第2章材料的内部结构

合集下载

第2章-STC15单片机的内部结构

第2章-STC15单片机的内部结构

单片机原理与接口技术————基于STC15系列的51单片机
第2章 STC15单片机的内部结构
一、 总体结构
图2.2 STC15W4K32S4单片机详细结构图
单片机原理与接口技术————基于STC15系列的51单片机
第2章 STC15单片机的内部结构
二、 引脚功能
图2.3 STC15W4K32S4的PDIP40引脚图
程序计数器PC用于在CPU运行过程中,保存下一条要执行的指令在程序存储器中的 地址,一般情况下,它总是自动加一,只在运行转移类或子程序调用类指令时,才会 改变为相应的目标地址,这些概念和普通微处理器中的概念是相同的。PC的位数是 16位,所以,51单片机程序存储器的空间大小是64KB。当单片机复位时,PC初始化 为0000H,这也是51单片机上电复位以后,所执行的第一条指令的地址。
单片机原理与接口技术————基于STC15系列的51单片机
第2章 STC15单片机的内部结构
一、 总体结构
3.并行I/O口
并行开关量(数字量)的输入/输出,是微控制器最基本的功能。STC15系列单片机, 提供了最多8个可编程的并行I/O口(根据封装的不同,端口数也不同),大部分I/O口 是8位的,有些口不足8位。如图Port0-Port7所示。这些I/O口命名为P0~P7,既可以 将它们分别作为一个整体,用于8位开关量的输入与输出(若是8位端口的话),也可 以将它们的各位口线分别独立地用于1位的开关量输入与输出。当这些口线单独使用 时,它们被命名为Px.y,其中x代表其所在的并行口,可为0-7;y代表相应的位,可 为0-7,例如P0.7,代表P0口的D7位。
单片机原理与接口技术————基于STC15系列的51单片机
第2章 STC15单片机的内部结构

第2章材料的内部结构、组织与性能

第2章材料的内部结构、组织与性能
11
◆ 特征 (1)具有一定的化学成分。 (2)与任一组元成分不同。 (3)熔点高脆性大硬度高。 ◆ 性能 晶格复杂斜方,σ、HB↗↗,δ、ak↘↘,脆性大
③机械混合物
◆ 概念:两相按固定比例构成的组织(复合相), 称机械混合物。如 铁碳合金中 F与Fe3C结合为P
◆ 特征:各相保持自己的晶格类型、性能特点。 强度、硬度适中,目前钢铁材料中大 部分是这种组织。
非晶体——①无熔点;②各向同性。如:玻璃, 松香,沥青等。
2
晶格与晶胞
晶格:表示晶体中原子排列形成的空间格子。 晶胞:组成晶格最基本的几何单元。 晶 格
原子

描 述 晶面 形成的原因: 各原子之间相 互吸引力与排 斥力相平衡结 果。 结点 晶体中的原子排列
3
晶 胞 示意图
2.纯金属的晶体结构 1)体心立方晶格 特点:b 较好。 如:<912℃ Fe, Cr, Mo, V等。 2) 面心立方晶格 特点: 较好。 含有4个原子 体积组成。
特点:塑性较好,强度较低,170-220HBS
3) 渗碳体 Fe3C 是Fe与C的化合物。特点:硬度很高,很脆,塑性 几乎等于零,在钢中起强化作用。约800HBW。 4) 珠光体 P
F与Fe3C机械混合物,WC=0.77%
特点:有一定的强度、塑性,层片状。
28
5) 莱氏体 Ld
特点:硬而脆,不能进行压力加工。
熟悉布氏、洛氏硬度优缺点、相互关系、应用场合。
2. 熟悉各类工程材料主要特征。
40
第2章重点
1. 晶体结构基本概念、晶体缺陷。
2. 合金相结构及特点。
3. 过冷度概念、过冷度对结晶影响规律。
4. 结晶过程形核、长大概念。

第2章 贵金属材料晶体学基础

第2章 贵金属材料晶体学基础

每个面心立方结构晶胞中实际只有 1/8×8+1/2 ×6=4 晶格常数只用晶胞的棱边长a一个数值表示,原 子间最小距离为两个原子中心的距离,等于原子的 直径d: d=√2/2a 面心立方结构n=4 致密度:K=nv/V K=n×原子球体体积/晶胞体积 = 4 ×(4/3πR3)/a3 =0.74=74%
c 密排六方结构
每个面心立方结构晶胞中实际只有: 1/6×12+1/2×2+3=6 晶格常数有2个,六方底面的边长a与上下底面的间 距c(即六方柱的高度),它们之比c/a称为密排六方 结构的轴比,理想轴比为1.633。 原子的直径d与a的关系为: d=a
K=nv/V =0.74=74% 配位数为12 最密排面为{0001}面 密排六方结构和面心立方结构的配位数 和致密度都相等,因为都为最紧密堆积, 从晶体化学来看还有很多相似的性质。
第2章 贵金属材料晶 体学基础
第1节晶体结构及晶体结构间隙
1 晶体 晶体是内部质点(原子、离子或分子)在三维 空间周期性地重复排列构成的固体物质 晶体具有自限性、均一性、各项异性、对称性、最 小内能性 (1) 晶体与非晶体 晶体 非晶体 内部构造 宏观外形 方向性 具有格子构造 具有规则的几何外 形 各向异性 不具格子构造 不具有规则的几 何外形 各向同性
1 固溶体 固溶体是原子溶入固体溶剂中所形成的均一的 结晶相。固溶体的一个特点是成分可以在一定范围 内连续变化,这种变化不引起原来溶剂金属的点阵 类型发生改变 固溶体 置换固溶体 间隙固溶体
(1)置换固溶体 溶质原子置换了溶剂结构中的一些溶剂原子
影响固溶体固溶度的因素: a 组员的晶体结构因素 b 原子尺寸因素 c 化学亲和力因素
(1)正常价化合物 一般有AB,A2B(AB2),A3B2三种类型,分 子式对应相同类型分子的离子化合物。

工程材料02(金属与合金的晶体结构)

工程材料02(金属与合金的晶体结构)

金属材料的性能特点一般地,金属材料与非金属材料相比,金属材料具有良好的力学性能,而且工艺性能也较好。

即使都是金属材料,不同成分和不同状态下的性能也会有很大的差异。

造成这些性能差异的主要原因是材料内部结构不同,因此掌握金属与合金的内部结构特点,对于合理选材具有重要意义。

金属材料是靠原子间金属键结合起来的。

金属键——金属材料内部,呈一定规律排列的正离子与公有化的自由电子靠库仑力结合起来,这种结合力即为金属键。

(正离子+公有电子云、无方向性、非饱和性)金属材料的性能特点:1、良好的导电、导热性。

2、正的电阻温度系数3、良好的塑性4、不透明、有金属光泽第一节晶体的基本知识金属材料一般都是晶体,具有晶体的特性。

一、晶体——内部原子呈规则排列的物质。

晶体材料(单晶体)的特性:①具有固定的熔点。

②具有规则的几何外形。

③具有“各向异性”。

二、晶格、晶胞和晶格常数1、晶格——描述晶体中原子排列规律的空间点阵。

将原子的振动中心抽象为一几何点,再用直线的连接表示原子之间的相互作用。

2、晶胞——由于晶格排列具有周期性,研究晶格时,取出能代表晶格特征的最小基本单元即称为晶胞。

3、晶格常数——用来描述晶胞大小与形状的几何参数。

三条棱长:a、b、c三条棱的夹角:α、β、γ对于简单立方晶胞:棱长a=b=c 夹角α= β= γ= 90°第二节纯金属的晶体结构一、典型的晶格类型各种晶体由于其晶格类型和晶格常数不同,往往呈现出不同的物理、化学及力学性能。

除少数金属具有复杂晶格外,大多数晶体结构比较简单,典型的晶格结构主要有以下三种:1、体心立方晶格(bcc)2、面心立方晶格(fcc)3、密排六方晶格(hcp)1、体心立方晶格(bcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向(原子排列最紧密的方向):立方体的对角线方向原子半径:属于bcc 晶格的金属主要有:α-Fe 、Cr 、W 、Mo 、V 等ar 432、面心立方晶格(fcc )晶格常数: a = b = c ;α=β=γ= 90°密排方向:立方体表面的对角线方向原子半径:属于fcc 晶格的金属主要有:γ-Fe 、Cu 、Al 、Au 、Ag 等。

第二章 材料的结构(含答案)

第二章 材料的结构(含答案)

第二章材料的结构(含答案)一、填空题(在空白处填上正确的内容)1、内部原子按一定规律排列的物质叫________。

答案:晶体2、金属晶体在不同方向上具有不同性能的现象叫________。

答案:各向异性3、常见的金属晶格类型有________、________、________三种。

答案:体心立方、面心立方、密排六方4、常见的金属晶格类型有三种,α-Fe、Cr、W、Mo、V的晶格属于________。

答案:体心立方5、表示晶体中原子排列的空间格子叫做________,组成空间格子的最基本的几何单元叫做________。

答案:晶格、晶胞6、实际金属结构中的点缺陷包括________、________和________;它们可使金属的强度________。

答案:间隙原子、置换原子、空位、提高7、工程材料的结合键有________、________、________和________四种。

答案:离子键、共价键、金属键、分子键8、三种常见金属晶格类型为________、________和________。

答案:体心立方晶格、面心立方晶格、密排六方晶格;9、按溶质原子在溶剂晶格中所处的位置不同,固溶体可分为________和________两种。

答案:置换固溶体、间隙固溶体10、面心立方晶格中,晶胞的原子数为________,致密度为________。

答案:4、0.7411、位错分为两种,它们是________和________;多余半排原子面的是________位错。

答案:刃型位错、螺型位错、刃型位错12、相是指金属或合金中成分________,结构________,并由________与其它部分分开的均匀组成部分。

答案:相同、相同、界面13、合金中成分、结构和性能相同的组成部分称为________。

答案:相14、按其几何形式的特点,晶格缺陷可分为________、________和________。

答案:点缺陷、线缺陷、面缺陷15、体心立方晶格中,晶胞的原子数为________,原子半径与晶格常数的关系为________,致密度为________。

材料的结构

材料的结构
原子半径:r 2 a
4
原子个数:4 配位数: 12 致密度:0.74 常见金属: -Fe、Ni、Al、Cu、Pb、Au等
⑶ 密排六方晶格
密排六方晶格的参数
密排六方晶格
晶格常数:底面边长 a 和高 c, c/a=1.633
原子半径:r 1 a
2 原子个数:6 配位数: 12 致密度:0.74 常见金属: Mg、Zn、 Be、Cd等
M4X (Fe4N)、 M2X (Fe2N、 W2C)、 MX (TiC、VC、TiN)等。
间隙相具有金属特征和极高的硬 VC
度及熔点,非常稳定。
的 结
部分碳化物和所有氮化物属于间 构
隙相。
b. 具有复杂结构的间隙化合物
当r非/r金>0.59时形成复杂结构间 隙化合物。
如FeB、Fe3C、Cr23C6等。Fe3C称 渗碳体,是钢中重要组成相,具 有复杂斜方晶格。
⑵ 金属化合物 合金中其晶体结构与组成元素的晶体结构均不相同的固相称
金属化合物。金属化合物具有较高的熔点、硬度和脆性,并 可用分子式表示其组成。
当合金中出现金属化合 物时,可提高其强度、 硬度和耐磨性,但降低 塑性。
金属化合物也是合金的 重要组成相。
铁碳合金中的Fe3C
① 正常价化合物—符合正常原 子价规律。如Mg2Si
{111} : (111)、(111)、(111)、(111)
{110}
Z
(011)
(110
) (011
(101)

(101 )
Y
(110
) X
立方晶系常见的晶向为:
100 : [100]、[010]、[001]
110 : [110]、[101]、[011]、[110]、[101]、[011]

机械制造基础第二章2

机械制造基础第二章2

位错对材料性能的影响比点缺陷更大, 位错对材料性能的影响比点缺陷更大 , 对金属材料的影 响尤甚。理想晶体的强度很高,位错的存在可降低强度, 响尤甚 。 理想晶体的强度很高,位错的存在可降低强度 , 但 是当错位量急剧增加后,强度又迅速提高。 是当错位量急剧增加后,强度又迅速提高。 生产中一般都是增加位错密度来提高强度, 生产中一般都是增加位错密度来提高强度 , 但是塑性 随之降低,可以说, 随之降低 , 可以说 , 金属材料中的各种强化机制几乎都是 以位错为基础的。 以位错为基础的。 3. 面缺陷:指在两个方向上的尺寸很大,第三个方向上的 面缺陷:指在两个方向上的尺寸很大, 尺寸很小而呈面状的缺陷。 尺寸很小而呈面状的缺陷。面缺陷的主要形式是各种类型 的晶界。 的晶界。 晶界:指晶粒与晶粒之间的边界。 晶界:指晶粒与晶粒之间的边界。
图1-6 冷却曲线
3.结晶过程。 晶体形核和成长过程。如图1-7所示,在液 3.结晶过程。 晶体形核和成长过程。如图1 所示, 结晶过程 体金属开始结晶时, 体金属开始结晶时,在液体中某些区域形成一些有规则排 列的原子团,成为结晶的核心, 形核过程)。 列的原子团,成为结晶的核心,即晶核 (形核过程)。 然后原子按一定规律向这些晶核聚集,而不断长大, 然后原子按一定规律向这些晶核聚集,而不断长大,形成 晶粒(成长过程)。在晶体长大的同时, )。在晶体长大的同时 晶粒(成长过程)。在晶体长大的同时,新的晶核又继续 产生并长大。当全部长大的晶体都互相接触,液态金属完 产生并长大。当全部长大的晶体都互相接触, 全消失,结晶完成。由于各个晶粒成长时的方向不一, 全消失,结晶完成。由于各个晶粒成长时的方向不一,大 晶界。 小不等,在晶粒和晶粒之间形成界面,称为晶界 小不等,在晶粒和晶粒之间形成界面,称为晶界。

材料的结构包括

材料的结构包括

材料的结构包括
材料的结构是指材料内部各个组成部分之间的排列和连接方式,它直接影响着
材料的性能和用途。

材料的结构可以分为原子结构、晶体结构和微观结构三个方面。

首先,原子结构是材料的基本结构。

原子是构成材料的最基本单位,材料的性
能和行为直接受原子结构的影响。

原子结构包括原子的排列方式、原子之间的相互作用和原子的运动方式。

不同的原子结构决定了材料的性质,比如金属材料的原子结构是紧密堆积的球形原子,而非金属材料的原子结构是离散分布的。

其次,晶体结构是材料中原子的有序排列。

晶体结构可以分为单晶体、多晶体
和非晶体三种类型。

单晶体是指材料中原子排列有序、呈现出规则的晶体结构;多晶体是指材料中存在多个晶粒,每个晶粒内部呈现出规则的晶体结构,但不同晶粒之间的方向不一定一致;非晶体是指材料中原子排列无序,没有明显的晶体结构。

晶体结构直接影响着材料的力学性能、导热性能和光学性能。

最后,微观结构是指材料中微观组织的形态和分布。

微观结构可以分为晶粒结构、晶界结构、位错结构和相结构。

晶粒结构是指材料中的晶粒形状、大小和分布;晶界结构是指相邻晶粒之间的结构;位错结构是指材料中的位错类型和分布;相结构是指材料中不同成分的分布和相互作用。

微观结构直接影响着材料的力学性能、热处理性能和腐蚀性能。

总之,材料的结构是多种因素综合作用的结果,它直接决定了材料的性能和用途。

了解材料的结构对于材料设计、制备和性能改进具有重要意义。

因此,深入研究材料的结构是材料科学和工程领域的重要课题,也是材料技术发展的关键之一。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

机械工程材料-2章 晶体结构、结晶

机械工程材料-2章 晶体结构、结晶

晶胞原子数与原子半径
致密度与配位数
2.1.4 晶向指数与晶面指数
1 晶向指数
我们把任何两个或多个原子所在直线所指 的方向,称为晶向。 〖例1〗计算图(a)中的AB的晶向指数。 解:①选晶胞的三条棱边建立X、Y、Z坐标 轴,以晶格常数a b c 为坐标轴的度量单位。从坐 标轴的原点O引一条有向直线OC,平行于待定晶 向AB; ②在所引的有向直线上任取一点C(为方便 起见,通常取距原点最近的阵点),求出该点C 在三坐标轴的坐标值,C(1/2,1/2, 1)。 ③将三个坐标值按比例化简为最小简单整数, 并加上方括号,表示为[u v w]=[1 1 2],即为 所求的晶向指数。整数之间不用标点分开。如果 u、v、w中有某一数为负,则将负号用上划线的 形式标注于该数之上。 AB的晶向指数为[1 1 2]。
例如:石墨是靠分子键结合, 硬度很低。塑料也是靠分子键结 合,强度较低。
由于范德瓦尔斯引力很弱, 所以分子晶体的结合力很小,熔 点很低,硬度也很低。
5 结合力与结合能
当大量原子结合成固体时,为 使晶体具有最低的能量,以保持其 稳定状态,原子之间也必须保持一 定的平衡距离,这就是固态金属中 的原子趋于规则排列的原因。 当原子间以离子键或共价键结 合时,原子达不到紧密排列状态, 这是由于这些结合方式对周围的原 子数有一定的限制之故。
体心立方
面心立方
密排六方
2.1.6 实际金属的晶体结构
若整个晶体完全是晶胞规则重 复排列的,这种晶体为理想晶体。 实际晶体中,由于各因素的影 响,总会存在一些不完整、原子排 列偏离理想状态的区域,这些区域 称为晶体缺陷。 按缺陷在空间的几何形状和尺 寸不同,缺陷分为:
点缺陷
晶体缺陷
线缺陷

建筑材料 第2章-无机胶凝材料-石灰+石膏

建筑材料 第2章-无机胶凝材料-石灰+石膏

建筑石膏凝结硬化是石膏吸收结晶 水后的结晶过程,其体积不仅不会收缩, 而且还稍有膨胀(0.2%~1.5%),这种膨 胀不会对石膏造成危害,还能使石膏的 表面较为光滑饱满,棱角清晰完整、避 免了普通材料干燥时的开裂。
(3)硬化后的多孔性,重量轻,但
强度低 建筑石膏在使用时,为获得良好 的流动性,常加入的水分要比水化所 需的水量多,因此,石膏在硬化过程 中由于水分的蒸发,使原来的充水部 分空间形成孔隙,造成石膏内部的大 量微孔,使其重量减轻,但是抗压强 度也因此下降。通常石膏硬化后的表 观密度约为800kg/m 3 ~1000 kg/ m3,抗压强度约为3MPa~5MPa。

(2)硬化慢、强度低
从石灰浆体的硬化过程可以看出,
由于空气中二氧化碳稀薄,碳化 甚为缓慢。而且表面碳化后,形 成紧密外壳,不利于碳化作用的 深入,也不利于内部水分的蒸发, 因此石灰是硬化缓慢的材料。
同时,石灰的硬化只能在空气中 进行,硬化后的强度也不高。受 潮后石灰溶解,强度更低,在水 中还会溃散。如石灰砂浆(1:3) 28天强度仅为0.2-0.5MPa。所以, 石灰不宜在潮湿的环境下作用, 也不宜用于重要建筑物基础。
此反应实际上也是半水石膏的溶解和
二水石膏沉淀的可逆反应,因为二水石 膏溶解度比半水石膏的溶解度小得多, 所以此反应总体表现为向右进行,二水 石膏以胶体微粒自水中析出。
随着二水石膏沉淀的不断增加,就会产生
结晶,结晶体的不断生成和长大,晶体颗 粒之间便产生了磨擦力和粘结力,造成浆 体的塑性开始下降,这一现象称为石膏的 初凝;而后随着晶体颗粒间磨擦力和粘结 力的增大,浆体的塑性很快下降,直至消 失,这种现象为石膏的终凝。

(3)灰砂砖和硅酸盐制品 石灰与天然砂或硅铝质工业废料混合均匀, 加水搅拌, 经压振或压制,形成硅酸盐制品。 为使其获早期强度,往往采用高温高压养护 或蒸压,使石灰与硅铝质材料反应速度显著 加快,使制品产生较高的早期强度。如灰砂 砖、硅酸盐砖、硅酸盐混凝土制品等。

材料科学基础知识点

材料科学基础知识点

材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。

核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。

主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。

材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。

按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。

原子之间的键合方式是金属键。

陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。

它可以是晶体、非晶体或混合晶体。

原子之间的键合方式是离子键,共价键。

聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。

它主要是非晶体或晶体与非晶体的混合物。

原子的键合方式通常是共价键。

复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。

其原子间的键合方式是混合键。

密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。

韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。

宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。

以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。

第二章高分子的聚集态结构

第二章高分子的聚集态结构
3-2-1平面锯齿结构(plane zigzag)
没有取代基(PE)或取代基较小的(polyester,polyamide,POM,PVA等)的碳氢链中为了使分子链取位能最低的构象,并有利于在晶体中作紧密而规整的堆砌,所以分子取全反式构象,即:取平面锯齿形构象(P.Z)。
例如:PE
1.PE构象(平面锯齿) 2.晶系系: 斜方(正交) 晶系
2-3 内聚能密度(CED)
内聚能密度(cohesive energy density — CED)是聚合物分子间作用力的宏观表征 聚合物分子间作用力的大小,是各种吸引力和排斥力所作贡献的综合反映,而高分子分子量又很大,且存在多分散性,因此,不能简单的用某一种作用力来表示,只能用宏观的量来表征高分子链间作用力的大小。
1-2 高聚物的聚集态结构
高聚物的聚集态结构很长一段时间内搞不清楚,很长而柔的链分子如何形成规整的晶体结构是很难想象的,特别是这些分子纵向方向长度要比横向方向大许多倍;每个分子的长度又都不一样,形状更是变化多端。所以起初人们认为高聚物是缠结的乱线团构成的系统,象毛线一样,无规整结构可言。
1-2 高聚物的聚集态结构
晶胞
3-1 基本概念
3. 晶胞——在空间格子中划分出余割大小和形状完全一样的平行六面体以代表晶体的结构的基本重复单位。这种三维空间中具有周期性排列的最小单位称为晶胞。
3-1 基本概念
4.晶胞参数——描述晶胞结构的参数 有 6个: 平行六面体的三边的长度:a、b、c 平行六面体的三边的夹角:
第一节 概述
分子的聚集态结构: 平衡态时分子与分子之间的几何排列
1-1 小分子的聚集态结构
物质内部的质点(分子、原子、离子)在空间的排列情况可分为: 近程有序——围绕某一质点的最近邻质点的配置有一定的秩序(邻近质点的数目(配位数)一定;邻近质点的距离一定;邻近质点在空间排列的方式一定) 远程有序——质点在一定方向上,每隔一定的距离周期性重复出现的规律。

材料的内部结构、组织与性能

材料的内部结构、组织与性能
合金的相结构及其特点见表2-2。
金属名称 晶格类型
Cr、Mo、W、 体心立方
V、 α-Fe、 bcc δ-Fe
A1、Cu、Ni 面心立方 、 γ-Fe fcc
Mg、Cd、Zn 密排六方
、Be
hcp
表2-1三种典型金属晶体结构小结
品格特征 晶胞中原子数
原子半径
a=b=c
α=β=γ=900
2
31/2 a /4
Fe-C相图可看成是前述几个简单相图的组合,其分析过程是一样的,现以
wC=1.2%的过共析钢为例进行说明。
如图2-20所示,在图中作Wc=1.2%的合金的成分垂线交相图于1、2、3、4、5点。 合金液体在0~1之间的温度范围内,处于稳定的液相;冷却到1~2点之间时,将按前 述匀晶转变结晶成奥氏体A;在2~3点之间奥氏体A处于稳定的欠饱和状态;冷到固 溶线3点时,奥氏体刚好处于饱和的临界状态。如温度一低于3点,则奥氏体变为不稳 定的过饱和状态,会以网状Fe3CⅡ的形式析出多余的溶质,温度越低,析出的 Fe3CⅡ就越多越粗,此时奥氏体的含碳量沿固溶线ES降低,奥氏体的数量也随之减 少;达到4点时,Fe3CⅡ不再析出,而余下奥氏体的成分变为S点的共晶成分,相当于 同时与相变线GS及固溶线ES接触,以及与结晶终了线——共析线接触,会因不断地 散热而在恒温下从奥氏体中同时交替析出成分为P点的片状铁素体F和成分为K点的片 状Fe3C,发生共析转变而生成层片状的珠光体(P),即AS → P(F+Fe3C)。在继 续冷却过程中Fe3CII(网状)不再变化,而珠光体中的铁素体F还会沿PQ线析出 Fe3CⅢ,但因析出量特少,常忽略不计,所以最终得到“珠光体(P)+ 网状Fe3CⅡ”的 室温组织。
金属间化合物

02第二章 金属的晶体结构与结晶

02第二章 金属的晶体结构与结晶
组织。
放大100∼2000倍的组织称高倍组织或显微组织。 在电子显微镜下放大几千∼几十万倍的组织称精细组织或电镜组
织。
显微组织实质上是指在显微镜下观察到的金属中各相或各晶粒的
形态、数量、大小和分布的组合。
二、合金的相结构
1、固溶体 合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之
理工艺的重要依据。
根据组元数, 分为二元相图、三元相图和多元相图。
Fe-C二元相图
三元相图
1. 二元相图的建立
几乎所有的相图都是通过实验得到的,最常用
的是热分析法。
二元相图的建立步骤为:[以Cu-Ni合金(白铜)为例] 1、配制不同成分的合金,测出各合金的冷却曲线,找出曲线 上的相变点(停歇点或转折点)。 2、在温度-成分坐标中做成分垂线,将相变点标在成分垂线上 3、将这些相变点连接起来,即得到Cu-Ni相图。
因而细晶粒无益。但晶粒太粗易产生应力集中。因而
高温下晶粒过大、过小都不好。
2.细化晶粒的方法
晶粒的大小取决于晶核的形成速度和长大速度。
单位时间、单位体积内形成的晶核数目叫形核率(N)。
单位时间内晶核生长的长度
叫长大速度(G)。
N/G比值越大,晶粒越细小。 因此,凡是促进形核、抑制长 大的因素,都能细化晶粒。
第二章 金属的晶体结构 与结晶
不同的金属具有不同的
力学性能,主要是由于材 料内部具有不同的成分、
组织和结构。
第一节 金属的晶体结构
一、晶体与非晶体
晶体是指原子呈规则排列的固体。常态下金属
主要以晶体形式存在。晶体具有各向异性。 非晶体是指原子呈无序排列的固体。在一定条 件下晶体和非晶体可互相转化。
T= T0 –T1

材料化学导论第2章-完美晶体的结构

材料化学导论第2章-完美晶体的结构

材料化学导论第2章-完美晶体的结构第2章完美晶体的结构绝⼤多数材料以固体形态使⽤。

因此研究固体的结构⼗分重要。

固体可以划分为如下种类:⽆定形体和玻璃体[固体中原⼦排列近程有序、远程⽆序](Amorphous and Glassy)固体(Solid states) 完美晶体[原⼦在三维空间排列⽆限延伸(Perfect crystals)有序,并有严格周期性]晶体(Crystals)缺陷晶体[固体中原⼦排列有易位、错(Defect crystals)位以及本体组成以外的杂质] 由于晶体结构是固体结构描述的基础,我们在本章中描述完美晶体的结构,下⼀章则讲授缺陷晶体的结构。

§2.1 晶体的宏观特征和微观结构特点§2.1.1晶体的宏观特征晶体的宏观特征主要有四点:1.规则的⼏何形状所有晶体均具有⾃发地形成封闭的⼏何多⾯体外形能⼒的性质。

规则的⼏何多⾯体外形表明晶体内部结构是规则的。

当然晶体的外形由于受外界条件的影响,往往同⼀晶体物质的各种不同样品的外形可能不完全⼀样。

因此,晶体的外形不是晶体品种的特征因素。

例如,我们⼤家熟知的⾷盐晶体在正常结晶条件下呈⽴⽅晶体外形,当在含有尿素的母液中结晶时,则呈现出削取顶⾓的⽴⽅体甚或⼋⾯体外形。

2.晶⾯⾓守恒在适当条件下晶体能⾃发地围成⼀个凸多⾯体形的单晶体。

围成这样⼀个多⾯体的⾯称作晶⾯。

实验测试表明,同⼀晶体物质的各种不同样品中,相对应的各晶⾯之间的夹⾓保持恒定,称作晶⾯⾓守恒。

例如,⽯英晶体根据结晶条件不同,可有各种⼏何外形,但对应晶⾯之间的夹⾓却是不变。

晶体的晶⾯相对⼤⼩和外形都是不重要的,重要的是晶⾯的相对⽅向。

所以,可以采⽤晶⾯法线的取向表征晶⾯的⽅位,⽽共顶点的晶⾯法线的夹⾓表⽰晶⾯之间的夹⾓。

3.有固定的熔点晶体熔化过程是晶体长程序解体的过程。

破坏长程序所需的能量就是熔化热。

所以晶体具有特定的熔点。

反之,也说明晶体内部结构的规则性是长程有序的。

第2章晶体结构讲解

第2章晶体结构讲解

第2章晶体结构讲解第2章晶体结构为了便于对材料进⾏研究,常常将材料进⾏分类。

如果按材料的状态进⾏分类,可以将材料分成晶态材料,⾮晶材料及准晶材料。

因所有的晶态材料有其共同的规律,近代晶体学知识就是为研究这些共同规律⽽必备的基础。

同时为了研究⾮晶材料与准晶材料及准晶材料也必须以晶体学理论做为基础。

在⼀般的教材中对晶体学的基础知识已经有了不同深度的阐述,作为辅导教材,对教科书上已经有较多阐述的内容,本章中就简要的进⾏说明,⽽重点在于⽤动画形式,将在教材中难以⽤⽂字表达清楚的内容进⾏较多的阐述,加深对教材内容的理解记忆2.1晶体学基础2.1.1 空间点阵和晶胞具有代表性的基本单元(最⼩平⾏六⾯体)作为点阵的组成单元,称为晶胞。

将晶胞作三维的重复堆砌就构成了空间点阵。

为了便于分析研究晶体中质点的排列规律性,可先将实际晶体结构看成完整⽆缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的⼏何点,称之为阵点。

这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。

同⼀空间点阵可因选取⽅式不同⽽得到不相同的晶胞<晶胞、晶轴和点阵⽮量>根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。

按照"每个阵点的周围环境相同"的要求,布拉菲(Bravais A.)⽤数学⽅法推导出能够反映空间点阵全部特征的单位平⾯六⾯体只有14种,这14种空间点阵也称布拉菲点阵。

空间点阵是晶体中质点排列的⼏何学抽象。

1 空间点阵最初⼈们认为凡是具有规则外形的天然矿物均为晶体。

但现在⼈们认识到晶体的规则的⼏何外形是内部结构规律的外在反映. 近代的科学研究表明了下⾯的两个基本事实:1)如果说某⼀种材料是晶体,其基本的特征是:组成该材料的内部的微观粒⼦(原⼦,分⼦,离⼦等)在三微的空间做有规则的周期性的排列。

2)这种排列的规律决定了材料的性能。

工程材料的组织结构

工程材料的组织结构

第二章工程材料的‎组织结构是什么因素‎影响材料的‎性能呢?如果掌握影‎响材料性能‎的因素,我们改变这‎些因素,不就能改变‎材料的性能‎了吗?那么,我们不就能‎更好的合理‎选材和使用‎材料了吗!实验研究表‎明,材料的性能‎主要取决于‎其化学成分‎和内部结构‎,材料的成分‎不同其性能‎也不同,同一成分的‎材料可通过‎改变内部结‎构和组织状‎态的方法,改变其性能‎。

因此,研究机械工‎程材料的结‎构及组织状‎态,对于生产、加工、使用现有材‎料和发展新‎型材料均具‎有重要意义‎。

§2-1 纯金属的晶‎体结构与结‎晶一、金属的晶体‎结构物质是由原‎子组成的,根据原子排‎列的特征,固体物质可‎分为晶体与‎非晶体两类‎。

晶体是指其‎内部的原子‎按一定几何‎形状作有规‎则的周期性‎排列,如金刚石、石墨及固态‎金属与合金‎都是晶体。

非晶体内部‎的原子无规‎则地排列在‎一起,如松香、沥青、玻璃等。

晶体具有固‎定的熔点和‎各向异性的‎特征,而非晶体没‎有固定熔点‎,且各向同性‎。

1、晶体结构的‎基本概念晶体结构就‎是晶体内部‎原子排列的‎方式及特征‎。

(1)晶格——抽象的、用于描述原‎子在晶体中‎规则排列的‎空间几何图‎形。

晶格中直线‎的交点称为‎结点。

(2)晶胞——能代表晶格‎特征的最小‎几何单元。

(3)晶格常数——各种晶体由‎于其晶格类‎型与晶格常‎数不同,故呈现出不‎同的物理、化学及力学‎性能。

2、常见金属的‎晶格类型(1)体心立方晶‎格体心立方晶‎格的晶胞为‎一立方体,立方体的八‎个顶角各排‎列一个原子‎,立方体中心‎有一个原子‎。

属于这种晶‎格类型的金‎属有α铁、Cr(铬)、W(钨)、Mo(钼)、V(钒)等。

(2)面心立方晶‎格面心立方晶‎格的晶胞也‎是一个立方‎体,立方体的八‎个顶角和六‎个面的中心‎各排列着一‎个原子。

属于这种晶‎格类型的金‎属有γ铁、Al(铝)、Cu(铜)、Ni(镍)、Au(金)、Ag(银)等。

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

2-3 根据组元数, 一般分为二元相图、三元相图。 三元相图
Fe-C二元相 图
2-3 同素异构转变 有些物质在固态下其晶格类型会随温度变化而发生变化,这 种现象称为同素异构转变。 锡,四方结构的白锡在13℃下转变为金刚石立方结构的灰 锡。 同素异构转变同样也遵循形核、长大的规律,但它是一个 固态下的相变过程,即固态相变。 除锡之外,铁、锰、钴、钛等也都存在着同素异构转变。
位错密度增加,能提高金属强度。
2-1
(3)面缺陷
呈面状分布的缺陷,主要是晶界和亚晶界。 晶体缺陷产生晶格畸变,使金属的强度、硬度提高,韧性下降。
2-1
二、合金的晶体结构 1.合金的基本概念
合金:两种或两种以上的金属与金属,或金属与非金属经一定方法合成的 具有金属特性的物质。 例如,钢和生铁是Fe与C的合金,黄铜是Cu和Zn的合金。 组元:组成合金最基本的物质。可以是元素,也可以是化合物。 黄铜的组元是铜和锌;青铜的组元是铜和锡。铁碳合金中的Fe3C,镁硅合 金中的Mg2Si。 合金系:组元不变,当组元比例发生变化,可配制出一系列不同成分、不 同性能的合金,这一系列的合金构成一个“合金系统”,简称合金系。
2-1
(2)金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质。
1.正常价化合物:如Mg2Si, Mg2Sn, Mg2Pb, Cu2Se等。
2.电子化合物:不遵守原子价规律,但有一定的电子浓度的化合物。
如Cu3Al, CuZn3, Cu5Zn8等。
3.间隙化合物:由过渡族金属元素与碳、氮、氢、硼等原子半径较
通常在钢中加入铝、钒,向铸铁液中加入硅铁合金。
(3)机械振动、超声振动、电磁搅拌: 使结晶过程中形成的枝晶折断裂碎,增加晶核数,达到细化晶粒的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1、硅钢片:
[100]方向易磁化, [111]方向难磁化;
例2、α- Fe铁: E
E
[111] [100]
=
=
2 284000MN/m 2 132000MN/m
七、多晶型

当外部的温度和压强改变时,金 属由一种晶体结构向另一种晶体 结构转变,称之为多晶型转变, 又称为同素异构转变。

Fe、Mn、Ti、Co等具有两种或几 种晶体结构,即具有多晶型性。

3、典型材料:高分子材料。
例、聚氯乙烯(PVC塑料):

是由C、H、Cl构成的链状大分子;

由每个分子内原子是以共价键结合的


很脆;×
但是由于链与链之间形成范德瓦尔键

分子链彼此发生滑动导致产生很
大变形

很高的塑性。 √



大多数工程材料是以混合键方 式结合的。


金属材料以金属键为主;
Y X
五、金属的典型晶体结构

最典型、最常见的晶体结构有三 种类型:
体心立方结构;
面心立方结构; 密排六方结构。


1、体心立方结构(bcc)

具有这种晶体结构的金属有Cr、V 、Mo、W和α-Fe等30多种。
2、面心立方结构(fcc)

具有这种晶体结构的金属有Al、 Cu、Ni和γ-Fe等约20种。
3、密排六方结构(hcp)

具有这种晶体结构的金属有Mg、 Zn、Cd、Be等20多种。
六、晶胞特征

由于金属的晶体结构类型不同, 导致金属的性能也不相同。

而具有相同晶胞类型的不同金属 ,其性能亦不相同,这主要是由 晶胞特征不同决定的。
晶胞特征参数:
1、晶胞原子数

一个晶胞内所包含的原子数目。
2、性能

它没有饱和性和方向性;
良好的导电性、导热性、正的 电阻温度系数;

具有良好的塑性。
3、典型材料:各种金属。
四、范德瓦尔键 1、定义

一个分子的正电荷部位和另一 个分子的负电荷部位间的微弱 静电吸引力将两个分子结合在 一起的方式。也称为分子键。
2、性能

键合较弱,在外力作用下键易 断裂;可在很大程度上改变材 料的性能; 低熔点、高塑性。

位于晶胞六面体的面中心及棱 边中点,即由六个原子所组成 的八面体中心。

rA/rB = 0.15。
(2)四面体间隙 由四个原子所组成的四面体。 rA/rB = 0.29。
6、各向异性

由于不同晶型的晶体或同一晶 格中,相应晶面和晶向原子的 排列的情况不同,导致其机械 性能及相应的其它性能有很大 的差异。
第一节

原子结合键及特性
分类:离子键、共价键、金属 键、分子键等。
一、离子键 1、定义

由于正、负离子间的库仑引力 而形成的。
2、特点
1)正负离子相间排列,正负电 荷数相等;
2)键能最高,结合力很大;
3)性能: 硬度高、强度大; 热膨胀系数小,在常温下的 导电性很差;

脆性较大。
3、典型材料:陶瓷材料。

位于晶胞中心及棱边中点, 即由六个原子所组成的八面 体中心。

设原子半径为rA, 间隙中能容纳的最 大圆球半径为rB,则有rA/rB = 0.414
(2)四面体间隙 位于晶胞体对角线上靠结点1/4处 ,由四个原子所组成的四面体。 rA/rB = 0.225。
2)体心立方晶格中的间隙
(1)八面体间隙

四、晶面与晶向
1、晶面:晶体中
由一系列原子所 组成的平面。
2、晶向:原子在
空间排列的方向 称为晶向。
3、晶向指数

求法:
1)确定坐标系; 2)过坐标原点,作直线与待求 晶向平行;
3)在该直线上任取一点,并确 定该点的坐标(x,y,z)
4)将此值化成最小整数u,v,w 并加以方括号[u v w]即是。
结构无序;
各向同性; 无固定熔点;
热导率和热膨胀性小;
塑性变形大;

组成的变化范围大。
3、典型材料:大多数聚合物。
二、晶体
1、定义

原子呈长程有序排列的物质。
3、晶体的特点

结构有序;
各向异性; 有固定的熔点。 金属; 许多陶瓷和部分高分子材料。
3)典型材料:

三、晶体结构
1、晶体结构

是指构成晶体的原子在三维空 间具体的规律排列方式。
基元
①是晶体中最基本的单元;
③晶体是由基元在空间按一定的 规则重复排列得到的。
③基元可以是单个原子,也可以 是彼此等同的原子群或分子群
点阵(空间点阵)
①是一个几何概念,晶体结构由 一维、二维或三维规则排列的 阵点组成。 ②晶体结构 = 空间点阵 + 基元
陶瓷材料以离子键为主; 高分子材料以共价键为主。
第二节

晶体结构(原子排列)
原子排列可分为:
①无序排列、短程有序和长程有序;
②晶体与非晶体。
晶态
非晶态
金属的结构
SiO2的结构
一、非晶体 1、定义:

若构成材料的原子在三维空间 呈无序或短程有序排列,则称 此材料为非晶态材料。
2、特点


简单正交 底心正交 体心正交 面心正交
立方 Cubic a=b=c, α=β=γ=90º
简单三斜
简单单斜
底心单斜
简单正交
体心正交
底心正交
面心正交
简单立方
体心立方
面心立方
简单六方
简单菱方
简单四方
体心四方

可用点阵参数来描述晶胞的尺 寸和形状;
各边长度:a、b、c; 各边之间夹角:α、β、γ。
(hkl)与[uvw]分别表示的是一组 平行的晶向和晶面。 指数虽然不同,但原子排列完全 相同的晶向和晶面称作晶向族或 晶面族。 分别用{hkl}和<uvw>表示。


{110}晶面族
Z (110) (011) (011) (101)
(101) Y (110)
X
<111>晶向族
[111] [111] Z [111] [111]

代表一组互相平行,方向一致 的晶向。
4、晶面指数
(110)

求法:
顶点为原点O,三棱边为三坐
1)在所求晶面外取晶胞的某一
标轴x,y,z; 2)以棱边长a为单位,量出待定
晶面在三个坐标轴上的截距;
3)取截距之倒数,并化为最小 整数h,k,l,

并加以圆括号(h k l)即是。

晶面族与晶向族
二、共价键
1、定义

是由于相邻原子共用其外部价 电子,形成稳定的电子满壳层
结构而形成。
2、共价键性能

结合力很大,硬度高、强度大 、熔点高,延展性和导电性都 很差,具有很好的绝缘性能。
3、典型材料:

金刚石、陶瓷和聚合物材料。
三、金属键 1、定义

贡献出价电子的原子成为正离
子,与公有化的自由电子间产 生静电作用而结合的方式。
晶胞 配 晶格 最密原 内原 位 致密 子面 子数 数 度 体心立 方结构
2 8Байду номын сангаас0.68 {110}
最密原 子方向
<111>
面心立 方结构 密排六 方结构
4
12
0.74
{111}
<110>
6
12
0.74
{0001}
<1120>

晶向密度的计算

晶面密度的计算
5、晶胞中的间隙
1)面心立方晶格中的间隙 (1)八面体间隙
四方(正方)Tetragonal a=b≠c, α=β=γ=90º
布拉菲 点阵
简单六方
三斜Triclinic a≠b≠c , α≠β≠γ 单斜 Monoclinic a≠b≠c, α=γ=90º ≠β
简单单斜 底心单斜
简单菱方
简单四方 体心四方 简单立方 体心立方 面心立方
正交 a≠b≠c, α=β=γ=90º
2、晶格

将晶体的原子几何化成一点, 用一系列平行直线连接起来, 构成一空间格架叫晶格。
3、晶胞

从晶格中取出一个能保持点阵几 何特征的基本单元叫晶胞。

14种空间点阵称为布拉菲点阵
晶系 布拉菲 点阵
简单三斜
晶系
六方 Hexagonal a1=a2=a3≠c,α=β=90º, γ=120º 菱方 Rhombohedral a=b=c, α=β=γ≠90º
2、原子半径r

晶胞中原子密度最大的方向上相 邻两原子之间距离的一半。
3、配位数

晶格中任一原子最邻近、等距离 的原子数。
4、致密度(K)

体密度:是指晶胞中所含全部 原子的体积总和与该晶胞体积 之比; 面密度:是指某晶面上所含原 子的个数;


线密度:指某晶向上所含原
子的个数;

作用:对晶体原子排列紧密 程度进行定量比较,说明结 合力的大小。
第二章 材料的内部结构
重点:材料内部结构与性能的
关系。
难点:晶体学(晶体结构与缺陷) 学习方法: 应用原子间结合力和
位错理论解释材料的性能。
一、原子的结合键
1、显著影响材料的电、 磁、光和热性能;
2、决定材料的类型。
二、原子的空间排列
相关文档
最新文档