排列组合方法总结
考公排列组合篇章总结(思维导图)
给出情况求概率。
给出概率求概率。
满足条件的情况数
概率=
总情况数
概率=各步概率的乘积
概率=各类概率的和
概率=1-不满足条件的概率
排列组合
基础概念 常用方法 概率相关
排列公式 组合公式
Anm
= n(n−1)(n−2)⋯(n−m+1)=
(n
n! − m)!
,n,m∈N
∗
,并且m≤n。
举例:A63
=6×5×4=120。(从下标开始乘,依次递减,乘上标那么多数。)
与顺序有关。
Cnm
=
Anm Amm
=
n(n
−
1)(n
−
2) ⋯ m!
全错位排列
当题目要求不能一一对应时,比如:n把钥匙对应n个锁,要求每个锁和一把不能 打卡它的钥匙放进一个信封,这就是全错位排列。
具体用法
错位排列用Dn
表示,Dn
表示n个数字的全错位排列。
记ห้องสมุดไป่ตู้:D1
=0,D2
=1,D3
=2,D4
=9,D5
=44,尤其是最后两个数考频很
高。
题型类别 基础公式
插空法
当题目中出现“间隔”“不相邻”“不连续”等要求时,考虑插空法。
具体用法
将可以相邻的元素进行排列,排列后形成若干空位。 将不相邻的元素插入形成的空位中。
插排法
题目形式为把n个相同的物品分给m个主体,要求每个主体至少分1个时,用插排 法。
具体用法
公式:Cnm−−11
若要求每个主体至少分a个,可以先给每个主体分(a-1)个,剩余物品分配时, 转化为每个主体至少分1个,再应用插板法解决。
完整版)排列组合的二十种解法(最全的排列组合方法总结)
完整版)排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略,能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。
3.分类计数原理和分步计数原理区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1:由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
重磅-MBA排列组合方法总结
MBA 排列组合方法总结一、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为()A 、240B 、256C 、264D 、288E 、320解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排首位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 选D 二、【相邻问题】捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有()A 、60种B 、48种C 、36种D 、24种E 、72种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .三、【相离问题】插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例:七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A 、1440种B 、3600种C 、4800种D 、4820种E 、4880种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .四、【选排问题】先选后排法从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 五、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用m-1块隔板插入n 个元素排成一排的n-1个空隙中,所有分法数为:11--m n C 。
排列组合解题方法和策略总结
排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。
排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。
以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。
2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。
3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。
4.分类讨论:对于一些复杂的问题,需要进行分类讨论。
根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。
5.排除法:在某些情况下,可以通过排除法求解问题。
根据问题的限制条件,排除一些不可能的情况,从而减少计算量。
6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。
通过递推关系,逐步推导出最终的排列组合情况。
7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。
通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。
8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。
通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。
解决排列组合问题需要掌握一定的方法和策略。
通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。
同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。
排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。
例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。
2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。
排列组合的公式总结
排列组合的公式总结排列组合是数学中一个有趣但有时也让人头疼的部分。
在咱们从小学到高中的数学学习旅程中,它可是个重要的角色。
先来说说排列的公式。
排列呢,就是从 n 个不同元素中取出 m 个元素的排列数,记作 A(n,m) 。
它的公式是 A(n,m) = n! / (n - m)! 。
这里的“!”表示阶乘,比如说 5! = 5 × 4 × 3 × 2 × 1 。
给大家举个例子吧,咱们学校组织演讲比赛,从 10 个同学中选 3个同学先后上台演讲,那一共有多少种不同的安排顺序呢?这就是一个排列问题。
按照公式,A(10,3) = 10! / (10 - 3)! = 10 × 9 × 8 = 720 种。
也就是说,有 720 种不同的上台顺序。
再说说组合的公式。
组合是从 n 个不同元素中取出 m 个元素的组合数,记作 C(n,m) ,公式是 C(n,m) = n! / [m! × (n - m)!] 。
比如说,咱们班要选5 个人参加数学竞赛,不考虑他们的参赛顺序,那一共有多少种选法?这就是组合问题。
C(20,5) = 20! / [5! × (20 - 5)!] ,算出来就是 15504 种选法。
排列和组合的区别,简单来说,排列讲究顺序,组合不讲究顺序。
就像分糖果,给小明、小红、小刚分 3 颗不同的糖果,如果考虑谁先拿谁后拿,那就是排列;要是不考虑谁先谁后,只看最后谁拿到了哪颗糖,那就是组合。
在实际做题的时候,大家可得擦亮眼睛,分清楚到底是排列还是组合。
我记得有一次考试,有一道题是从 8 个不同的水果里选 3 个装在一个果篮里,很多同学没搞清楚这是组合问题,用了排列的公式,结果就做错啦。
还有啊,做排列组合的题,有时候要分类讨论,有时候要用间接法。
比如说,计算从 1 到 20 这 20 个自然数中,能被 2 或 3 整除的数的个数。
排列组合题型总结
排列组合题型总结排列组合是数学中的一种常见的问题类型,它涉及到对一组元素进行不同排列或组合的情况计算。
在解决排列组合问题时,可以采用不同的方法和公式,以下是一些常见的排列组合题型及其解决方法的总结。
1. 排列问题:排列是从一组元素中抽取若干个元素按照一定的顺序组成不同的序列。
解决排列问题时,可以使用如下的排列公式。
公式:P(n, k) = n! / (n-k)!其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行排列,可以得到的排列数为:P(4, 2) = 4! / (4-2)! = 4*3 = 12。
2. 组合问题:组合是从一组元素中抽取若干个元素按照任意顺序组成的不同子集。
解决组合问题时,可以使用如下的组合公式。
公式:C(n, k) = n! / (k! * (n-k)!)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行组合,可以得到的组合数为:C(4, 2) = 4! / (2! * (4-2)!) = 4*3 / 2 = 6。
3. 重复排列问题:重复排列是从一组元素中进行有放回地抽取若干个元素,按照一定的顺序组成的不同序列。
解决重复排列问题时,可以使用如下的重复排列公式。
公式:P'(n, k) = n^k其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复排列,可以得到的不同序列数为:P'(4, 2) = 4^2 = 16。
4. 重复组合问题:重复组合是从一组元素中进行有放回地抽取若干个元素,按照任意顺序组成的不同子集。
解决重复组合问题时,可以使用如下的重复组合公式。
公式:C'(n, k) = C(n+k-1, k)其中,n表示一组元素中的总个数,k表示抽取的个数。
示例:从4个元素中选取2个元素进行重复组合,可以得到的不同子集数为:C'(4, 2) = C(4+2-1, 2) = C(5, 2) = 5! / (2! * (5-2)!) = 5*4 / 2 = 10。
排列组合公式总结大全(3篇)
第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。
它广泛应用于统计学、概率论、计算机科学、组合数学等领域。
以下是对排列组合中常用公式的总结,以供参考。
一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。
2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。
3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。
2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。
(2)排列的运算性质与组合的运算性质不同。
四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。
2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。
3. 排列组合在统计学中的应用:抽样调查、数据分析等。
排列组合常用方法总结(全)
解决排列组合问题常见策略学习指导1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。
组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的。
较复杂的排列组合问题一般是先分组,再排列。
必须完成所有的分组再排列,不能边分组边排列.排列组合问题的常见错误是重复和遗漏.弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧.集合是常用的工具之一.为了将抽象问题具体化,可以从特殊情形着手,通过画格子,画树图等帮助理解。
“正难则反”是处理问题常用的策略。
常用方法:一. 合理选择主元例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有种不同坐法。
例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。
二. “至少"型组合问题用隔板法对于“至少”型组合问题,先转化为“至少一个"型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。
例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法?解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:(种)三。
注意合理分类元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)的特殊性进行合理分类,求出各类排列组合数。
再用分类计数原理求出总数。
例6. 求用0,1,2,3,4,5六个数字组成的比2015大的无重复数字的四位数的个数。
解:比2015大的四位数可分成以下三类:第一类:3×××,4×××,5×××,共有:(个);第二类:21××,23××,24××,25××,共有:(个);第三类:203×,204×,205×,共有:(个)∴比2015大的四位数共有237个。
排列组合总结
排列组合题型总结排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。
因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。
一.直接法1. 特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理:25A 24A =240 2.特殊位置法(2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A ,共有14A 14A 24A =192所以总共有192+60=252二.间接法当直接法求解类别比较大时,应采用间接法。
如上例中(2)可用间接法2435462A A A +-=252例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书?分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ⨯⨯个,其中0在百位的有2242⨯C ⨯22A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯22A =432(个)三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ⨯=100中插入方法。
四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种?分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×44A =576练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C )2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)五.阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
(完整版)排列组合方法归纳
排列组合方法总结1、【特殊元素、特殊位置】优先法在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的元素占了这两个位置,先安排末位共有13C ;然后排首位共计有14C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C 2、【相邻问题】捆绑法题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有( )解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,3、【相离问题】插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种 4、【选排问题】先选后排法从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种. 5、【相同元素分配问题】隔板法将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插入n 个元素排成一排的n-1个空隙中,所有分法数为:11--m n C 。
例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案故共有不同的分配方案为为6984C =种 (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵6、【平均分组问题】消序法平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
排列组合的二十种解法(最全的排列组合方法总结)
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合知识点归纳总结高考
排列组合知识点归纳总结高考一、简介排列组合是数学中的一个重要分支,也是高考数学考试中常见的题型。
掌握排列组合的知识,不仅可以帮助我们解决实际问题,还有助于提高我们的逻辑思维能力和解决问题的能力。
本文将对排列组合的基本概念、计算公式以及应用进行总结和归纳。
二、基本概念1. 排列排列是从给定的若干个元素中,取出一部分元素,按照一定的顺序进行排列。
排列的计算公式为:A(n,m) = n! / (n - m)!2. 组合组合是从给定的若干个元素中,取出一部分元素,不考虑其顺序,进行组合。
组合的计算公式为:C(n,m) = n! / (m! * (n - m)!)三、排列组合的计算公式1. 排列当元素可以重复使用时,排列的计算公式为:A'(n,m) = n^m2. 组合当元素可以重复使用时,组合的计算公式为:C'(n,m)= C(n+m-1,m)四、应用1. 随机抽奖在某次抽奖活动中,参与者共10人,要从中抽取3名幸运儿,问有多少种可能的结果?解题思路:这是一个组合问题,从10人中抽取3人,不考虑顺序。
根据组合的计算公式C(n,m) = n! / (m! * (n - m)!), 可以得出C(10,3) = 10! / (3! * (10 - 3)!) = 120 种可能的结果。
2. 配对组合在某次活动中,有5对情侣参加,要求每对情侣都不跟自己的伴侣配对,问有多少种可能的配对方式?解题思路:这是一个排列问题,每对情侣都有两种可能的配对方式。
根据排列的计算公式A(n,m) = n! / (n - m)!, 可以得出A(10,5) = 10! / (10 - 5)! = 30,240 种可能的配对方式。
3. 买彩票中奖某彩票号码由6个数字组成,开奖时从0-9之间随机选择6个数字作为中奖号码,以每注彩票中奖概率为4‰,购买一张彩票的中奖概率是多少?解题思路:这是一个组合问题,从10个数字中选择6个数字作为中奖号码,不考虑顺序。
高中排列与组合方法总结
高中排列与组合方法总结(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素.例如:用组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数是指从个元素中取出个元素,再将这个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列.(二)排列组合的常见模型1、分类讨论:(1)元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.(2)“至少”“至多”问题----间接排除法或分类讨论.2、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.3、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序.注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序依次插空:如果在个元素的排列中有个元素保持相对位置不变,则可以考虑先将这个元素排好位置,再将个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空)4、分组问题:平均分组、局部平均分组---除序法5、分配问题:(1)有序分配问题----逐分法;(2)全员分配问题---分组法;(3)名额分配问题---隔板法;(4)限制条件的分配问题---分类法.6、涂色问题:解答区域涂色问题,一是根据分步计数原理,对各个区域分步涂色;二是根据共用了多少种颜色分类讨论;三是根据相间区域使用颜色的种数分类.以上三种方法常会结合起来使用。
7、圆排列问题:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时针)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列.类型一:分类讨论例1 在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。
(word完整版)排列组合的二十种解法(最全的排列组合方法总结),推荐文档
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合题型方法总结
排列组合题型方法总结排列组合是高中数学中的一个重要概念,是组合数学的一部分。
在实际问题中,排列组合经常用于解决具体的计数问题。
在本文中,我将总结一些常见的排列组合题型及解题方法。
一、排列题型排列是指将一组元素按照一定的顺序进行排列,其中每个元素只能使用一次。
在排列题中常见的有以下几个题型:1. 线性排列:将不同的元素排成一列,求出排列的总数。
解题方法:根据要求确定对应的元素个数,并使用乘法法则计算排列的总数。
2. 圆排列:将不同的元素排成一个圆,求出排列的总数。
解题方法:将圆转成线性排列问题,然后使用相应的公式计算总数。
3. 重复排列:将一组相同的元素排列,求出排列的总数。
解题方法:根据相同元素的个数和元素总数使用组合计数的方法求解。
4. 位置固定:将一组元素排列,其中有一些元素的位置是固定的,求出排列的总数。
解题方法:先将固定位置的元素排列,再将剩余的元素排列,最后将两部分排列的总数相乘。
二、组合题型组合是指从一组元素中选取一部分元素进行组合,其中元素的顺序不重要。
在组合题中常见的有以下几个题型:1. 选取固定元素数量:从一组元素中选取固定数量的元素,求出组合的总数。
解题方法:根据选取数量使用排列计数的方法求解,然后除以固定元素的排列数。
2. 选取至少/至多元素数量:从一组元素中选取至少或至多数量的元素,求出组合的总数。
解题方法:分别计算满足要求的最少元素数量和最多元素数量的组合数,再将两者相加。
3. 选取按顺序:从一组元素中按照一定的顺序选取元素,求出组合的总数。
解题方法:根据顺序确定每个元素的选取范围,然后使用乘法法则计算总数。
4. 选取排除元素:从一组元素中选取一部分元素,其中不能包含某些特定的元素,求出组合的总数。
解题方法:先计算从总元素中选取的组合数,再计算不包含特定元素的组合数,最后将两者相减。
三、应用题在实际问题中,排列组合常常用于解决具体的计数问题。
下面列举几个常见的排列组合应用题:1. 手环问题:将不同颜色的手环依次戴在手上,求出不同戴法的总数。
排列组合的二十种解法(最全的排列组合方法总结)
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合题型方法总结
排列组合题型方法总结在数学中,排列组合是一种常见的题型,出现在各个学段的数学教材和考试中。
掌握好排列组合的解题方法对于学生而言至关重要。
在本文中,我将总结一些常见的排列组合题型以及解题方法,帮助读者更好地理解和应用。
一、排列问题1.基本排列问题基本的排列问题是指从给定的一组元素中,按照一定的顺序或规则选择若干个元素进行排列。
其中,元素的顺序会影响最终的排列结果。
例如,有5个球分别用字母A、B、C、D、E表示,要求从中任意选取3个球进行排列,则有5P3种排列方式。
公式为:P(n,r) = n! / (n-r)!其中,n表示元素的总个数,r表示选择的元素个数。
2.带重复元素的排列问题有些排列问题中,元素可能存在重复。
那么在计算排列的总数时,需要考虑重复元素带来的影响。
例如,有5个球分别用字母A、A、B、C、D表示,要求从中任意选取3个球进行排列,则有5!/2!种排列方式。
公式可以改写为:P(n,r) = n! / (n1! * n2! * ... * nr!)其中,n表示元素的总个数,n1、n2...nr表示重复元素的个数。
二、组合问题组合问题是指从给定的一组元素中,按照一定的顺序或规则选择若干个元素进行组合。
与排列不同的是,组合中元素的顺序不影响最终的组合结果。
1.基本组合问题基本的组合问题是指从给定的一组元素中,任意选择若干个元素进行组合,不考虑元素的顺序。
例如,有5个球分别用字母A、B、C、D、E表示,要求从中任意选取3个球进行组合,则有5C3种组合方式。
公式为:C(n,r) = n! / (r! * (n-r)!)其中,n表示元素的总个数,r表示选择的元素个数。
2.带重复元素的组合问题与带重复元素的排列问题类似,组合问题中也可能存在重复的元素。
同样需要考虑重复元素带来的影响。
例如,有5个球分别用字母A、A、B、C、D表示,要求从中任意选取3个球进行组合,则有5!/2! / 3!种组合方式。
公式可以改写为:C(n,r) = (n! / (r! * (n1! * n2! * ... * nr!)) / r!其中,n表示元素的总个数,n1、n2...nr表示重复元素的个数。
排列组合知识点总结+典型例题及答案解析
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类方法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m 〔m ≤n 〕个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m 〔m ≤n 〕个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:假设12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕 ②有序还是无序 ③分步还是分类。
排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全
排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。
例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。
例2: 学校组织老师学生一起看电影,同一排电影票12张。
8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。
排列组合知识点总结
排列组合知识点总结排列组合是数学中一个重要的分支,它在解决许多实际问题中都有着广泛的应用,比如抽奖、选座位、安排比赛等等。
下面让我们一起来详细了解一下排列组合的相关知识点。
一、基本概念1、排列从 n 个不同元素中,任取 m(m≤n)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同。
排列数用 A(n, m) 表示。
2、组合从 n 个不同元素中,任取 m(m≤n)个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合。
组合数用 C(n, m) 表示。
二、排列数与组合数的计算公式1、排列数公式A(n, m) = n(n 1)(n 2)…(n m + 1) = n! /(n m)!2、组合数公式C(n, m) = n! / m!(n m)!三、排列组合的基本性质1、排列的性质(1)A(n, n) = n!(2)A(n, m) = nA(n 1, m 1)2、组合的性质(1)C(n, 0) = C(n, n) = 1(2)C(n, m) = C(n, n m)四、解决排列组合问题的常用方法1、特殊元素优先法对于存在特殊元素的问题,优先考虑特殊元素的排列或组合。
2、捆绑法当要求某些元素必须相邻时,可以将这些元素看作一个整体,与其他元素一起进行排列,然后再考虑这些相邻元素的内部排列。
3、插空法当要求某些元素不能相邻时,先将其他元素排列好,然后在这些元素之间及两端的空位中插入不能相邻的元素。
4、间接法有些问题直接求解较为复杂,可以先求出总的排列或组合数,然后减去不符合要求的排列或组合数。
5、分类讨论法当问题包含多种情况时,需要对不同情况进行分类讨论,然后将各种情况的结果相加。
五、常见的排列组合问题类型1、排队问题例如,n 个人排成一排,共有多少种不同的排法;某些人必须相邻或不能相邻的排法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合方法总结(新导航用)
1、【特殊元素、特殊位置】优先法
在排列、组合问题中,如果某些元素或位置有特殊要求,则一般需要优先满足要求。
例:有0,1,2,3,4,5可以组成没有重复的五位奇数的个数为( )
解析:五位奇数的末尾必须是奇数,还有首位不能为0,都应该优先安排,以免不合要求的
元素占了这两个位置,先安排末位共有13C ;然后排首位共计有1
4C ;最后排其他位置共计有34A ;由分步计数原理得.288341413=A C C
2、【相邻问题】捆绑法
题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
例:,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排
法种数有( )
解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,
3、【相离问题】插空法
元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的
几个元素插入上述几个元素的空位和两端.
例:七人并排站成一行,如果甲乙两人必须不相邻,那么不同的排法种数有( )
解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2
6A 种,不同的排法种数是52563600A A =种
4、【选排问题】先选后排法
从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先选后排法.
例:四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
解析:先取:四个球中选两个为一组(捆绑法),其余两个球各自为一组的方法有2
4C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.
5、【相同元素分配问题】隔板法
将n 个相同的元素分成m 份(m,n 均为正整数),每份至少一个元素,可以用 m-1块隔板插
入n 个元素排成一排的n-1个空隙中,所有分法数为:1
1--m n C 。
如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵
例:(1)10个三好生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案
故共有不同的分配方案为为6984C =种
(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )
平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后一定要消除顺序(除以n n A ,n 为均分的组数),避免重复计数。
例:6本不同的书平均分成3组,每堆2本的分法数有( )种
解析:分三步取书得224426C C C 中分法,但是这里出现重复计数的现象。
除去重复计数3
3A ,即共有33
224426A C C C 7、【有序分配问题】逐分法
有序分配问题指把元素分成若干组,可用逐步下量分组
例:将12名警察分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分
配方案有( )种
A 、4
441284C C C B 、44412843C C C C 、4431283
C C A
D 、444128433C C C A 答案:A 8、【可重复的排列问题】求幂法(分步)
允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.
例:把6名实习生分配到7个车间实习共有多少种不同方法?
解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种
9、【“至少”“至多”问题等用】排除法(也可用分类列举法)
例:从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,
则不同的取法共有( )种
解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,
故不同的取法共有33394570C C C --=种,选.C
解析2:正向思考,至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;
甲型2台乙型1台;故不同的取法有2112545470C C C C +=台,选C .
10、【多元问题】分类列举法
例:(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位
数字的共有( )
解析:按题意,个位数字只可能是0,1,2,3,4共5种情况,分别有
55A ,113113113134
3333323333,,,A A A A A A A A A A A 个,合并总计300个,选B (2)30030能被多少个不同偶数整除?
解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取, 3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为:
01234555555532C C C C C C +++++=个.。