +b 在点n ,ln n +b 处的切线方程为y =1nx +ln n +b -1,由题意得e m -1=1n(1-m )e m -1=ln n +b -1,则m -1 e m -1-m +b =0,令h m =m -1 e m -1-m +b ,则h (x )=me m -1-1,令φm =me m -1-1,则φ m =m +1 e m -1,当m <-1时,φ m <0,当m >-1时,φ m >0,所以函数φm 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,即函数h m 在-∞,-1 上单调递减,在-1,+∞ 上单调递增,又h 1 =0,且当m ≤0时,h m <0,所以m <1时,h m <0,h (m )单调递减;当m >1时,h (m )>0,h (m )单调递增,所以h m min =h 1 =b -1,若总存在两条直线和曲线y =f x 与y =g x 都相切,则曲线y =h m 与x 轴有两个不同的交点,则h 1 =b -1<0,所以b <1,此时h b -1 =b -2 e b -2+1>-1e+1>0,h 3-b =2-b e 2-b +2b -3>2-b 3-b =b -322+34>0,所以b 的取值范围为-∞,1 .2(2024·北京房山·一模)已知函数f (x )=e ax +1x.(1)当a =0时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)设g (x )=f (x )⋅x 2,求函数g (x )的极大值;(3)若a <-e ,求函数f (x )的零点个数.【解析】(1)当a =0时,f (x )=1+1x ,f x =-1x 2,则f 1 =-1,f 1 =2,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -2=-x -1 ,即y =-x +3;(2)f (x )=ae ax -1x2,则g (x )=f (x )⋅x 2=ax 2e ax -1x ≠0 ,则g x =2axe ax +a 2x 2e ax =ax ax +2 e ax x ≠0 ,当a =0时,g x =-1,此时函数g x 无极值;当a >0时,令g x <0,则x >0或x <-2a ,令g x <0,则-2a<x <0,所以函数g x 在-∞,-2a ,0,+∞ 上单调递增,在-2a ,0 上单调递减,所以g x 的极大值为g -2a =4ae2-1;当a<0时,令g x <0,则x<0或x>-2a,令gx <0,则0<x<-2a,所以函数g x 在-∞,0,-2a,+∞上单调递增,在0,-2a上单调递减,而函数g x 的定义域为-∞,0∪0,+∞,所以此时函数g x 无极值.综上所述,当a≤0时,函数g x 无极大值;当a>0时,g x 的极大值为4ae2-1;(3)令f(x)=e ax+1x =0,则e ax=-1x,当x>0时,e ax>0,-1x<0,所以x>0时,函数f x 无零点;当x<0时,由e ax=-1x,得ax=ln-1x,所以a=-ln-xx,则x<0时,函数f x 零点的个数即为函数y=a,y=-ln-xx图象交点的个数,令h x =-ln-xxx<0,则h x =ln-x-1x2,当x<-e时,h x >0,当-e<x<0时,h x <0,所以函数h x 在-∞,-e上单调递增,在-e,0上单调递减,所以h x max=h-e=1 e,又当x→-∞时,h x >0且h x →0,当x→0时,h x →-∞,如图,作出函数h x 的大致图象,又a<-e,由图可知,所以函数y=a,h x =-ln-xx的图象只有1个交点,即当x<0时,函数f x 只有1个零点;综上所述,若a<-e,函数f(x)有1个零点.3(2024·浙江·二模)定义max a,b=a,a≥bb,a<b,已知函数f x =max ln x,-4x3+mx-1,其中m∈R.(1)当m=5时,求过原点的切线方程;(2)若函数f x 只有一个零点,求实数m的取值范围.【解析】(1)由题意知f x 定义域0,+∞,当m=5时,f x =-4x3+5x-1,-4x3+5x-1≥ln xln x,-4x3+5x-1<ln x ,令g x =-4x3+5x-1,g x =-12x 2+5>0⇒0<x <6012,⇒g x 在0,6012 单调递增,6012,+∞ 单调递减,且g 1 =0,令h x =ln x ,则在0,+∞ 单调递增,而f 1 =0=h 1 ,又g 14 =316,h 14 =ln 14<-1,而g 0 =-1,所以当0<x <14时,g x >h x ,当14≤x <1时,g x >0>h x ,所以当0<x <1时,f x =g x ,当x ≥1时,f x =h x ,所以f x =-4x 3+5x -1,0<x <1ln x ,x ≥1,所以f x 在0,6012和1,+∞ 单调递增,在6012,1 单调递减.(ⅰ)当0<x <1时,f x =-12x 2+5,设切点M x 0,-4x 30+5x 0-1 ,则此切线方程为y =-12x 20+5 x -x 0 -4x 30+5x 0-1,又此切线过原点,所以0=-12x 20+5 0-x 0 -4x 30+5x 0-1,解得x 0=12,即此时切线方程是2x -y =0;(ⅱ)当x ≥1时,f x =ln x ,所以f x =1x,设切点为x 0,ln x 0 ,此时切线方程y =1x 0x -x 0 +ln x 0,又此切线过原点,所以0=1x 00-x 0 +ln x 0,解得x 0=e ,所以此时切线方程x -ey =0,综上所述,所求切线方程是:x -ey =0或2x -y =0;(2)(ⅰ)当m =5时,由(1)知,f x 在0,6012 和1,+∞ 单调递增,6012,1单调递减,且f 0 =1,f 14 =316>0,f 1 =0,此时f x 有两个零点;(ⅱ)当m >5时,当0<x <1时,-4x 3+5x -1<-4x 3+mx -1,由(1)知:g x =-4x 3+5x -1在0,6012 递增,6012,1递减,且g 1 =0,所以x ∈6012,+∞ 时,f x >0,而f 0 =-1,所以f x 在0,6012 只有一个零点,6012,+∞ 没有零点;(ⅲ)当0<m <5时,y =-4x 3+mx -1,此时y =-12x 2+m >0得0<x <m 12<6012,由(1)知,当x ≥1时,f x =ln x 只有一个零点x =1,要保证f x 只有一个零点,只需要当0<x <1时,f x =-4x 3+mx -1没有零点,f m12=-4m123+m m 12-1=m 3m 9-1<00<m<1 ,得0<m <3;(ⅳ)当m≤0时,当x∈0,+∞时,g x =-4x3+mx-1<0,此时f x 只有一个零点x=1,综上,f x 只有一个零点时,m<3或m>5 .05导数与三角函数结合问题分段分析法1(2024·全国·模拟预测)已知函数f x =13x3-12a x2+2cos x+x cos x-sin x.(1)讨论f x 的单调性(2)若a>0,求证:①函数f x 在0,+∞上只有1个零点;②f x >1-16a3-12a2-2sin a+π4.【解析】(1)因为f x =13x3-12a x2+2cos x+x cos x-sin x,所以f x =x2-ax+a sin x-x sin x=x-ax-sin x.设g x =x-sin x,则g x =1-cos x≥0,所以g x 在R上单调递增,且g0 =0,所以当x>0时,x-sin x>0;当x<0时,x-sin x<0.当a=0时,f x =x x-sin x≥0,所以f x 在R上单调递增.当a>0时,若x∈0,a,则f x <0,所以f x 单调递减;若x∈-∞,0或x∈a,+∞,则f x >0,所以f x 单调递增.当a<0时,若x∈a,0,则f x <0,所以f x 单调递减;若x∈-∞,a或x∈0,+∞,则f x >0,所以f x 单调递增.综上所述,当a=0时,f x 在R上单调递增;当a>0时,f x 在0,a上单调递减,在-∞,0,a,+∞上单调递增;当a<0时,f x 在a,0上单调递减,在-∞,a,0,+∞上单调递增. (2)①由(1)知,当a>0时,f x 在0,a上单调递减,在a,+∞上单调递增,又f0 =-a<0,所以f a <f0 <0,所以f x 在0,a上没有零点.因为x>0,所以f(x)=13x3-12a x2+2cos x+x cos x-sin x>13x3-12a x2+2-x-1=19x2x-92a+19x x2-9+19x3-a+1所以当x>92ax>3x>39a+9时,f x >0,此时f x 在a,+∞上只有1个零点.综上可得,f x 在0,+∞上只有1个零点.②由a>0,知f x 在0,a上单调递减,在a,+∞上单调递增,所以f x ≥f a =-16a3-sin a,所以f a +16a 3+12a 2+2sin a +π4 -1=12a 2+cos a -1.设h a =12a 2+cos a -1,则h a =a -sin a .由(1)知,当a >0时,a -sin a >0,所以当a >0时,h a >0,所以h a >0在0,+∞ 上单调递增,所以h a >h 0 =0,即f a >1-16a 3-12a 2-2sin a +π4 ,所以f x >1-16a 3-12a 2-2sin a +π4.2(2024·河北沧州·一模)已知函数f x =x ae2x ,a >0.(1)当a =2时,求函数f x 的单调区间和极值;(2)当x >0时,不等式f x -cos ln f x ≥a ln x 2-4x 恒成立,求a 的取值范围.【解析】(1)当a =2时,f x =x 2e 2xfx =2x ⋅e 2x -x 2⋅e 2x ⋅2e 2x 2=-2x (x -1)e 2x 令f x =0,解得x =0或x =1,所以x 、f (x )、f (x )的关系如下表:x (-∞,0)0(0,1)1(1,+∞)f (x )-0+-f (x )单调递减单调递增1e 2单调递减所以函数f x 的单调递增区间为:(0,1),单调递减区间为:(-∞,0)和(1,+∞);极大值f (1)=1e2,极小值f (0)=0;(2)f (x )-cos ln f (x ) ≥a ln x 2-4x ⇔x a e 2x -cos ln x a e2x≥2a ln x -4x⇔e a ln x -2x -2(a ln x -2x )-cos (a ln x -2x )≥0令g (t )=e t -2t -cos t ,其中t =a ln x -2x ,设F (x )=a ln x -2x ,a >0F (x )=a x -2=a -2xx 令F (x )>0,解得:0<x <a2,所以函数F (x )在0,a 2上单调递增,在a2,+∞ 上单调递减,F (x )max =F a 2 =a ln a2-a ,且当x →0+时,F (x )→-∞,所以函数F (x )的值域为-∞,a ln a2-a ;又g (t )=e t -2+sin t ,设h (t )=e t -2+sin t ,t ∈-∞,a ln a2-a ,则h (t )=e t +cos t ,当t ≤0时,e t ≤1,sin t ≤1,且等号不同时成立,即g (t )<0恒成立;t。

高考数学压轴专题新备战高考《函数与导数》全集汇编附解析

高考数学压轴专题新备战高考《函数与导数》全集汇编附解析

数学《函数与导数》知识点练习一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.3.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.4.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.5.曲线21x y e -=+在点(0,2)处的切线与直线y 0=和y x =所围成图形的面积( ) A .1 B .13C .23D .12【答案】B 【解析】 【分析】利用导数的几何意义,求得曲线在点(0,2)处的切线方程,再求得三线的交点坐标,利用三角形的面积公式,即可求解,得到答案. 【详解】 由题意,曲线21xy e -=+,则22x y e -'=-,所以200|2|2x x x y e -=='=-=-,所以曲线21xy e-=+在点(0,2)处的切线方程为22(0)y x -=--,即220x y +-=,令0y =,解得1x =,令y x =,解得23x y ==, 所以切线与直线y 0=和y x =所围成图形的面积为1211233⨯⨯=,故选B .【点睛】本题主要考查了利用导数研究曲线在某点处的切线方程,以及两直线的位置关系的应用,着重考查了推理与运算能力,属于基础题.6.三个数2233ln a b c e ===,的大小顺序为( ) A .b <c <a B .b <a <cC .c <a <bD .a <b <c【答案】D 【解析】 【分析】 通过证明13a b c <<<,由此得出三者的大小关系. 【详解】132221ln 63a e e =<==,由于6123e e ⎛⎫= ⎪⎝⎭,6328==,所以13e <,所以131ln 3e =<13a b <<.而66113232228,339⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,所以113223<,所以11321ln 2ln 3ln 33<=,即b c <,所以a b c <<.故选:D 【点睛】本小题主要考查指数式、对数式比较大小,考查指数运算和对数运算,属于中档题.7.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.8.已知定义在R 上的函数()f x 满足()()3221f x f x -=-,且()f x 在[1, )+∞上单调递增,则( )A .()()()0.31.130. 20.54f f log f << B .()()()0.3 1.130. 240.5f f f log <<C .()()()1.10.3340.20.5f f f log << D .()()()0.3 1.130.50.24f log f f << 【答案】A 【解析】 【分析】由已知可得()f x 的图象关于直线1x =对称.因为0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增,即可得解.【详解】解:依题意可得,()f x 的图象关于直线1x =对称. 因为()()()0.31.1330.20,1,0.5 2 1,,044,8log log ∈=-∈-∈,则0.31.130.21log 0.5141-<-<-,又()f x 在[1,)+∞上单调递增, 所以()()()0.31.130.20.54f f log f <<.故选:A. 【点睛】本题考查了函数的对称性及单调性,重点考查了利用函数的性质判断函数值的大小关系,属中档题.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D 【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解,令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减, 所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.11.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.12.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.13.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A . 【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.14.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.15.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.16.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D 【解析】 【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解. 【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D. 【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.17.设123log 2,ln 2,5a b c -===则 A .a b c << B .b c a <<C .c a b <<D .c b a <<【答案】C 【解析】 【分析】 由ln 2ln 2ln 3a b =<=及311log 3,2254a c >==<=可比较大小. 【详解】∵2031a ln ln =>,>,∴ln 2ln 2ln 3a b =<=,即a b <. 又3311log 2log 3,2254a c =>==<=.∴a c >.综上可知:c a b << 故选C. 【点睛】本题主要考查了指数与对数的运算性质及对数函数的单调性比较大小,属于中档题.18.函数2ln x x y x=的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D . 【详解】令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x xf x x x x==,()1ln f x x '=+,由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确. 故选:D 【点睛】本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.19.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43n a ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.20.设1130,,a b xdx c x dx ===⎰⎰,则,,a b c 的大小关系为( )A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D 【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,121011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

高考数学压轴专题最新备战高考《函数与导数》难题汇编及答案解析

高考数学压轴专题最新备战高考《函数与导数》难题汇编及答案解析

数学《函数与导数》知识点一、选择题1.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( ) ABCD【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫= ⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 33f x f π⎛⎫== ⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.2.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.3.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >,由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.4.函数22()41x x x f x ⋅=-的图像大致为( )A .B .C .D .【答案】A 【解析】∵函数()22?41x x x f x =-的定义域为(,0)(0,)-∞+∞U∴222()2()()4114x x x xx x f x f x --⋅-⋅-===---∴函数()f x 为奇函数,故排除B ,C. ∵2(1)03f =>,故排除D. 故选A.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.6.函数22cos x xy x x--=-的图像大致为( ). A . B .C .D .【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=>⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.7.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭ C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭【答案】A 【解析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.8.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..9.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.10.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质11.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.12.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-. 故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.13.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.14.已知函数())lnf x x =,设()3log 0.2a f =,()0.23b f -=,()1.13c f =-,则( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】∵())lnf x x =∴())f x x ==∴())f x x -=∵当0x >1x >;当0x <时,01x <∴当0x >时,())))f x x x x ==-=,())f x x -=;当0x <时()))f x x x ==;()))f x x x -=-=.∴()()f x f x =- ∴函数()f x 是偶函数∴当0x >时,易得())f x x =为增函数∴33(log 0.2)(log 5)a f f ==, 1.1 1.1(3)(3)c f f =-=∵31log 52<<,0.2031-<<, 1.133>∴ 1.10.23(3)(log 5)(3)f f f ->>∴c a b >> 故选D.15.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >>【答案】B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.16.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<【答案】A 【解析】 【分析】 根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系. 【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c <<本题正确选项:A 【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.17.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =, 据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.18.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.19.设函数()xf x x e =⋅,则( )A .()f x 有极大值1eB .()f x 有极小值1e-C .()f x 有极大值eD .()f x 有极小值e -【答案】B 【解析】 【分析】利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论. 【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-.当1x <-时,()0f x '<;当1x >-时,()0f x '>. 所以,函数()xf x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B. 【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.20.对于任意性和存在性问题的处理,遵循以下规则:。

高考数学压轴大题突破练函数与导数一

高考数学压轴大题突破练函数与导数一

压轴大题突破练——函数与导数(一)1.已知f(x)=x3+ax2-a2x +2.(1)若a =1,求曲线y =f(x)在点(1,f(1))处的切线方程;(2)若a≠0,求函数f(x)的单调区间;(3)若不等式2xln x≤f′(x)+a2+1恒成立,求实数a 的取值范围.解 (1)∵a =1,∴f(x)=x3+x2-x +2,∴f′(x)=3x2+2x -1,∴k =f′(1)=4,又f(1)=3,∴切点坐标为(1,3),∴所求切线方程为y -3=4(x -1),即4x -y -1=0.(2)f′(x)=3x2+2ax -a2=(x +a)(3x -a),由f′(x)=0得x =-a 或x =a 3.①当a>0时,由f′(x)<0,得-a<x<a 3.由f′(x)>0,得x<-a 或x>a 3,此时f(x)的单调递减区间为(-a ,a 3),单调递增区间为(-∞,-a)和(a 3,+∞).②当a<0时,由f′(x)<0,得a 3<x<-a.由f′(x)>0,得x<a 3或x>-a ,此时f(x)的单调递减区间为(a 3,-a),单调递增区间为(-∞,a 3)和(-a ,+∞).综上:当a>0时,f(x)的单调递减区间为(-a ,a 3),单调递增区间为(-∞,-a)和(a 3,+∞).当a<0时,f(x)的单调递减区间为(a 3,-a),单调递增区间为(-∞,a 3)和(-a ,+∞).(3)依题意x ∈(0,+∞),不等式2xln x≤f′(x)+a2+1恒成立,等价于2xln x≤3x2+2ax +1在(0,+∞)上恒成立,可得a≥ln x -32x -12x 在(0,+∞)上恒成立,设h(x)=ln x -3x 2-12x ,则h′(x)=1x -32+12x2=-(x -1)(3x +1)2x2.令h′(x)=0,得x =1,x =-13(舍),当0<x<1时,h′(x)>0;当x>1时,h′(x)<0.当x 变化时,h′(x),h(x)的变化情况如下表:∴当x =1时,h(x)∴a≥-2,∴a 的取值范围是[-2,+∞).2.已知函数f(x)=(1+x)e -2x ,g(x)=ax +x32+1+2xcos x .当x ∈[0,1]时,(1)求证:1-x≤f(x)≤11+x; (2)若f(x)≥g(x)恒成立,求实数a 的取值范围.(1)证明 要证x ∈[0,1]时,(1+x)e -2x≥1-x ,只需证明(1+x)e -x≥(1-x)ex.记h(x)=(1+x)e -x -(1-x)ex ,则h′(x)=x(ex -e -x).当x ∈(0,1)时,h′(x)>0,因此h(x)在[0,1]上是增函数, 故h(x)≥h(0)=0,所以f(x)≥1-x ,x ∈[0,1].要证x ∈[0,1]时,(1+x)e -2x≤11+x, 只需证明ex≥x +1.记K(x)=ex -x -1,则K′(x)=ex -1,当x ∈(0,1)时,K′(x)>0,因此K(x)在[0,1]上是增函数,故K(x)≥K(0)=0.所以f(x)≤11+x,x ∈[0,1]. 综上,1-x≤f(x)≤11+x,x ∈[0,1]. (2)解 f(x)-g(x)=(1+x)e -2x -(ax +x32+1+2xcos x)≥1-x -ax -1-x32-2xcos x=-x(a +1+x22+2cos x).(由(1)知)故G(x)=x22+2cos x ,则G′(x)=x -2sin x.记H(x)=x -2sin x ,则H′(x)=1-2cos x ,当x ∈(0,1)时,H′(x)<0,于是G′(x)在[0,1]上是减函数.从而当x ∈(0,1)时,G′(x)<G′(0)=0.故G(x)在[0,1]上是减函数.于是G(x)≤G(0)=2,从而a +1+G(x)≤a +3.所以,当a≤-3时,f(x)≥g(x)在[0,1]上恒成立.下面证明,当a>-3时,f(x)≥g(x)在[0,1]上不恒成立.f(x)-g(x)≤11+x-1-ax -x32-2xcos x =-x 1+x-ax -x32-2xcos x =-x(11+x+a +x22+2cos x).(由(1)知) 记I(x)=11+x +a +x22+2cos x =11+x+a +G(x), 则I′(x)=-1(1+x )2+G′(x), 当x ∈(0,1)时,I′(x)<0,故I(x)在[0,1]上是减函数,于是I(x)在[0,1]上的值域为[a +1+2cos 1,a +3].因为当a>-3时,a +3>0,所以存在x0∈(0,1),使得I(x0)>0,此时f(x0)<g(x0),即f(x)≥g(x)在[0,1]上不恒成立.综上,实数a 的取值范围是(-∞,-3].3.已知定义在正实数集上的函数f(x)=12x2+2ax ,g(x)=3a2ln x +b ,其中a>0.设两曲线y =f(x),y =g(x)有公共点,且在该点处的切线相同.(1)用a 表示b ,并求b 的最大值;(2)求证:f(x)≥g(x).(1)解 f′(x)=x +2a ,g′(x)=3a2x ,由题意知f(x0)=g(x0),f′(x0)=g′(x0),即⎩⎨⎧ 12x20+2ax0=3a2ln x0+b ,x0+2a =3a2x0.由x0+2a =3a2x0,得x0=a 或x0=-3a(舍去).即有b =12a2+2a2-3a2ln a =52a2-3a2ln a.令h(t)=52t2-3t2ln t(t>0),则h′(t)=2t(1-3ln t).于是当t(1-3ln t)>0,即0<t<e 13时,h′(t)>0;当t(1-3ln t)<0,即t>e 13 时,h′(t)<0.故h(t)在(0,e 13)上为增函数,在(e 13,+∞)上为减函数,于是h(t)在(0,+∞)上的最大值为h(e 13)=32e 23,即b 的最大值为32e 23.(2)证明 设F(x)=f(x)-g(x)=12x2+2ax -3a2ln x -b(x>0),则F′(x)=x +2a -3a2x =(x -a )(x +3a )x(x>0). 故F′(x)在(0,a)上为减函数,在(a ,+∞)上为增函数.于是F(x)在(0,+∞)上的最小值是F(a)=F(x0)=f(x0)-g(x0)=0.故当x>0时,有f(x)-g(x)≥0,即当x>0时,f(x)≥g(x).4.已知f(x)=x2+3x +1,g(x)=a -1x -1+x. (1)a =2时,求y =f(x)和y =g(x)的公共点个数;(2)a 为何值时,y =f(x)和y =g(x)的公共点个数恰为两个.解 (1)由⎩⎪⎨⎪⎧y =f (x ),y =g (x ), 得x2+3x +1=1x -1+x , 整理得x3+x2-x -2=0(x≠1).令y =x3+x2-x -2,求导得y′=3x2+2x -1,令y′=0,得x1=-1,x2=13,故得极值点分别在-1和13处取得,且极大值、极小值都是负值.故公共点只有一个.(2)由⎩⎪⎨⎪⎧y =f (x ),y =g (x ),得x2+3x +1=a -1x -1+x , 整理得a =x3+x2-x(x≠1),令h(x)=x3+x2-x ,联立⎩⎪⎨⎪⎧y =a ,y =h (x )=x3+x2-x (x≠1), 对h(x)求导可以得到极值点分别在-1和13处,画出草图,如图,h(-1)=1,h(13)=-527,当a =h(-1)=1时,y =a 与y =h(x)仅有一个公共点(因为(1,1)点不在y =h(x)曲线上),故a =-527时恰有两个公共点.。

高考数学压轴专题最新备战高考《函数与导数》难题汇编附解析

高考数学压轴专题最新备战高考《函数与导数》难题汇编附解析

数学高考《函数与导数》复习资料一、选择题1.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.2.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4aT C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.3.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .4.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.5.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( ) A . B .C .D .【答案】A 【解析】Q ()21f cos 4x x x =+,()()1'sin ,'2f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.6.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论.由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.7.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A.)+∞ B.(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D 【解析】 【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x=+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】8.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.9.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( ) A .(],1-∞ B .[)1,+∞C .[)0,1D .(]1,0-【答案】A 【解析】 【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可.【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A 【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.10.若函数f (x )=()x 1222a x 1log x 1x 1⎧++≤⎪⎨+⎪⎩,,>有最大值,则a 的取值范围为( ) A .()5,∞-+ B .[)5,∞-+ C .(),5∞-- D .(],5∞-- 【答案】B 【解析】 【分析】分析函数每段的单调性确定其最值,列a 的不等式即可求解. 【详解】由题()xf x 22a,x 1=++≤,单调递增,故()()f x f 14a,;≤=+()()12f x log x 1,x 1,=+>单调递减,故()()f x f 11>=-,因为函数存在最大值,所以4a 1+≥-,解a 5≥-.故选B. 【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.11.已知ln 3ln 4ln ,,34a b e c e===(e是自然对数的底数),则,,a b c 的大小关系是( ) A .c a b << B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln x f x x =,求导()21ln xf x x-'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解. 【详解】令()ln xf x x=,所以()21ln xf x x-'=, 当0x e <<时, ()0f x '>,当x e >时,()0f x '<, 所以()f x 在()0,e 上递增,在(),+e ∞上递减. 因为34e <<,所以 ()()()34>>f e f f , 即b a c <<. 故选:C 【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.12.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.13.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-,()04f =,则不等式()3x f x e >+的解集是( )A .(),1-∞B .(),0-∞C .()0,+∞D .()1,+∞【答案】B 【解析】不等式()3xf x e >+得()()3311x x x f x f x e e e ->+∴>,()()()()()330xxf x f x f xg x g x e e --+=∴='<'设,所以()g x 在R 上是减函数,因为()()()4301001g g x g x -==∴>∴<. 故选B .点睛:本题的难点在于解题的思路. 已知条件和探究的问题看起来好像没有分析联系,这里主要利用了分析法,通过分析构造函数,利用导数的知识解答.14.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4x x xf x e x a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0xe >04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立 当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭sin 4x π⎛⎤⎛⎫∴+∈ ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.16.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( )A .20152016 B .20162017C .20172018D .20182019【答案】D 【解析】 【分析】求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值. 【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+,因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D. 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.17.4cos2d cos sin xx x xπ=+⎰( )A.1) B1C1D.2【答案】C 【解析】 【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分. 【详解】因为22cos2cos sin cos sin cos sin cos sin x x xx x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0xx x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.18.已知函数f (x )=2x -1,()2cos 2,0?2,0a x x g x x a x +≥⎧=⎨+<⎩(a ∈R ),若对任意x 1∈[1,+∞),总存在x 2∈R ,使f (x 1)=g (x 2),则实数a 的取值范围是() A .1,2⎛⎫-∞ ⎪⎝⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .[]1,1,22⎛⎫-∞ ⎪⎝⎭U D .371,,224⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦U 【答案】C【解析】【分析】对a 分a=0,a <0和a >0讨论,a >0时分两种情况讨论,比较两个函数的值域的关系,即得实数a 的取值范围.【详解】当a =0时,函数f (x )=2x -1的值域为[1,+∞),函数()g x 的值域为[0,++∞),满足题意. 当a <0时,y =22(0)x a x +<的值域为(2a ,+∞), y =()cos 20a x x +≥的值域为[a +2,-a +2], 因为a +2-2a =2-a >0,所以a +2>2a ,所以此时函数g (x )的值域为(2a ,+∞),由题得2a <1,即a <12,即a <0. 当a >0时,y =22(0)x a x +<的值域为(2a ,+∞),y =()cos 20a x x +≥的值域为[-a +2,a +2],当a ≥23时,-a +2≤2a ,由题得21,1222a a a a -+≤⎧∴≤≤⎨+≥⎩. 当0<a <23时,-a +2>2a ,由题得2a <1,所以a <12.所以0<a <12. 综合得a 的范围为a <12或1≤a ≤2, 故选C .【点睛】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e上递减,在1(,)e +∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】 令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.20.设113000,,a xdx b xdx c x dx ===⎰⎰⎰,则,,a b c 的大小关系为( ) A .b c a >>B .b a c >>C .a c b >>D .a b c >>【答案】D【解析】根据微积分定理,3120022|33a x ⎛⎫=== ⎪⎝⎭,1210011|22b xdx x ⎛⎫=== ⎪⎝⎭⎰,13410011|44c x dx x ⎛⎫=== ⎪⎝⎭⎰,所以a b c >>,故选择D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴题目突破练——函数与导数A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是() A.3x+y+2=0 B.3x-y+2=0C.x+3y+2=0 D.x-3y-2=0答案 A解析设切点的坐标为(x0,x30+3x20-1),则由切线与直线2x-6y+1=0垂直,可得切线的斜率为-3,又f′(x)=3x2+6x,故3x20+6x0=-3,解得x0=-1,于是切点坐标为(-1,1),从而得切线的方程为3x+y+2=0.2.设f(x),g(x)在[a,b]上可导,且f′(x)>g′(x),则当a<x<b时,有() A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(a)>g(x)+f(a)D.f(x)+g(b)>g(x)+f(b)答案 C解析∵f′(x)-g′(x)>0,∴(f(x)-g(x))′>0,∴f(x)-g(x)在[a,b]上是增函数,∴当a<x<b时f(x)-g(x)>f(a)-g(a),∴f(x)+g(a)>g(x)+f(a).3.三次函数f(x)=mx3-x在(-∞,+∞)上是减函数,则m的取值范围是() A.m<0 B.m<1 C.m≤0 D.m≤1答案 A解析f′(x)=3mx2-1,依题可得m<0.4.点P是曲线x2-y-2ln x=0上任意一点,则点P到直线4x+4y+1=0的最短距离是()A.22(1-ln 2)B.22(1+ln 2) C.22⎝⎛⎭⎫12+ln 2 D.12(1+ln 2)答案 B解析 将直线4x +4y +1=0平移后得直线l :4x +4y +b =0,使直线l 与曲线切于点P (x 0,y 0),由x 2-y -2ln x =0得y ′=2x -1x ,∴直线l 的斜率k =2x 0-1x 0=-1⇒x 0=12或x 0=-1(舍去),∴P ⎝⎛⎭⎫12,14+ln 2,所求的最短距离即为点P ⎝⎛⎭⎫12,14+ln 2到直线4x +4y +1=0的距离d =|2+(1+4ln 2)+1|42=22(1+ln 2). 二、填空题(每小题5分,共15分)5. 设函数f (x )=sin θ3x 3+3cos θ2·x 2+tan θ,其中θ∈⎣⎡⎦⎤0,5π12,则导数f ′(1)的取值范围是________. 答案 [2,2]解析 ∵f ′(x )=sin θ·x 2+3cos θ·x , ∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎫θ+π3. ∵θ∈⎣⎡⎦⎤0,5π12,∴θ+π3∈⎣⎡⎦⎤π3,3π4, ∴sin ⎝⎛⎭⎫θ+π3∈⎣⎡⎦⎤22,1.∴f ′(1)∈[2,2]. 6. (2011·陕西)设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x + a 03t 2d t ,x ≤0, 若f (f (1))=1,则a =________. 答案 1解析 由题意知f (1)=lg 1=0, ∴f (0)=0+a 3-03=1,∴a =1.7. 把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为________. 答案 2∶1解析 设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝⎛⎭⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6), V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1. 三、解答题(共22分)8. (10分)已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值. 解 (1)由题意得f ′(x )=3ax 2+2x +b ,因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ), 即对任意实数x ,有a (-x )3+(3a +1)(-x )2+ (b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ], 从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2.令g ′(x )=0,解得x 1=-2,x 2=2, 则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,- 2 ),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由上述讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43,因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值g (2)=43.9. (12分)已知f (x )是二次函数,不等式f (x )<0的解集是(0,5),且f (x )在区间[-1,4]上的最大值是12.(1)求f (x )的解析式;(2)是否存在自然数m ,使得方程f (x )+37x =0在区间(m ,m +1)内有且只有两个不等的实数根?若存在,求出所有m 的值;若不存在,请说明理由. 解 (1)∵f (x )是二次函数,且f (x )<0的解集是(0,5), ∴可设f (x )=ax (x -5)(a >0).∴f (x )在区间[-1,4]上的最大值是f (-1)=6a . 由已知,得6a =12,∴a =2, ∴f (x )=2x (x -5)=2x 2-10x (x ∈R ).(2)方程f (x )+37x =0等价于方程2x 3-10x 2+37=0设h (x )=2x 3-10x 2+37,则h ′(x )=6x 2-20x =2x (3x -10).当x ∈⎝⎛⎭⎫0,103时,h ′(x )<0,h (x )是减函数; 当x ∈⎝⎛⎭⎫103,+∞时,h ′(x )>0,h (x )是增函数. ∵h (3)=1>0,h ⎝⎛⎭⎫103=-127<0,h (4)=5>0, ∴方程h (x )=0在区间⎝⎛⎭⎫3,103,⎝⎛⎭⎫103,4内分别有唯一实数根,而在区间(0,3),(4,+∞)内没有实数根,∴存在唯一的自然数m =3,使得方程f (x )+37x =0在区间(m ,m +1)内有且只有两个不等的实数根.B 组 专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 函数f (x )在定义域⎝⎛⎭⎫-32,3内的图象如图所示,记f (x )的导函数为f ′(x ),则不等式f ′(x )≤0的解集为( )A.⎣⎡⎦⎤-32,12∪[1,2) B.⎣⎡⎦⎤-1,12∪⎣⎡⎦⎤43,83 C.⎣⎡⎦⎤-13,1∪[2,3) D.⎝⎛⎦⎤-32,-13∪⎣⎡⎦⎤12,43∪⎣⎡⎭⎫43,3 答案 C解析 不等式f ′(x )≤0的解集即为函数f (x )的单调递减区间,从图象中可以看出函数f (x )在⎣⎡⎦⎤-13,1和[2,3)上是单调递减的,所以不等式f ′(x )≤0的解集为⎣⎡⎦⎤-13,1∪[2,3),答案选C.2. 已知函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),那么函数f (x )的单调减区间是( )A .[-1,+∞)B .(-∞,2]C .(-∞,-1),(1,2)D .[2,+∞)答案 C解析 根据函数f (x )(x ∈R )的图象上任一点(x 0,y 0)处的切线方程为y -y 0=(x 0-2)(x 20-1)(x -x 0),可知其导数f ′(x )=(x -2)(x 2-1)=(x +1)(x -1)(x -2),令f ′(x )<0得x <-1或1<x <2.因此f (x )的单调减区间是(-∞,-1),(1,2).3. 给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称函数f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′.若f ″(x )<0在D 上恒成立,则称函数f (x )在D 上为凸函数,以下四个函数在⎝⎛⎭⎫0,π2上不是凸函数的是 ( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=-x e -x答案 D解析 对于选项A ,f (x )=sin x +cos x , 则f ″(x )=-sin x -cos x <0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数; 对于选项B ,f (x )=ln x -2x ,则f ″(x )=-1x 2<0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数;对于选项C ,f (x )=-x 3+2x -1, 则f ″(x )=-6x <0在⎝⎛⎭⎫0,π2上恒成立, 故此函数为凸函数; 对于选项D ,f (x )=-x e -x ,则f ″(x )=2e -x -x e -x =(2-x )e -x >0在⎝⎛⎭⎫0,π2上恒成立,故此函数不是凸函数. 二、填空题(每小题5分,共15分)4. 已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 因为f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x , 所以f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4sin π4+cos π4 ⇒f ′⎝⎛⎭⎫π4=2-1,故f ⎝⎛⎭⎫π4=f ′⎝⎛⎭⎫π4cos π4+sin π4⇒f ⎝⎛⎭⎫π4=1. 5. 函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________. 答案 21解析 因为y ′=2x ,所以过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,所以a 3=4,a 5=1.所以a 1+a 3+a 5=21.6. 设函数f (x )=e 2x 2+1x ,g (x )=e 2x e x ,对任意x 1、x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,则正数k 的取值范围是________. 答案 [1,+∞)解析 因为对任意x 1、x 2∈(0,+∞),不等式g (x 1)k ≤f (x 2)k +1恒成立,所以kk +1≥⎣⎡⎦⎤g (x 1)f (x 2)max.因为g (x )=e 2xex ,所以g ′(x )=(x e 2-x )′=e 2-x +x e 2-x ·(-1)=e 2-x (1-x ).当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0, 所以g (x )在(0,1]上单调递增,在[1,+∞)上单调递减. 所以当x =1时,g (x )取到最大值,即g (x )max =g (1)=e ; 因为f (x )=e 2x 2+1x ,当x ∈(0,+∞)时,f (x )=e 2x +1x ≥2e ,当且仅当e 2x =1x ,即x =1e 时取等号,故f (x )min =2e.所以⎣⎡⎦⎤g (x 1)f (x 2)max =e 2e =12. 所以k k +1≥12.又因为k 为正数,所以k ≥1.三、解答题7. (13分)(2012·辽宁)设f (x )=ln x +x -1,证明:(1)当x >1时,f (x )<32(x -1);(2)当1<x <3时,f (x )<9(x -1)x +5.(1)证明 方法一 记g (x )=ln x +x -1-32(x -1),则当x >1时,g ′(x )=1x +12x -32<0.又g (1)=0,所以有g (x )<0,即f (x )<32(x -1).方法二 当x >1时,2x <x +1,故x <x 2+12.①令k (x )=ln x -x +1,则k (1)=0,k ′(x )=1x -1<0,故k (x )<0,即ln x <x -1.②由①②得,当x >1时,f (x )<32(x -1).(2)证明 方法一 记h (x )=f (x )-9(x -1)x +5,由(1)得h ′(x )=1x +12x -54(x +5)2=2+x 2x -54(x +5)2<x +54x -54(x +5)2=(x +5)3-216x4x (x +5)2.令G (x )=(x +5)3-216x ,则当1<x <3时, G ′(x )=3(x +5)2-216<0, 因此G (x )在(1,3)内是减函数.又由G (1)=0,得G (x )<0,所以h ′(x )<0. 因此h (x )在(1,3)内是减函数. 又h (1)=0,所以h (x )<0. 于是当1<x <3时,f (x )<9(x -1)x +5.方法二 记h (x )=(x +5)f (x )-9(x -1), 则当1<x <3时,由(1)得h ′(x )=f (x )+(x +5)f ′(x )-9 <32(x -1)+(x +5)·⎝⎛⎭⎫1x +12x -9 =12x [3x (x -1)+(x +5)(2+x )-18x ] <12x ⎣⎡⎦⎤3x (x -1)+(x +5)⎝⎛⎭⎫2+x 2+12-18x =14x (7x 2-32x +25)<0. 因此h (x )在(1,3)内单调递减.又h (1)=0,所以h (x )<0,即f (x )<9(x -1)x +5.。

相关文档
最新文档