【配套K12】2018年高考数学总复习第九章平面解析几何第6讲双曲线课时作业
2018版高考数学复习第九章平面解析几何9.6双曲线教师用书文新人教版
2018版高考数学大一轮复习第九章平面解析几何 9.6 双曲线教师用书文新人教版1.双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当2a<|F1F2|时,P点的轨迹是双曲线;(2)当2a=|F1F2|时,P点的轨迹是两条射线;(3)当2a>|F1F2|时,P点不存在.2.双曲线的标准方程和几何性质巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2答案 A解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.若方程x 22+m -y 2m +1=1表示双曲线,则m 的取值范围是( )A .m >-1B .m <-2C .-2<m <-1D .m >-1或m <-2答案 D解析 由题意知(2+m )(m +1)>0,解得m >-1或m <-2,故选D.3.(2015·安徽)下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1C.y 24-x 2=1 D .y 2-x 24=1答案 C解析 由双曲线性质知A 、B 项双曲线焦点在x 轴上,不合题意;C 、D 项双曲线焦点均在y 轴上,但D 项渐近线为y =±12x ,只有C 符合,故选C.4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1. (3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1. 命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有|PF 1|-|PF 2| =|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=22+22-422×42×22=34. 引申探究1.本例中将条件“|PF 1|=2|PF 2|”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=8, 所以12F PF S ∆=12|PF 1|·|PF 2|sin 60°=2 3.2.本例中将条件“|PF 1|=2|PF 2|”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上,则|PF 1|-|PF 2|=2a =22, 由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→,所以在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16,所以|PF 1|·|PF 2|=4, 所以12F PF S ∆=12|PF 1|·|PF 2|=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则|AP |+|AF 2|的最小值为( ) A.37+4 B.37-4 C.37-2 5D.37+2 5(2)(2015·课标全国Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________. 答案 (1)C (2)x 24-y 2=1解析 (1)由题意知,|AP |+|AF 2|=|AP |+|AF 1|-2a , 要求|AP |+|AF 2|的最小值,只需求|AP |+|AF 1|的最小值, 当A ,P ,F 1三点共线时,取得最小值, 则|AP |+|AF 1|=|PF 1|=37,∴|AP |+|AF 2|的最小值为|AP |+|AF 1|-2a =37-2 5. 故选C.(2)由双曲线的渐近线方程为y =±12x ,可设该双曲线的标准方程为x 24-y 2=λ(λ≠0),已知该双曲线过点(4,3),所以424-(3)2=λ,即λ=1,故所求双曲线的标准方程为x 24-y2=1.题型二 双曲线的几何性质例4 (1)(2016·浙江)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)A (2)32解析 (1)由题意可得m 2-1=n 2+1,即m 2=n 2+2,又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1. (2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, ∴2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为( )A. 2B.32 C.3 D .2答案 A解析 离心率e =|F 1F 2||MF 2|-|MF 1|,由正弦定理得e =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.故选A. 题型三 直线与双曲线的综合问题例5 (2017·兰州月考)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1). 思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点. (1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 (1)由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1,得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*) ∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=k2--k2-,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.故k 的取值范围是{k |1<k <2}. (2)由(*)式得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2=2+k2-k2k 2-2=63,整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54,又1<k <2,∴k =52, ∴x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14.11.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).① ∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2015·福建)若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5 D .3 答案 B解析 由双曲线定义||PF 2|-|PF 1||=2a ,∵|PF 1|=3,∴P 在左支上,∵a =3,∴|PF 2|-|PF 1|=6,∴|PF 2|=9,故选B.2.(2016·全国乙卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1, ∴-1<n <3,故选A.3.(2016·佛山模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若|AB |=5,则△ABF 1的周长为( ) A .16 B .20 C .21 D .26答案 D解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义|AF 1|-|AF 2|=|BF 1|-|BF 2|=2a =8, ∴|AF 1|+|BF 1|=|AF 2|+|BF 2|+16=21, ∴△ABF 1的周长为|AF 1|+|BF 1|+|AB | =21+5=26. 故选D.4.(2016·庐江第二中学月考)已知椭圆x 2a 21+y 2b 21=1(a 1>b 1>0)的长轴长、短轴长、焦距成等比数列,离心率为e 1;双曲线x 2a 22-y 2b 22=1(a 2>0,b 2>0)的实轴长、虚轴长、焦距也成等比数列,离心率为e 2,则e 1e 2等于( ) A.22B .1 C. 3 D .2 答案 B解析 由b 21=a 1c 1,得a 21-c 21=a 1c 1,∴e 1=c 1a 1=5-12. 由b 22=a 2c 2,得c 22-a 22=a 2c 2,∴e 2=c 2a 2=5+12. ∴e 1e 2=5-12×5+12=1. 5.(2015·课标全国Ⅰ)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233答案 A解析 由题意知a =2,b =1,c =3,∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0, 即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33.故选A. 6.(2016·银川模拟)已知双曲线x 29-y 2m=1(m >0)的一个焦点在圆x 2+y 2-4x -5=0上,则双曲线的渐近线方程为( ) A .y =±34xB .y =±43xC .y =±53x D .y =±324x答案 B解析 由⎩⎪⎨⎪⎧y =0,x 2+y 2-4x -5=0,得x 2-4x -5=0,解得x =5或x =-1,又a =3,故c =5, 所以b =4,双曲线的渐近线方程为y =±43x ,故选B.7.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________;b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.8.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________. 答案 (27,8) 解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设P 在右支上, 设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8.9.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________. 答案 53解析 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值, ∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.10.设双曲线C 的中心为点O ,若有且只有一对相交于点O 且所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是____________. 答案 ⎝⎛⎦⎥⎤233,2 解析 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围大于30°且小于等于60°,即t an 30°<b a ≤tan 60°,∴13<b 2a 2≤3.又e 2=(c a )2=c 2a 2=1+b 2a 2,∴43<e 2≤4,∴233<e ≤2. 11.中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线实半轴之差为4,离心率之比为3∶7. (1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos∠F 1PF 2的值.解 (1)由已知c =13,设椭圆长半轴长,短半轴长分别为a ,b , 双曲线实半轴长,虚半轴长分别为m ,n ,则⎩⎪⎨⎪⎧a -m =4,7·13a =3·13m ,解得a =7,m =3.∴b =6,n =2. ∴椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.(2)不妨设F 1,F 2分别为左,右焦点,P 是第一象限的一个交点, 则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6, ∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=213, ∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=102+42-1322×10×4=45. 12.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*13.已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率e =52,虚轴长为2. (1)求双曲线C 的标准方程;(2)若直线l :y =kx +m 与双曲线C 相交于A ,B 两点(A ,B 均异于左,右顶点),且以AB 为直径的圆过双曲线C 的左顶点D ,求证:直线l 过定点,并求出该定点的坐标.(1)解 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由已知,得c a =52,2b =2, 又a 2+b 2=c 2,解得a =2,b =1, ∴双曲线的标准方程为x 24-y 2=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24-y 2=1,得(1-4k 2)x 2-8mkx -4(m 2+1)=0,有⎩⎪⎨⎪⎧1-4k 2≠0,Δ=64m 2k 2+-4k2m 2+,x 1+x 2=8mk 1-4k 2,x 1x 2=-m 2+1-4k2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 21-4k2,以AB 为直径的圆过双曲线C 的左顶点D (-2,0), ∴k AD k BD =-1,即y 1x 1+2·y 2x 2+2=-1, ∴y 1y 2+x 1x 2+2(x 1+x 2)+4=0,∴m 2-4k 21-4k 2+-m 2+1-4k2+16mk1-4k2+4=0, ∴3m 2-16mk +20k 2=0,解得m 1=2k ,m 2=10k 3.当m 1=2k 时,l 的方程为y =k (x +2), 直线过定点(-2,0),与已知矛盾; 当m 2=10k 3时,l 的方程为y =k (x +103),直线过定点(-103,0),经检验符合已知条件.∴直线l 过定点,定点坐标为(-103,0).。
精选江苏专用2018版高考数学专题复习专题9平面解析几何第61练双曲线练习文
(江苏专用)2018版高考数学专题复习 专题9 平面解析几何 第61练 双曲线练习 文1.(2016·泰州一模)在平面直角坐标系xOy 中,双曲线x 2-y 2=1的实轴长为________.2.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是________________.3.(2016·南京模拟)设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y=0,F 1、F 2分别是双曲线的左、右焦点,若PF 1=3,则PF 2=________.4.(2016·上饶二模)双曲线x 24-y 2=1的右顶点到该双曲线的渐近线的距离为________.5.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点为(4,3),则此双曲线的方程为________________.6.(2016·湖北部分重点中学第一次联考)双曲线x 2a 2-y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,已知线段F 1F 2被点(b,0)分成3∶1的两段,则此双曲线的离心率为________.7.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且3PF 1=4PF 2,则△PF 1F 2的面积为________.8.(2016·苏、锡、常、镇四市二模)在平面直角坐标系xOy 中,已知方程x 24-m -y 22+m =1表示双曲线,则实数m 的取值范围为________.9.(2016·南通一模)已知双曲线x 2-y 22=1的左,右焦点分别为F 1,F 2,点M 在双曲线上且MF 1→·MF 2→=0,则点M 到x 轴的距离d =________.10.过双曲线x 2a 2-y 2b2=1(b >a >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为________. 11.如果x 2k -2+y 21-k=-1表示焦点在y 轴上的双曲线,那么它的半焦距c 的取值范围是________.12.(2016·安徽江南十校联考)以椭圆x 29+y 25=1的顶点为焦点,焦点为顶点的双曲线C ,其左,右焦点分别是F 1,F 2,已知点M 的坐标为(2,1),双曲线C 上的点P (x 0,y 0)(x 0>0,y 0>0)满足PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,则S △PMF 1-S △PMF 2=________.13.(2016·扬州二模)圆x 2+y 2=4与y 轴交于点A ,B ,以A ,B 为焦点,坐标轴为对称轴的双曲线与圆在y 轴左边的交点分别为C ,D ,当梯形ABCD 的周长最大时,此双曲线的方程为________________.14.(2016·淮北一模)称离心率为e =5+12的双曲线x 2a 2-y2b2=1(a >0,b >0)为黄金双曲线,如图是双曲线x 2a 2-y 2b2=1(a >0,b >0,c =a 2+b 2)的图象,给出以下几个说法:①双曲线x 2-2y25+1=1是黄金双曲线; ②若b 2=ac ,则该双曲线是黄金双曲线;③若F 1,F 2为左,右焦点,A 1,A 2为左,右顶点,B 1(0,b ),B 2(0,-b ),且∠F 1B 1A 2=90°,则该双曲线是黄金双曲线;④若MN 经过右焦点F 2,且MN ⊥F 1F 2,∠MON =90°,则该双曲线是黄金双曲线. 其中正确命题的序号为________.答案精析1.2 2 2.x 24-y 25=1 3.7 4.2555.y 29-x 216=1解析 由题意可知c =32+42=5, ∴a 2+b 2=c 2=25,①又点(4,3)在y =a b x 上,故a b =34,②由①②解得a =3,b =4, ∴双曲线的方程为y 29-x 216=1. 6.233解析 由题意可得b +c c -b =3,c =2b ,则c 2=4b 2=4(c 2-a 2),2a =3c ,离心率e =c a =233. 7.24解析 双曲线的实轴长为2,焦距为F 1F 2=2×5=10. 据题意和双曲线的定义知,2=PF 1-PF 2=43PF 2-PF 2=13PF 2,∴PF 2=6,PF 1=8.∴PF 21+PF 22=F 1F 22,∴PF 1⊥PF 2, ∴S △PF 1F 2=12PF 1·PF 2=12×6×8=24.8.(-2,4) 解析 方程x 24-m -y 22+m=1表示双曲线, 则⎩⎪⎨⎪⎧4-m >0,2+m >0或⎩⎪⎨⎪⎧4-m <0,2+m <0,故-2<m <4.9.233解析 根据题意可知S △F 1MF 2=12|F 1F 2→|·d =12|MF 1→|·|MF 2→|,利用条件及双曲线定义得⎩⎪⎨⎪⎧||MF 1→|-|MF 2→||=2,|MF 1→|2+|MF 2→|2=12,解方程组可得|MF 1→|·|MF 2→|=4, 所以所求的距离d =423=233.10.10解析 由题意可知,经过右顶点A 的直线方程为y =-x +a ,联立⎩⎪⎨⎪⎧y =b ax ,y =-x +a ,解得x =a 2a +b.联立⎩⎪⎨⎪⎧y =-b a x ,y =-x +a ,解得x =a 2a -b.因为b >a >0,所以a 2a -b<0,且a 2a +b>0,又点B 的横坐标为等比中项,所以点B 的横坐标为a 2a -b,则a ·a 2a +b=(a 2a -b )2,解得b =3a ,所以双曲线的离心率e =c a =a 2+b 2a=10. 11.(1,+∞)解析 将原方程化成标准方程为y 2k -1-x 2k -2=1.由题意知k -1>0且k -2>0,解得k >2.又a 2=k -1,b 2=k -2,所以c 2=a 2+b 2=2k -3>1,所以c >1,故半焦距c 的取值范围是(1,+∞). 12.2解析 双曲线方程为x 24-y 25=1,PF 1-PF 2=4,由PF 1→·MF 1→|PF 1→|=F 2F 1→·MF 1→|F 2F 1→|,可得F 1P →·F 1M→|MF 1→||F 1P →|=F 1F 2→·F 1M→|MF 1→||F 1F 2→|,得F 1M 平分∠PF 1F 2.又结合平面几何知识可得, △F 1PF 2的内心在直线x =2上, 所以点M (2,1)就是△F 1PF 2的内心, 故S △PMF 1-S △PMF 2 =12(PF 1-PF 2)×1=12×4×1=2. 13.y 24-23-x 223=1 解析 设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),C (x ′,y ′)(x ′<0, y ′>0),BC =t (0<t <22).如图,连结AC , ∵AB 为直径, ∴∠ACB =90°, 作CE ⊥AB 于E , 则BC 2=BE ·BA , ∴t 2=4(2-y ′), 即y ′=2-14t 2.∴梯形的周长l =4+2t +2y ′ =-12t 2+2t +8=-12(t -2)2+10,∴当t =2时,l 最大. 此时,BC =2,AC =23,又点C 在双曲线的上支上,且A ,B 为焦点, ∴AC -BC =2a ,即2a =23-2, ∴a =3-1, ∴b 2=23,∴所求方程为y 24-23-x 223=1.14.①②③④解析 ①双曲线x 2-2y25+1=1, a 2=1,c 2=1+5+12=5+32, ∴e =ca=5+32=5+12, ∴命题①正确;②若b 2=ac ,c 2-a 2=ac ,∴e =5+12, ∴命题②正确;③B 1F 21=b 2+c 2,B 1A 2=c , 由∠F 1B 1A 2=90°, 得b 2+c 2+c 2=(a +c )2, 即b 2=ac ,e =5+12, ∴命题③正确; ④若MN 经过右焦点F 2, 且MN ⊥F 1F 2,∠MON =90°,则c =b 2a,即b 2=ac ,e =5+12, ∴命题④正确.综上,正确命题的序号为①②③④.。
2018年高考数学总复习课时作业第九章 平面解析几何 第6讲 双曲线 Word版含答案
基础巩固题组(建议用时:分钟)一、选择题.(·台州调研)设双曲线-=(>,>)的虚轴长为,焦距为,则双曲线的渐近线方程为( )=±=±=±=±解析因为=,所以=,因为=,所以=,所以==,所以双曲线的渐近线方程为=±=±,故选.答案.(·广东卷)已知双曲线:-=的离心率=,且其右焦点为(,),则双曲线的方程为( )-=-=-=-=解析因为所求双曲线的右焦点为(,)且离心率为==,所以=,=,=-=,所以所求双曲线方程为-=,故选.答案.(·浙江卷)已知椭圆:+=(>)与双曲线:-=(>)的焦点重合,,分别为,的离心率,则( )>且<>且><且<<且>解析由题意可得:-=+,即=+,又∵>,>,故>.又∵·=·=·==+>,∴·>.答案.已知,为双曲线:-=的左、右焦点,点在上,=,则∠=( )解析由-=,知==,=.由双曲线定义,-==,又=,∴=,=,在△中,==,由余弦定理,得∠==.答案.(·杭州调研)过双曲线-=的右焦点且与轴垂直的直线,交该双曲线的两条渐近线于,两点,则=( )解析由题意知,双曲线-=的渐近线方程为=±,将==代入得=±,即,两点的坐标分别为(,),(,-),所以=.答案二、填空题.(·浙江卷)双曲线-=的焦距是,渐近线方程是.解析由双曲线方程得=,=,∴=,∴焦距为,渐近线方程为=±.答案=±.(·北京卷)双曲线-=(>,>)的渐近线为正方形的边,所在的直线,点为该双曲线的焦点,若正方形的边长为,则=.解析取为双曲线右焦点,如图所示.∵四边形为正方形且边长为,∴==,又∠=,∴==,即=.又+==,∴=.答案.(·山东卷)已知双曲线:-=(>,>).若矩形的四个顶点在上,,的中点为的两个焦点,且=,则的离心率是.解析由已知得=,=,∴×=×.又∵=-,整理得:--=,两边同除以得--=,即--=,解得=或=-(舍去).答案三、解答题.(·宁波十校联考)已知双曲线的中心在原点,焦点,在坐标轴上,离心率为,且过点(,-).()求双曲线的方程;()若点(,)在双曲线上,求证:·=.()解∵=,∴可设双曲线的方程为-=λ(λ≠).∵双曲线过点(,-),∴-=λ,即λ=.∴双曲线的方程为-=.()证明法一由()可知,==,∴=,∴(-,),(,),。
【配套K12】2018年高考数学总复习第九章平面解析几何第6讲双曲线学案
第6讲 双曲线最新考纲 了解双曲线的定义、几何图形和标准方程及简单的几何性质(范围、对称性、顶点、离心率、渐近线).知 识 梳 理1.双曲线的定义平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离差的绝对值等于常数(小于|F 1F 2|且大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0: (1)若a <c 时,则集合P 为双曲线; (2)若a =c 时,则集合P 为两条射线; (3)若a >c 时,则集合P 为空集. 2.双曲线的标准方程和几何性质1.判断正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( )(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( )(5)等轴双曲线的渐近线互相垂直,离心率等于 2.( )解析 (1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线. (2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案 (1)× (2)× (3)× (4)√ (5)√2.(2016·全国Ⅰ卷)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A.(-1,3) B.(-1,3) C.(0,3)D.(0,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3,故选A. 答案 A3.(2015·湖南卷)若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( ) A.73B.54C.43D.53解析 双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,则点(3,-4)在直线y =-bax 上,即-4=-3b a ,所以4a =3b ,即b a =43,所以e =1+b 2a 2=53.故选D.答案 D4.(2015·全国Ⅱ卷)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.答案x 24-y 2=15.(选修2-1P62A6改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________.解析 设双曲线的方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求方程为x 28-y 28=1. 答案x 28-y 28=1 6.(2017·乐清调研)以椭圆x 24+y 2=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是________,离心率为________.解析 由题意可知所求双曲线方程可设为x 2a 2-y 2b 2=1(a >0,b >0),则a =4-1=3,c =2,∴b 2=c 2-a 2=4-3=1,故双曲线方程为x 23-y 2=1,其渐近线方程为y =±33x ,离心率为e =233. 答案 y =±33x 233考点一 双曲线的定义及其应用【例1】 (1)(2017·杭州模拟)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以B 为直角顶点的等腰直角三角形,则e 2=( ) A.1+2 2 B.4-2 2 C.5-2 2D.3+2 2(2)(2015·全国Ⅰ卷)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)如图所示,因为|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|BF 1|=|AF 2|+|BF 2|,所以|AF 2|=2a ,|AF 1|=4a . 所以|BF 1|=22a ,所以|BF 2|=22a -2a .因为|F 1F 2|2=|BF 1|2+|BF 2|2, 所以(2c )2=(22a )2+(22a -2a )2, 所以e 2=5-2 2.(2)设左焦点为F 1,|PF |-|PF 1|=2a =2,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1.与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6.答案 (1)C (2)12 6规律方法 “焦点三角形”中常用到的知识点及技巧(1)常用知识点:在“焦点三角形”中,正弦定理、余弦定理、双曲线的定义经常使用. (2)技巧:经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立它与|PF 1||PF 2|的联系. 提醒 利用双曲线的定义解决问题,要注意三点①距离之差的绝对值.②2a <|F 1F 2|.③焦点所在坐标轴的位置.【训练1】 (1)如果双曲线x 24-y 212=1上一点P 到它的右焦点的距离是8,那么点P 到它的左焦点的距离是( ) A.4 B.12 C.4或12D.不确定(2)(2016·九江模拟)已知点P 为双曲线x 216-y 29=1右支上一点,点F 1,F 2分别为双曲线的左、右焦点,M 为△PF 1F 2的内心,若S △PMF 1=S △PMF 2+8,则△MF 1F 2的面积为( ) A.27B.10C.8D.6解析 (1)由双曲线方程,得a =2,c =4.设F 1,F 2分别为双曲线的左、右焦点,根据双曲线的定义|PF 1|-|PF 2|=±2a ,∴|PF 1|=|PF 2|±2a =8±4,∴|PF 1|=12或|PF 1|=4. (2)设内切圆的半径为R ,a =4,b =3,c =5, 因为S △PMF 1=S △PMF 2+8, 所以12(|PF 1|-|PF 2|)R =8,即aR =8,所以R =2, 所以S △MF 1F 2=12·2c ·R =10.答案 (1)C (2)B考点二 双曲线的标准方程及性质(多维探究) 命题角度一 与双曲线有关的范围问题【例2-1】 (2015·全国Ⅰ卷)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-33,33 B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223D.⎝ ⎛⎭⎪⎫-233,233解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. 答案 A命题角度二 与双曲线的离心率、渐近线相关的问题【例2-2】 (1)(2016·全国Ⅱ卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(2016·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( ) A.x 24-y 2=1 B.x 2-y 24=1C.3x 220-3y25=1D.3x 25-3y220=1 解析 (1)设F 1(-c ,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a 2, 所以y =±b 2a .因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a 2c =b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24,所以e 2-22e -1=0,所以e=2,故选A.(2)由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.答案 (1)A (2)A规律方法 与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决. 【训练2】 (1)(2017·慈溪调研)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤233,2B.⎣⎢⎡⎭⎪⎫233,2 C.⎝⎛⎭⎪⎫233,+∞D.⎣⎢⎡⎭⎪⎫233,+∞ (2)(2017·武汉模拟)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.解析 (1)因为有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,所以直线A 1B 1和A 2B 2关于x 轴对称,并且直线A 1B 1和A 2B 2与x 轴的夹角为30°,双曲线的渐近线与x 轴的夹角大于30°且小于等于60°,否则不满足题意.可得b a >tan 30°,即b 2a 2>13,c 2-a 2a 2>13,所以e >233.同样的,当b a ≤tan 60°,即b 2a 2≤3时,c 2-a 2a 2≤3,即4a 2≥c 2,∴e 2≤4,∵e >1,所以1<e ≤2.所以双曲线的离心率的范围是⎝⎛⎦⎥⎤233,2. (2)由题可知A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.因为x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,所以当x =1时,PA 1→·PF 2→取得最小值-2.答案 (1)A (2)-2 考点三 双曲线的综合问题【例3】 (1)已知椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点,则a 的值为( )A. 2B.10C.4D.34(2)(2015·江苏卷)在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为________.解析 (1)因为椭圆x 2a 2+y 29=1(a >0)与双曲线x 24-y 23=1有相同的焦点(±7,0),则有a 2-9=7,所以a =4.(2)设P (x ,y )(x ≥1),因为直线x -y +1=0平行于渐近线x -y =0,所以c 的最大值为直线x -y +1=0与渐近线x -y =0之间的距离,由两平行线间的距离公式知,该距离为12=22. 答案 (1)C (2)22规律方法 解决与双曲线有关综合问题的方法(1)解决双曲线与椭圆、圆、抛物线的综合问题时,要充分利用椭圆、圆、抛物线的几何性质得出变量间的关系,再结合双曲线的几何性质求解.(2)解决直线与双曲线的综合问题,通常是联立直线方程与双曲线方程,消元求解一元二次方程即可,但一定要注意数形结合,结合图形注意取舍.【训练3】 (2016·天津卷)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1解析 由双曲线x 24-y 2b 2=1(b >0)知其渐近线方程为y =±b2x ,又圆的方程为x 2+y 2=4,①不妨设渐近线与圆在第一象限的交点为B ,将y =b2x 代入方程①式,可得点B ⎝⎛⎭⎪⎫44+b2,2b 4+b 2.由双曲线和圆的对称性得四边形ABCD 为矩形,其相邻两边长为84+b2,4b4+b 2,故8×4b4+b 2=2b ,得b 2=12.故双曲线的方程为x 24-y 212=1.答案 D[思想方法]1.与双曲线x 2a 2-y 2b 2=1 (a >0,b >0)有公共渐近线的双曲线的方程可设为x 2a 2-y 2b2=t (t ≠0).2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两条渐近线方程. [易错防范]1.双曲线方程中c 2=a 2+b 2,说明双曲线方程中c 最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1 (a >0,b >0)的渐近线方程是y =±a bx .4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.。
2018高考数学文人教新课标大一轮复习配套文档:第九章
9.6 双曲线1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的________等于常数2a(2a______|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的________,两焦点间的距离叫做双曲线的________.※(2)另一种定义方式(见人教A版教材选修2-1 P59例5):平面内动点M到定点F的距离和它到定直线l的距离之比等于常数e(e>1)的轨迹叫做双曲线.定点F叫做双曲线的一个焦点,定直线l叫做双曲线的一条准线,常数e叫做双曲线的________.(3)实轴和虚轴相等的双曲线叫做_________.“离心率e=2”是“双曲线为等轴双曲线”的______条件,且等轴双曲线两条渐近线互相______.一般可设其方程为x2-y2=λ(λ≠0).2.双曲线的标准方程及几何性质自查自纠1.(1)绝对值<焦点焦距(2)离心率(3)等轴双曲线充要垂直2.(2)x2a2-y2b2=1(a>0,b>0)(5)A1(0,-a),A2(0,a)(7)F1(-c,0),F2(c,0) (9)e=ca(e>1)(10)y=±bax(2015·广东)已知双曲线C:x2a2-y2b2=1的离心率e=54,且其右焦点为F2(5,0),则双曲线C的方程为( )A.x24-y23=1 B.x29-y216=1C.x216-y29=1 D.x23-y24=1解:c=5,e=ca=5a=54,得a=4,b2=c2-a2=52-42=9,双曲线方程为x216-y29=1.故选C.(2015·福建)若双曲线x29-y216=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|(( (解:设双曲线方程为x 2a 2-y 2b2=1(a >0,在双曲线的右支上,如图,AB =BM 轴于H ,则∠MBH =60,3a ).将点M 的坐标代入双曲线a =b ,所以e =ca=·南昌调研)已知F 1,F 2是双曲线的两个焦点,P 是C 上一点,若F 2最小内角的大小为的渐近线方程是( )0 B .x ±0D .2x ±解:由题意,不妨设|PF |>|PF |,则根据双曲线=AE =1,则AD =BE ,双曲线实轴长为23,2a ′=3-1,所以= 3.故填3. )过双曲线x 2-y 23=轴垂直的直线,交该双曲线的两条渐近线于为坐标原点,动直线分别在第一、四象限试探究:是否存在总与直线E?若存在,求出双曲线程;若不存在,说明理由.因为双曲线E的渐近线分别为。
(浙江专用)高考数学大一轮复习第九章平面解析几何第6讲双曲线练习(含解析)
(浙江专用)高考数学大一轮复习第九章平面解析几何第6讲双曲线练习(含解析)[基础达标]1.若双曲线x2a2-y2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为( ) A.y=±2x B.y=±2xC.y=±12x D.y=±22x 解析:选B.由条件e=3,即ca=3,得c2a2=a2+b2a2=1+b2a2=3,所以ba=2,所以双曲线的渐近线方程为y=±2x.故选B.2.已知双曲线x2a2-y2b2=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=5k,则双曲线方程为( )A.x2a2-y24a2=1 B.x2a2-y25a2=1 C.x24b2-y2b2=1 D.x25b2-y2b2=1解析:选C.由已知得,⎩⎪⎨⎪⎧b a=k,ca=5k,a2+b2=c2,所以a2=4b2.3.(2019·杭州学军中学高三质检)双曲线M:x2-y2b2=1的左、右焦点分别为F1、F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与曲线M在第一象限的交点为P,若|PF1|=c+2,则点P的横坐标为( )A.3+12B.3+22 C.3+32D.332解析:选A.由点P在双曲线的第一象限可得|PF1|-|PF2|=2,则|PF2|=|PF1|-2=c,又|OP|=c,∠F1PF2=90°,由勾股定理可得(c+2)2+c2=(2c)2,解得c=1+ 3.易知△POF2为等边三角形,则x P =c2=3+12,选项A 正确. 4.(2019·杭州中学高三月考)已知F 1、F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若F 2关于渐近线的对称点恰落在以F 1为圆心,OF 1为半径的圆上,则双曲线C 的离心率为( )A . 3B .3C . 2D .2解析:选D.由题意,F 1(-c ,0),F 2(c ,0),一条渐近线方程为y =b ax ,则F 2到渐近线的距离为bcb 2+a 2=b . 设F 2关于渐近线的对称点为M ,F 2M 与渐近线交于A ,所以|MF 2|=2b ,A 为F 2M 的中点,又O 是F 1F 2的中点,所以OA ∥F 1M ,所以∠F 1MF 2为直角,所以△MF 1F 2为直角三角形, 所以由勾股定理得4c 2=c 2+4b 2, 所以3c 2=4(c 2-a 2),所以c 2=4a 2, 所以c =2a ,所以e =2. 故选D.5.(2017·高考全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )解析:选D.法一:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP ∥x 轴,又PF ⊥x 轴,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.故选D.法二:由题可知,双曲线的右焦点为F (2,0),当x =2时,代入双曲线C 的方程,得4-y 23=1,解得y =±3,不妨取点P (2,3),因为点A (1,3),所以AP →=(1,0),PF →=(0,-3),所以AP →·PF →=0,所以AP ⊥PF ,所以S △APF =12|PF |·|AP |=12×3×1=32.故选D.6.(2019·浙江高中学科基础测试)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与抛物线y 2=20x有一个公共的焦点F ,且两曲线的一个交点为P ,若|PF |=17,则双曲线的离心率为( )A . 5B .53C .54D .52解析:选B.由题意知F (5,0),不妨设P 点在x 轴的上方,由|PF |=17知点P 的横坐标为17-5=12,则其纵坐标为20×12=415,设双曲线的另一个焦点为F 1(-5,0),则|PF 1|=(12+5)2+(415)2=23,所以2a =|PF 1|-|PF |=23-17=6,所以a =3,所以e =c a =53,故选B.7.(2019·宁波市余姚中学高三期中)已知曲线x 22+y 2k 2-k =1,当曲线表示焦点在y 轴上的椭圆时k 的取值范围是________;当曲线表示双曲线时k 的取值范围是________.解析:当曲线表示焦点在y 轴上的椭圆时,k 2-k >2, 所以k <-1或k >2;当曲线表示双曲线时,k 2-k <0, 所以0<k <1.答案:k <-1或k >2 0<k <18.(2019·金华十校联考)已知l 是双曲线C :x 22-y 24=1的一条渐近线,P 是l 上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→=0,则P 到x 轴的距离为________.解析:F 1(-6,0),F 2(6,0),不妨设l 的方程为y =2x ,则可设P (x 0,2x 0),由PF 1→·PF 2→=(-6-x 0,-2x 0)·(6-x 0,-2x 0)=3x 20-6=0,得x 0=±2,故P 到x 轴的距离为2|x 0|=2.答案:29.(2019·瑞安四校联考)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与直线x =a 2c分别交于A ,B 两点,F 为该双曲线的右焦点.若60°<∠AFB <90°,则该双曲线的离心率的取值范围是________.解析:双曲线x 2a 2-y 2b 2=1的两条渐近线方程为y =±b a x ,x =a 2c 时,y =±abc ,不妨设A ⎝ ⎛⎭⎪⎫a 2c ,ab c ,B ⎝ ⎛⎭⎪⎫a2c,-ab c ,因为60°<∠AFB <90°,所以33<k FB <1,所以33<ab c c -a 2c<1,所以33<a b <1,所以13<a 2c 2-a2<1,所以1<e 2-1<3,所以2<e <2.答案:(2,2)10.设P 为双曲线x 2-y 212=1上的一点,F 1,F 2是该双曲线的左、右焦点,若△PF 1F 2的面积为12,则∠F 1PF 2=________.解析:由题意可知,F 1(-13,0),F 2(13,0),|F 1F 2|=213.设P (x 0,y 0),则△PF 1F 2的面积为12×213|y 0|=12.故y 20=12213,将P 点坐标代入双曲线方程得x 20=2513,不妨设点P ⎝⎛⎭⎪⎫51313,121313,则PF 1→=⎝ ⎛⎭⎪⎫-181313,-121313,PF 2→=⎝ ⎛⎭⎪⎫81313,-121313,可得PF 1→·PF 2→=0,即PF 1⊥PF 2,故∠F 1PF 2=π2. 答案:π211.已知椭圆D :x 250+y 225=1与圆M :x 2+(y -5)2=9,双曲线G 与椭圆D 有相同焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程.解:椭圆D 的两个焦点坐标为(-5,0),(5,0), 因而双曲线中心在原点,焦点在x 轴上,且c =5.设双曲线G 的方程为x 2a 2-y 2b2=1(a >0,b >0),所以渐近线方程为bx ±ay =0且a 2+b 2=25, 又圆心M (0,5)到两条渐近线的距离为r =3. 所以|5a |b 2+a 2=3,得a =3,b =4,所以双曲线G 的方程为x 29-y 216=1.12.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255.(1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解:(1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1.(2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n .将点P 的坐标代入y 24-x 2=1,整理得mn =1. 设∠AOB =2θ,因为tan ⎝⎛⎭⎪⎫π2-θ=2,则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n ,所以S △AOB =12|OA ||OB |sin 2θ=2mn =2.[能力提升]1.(2019·舟山市普陀三中高三期中)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B 、C .若AB →=12BC →,则双曲线的离心率是( )A . 2B . 3C . 5D .10解析:选C.直线l :y =-x +a 与渐近线l 1:bx -ay =0交于B ⎝ ⎛⎭⎪⎫a 2a +b ,ab a +b ,l 与渐近线l 2:bx +ay =0交于C ⎝ ⎛⎭⎪⎫a 2a -b ,-ab a -b ,A (a ,0),所以AB →=⎝ ⎛⎭⎪⎫-ab a +b ,ab a +b ,BC →=⎝ ⎛⎭⎪⎫2a 2b a 2-b 2,-2a 2b a 2-b 2, 因为AB →=12BC →,所以b =2a , 所以c 2-a 2=4a 2,所以e 2=c 2a2=5,所以e =5,故选C.2.(2019·宁波高考模拟)如图,F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,则C 1与C 2的离心率之和为( )A .2 3B .4C .2 5D .2 6解析:选A.F 1、F 2是椭圆C 1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若AF 1⊥BF 1,且∠AF 1O =π3,可得A ⎝ ⎛⎭⎪⎫-12c ,32c ,B ⎝ ⎛⎭⎪⎫12c ,-32c ,代入椭圆方程可得c 24a 2+3c 24b 2=1,可得e 24+34e 2-4=1,可得e 4-8e 2+4=0,解得e =3-1.代入双曲线方程可得:c 24a 2-3c 24b2=1,可得:e 24-34-4e 2=1,可得:e 4-8e 2+4=0,解得e =3+1, 则C 1与C 2的离心率之和为2 3. 故选A.3.设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是__________.解析:由题意不妨设点P 在双曲线的右支上,现考虑两种极限情况:当PF 2⊥x 轴时,|PF 1|+|PF 2|有最大值8;当∠P 为直角时,|PF 1|+|PF 2|有最小值27.因为△F 1PF 2为锐角三角形,所以|PF 1|+|PF 2|的取值范围为(27,8).答案:(27,8)4.(2019·温州十五校联合体联考)过点M (0,1)且斜率为1的直线l 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两渐近线交于点A ,B ,且BM →=2AM →,则直线l 的方程为____________;如果双曲线的焦距为210,则b 的值为________.解析:直线l 的方程为y =x +1,两渐近线的方程为y =±b ax .其交点坐标分别为⎝ ⎛⎭⎪⎫a b -a ,b b -a ,⎝ ⎛⎭⎪⎫-a a +b ,b a +b .由BM →=2AM →,得x B =2x A .若a b -a =-2a a +b ,得a =3b ,由a 2+b 2=10b 2=10得b =1,若-aa +b =2ab -a,得a =-3b (舍去).答案:y =x +1 15.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离等于3,过右焦点F 2的直线l 交双曲线于A ,B 两点,F 1为左焦点.(1)求双曲线的方程;(2)若△F 1AB 的面积等于62,求直线l 的方程.解:(1)依题意,b =3,c a =2⇒a =1,c =2,所以双曲线的方程为x 2-y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由(1)知F 2(2,0).易验证当直线l 斜率不存在时不满足题意,故可设直线l :y =k (x -2),由⎩⎪⎨⎪⎧y =k (x -2),x 2-y 23=1,消元得(k 2-3)x 2-4k 2x +4k 2+3=0,k ≠±3,x 1+x 2=4k 2k 2-3,x 1x 2=4k 2+3k 2-3,y 1-y 2=k (x 1-x 2),△F 1AB 的面积S =c |y 1-y 2|=2|k |·|x 1-x 2|=2|k |·16k 4-4(k 2-3)(4k 2+3)|k 2-3|=12|k |·k 2+1|k 2-3|=6 2.得k 4+8k 2-9=0,则k =±1.所以直线l 的方程为y =x -2或y =-x +2.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的方程为y =3x ,右焦点F 到直线x =a 2c 的距离为32.(1)求双曲线C 的方程;(2)斜率为1且在y 轴上的截距大于0的直线l 与双曲线C 相交于B 、D 两点,已知A (1,0),若DF →·BF →=1,证明:过A 、B 、D 三点的圆与x 轴相切.解:(1)依题意有b a =3,c -a 2c =32,因为a 2+b 2=c 2,所以c =2a ,所以a =1,c =2,所以b 2=3,所以双曲线C 的方程为x 2-y 23=1.(2)证明:设直线l 的方程为y =x +m (m >0),B (x 1,x 1+m ),D (x 2,x 2+m ),BD 的中点为M ,由⎩⎪⎨⎪⎧y =x +m ,x 2-y 23=1得2x 2-2mx -m 2-3=0,所以x 1+x 2=m ,x 1x 2=-m 2+32,又因为DF →·BF →=1,即(2-x 1)(2-x 2)+(x 1+m )(x 2+m )=1,所以m =0(舍)或m =2,。
2018版高考数学(理)(人教)复习-第九章-平面解析几何9.6
∴|AB|=2 16-a2=4 3,
∴a=2,∴2a=4.∴C的实轴长为4.
3.(2015· 安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是
答案
2 y A.x2- 4 =1
解析
x2 2 B. 4 -y =1
y2 2 C. 4 -x =1
2 x D.y2- 4 =1
由双曲线性质知A、B项双曲线焦点在x轴上,不合题意; C、D项双曲线焦点均在y轴上,但D项渐近线为y=±1 x,只有C符合, 2 故选C.
2.等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y2 = 16x的准 线交于A,B两点,|AB|=4 3,则C的实轴长为
A. 2 B.2 2 C.4 D.8
x2 y2 设 C:a2-a2=1.
答案 解析
∵抛物线y2=16x的准线为x=-4,
x2 y2 联立a2-a2=1 和 x=-4, 得 A(-4, 16-a2), B(-4, - 16-a2),
x2 y2 4.(2016· 江苏 ) 在平面直角坐标系 xOy 中,双曲线 7 - 3 = 1 的焦距是
2 10 ________.
答案
解析
由已知,a2=7,b2=3,则 c2=7+3=10,故焦距为 2c=2 10.
2 5 x2 2 答案 5 5.双曲线 4 -y =1 的顶点到其渐近线的距离等于________.
解析
2018课标版理数一轮(9)第九章-平面解析几何(含答案)6 第六节 双曲线
.
y2 2 解析 根据题意,可设双曲线C: -x =λ(λ≠0),将(2,2)代入双曲线C的方 4 x2 y 2 程得λ=-3,∴C的方程为 - =1.渐近线方程为y=±2x. 3 12
栏目索引
考点突破
考点一 双曲线的定义及标准方程 典例1 (1)已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1| =2|PF2|,则cos∠F1PF2= ( A.
答案 A
b2 b2 解析 解法一:由MF1⊥x轴,可得M c, ,∴|MF1|= .由sin∠MF2F1=1 , a a 3 1 b2 b2 2 2 2 | MF1 | a 1 = a = 3 , 可得cos∠MF2F1= 1 , 又 tan ∠ MF F = = , ∴ 2 1 3 2c 2 2 | F1F2 | 2 c 3 3 2 ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2- 2 ac=0⇒e2- 2e-1=0,∴e= . ∴b2= 2 2 2 2
4 5
b a
4 3
栏目索引
命题角度三 离心率与渐近线的综合问题 典例4 设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与 该双曲线的一条渐近线垂直,那么此双曲线的离心率为 ( A. 2 答案 D
x2 y 2 b 解析 设双曲线的方程为 =1( a >0, b >0), 设 F ( c ,0), B (0, b ), 则 k = . BF a2 b2 c b b b 又双曲线渐近线的斜率k=± ,∵直线BF与一条渐近线垂直,∴- · =-1, a c a
b2 答案 B 不妨设点A在x轴上方,如图,由题意知A点的纵坐标为 ,若 a b2 △ABE是锐角三角形,则必有∠AEF<45°,∴tan∠AEF= a <1,则c2-ac-2a2 ac
2018版高考数学复习解析几何9.6双曲线真题演练集训理新人教A版
2018版高考数学一轮复习 第九章 解析几何 9.6 双曲线真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅰ]已知方程x 2m +n -y 23m -n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案:A解析:由题意,得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.[2016·天津卷]已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案:D解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,故选D.3.[2016·新课标全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案:A解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a2,所以y =±b 2a.因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a2c=b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24, 所以e 2-22e -1=0,所以e = 2.故选A. 4.[2016·浙江卷]已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案:A解析:由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m 2·n 2+1n2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A. 5.[2016·北京卷]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a =________. 答案:2解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.6.[2016·山东卷]已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案:2解析: 如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2, 故|BN |=|BM |2+|MN |2=⎝ ⎛⎭⎪⎫322+22=52. 由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2,所以双曲线的离心率e =2c2a=2.课外拓展阅读 求双曲线离心率的易错点[典例] [2016·天津模拟]已知双曲线x 2m -y 2n =1(mn >0)的一条渐近线方程为y =±43x ,则该双曲线的离心率为________.[易错分析] (1)未考虑m ,n 的取值,易漏掉焦点在另一坐标轴上的情况; (2)易将ba弄错,从而导致失分. [解析] 当m >0,n >0时, 则有n m =43,所以n m =169, e =1+⎝ ⎛⎭⎪⎫b a2=1+169=53;当m <0,n <0时, 则有m n =43,所以m n =169, e =1+⎝ ⎛⎭⎪⎫b a 2=1+916=54, 综上可知,该双曲线的离心率为53或54.[答案] 53或54温馨提醒(1)对于方程x 2m -y 2n=1表示的曲线一定要视m ,n 的不同取值进行讨论,m ,n 的取值不同表示的曲线就不同.(2)对于双曲线x 2m -y 2n =1(mn >0)的焦点位置不同,则ba的值就不一样,一定要注意区分.。
【配套K12】2018届高三数学一轮复习第九章平面解析几何第六节双曲线夯基提能
第六节双曲线A组基础题组1.(2016安徽安庆二模)双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,则双曲线C的离心率是( )A. B. C.2 D.2.若实数k满足0<k<5,则曲线--=1与曲线--=1的( )A.实半轴长相等B.虚半轴长相等C.离心率相等D.焦距相等3.已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为( )A.y=±xB.y=±xC.y=±xD.y=±x4.(2016天津,4,5分)已知双曲线-=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为( )A.-y2=1B.x2-=1C.-=1D.-=15.(2016课标全国Ⅱ,11,5分)已知F1,F2是双曲线E:-=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=,则E的离心率为( )A. B. C. D.26.设双曲线-=1(a>0,b>0)的右焦点是F,左,右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C 两点.若A1B⊥A2C,则该双曲线的渐近线的斜率为( )A.±B.±C.±1D.±7.(2016北京,12,5分)已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a= ;b= .8.设F1、F2分别是双曲线x2-=1的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°,延长AF2交双曲线右支于点B,则△F1AB的面积等于.9.中心在原点,焦点在x轴上的椭圆与双曲线有共同的焦点F1,F2,且|F1F2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.(1)求椭圆和双曲线的方程;(2)若P为该椭圆与双曲线的一个交点,求cos∠F1PF2的值.10.已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,离心率为,且过点(4,-).(1)求双曲线的方程;(2)若点M(3,m)在双曲线上,求证:·=0;(3)在(2)的条件下,求△F1MF2的面积.B组提升题组11.(2016课标全国Ⅰ,5,5分)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n-的取值范围是( )A.(-1,3)B.(-1,)C.(0,3)D.(0,)12.(2016江南十校联考(一))已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2分别是C的左,右焦点,若·=0,则点P到x轴的距离为( )A. B. C.2 D.13.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )A.(1,)B.(1,]C.(,+∞)D.[,+∞)14.(2015课标Ⅰ,16,5分)已知F是双曲线C:x2-=1的右焦点,P是C的左支上一点,A(0,6).当△APF 周长最小时,该三角形的面积为.15.(2016浙江,13,4分)设双曲线x2-=1的左、右焦点分别为F1、F2.若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.16.设A,B分别为双曲线-=1(a>0,b>0)的左,右顶点,双曲线的实轴长为4,焦点到渐近线的距离为.(1)求双曲线的方程;(2)已知直线y=x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使+=t,求t 的值及点D的坐标.答案全解全析A组基础题组1.A 由双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=2x,可得=2,∴e===.故选A.2.D 若0<k<5,则5-k>0,16-k>0,故方程--=1表示焦点在x轴上的双曲线,且实半轴的长为4,虚半轴的长为-,焦距2c=2-,离心率e=-;方程--=1表示焦点在x轴上的双曲线,实半轴的长为-,虚半轴的长为,焦距2c=2-,离心率e=--.可知两曲线的焦距相等.故选D.3.C 由双曲线的离心率e==可知=,而双曲线-=1(a>0,b>0)的渐近线方程为y=±x,故选C.4.A 由题意可得解得a=2,b=1,所以双曲线的方程为-y2=1,故选A.5.A 解法一:由MF1⊥x轴,可得M-或M--,∴|MF1|=.由sin∠MF2F1=,可得cos∠MF2F1=-=,又tan∠MF2F1==,∴=,∴b2=ac,∵c2=a2+b2⇒b2=c2-a2,∴c2-a2-ac=0⇒e2-e-1=0,∴e=(舍负).故选A.解法二:由MF1⊥x轴,得M-或M--,∴|MF1|=,由双曲线的定义可得|MF2|=2a+|MF1|=2a+, 又sin∠MF2F1===⇒a2=b2⇒a=b,∴e==.故选A.6.C 不妨令B在x轴上方,因为BC过右焦点F(c,0),且垂直于A1A2,即x轴,所以可求得B,C两点的坐标分别为,-,又A1,A2的坐标分别为(-a,0),(a,0),所以=,=--,因为A1B⊥A2C,所以·=0,即(c+a)(c-a)-·=0,即c2-a2-=0,所以b2-=0,故=1,即=1,又双曲线的渐近线的斜率为±,故该双曲线的渐近线的斜率为±1.故选C.7.答案1;2解析由题可知双曲线焦点在x轴上,故渐近线方程为y=±x,又一条渐近线为2x+y=0,即y=-2x,∴=2,即b=2a.又∵该双曲线的一个焦点为(,0),∴c=.由a2+b2=c2可得a2+(2a)2=5,解得a=1,b=2.8.答案 4解析由题意可得|AF2|=2,|AF1|=4,则|AB|=|AF2|+|BF2|=2+|BF2|=|BF1|.又∠F1AF2=45°,所以△ABF1是以AF1为斜边的等腰直角三角形,所以其面积为×4×2=4.9.解析(1)设椭圆的方程为+=1,双曲线的方程为-=1,则-··解得a=7,m=3,∴b=6,n=2.∴椭圆的方程为+=1,双曲线的方程为-=1.(2)不妨令F1、F2分别为左、右焦点,P是第一象限的一个交点,则|PF1|+|PF2|=14, |PF1|-|PF2|=6,所以|PF1|=10,|PF2|=4,又|F1F2|=2,∴cos∠F1PF2=-=-=.10.解析(1)∵e=,∴可设双曲线的方程为x2-y2=λ(λ≠0).∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线的方程为x2-y2=6.(2)证法一:由(1)可知,双曲线中a=b=,∴c=2,∴F1(-2,0),F2(2,0),,∴=,=-∴·==-.-∵点M(3,m)在双曲线上,∴9-m2=6,m2=3,故·=-1,∴MF1⊥MF2,即·=0.证法二:由证法一知=(-3-2=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0.(3)△F1MF2的底|F1F2|=4,由(2)知m=±.∴△F1MF2的高h=|m|=,∴△=6.B组提升题组11.A ∵原方程表示双曲线,且焦距为4,∴-①-②或----由①得m2=1,n∈(-1,3).②无解.故选A.12.C 由题意知F1(-,0),F2(,0),不妨取l的方程为y=x,设点P(x0,x0),由·=(--x0,-x0)·(-x0,-x0)=3-6=0,得x0=±,故点P到x轴的距离为|x0|=2,故选C.13.C 双曲线的一条渐近线方程为y=x,由题意得>2,∴e==> = .14.答案 12解析 由已知得双曲线的右焦点F(3,0).设双曲线的左焦点为F',则F'(-3,0).由双曲线的定义及已知得|PF|=2a+|PF'|=2+|PF'|.△APF 的周长最小,即|PA|+|PF|最小.|PA|+|PF|=|PA|+2+|PF'|≥|AF'|+2=17,即当A 、P 、F'三点共线时,△APF 的周长最小.设P 点坐标为(x 0,y 0),y 0>0,由--得+6 y 0-96=0,所以y 0=2 或y 0=-8 (舍去). 所以当△APF 的周长最小时,该三角形的面积S= ×6×6 -×6×2 =12 .15.答案 (2 ,8)解析 △PF 1F 2为锐角三角形,不妨设P 在第一象限,P 点在P 1与P 2之间运动(如图).当P 在P 1点处时,∠F 1P 1F 2=90°, △ = |F 1F 2|·| |=|P 1F 1|·|P 1F 2|. 由|P 1F 1|2+|P 1F 2|2=|F 1F 2|2,|P 1F 1|-|P 1F 2|=2, 得|P 1F 1|·|P 1F 2|=6, 此时|PF 1|+|PF 2|=2 当P 在P 2点处时,∠P 2F 2F 1=90°, ∴ =2,易知 =3,此时|PF 1|+|PF 2|=2|PF 2|+2=8,∴当△PF 1F 2为锐角三角形时,|PF 1|+|PF 2|∈(2 ,8). 16.解析 (1)由题意知a=2 ,∴一条渐近线方程为y= x,即bx-2 y=0,∴= ,∴b 2=3,∴双曲线的方程为 -=1. (2)设M(x 1,y 1),N(x 2,y 2),D(x 0,y 0), ∵ + =t ,∴x 1+x 2=tx 0,y 1+y 2=ty 0, 将直线方程代入双曲线方程得x 2-16 x+84=0,则x 1+x 2=16 ,所以y 1+y 2=12,∵点D 在双曲线的右支上, ∴-解得∴t=4,点D的坐标为(4。
高考数学一轮复习统考 第9章 平面解析几何 第6讲 双曲线课时作业(含解析)北师大版-北师大版高三全
双曲线课时作业1.双曲线x 236-m 2-y 2m2=1(0<m <3)的焦距为()A .6B .12C .36D .236-2m 2答案 B解析 c 2=36-m 2+m 2=36,∴c =6.双曲线的焦距为12. 2.双曲线8kx 2-ky 2=8的一个焦点是(0,3),则k 的值是() A .1 B .-1 C .653D .-63答案 B解析 ∵双曲线8kx 2-ky 2=8,焦点在y 轴上,∴双曲线的标准方程为y 2-8k -x 2-1k=1,又c =3,∴-8k -1k=9,解得k =-1.3.(2019·某某永州模拟)焦点是(0,±2),且与双曲线x 23-y 23=1有相同的渐近线的双曲线的方程是()A .x 2-y 23=1B .y 2-x 23=1C .x 2-y 2=2 D .y 2-x 2=2答案 D解析 由已知,双曲线焦点在y 轴上,且为等轴双曲线,故选D .4.(2019·某某凌源联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的顶点(a,0)到渐近线y=b a x 的距离为b2,则双曲线C 的离心率是() A .2 B .3 C .4 D .5答案 A解析 因为顶点(a,0)到渐近线y =bax 的距离d =ab a 2+b2=b 2,所以a c =12,所以e =ca =2.故选A .5.(2019·某某滕州月考)已知双曲线x 225-y 29=1的左、右焦点分别为F 1,F 2,若双曲线的左支上有一点M 到右焦点F 2的距离为18,N 是MF 2的中点,O 为坐标原点,则|NO |等于()A .23B .1C .2D .4答案 D解析 由双曲线x 225-y 29=1,知a =5,由双曲线定义,得|MF 2|-|MF 1|=2a =10,得|MF 1|=8,所以|NO |=12|MF 1|=4.6.虚轴长为2,离心率e =3的双曲线的两焦点为F 1,F 2,过F 1作直线交双曲线的一支于A ,B 两点,且|AB |=8,则△ABF 2的周长为()A .3B .16+ 2C .12+ 2D .24答案 B解析 由于2b =2,e =c a=3,∴b =1,c =3a , ∴9a 2=a 2+1,∴a =24. 由双曲线的定义知,|AF 2|-|AF 1|=2a =22,① |BF 2|-|BF 1|=22,② 由①+②,得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=2, 又|AF 1|+|BF 1|=|AB |=8, ∴|AF 2|+|BF 2|=8+2,则△ABF 2的周长为16+2,故选B .7.(2019·全国卷Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为()A .32B .52C .72D .92答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎪⎨⎪⎧x 20=569,y 20=259,所以P ⎝⎛⎭⎪⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.故选B .8.过双曲线x 2a 2-y 23=1(a >0)的右焦点F 作直线l 与双曲线交于A ,B 两点,使得|AB |=6,若这样的直线有且只有两条,则a 的取值X 围是()A .(0,1]∪(3,+∞)B .(0,1)∪(3,+∞)C .(0,1)D .(3,+∞)答案 B解析 若A ,B 在同一支上,则有|AB |min =2b 2a =6a;若A ,B 不在同一支上,则|AB |min =2a .依题意, 得6a 与2a 不可能同时等于6,所以⎩⎪⎨⎪⎧2a >6,6a <6或⎩⎪⎨⎪⎧2a <6,6a>6,解得a >3或0<a <1,故选B .9.已知点P 在曲线C 1:x 216-y 29=1上,点Q 在曲线C 2:(x -5)2+y 2=1上,点R 在曲线C 3:(x +5)2+y 2=1上,则|PQ |-|PR |的最大值是()A .6B .8C .10D .12答案 C解析 由题意可知点C 3,C 2分别是双曲线C 1:x 216-y 29=1的左、右焦点,点P 在双曲线的左支上,则|PC 2|-|PC 3|=8.|PQ |max =|PC 2|+1,|PR |min =|PC 3|-1,所以|PQ |-|PR |的最大值为(|PC 2|+1)-(|PC 3|-1)=|PC 2|-|PC 3|+2=8+2=10.故选C .10.(2019·某某豫南、豫北联考)已知直线y =x +1与双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且线段AB 的中点M 的横坐标为1,则该双曲线的离心率为()A . 2B . 3C .2D . 5答案 B解析 由题意得M (1,2).设A (x 1,y 1),B (x 2,y 2),分别代入双曲线方程,两式相减并整理得y 21-y 22x 21-x 22=b 2a2=k AB ·k OM =2.∴b 2=2a 2,即c 2-a 2=2a 2,∴e = 3.故选B .11.(2020·某某某某联考)已知双曲线x 24-y 22=1的右焦点F ,P 为双曲线左支上一点,点A (0,2),则△APF 的周长的最小值为()A .4+ 2B .4(1+2)C .2(2+6)D .6+3 2答案 B解析 双曲线x 24-y 22=1的右焦点为F (6,0),设其左焦点为F ′.△APF 的周长l =|AF |+|AP |+|PF |=|AF |+|AP |+2a +|PF ′|,要使△APF 周长最小,只需|AP |+|PF ′|最小.如图,当A ,P ,F ′三点共线时l 取到最小值,且l min =2|AF |+2a =4(1+2).故选B .12.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为()A . 5B .2C . 3D . 2答案 C解析 由题可知|PF 2|=b ,|OF 2|=c ,∴|PO |=a . 在Rt △POF 2中,cos ∠PF 2O =|PF 2||OF 2|=bc, ∵在△PF 1F 2中,cos ∠PF 2O =|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|=bc,∴b 2+4c 2-(6a )22b ·2c =b c⇒c 2=3a 2,∴e = 3.故选C .13.已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.答案x 24-y 2=1解析 根据渐近线方程为x ±2y =0,可设双曲线方程为x 2-4y 2=λ(λ≠0).因为双曲线过点(4,3),所以42-4×(3)2=λ,即λ=4.故双曲线的标准方程为x 24-y 2=1.14.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2作与x 轴垂直的直线与双曲线一个交点为P ,且∠PF 1F 2=π6,则双曲线的渐近线方程为________.答案 y =±2x解析 根据已知可得,|PF 2|=b 2a 且|PF 1|=2b 2a ,故2b 2a -b 2a =2a ,所以b 2a 2=2,ba=2,双曲线的渐近线方程为y =±2x .15.(2019·全国卷Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若=,·=0,则C 的离心率为________.答案 2解析 解法一:由=,得A 为F 1B 的中点.又O 为F 1F 2的中点,∴OA ∥BF 2. 又·=0,∴∠F 1BF 2=90°. ∴|OF 2|=|OB |,∴∠OBF 2=∠OF 2B . 又∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B , ∴∠BOF 2=∠OF 2B =∠OBF 2, ∴△OBF 2为等边三角形.如图1所示,∵点B 在直线y =-bax 上,∴-b a =-3,∴离心率e =c a=1+⎝ ⎛⎭⎪⎫b a2=2.解法二:∵·=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c . 如图2,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=b a ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c,0). 又=,∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =bc -a,∴c =2a ,∴离心率e =c a=2.16.(2020·某某摸底)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,P 为双曲线C 右支上一点,I 为△PF 1F 2的内心,若S △IPF 1=S △IPF 2+λS △IF 1F 2成立,则双曲线的离心率为________,λ的值为________.答案5+125-12解析 由F 1,F 2分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,且|F 1F 2|=2b2a,可得2c =2b 2a =2c 2-2a 2a ,化简得e 2-e -1=0.∴e >1,∴e =1+52.设△PF 1F 2的内切圆半径为r ,由双曲线的定义得|PF 1|-|PF 2|=2a ,|F 1F 2|=2c ,S △IPF 1=12|PF 1|·r ,S △IPF 2=12|PF 2|·r ,S △IF 1F 2=12·2c ·r =cr ,由S △IPF 1=S △IPF 2+λS △IF 1F 2得,12|PF 1|·r =12·|PF 2|·r+λcr ,故λ=|PF 1|-|PF 2|2c =a c =11+52=5-12.17.(2019·某某崇明模拟)已知点F 1,F 2为双曲线C :x 2-y 2b2=1的左、右焦点,过F 2作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,∠MF 1F 2=30°.(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为P 1,P 2,求·的值.解 (1)设F 2,M 的坐标分别为(1+b 2,0),(1+b 2,y 0)(y 0>0),因为点M 在双曲线C 上,所以1+b 2-y 20b2=1,则y 0=b 2,所以|MF 2|=b 2.在Rt △MF 2F 1中,∠MF 1F 2=30°,|MF 2|=b 2, 所以|MF 1|=2b 2.由双曲线的定义可知,|MF 1|-|MF 2|=b 2=2, 故双曲线C 的方程为x 2-y 22=1.(2)由条件可知,两条渐近线分别为l 1:2x -y =0,l 2:2x +y =0.设双曲线C 上的点P (x 0,y 0),两条渐近线的夹角为θ,由题意知cos θ=13.则点P 到两条渐近线的距离分别为 |PP 1|=|2x 0-y 0|3,|PP 2|=|2x 0+y 0|3.因为P (x 0,y 0)在双曲线C :x 2-y 22=1上,所以2x 20-y 20=2.所以·=|2x 0-y 0|3·|2x 0+y 0|3·cos θ=|2x 20-y 20|3·13=29.18.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解 (1)∵双曲线的渐近线为y =±b ax ,∴a =b , ∴c 2=a 2+b 2=2a 2=4,∴a 2=b 2=2, ∴双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),∴直线AO 的斜率满足y 0x 0·(-3)=-1, ∴x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程,得3y 20+y 20=c 2,即y 0=12c ,∴x 0=32c ,∴点A 的坐标为⎝ ⎛⎭⎪⎫32c ,c 2,将其代入双曲线方程,得34c 2a 2-14c 2b 2=1,即34b 2c2-14a 2c 2=a 2b 2.② 又a 2+b 2=c 2,∴将b 2=c 2-a 2代入②式, 整理得34c 4-2a 2c 2+a 4=0,∴3⎝ ⎛⎭⎪⎫c a 4-8⎝ ⎛⎭⎪⎫c a 2+4=0,∴(3e 2-2)(e 2-2)=0. ∵e >1,∴e =2,∴双曲线的离心率为 2.19.(2019·某某模拟)已知点M (-2,0),N (2,0),动点P 满足条件|PM |-|PN |=22,记动点P 的轨迹为W .(1)求W 的方程;(2)若A 和B 是W 上的不同两点,O 是坐标原点,求·的最小值.解 (1)由|PM |-|PN |=22知动点P 的轨迹是以M ,N 为焦点的双曲线的右支,半实轴长a = 2.又焦距2c =4,所以半虚轴长b =c 2-a 2= 2. 所以W 的方程为x 22-y 22=1(x ≥2).(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2). 当AB ⊥x 轴时,x 1=x 2,y 1=-y 2, 从而·=x 1x 2+y 1y 2=x 21-y 21=2.当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m (k ≠±1),与W 的方程联立,消去y 得(1-k 2)x 2-2kmx -m 2-2=0,则x 1+x 2=2km 1-k 2,x 1x 2=m 2+2k 2-1, 所以·=x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m ) =(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)(m 2+2)k 2-1+2k 2m 21-k2+m 2=2k 2+2k 2-1=2+4k 2-1. 又因为x 1x 2>0,所以k 2-1>0.所以·>2. 综上所述,当AB ⊥x 轴时,·取得最小值2.20.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点M ,N ,且线段MN 的垂直平分线过点A (0,-1),某某数m 的取值X 围.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).由已知,得a =3,c =2.由a 2+b 2=c 2,得b 2=1. 故双曲线C 的方程为x 23-y 2=1.(2)由⎩⎪⎨⎪⎧y =kx +m ,x 23-y 2=1,得(1-3k 2)x 2-6kmx -3m 2-3=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-3k 2≠0,Δ=12(m 2+1-3k 2)>0,可得m 2>3k 2-1且k 2≠13.①设M (x 1,y 1),N (x 2,y 2),线段MN 的中点为B (x 0,y 0). 则x 1+x 2=6km 1-3k 2,x 0=x 1+x 22=3km1-3k2,y 0=kx 0+m =m1-3k2.由题意,知AB ⊥MN ,∴k AB =m1-3k 2+13km 1-3k2=-1k(k ≠0,m ≠0),整理得3k 2=4m +1.②将②代入①,得m 2-4m >0,∴m <0或m >4. 又3k 2=4m +1>0(k ≠0),∴m >-14,又k 2≠13,∴m ≠0,∴m 的取值X 围是⎝ ⎛⎭⎪⎫-14,0∪(4,+∞).。
2018版高考数学一轮复习 第九章 解析几何 9.6 双曲线真题演练集训 理 新人教a版
2018版高考数学一轮复习 第九章 解析几何 9.6 双曲线真题演练集训 理 新人教A 版1.[2016·新课标全国卷Ⅰ]已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案:A解析:由题意,得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.[2016·天津卷]已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案:D解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,故选D.3.[2016·新课标全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案:A解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a 2-y 2b 2=1,所以y 2b 2=c 2a 2-1=b 2a2,所以y =±b 2a.因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a2c=b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24, 所以e 2-22e -1=0,所以e = 2.故选A. 4.[2016·浙江卷]已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案:A解析:由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m 2·n 2+1n2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A. 5.[2016·北京卷]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a =________. 答案:2解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.6.[2016·山东卷]已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案:2解析: 如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2, 故|BN |=|BM |2+|MN |2=⎝ ⎛⎭⎪⎫322+22=52. 由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2,所以双曲线的离心率e =2c2a=2.课外拓展阅读 求双曲线离心率的易错点[典例] [2016·天津模拟]已知双曲线x 2m -y 2n =1(mn >0)的一条渐近线方程为y =±43x ,则该双曲线的离心率为________.[易错分析] (1)未考虑m ,n 的取值,易漏掉焦点在另一坐标轴上的情况; (2)易将ba弄错,从而导致失分. [解析] 当m >0,n >0时, 则有n m =43,所以n m =169, e =1+⎝ ⎛⎭⎪⎫b a 2=1+169=53;当m <0,n <0时, 则有m n =43,所以m n =169, e =1+⎝ ⎛⎭⎪⎫b a 2=1+916=54, 综上可知,该双曲线的离心率为53或54.[答案] 53或54温馨提醒(1)对于方程x 2m -y 2n=1表示的曲线一定要视m ,n 的不同取值进行讨论,m ,n 的取值不同表示的曲线就不同.(2)对于双曲线x 2m -y 2n =1(mn >0)的焦点位置不同,则ba的值就不一样,一定要注意区分.。
2018年高考数学课标通用理科一轮复习配套教师用书:第
§9.6 双曲线考纲展示►1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2.了解圆锥曲线的简单应用、了解双曲线的实际背景、了解双曲线在刻画现实世界或解决实际问题中的作用.3.理解数形结合的思想.考点1 双曲线的定义双曲线的定义平面内与两个定点F 1,F 2的________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做________,两焦点间的距离叫做________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当________时,P 点的轨迹是双曲线; (2)当________时,P 点的轨迹是两条射线; (3)当________时,P 点不存在.答案:距离的差的绝对值 双曲线的焦点 双曲线的焦距 (1)a <c (2)a =c (3)a >c(1)[教材习题改编]已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0).双曲线上一点P 到F 1,F 2距离之差的绝对值等于6,则双曲线的标准方程为________.答案:x 29-y 216=1解析:由已知可知,双曲线的焦点在x 轴上,且c =5,a =3,∴b =4,故所求方程为x 29-y 216=1.(2)[教材习题改编]双曲线的方程为x 2-2y 2=1,则它的右焦点坐标为________. 答案:⎝⎛⎭⎪⎫62,0 解析:将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为⎝ ⎛⎭⎪⎫62,0.双曲线的定义:关注定义中的条件.(1)动点P 到两定点A (0,-2),B (0,2)的距离之差的绝对值等于4,则动点P 的轨迹是________.答案:两条射线解析:因为||PA |-|PB ||=4=|AB |,所以动点P 的轨迹是以A ,B 为端点,且没有交点的两条射线.(2)动点P 到点A (-4,0)的距离比到点B (4,0)的距离多6,则动点P 的轨迹是________. 答案:双曲线的右支,即x 29-y 27=1(x ≥3)解析:依题意有|PA |-|PB |=6<8=|AB |,所以动点P 的轨迹是双曲线,但由|PA |-|PB |=6知, 动点P 的轨迹是双曲线的右支,即x 29-y 27=1(x ≥3).[典题1] (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.[答案] x 2-y 28=1(x ≤-1)[解析] 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|.根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为________.[答案] 9[解析] 如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4, 则|PF |+|PA |=4+|PE |+|PA |. 由图可得,当A ,P ,E 三点共线时, (|PE |+|PA |)min =|AE |=5, 从而|PF |+|PA |的最小值为9.[点石成金] 双曲线定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.考点2 双曲线的标准方程与性质双曲线的标准方程和几何性质(1)[教材习题改编]若实数k满足0<k<9,则曲线x225-y29-k=1与曲线x225-k-y29=1的( )A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等答案:A解析:由0<k<9,易知两曲线均为双曲线且焦点都在x轴上,由25+9-k=25-k+9,得两双曲线的焦距相等,故选A.(2)[教材习题改编]设双曲线x2a2-y29=1(a>0)的渐近线方程为3x±2y=0,则a的值为________.答案:a解析:双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0,与已知方程比较可得a =2.双曲线的标准方程:关注实轴的位置.双曲线的渐近线方程为y =±3x ,虚轴长为23,则双曲线方程为________. 答案:x 2-y 23=1或y 29-x 23=1解析:当实轴在x 轴上时,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知可知b a=3,b =3, 所以a 2=1,即所求方程为x 2-y 23=1.当实轴在y 轴上时,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0).由已知可得b =3,a b=3, 所以a 2=9,即所求方程为y 29-x 23=1.求双曲线的标准方程:待定系数法.对称轴为坐标轴,经过点P (3,2),Q (-6,7)的双曲线是________. 答案:5x 233-y211=1解析:由于不能确定双曲线的焦点在哪个轴上,故可设双曲线方程为Ax 2+By 2=1(AB <0). ∵所求双曲线经过P (3,2),Q (-6,7),∴⎩⎪⎨⎪⎧9A +4B =1,36A +49B =1,解得A =533,B =-111.故所求双曲线方程为5x 233-y211=1.[考情聚焦] 双曲线的标准方程和几何性质是每年高考命题的热点,尤其是渐近线与离心率问题,考查的力度比较大.主要有以下几个命题角度: 角度一求双曲线的标准方程[典题2] (1)过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 [答案] A[解析] 由双曲线方程知右顶点为(a,0), 设其中一条渐近线方程为y =b ax , 可得点A 的坐标为(a ,b ).设右焦点为F (c,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16, 所以有(c -a )2+b 2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12. 故双曲线的方程为x 24-y 212=1,故选A.(2)[2017·辽宁沈阳四校联考]设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________.[答案]y 24-x 25=1 [解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),根据定义知2a =|15-2+-2-15-2++2|=4,故a =2.又b 2=32-a 2=5, 故所求双曲线的方程为y 24-x 25=1.解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,又点(15,4)在双曲线上,所以16a 2-15b2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线的方程为x 227-λ+y 236-λ=1(27<λ<36), 由于双曲线过点(15,4),故1527-λ+1636-λ=1, 解得λ1=32,λ2=0(舍去). 故所求双曲线方程为y 24-x 25=1.[点石成金] 求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程,并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 角度二已知离心率求渐近线方程[典题3] 若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x [答案] B[解析] 在双曲线中离心率e =c a=1+⎝ ⎛⎭⎪⎫b a2 =3,可得b a=2,故所求的双曲线的渐近线方程是y =±2x .角度三已知渐近线求离心率[典题4] [2017·苏北四市联考改编]已知双曲线的一条渐近线方程为2x -y =0,则该双曲线的离心率为________.[答案]5或52[解析] 根据双曲线的渐近线方程知b a =2或a b=2.则e =1+⎝ ⎛⎭⎪⎫b a 2=5或52. 角度四由离心率或渐近线方程求双曲线方程[典题5] 下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A .x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1 D .y 2-x 24=1[答案] C[解析] 由双曲线焦点在y 轴上,排除选项A ,B ,选项C 中双曲线的渐近线方程为y =±2x ,故选C.角度五利用渐近线与已知直线位置关系求离心率范围[典题6] 已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1, 5 ]C .(5,+∞)D .[5,+∞)[答案] C[解析] ∵双曲线的一条渐近线方程为y =b a x ,则由题意得b a>2, ∴e =c a=1+⎝ ⎛⎭⎪⎫b a 2 >1+4= 5.即双曲线离心率的取值范围为(5,+∞).[点石成金] 解决有关渐近线与离心率关系问题的两个注意点(1)已知渐近线方程y =mx ,若焦点位置不明确要分|m |=b a 或|m |=a b讨论. (2)注意数形结合思想在求渐近线夹角、离心率范围中的应用.考点3 直线与双曲线的位置关系[典题7] 若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.(1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.[解] (1)由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1,得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.①∵直线与双曲线右支交于A ,B 两点,∴⎩⎪⎨⎪⎧k >1,Δ=k2--k 2-,即⎩⎨⎧k >1,-2<k <2,∴1<k < 2.故k 的取值范围为(1,2). (2)由①得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴|AB |=1+k 2·x 1+x 22-4x 1x 2=2+k2-k2k 2-2=63,整理得28k 4-55k 2+25=0, ∴k 2=57或k 2=54.又1<k <2,∴k =52, ∴x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8.设C (x 3,y 3),由OC →=m (OA →+OB →),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点,∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. [点石成金] 研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),求双曲线E 的方程.解:设双曲线E 的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式作差,得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b25a2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5. 所以双曲线E 的标准方程是x 24-y 25=1.[方法技巧] 1.双曲线标准方程的求法(1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n=1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b2=λ(λ≠0),据其他条件确定λ的值.2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线方程.3.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).4.过双曲线的一个焦点且与实轴垂直的弦的长为2b2a.5.过双曲线焦点F 1的弦AB 与双曲线交在同支上,则AB 与另一个焦点F 2构成的△ABF 2的周长为4a +2|AB |.[易错防范] 1.在运用双曲线的定义解题时,应特别注意定义中的条件“差的绝对值”,弄清是指整条双曲线还是双曲线的某一支.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1(a >0,b >0)的渐近线方程是y =±a bx .3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.4.要牢记在双曲线中c 2=a 2+b 2,离心率e >1这两点是不同于椭圆的.真题演练集训1.[2016·新课标全国卷Ⅰ]已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(-1,3)B .(-1,3)C .(0,3)D .(0,3)答案:A解析:由题意,得(m 2+n )(3m 2-n )>0,解得-m 2<n <3m 2,又由该双曲线两焦点间的距离为4,得m 2+n +3m 2-n =4,即m 2=1,所以-1<n <3.2.[2016·天津卷]已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( )A.x 24-3y 24=1B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1 答案:D解析:根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,故选D.3.[2016·新课标全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案:A解析:设F 1(-c,0),将x =-c 代入双曲线方程,得c 2a -y 2b =1,所以y 2b =c 2a -1=b 2a ,所以y =±b 2a.因为sin ∠MF 2F 1=13,所以tan ∠MF 2F 1=|MF 1||F 1F 2|=b 2a2c=b 22ac =c 2-a 22ac =c 2a -a 2c =e 2-12e =24, 所以e 2-22e -1=0,所以e = 2.故选A. 4.[2016·浙江卷]已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1答案:A解析:由于m 2-1=c 2,n 2+1=c 2,则m 2-n 2=2,故m >n ,又(e 1e 2)2=m 2-1m ·n 2+1n=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,所以e 1e 2>1.故选A. 5.[2016·北京卷]双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC的边长为2,则a =________. 答案:2解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±bax ,由已知可得两条渐近线方程互相垂直,由双曲线的对称性可得ba=1.又正方形OABC 的边长为2,所以c =22,所以a 2+b 2=c 2=(22)2,解得a =2.6.[2016·山东卷]已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.答案:2解析: 如图,由题意不妨设|AB |=3,则|BC |=2.设AB ,CD 的中点分别为M ,N ,则在Rt △BMN 中,|MN |=2c =2, 故|BN |=|BM |2+|MN |2=⎝ ⎛⎭⎪⎫322+22=52. 由双曲线的定义可得2a =|BN |-|BM |=52-32=1,而2c =|MN |=2,所以双曲线的离心率e =2c2a=2.课外拓展阅读 求双曲线离心率的易错点[典例] [2016·天津模拟]已知双曲线x 2m -y 2n =1(mn >0)的一条渐近线方程为y =±43x ,则该双曲线的离心率为________.[易错分析] (1)未考虑m ,n 的取值,易漏掉焦点在另一坐标轴上的情况; (2)易将ba弄错,从而导致失分. [解析] 当m >0,n >0时, 则有n m =43,所以n m =169, e =1+⎝ ⎛⎭⎪⎫b a2=1+169=53;当m <0,n <0时, 则有m n =43,所以m n =169, e =1+⎝ ⎛⎭⎪⎫b a2=1+916=54, 综上可知,该双曲线的离心率为53或54.[答案] 53或54温馨提醒(1)对于方程x 2m -y 2n=1表示的曲线一定要视m ,n 的不同取值进行讨论,m ,n 的取值不同表示的曲线就不同.(2)对于双曲线x 2m -y 2n =1(mn >0)的焦点位置不同,则ba的值就不一样,一定要注意区分.提醒 完成课时跟踪检测(五十二)。
高考数学大一轮复习 第九章 平面解析几何 第6讲 双曲线试题 理 新人教版(2021年最新整理)
新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学大一轮复习第九章平面解析几何第6讲双曲线试题理新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学大一轮复习第九章平面解析几何第6讲双曲线试题理新人教版的全部内容。
理新人教版基础巩固题组(建议用时:40分钟)一、选择题1。
(2017·郑州模拟)设双曲线错误!-错误!=1(a>0,b>0)的虚轴长为2,焦距为2错误!,则双曲线的渐近线方程为()A.y=±错误!x B。
y=±错误!xC.y=±2xD.y=±2x解析因为2b=2,所以b=1,因为2c=2错误!,所以c=错误!,所以a=错误!=错误!,所以双曲线的渐近线方程为y=±错误!x=±错误!x,故选B。
答案B2.(2015·广东卷)已知双曲线C:错误!-错误!=1的离心率e=错误!,且其右焦点为F2(5,0),则双曲线C的方程为( )A.错误!-错误!=1B.错误!-错误!=1C.错误!-错误!=1D.错误!-错误!=1解析因为所求双曲线的右焦点为F2(5,0)且离心率为e=错误!=错误!,所以c=5,a=4,b2=c2-a2=9,所以所求双曲线方程为错误!-错误!=1,故选C.答案C3。
(2017·山西省四校联考)已知双曲线C:错误!-错误!=1(a>0,b>0),右焦点F到渐近线的距离为2,点F到原点的距离为3,则双曲线C的离心率e为( )A。
错误! B.错误! C.错误!D。
错误!解析∵右焦点F到渐近线的距离为2,∴F(c,0)到y=bax的距离为2,即错误!=2,又b>0,c>0,a2+b2=c2,∴错误!=b=2,又∵点F到原点的距离为3,∴c=3,∴a=错误!=错误!,∴离心率e=错误!=错误!=错误!.答案B4。
精选江苏专用2018版高考数学大一轮复习第九章平面解析几何9.6双曲线教师用书理苏教版
第九章平面解析几何 9.6 双曲线教师用书理苏教版1.双曲线定义平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M||MF1-MF2|=2a},F1F2=2c,其中a,c为常数且a>0,c>0.(1)当2a<F1F2时,P点的轨迹是双曲线;(2)当2a=F1F2时,P点的轨迹是两条射线;(3)当2a>F1F2时,P点不存在.2.双曲线的标准方程和几何性质【知识拓展】巧设双曲线方程(1)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b 2=t (t ≠0).(2)过已知两个点的双曲线方程可设为x 2m +y 2n=1(mn <0).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × )(2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn=0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此结论中两条双曲线称为共轭双曲线).( √ )1.(教材改编)若双曲线x 2a 2-y 2b2=1 (a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为________. 答案5解析 由题意得b =2a ,又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a2=5,∴e = 5.2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,AB =43,则C 的实轴长为________.答案 4解析 由题设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a2=1和x =-4,得A (-4,16-a 2),B (-4,-16-a 2),∴AB =216-a 2=43, ∴a =2,∴2a =4.∴C 的实轴长为4.3.(2016·无锡一模)已知焦点在x 轴上的双曲线的渐近线方程为y =±13x ,那么双曲线的离心率为________. 答案103解析 根据题意,设双曲线的方程为x 2a 2-y 2b 2=1,则b a =13,所以ca=1+b a2=103,即双曲线的离心率为103. 4.(2016·江苏)在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.答案 210解析 由已知,a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 5.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线的一个顶点坐标为(2,0), 一条渐近线方程是y =12x ,即x -2y =0,则顶点到渐近线的距离d =|2-0|5=255.题型一 双曲线的定义及标准方程 命题点1 利用定义求轨迹方程例1 已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________________. 答案 x 2-y 28=1(x ≤-1)解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得MC 1-AC 1=MA ,MC 2-BC 2=MB ,因为MA =MB , 所以MC 1-AC 1=MC 2-BC 2,即MC 2-MC 1=BC 2-AC 1=2,所以点M 到两定点C 1、C 2的距离的差是常数且小于C 1C 2=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).命题点2 利用待定系数法求双曲线方程 例2 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7). 解 (1)设双曲线的标准方程为x 2a 2-y 2b 2=1或y 2a 2-x 2b 2=1(a >0,b >0). 由题意知,2b =12,e =c a =54.∴b =6,c =10,a =8.∴双曲线的标准方程为x 264-y 236=1或y 264-x 236=1.(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.命题点3 利用定义解决焦点三角形问题例3 已知F 1,F 2为双曲线C :x 2-y 2=2的左,右焦点,点P 在C 上,PF 1=2PF 2,则cos∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义有PF 1-PF 2 =PF 2=2a =22, ∴PF 1=2PF 2=42,则cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=22+22-422×42×22=34.引申探究1.本例中,若将条件“PF 1=2PF 2”改为“∠F 1PF 2=60°”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22, 在△F 1PF 2中,由余弦定理,得cos∠F 1PF 2=PF 21+PF 22-F 1F 222PF 1·PF 2=12,所以PF 1·PF 2=8, 所以12F PF S △=12PF 1·PF 2·sin 60°=2 3.2.本例中,若将条件“PF 1=2PF 2”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积是多少? 解 不妨设点P 在双曲线的右支上, 则PF 1-PF 2=2a =22,由于PF 1→·PF 2→=0,所以PF 1→⊥PF 2→, 所以在△F 1PF 2中,有PF 21+PF 22=F 1F 22, 即PF 21+PF 22=16, 所以PF 1·PF 2=4, 所以12F PF S △=12PF 1·PF 2=2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程.(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF 1-PF 2|=2a ,运用平方的方法,建立与PF 1·PF 2的联系.(3)待定系数法求双曲线方程具体过程中先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值,如果已知双曲线的渐近线方程,求双曲线的标准方程,可设有公共渐近线的双曲线方程为x 2a 2-y 2b2=λ(λ≠0),再由条件求出λ的值即可.(1)已知F 1,F 2为双曲线x 25-y 24=1的左,右焦点,P (3,1)为双曲线内一点,点A在双曲线上,则AP +AF 2的最小值为__________.(2)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,双曲线上存在一点P 使得PF 1+PF 2=3b ,PF 1·PF 2=94ab ,则该双曲线的离心率为________.答案 (1)37-2 5 (2)53解析 (1)由题意知,AP +AF 2=AP +AF 1-2a ,要求AP +AF 2的最小值,只需求AP +AF 1的最小值,当A ,P ,F 1三点共线时,取得最小值, 则AP +AF 1=PF 1=[3--2+-2=37,∴AP +AF 2的最小值为AP +AF 1-2a =37-2 5.(2)不妨设P 为双曲线右支上一点,PF 1=r 1,PF 2=r 2.根据双曲线的定义,得r 1-r 2=2a , 又r 1+r 2=3b ,故r 1=3b +2a 2,r 2=3b -2a2.又r 1·r 2=94ab ,所以3b +2a 2·3b -2a 2=94ab ,解得b a =43(负值舍去),故e =ca =a 2+b 2a 2=b a2+1432+1=53.题型二 双曲线的几何性质例4 (1)(2016·盐城三模)若圆x 2+y 2=r 2过双曲线x 2a 2-y 2b2=1的右焦点F ,且圆与双曲线的渐近线在第一、四象限的交点分别为A ,B ,当四边形OAFB 为菱形时,双曲线的离心率为________.(2)(2015·山东)在平面直角坐标系xOy 中,双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线C 2:x 2=2py (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 答案 (1)2 (2)32解析 (1)若四边形OAFB 为菱形,且点A 在圆x 2+y 2=r 2上,则点A 坐标为(c 2,32c ),此时r =c .又点A 在渐近线上,所以32c =b a ·c 2,即ba=3,所以e = 1+ba2=2.(2)由题意,不妨设直线OA 的方程为y =b a x ,直线OB 的方程为y =-b ax .由⎩⎪⎨⎪⎧y =b a x ,x 2=2py ,得x 2=2p ·bax ,∴x =2pb a,y =2pb 2a2,∴A ⎝ ⎛⎭⎪⎫2pb a ,2pb 2a 2.设抛物线C 2的焦点为F ,则F ⎝ ⎛⎭⎪⎫0,p 2,∴k AF =2pb2a 2-p22pba.∵△OAB 的垂心为F ,∴AF ⊥OB ,∴k AF ·k OB =-1, 即2pb2a 2-p22pb a·⎝ ⎛⎭⎪⎫-b a =-1,∴b 2a 2=54.设C 1的离心率为e ,则e 2=c 2a 2=a 2+b 2a 2=1+54=94.∴e =32.思维升华 双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2016·全国甲卷改编)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M在E 上,MF 1与x 轴垂直,sin∠MF 2F 1=13,则E 的离心率为________.答案2解析 离心率e =F 1F 2MF 2-MF 1,由正弦定理得e =F 1F 2MF 2-MF 1=sin∠F 1MF 2sin∠MF 1F 2-sin∠MF 2F 1=2231-13= 2.题型三 直线与双曲线的综合问题例5 (2016·苏州模拟)已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左,右焦点分别是C 1的左,右顶点,而C 2的左,右顶点分别是C 1的左,右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=4-1=3,c 2=4, 再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2有两个不同的交点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0, 解得13<k 2<3,②由①②得13<k 2<1.故k 的取值范围为(-1,-33)∪(33,1).思维升华 (1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. (2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.在平面直角坐标系xOy 中,已知双曲线C :x 24-y 23=1.设过点M (0,1)的直线l 与双曲线C 交于A ,B 两点.若AM →=2MB →,则直线l 的斜率为________. 答案 ±12解析 设A (x 1,y 1),B (x 2,y 2), 则x 214-y 213=1,x 224-y 223=1. 又AM →=2MB →,AM →=(-x 1,1-y 1),MB →=(x 2,y 2-1).所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-2,即⎩⎪⎨⎪⎧x 1=-2x 2,y 1=3-2y 2,代入双曲线方程联立解得⎩⎪⎨⎪⎧x 2=-2,y 2=0或⎩⎪⎨⎪⎧x 2=2,y 2=0,所以A (4,3),B (-2,0)或A (-4,3),B (2,0),故k =3-04+2=12或k =3-0-4-2=-12,即直线l 的斜率为±12.10.直线与圆锥曲线的交点典例 已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l ,与双曲线交于A ,B 两点,且点P 是线段AB 的中点? 错解展示现场纠错解 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0), 若直线l 的斜率不存在,显然不符合题意. 设经过点P 的直线l 的方程为y -1=k (x -1), 即y =kx +1-k .由⎩⎪⎨⎪⎧y =kx +1-k ,x 2-y 22=1,得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0=x 1+x 22=k-k2-k2. 由题意,得k-k2-k2=1,解得k =2. 当k =2时,方程①可化为2x 2-4x +3=0. Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点. 纠错心得 (1)“点差法”解决直线与圆锥曲线的交点问题,要考虑变形的条件. (2)“判别式Δ≥0”是判断直线与圆锥曲线是否有公共点的通用方法.1.(2016·泰州联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为10,点P (2,1)在C 的一条渐近线上,则C 的方程为________________. 答案x 220-y 25=1 解析 依题意⎩⎪⎨⎪⎧a 2+b 2=25,1=ba×2,解得⎩⎪⎨⎪⎧a 2=20,b 2=5,∴双曲线C 的方程为x 220-y 25=1.2.(2016·全国乙卷改编)已知方程x 2m 2+n -y 23m 2-n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是________. 答案 (-1,3)解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2(其中c 是半焦距),∴焦距2c =2×2|m |=4,解得|m |=1,∴-1<n <3.3.(2016·盐城模拟)已知双曲线x 216-y 29=1的左,右焦点分别为F 1,F 2,过F 2的直线与该双曲线的右支交于A ,B 两点,若AB =5,则△ABF 1的周长为________. 答案 26解析 由双曲线x 216-y 29=1,知a =4.由双曲线定义AF 1-AF 2=BF 1-BF 2=2a =8,∴AF 1+BF 1=AF 2+BF 2+16=21,∴△ABF 1的周长为AF 1+BF 1+AB =21+5=26.4.(2016·北京)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线为2x +y =0,一个焦点为(5,0),则a =________,b =________. 答案 1 2解析 由2x +y =0,得y =-2x ,所以b a=2. 又c =5,a 2+b 2=c 2,解得a =1,b =2.5.已知点F 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABE 是锐角三角形,则该双曲线的离心率e 的取值范围是____________. 答案 (1,2)解析 由题意易知点F 的坐标为(-c,0),A (-c ,b 2a ),B (-c ,-b 2a),E (a,0),∵△ABE 是锐角三角形,∴EA →·EB →>0,即EA →·EB →=(-c -a ,b 2a)·(-c -a ,-b 2a)>0,整理得3e 2+2e >e 4,∴e (e 3-3e -3+1)<0, ∴e (e +1)2(e -2)<0,解得e ∈(0,2),又e >1,∴e ∈(1,2).6.(2016·浙江)设双曲线x 2-y 23=1的左,右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则PF 1+PF 2的取值范围是________. 答案 (27,8)解析 如图,由已知可得a =1,b =3,c =2,从而F 1F 2=4,由对称性不妨设P 在右支上,设PF 2=m ,则PF 1=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧m +2<m 2+42,42<m +2+m 2,解得-1+7<m <3,又PF 1+PF 2=2m +2, ∴27<2m +2<8.7.(2016·南京三模)设F 是双曲线的一个焦点,点P 在双曲线上,且线段PF 的中点恰为双曲线虚轴的一个端点,则双曲线的离心率为________. 答案5解析 不妨设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),设F (-c,0),线段PF 的中点为(0,b ),则P (c,2b ).由点P 在双曲线上,得c 2a2-4=1,所以e = 5.8.设双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,P 为双曲线上位于第一象限内的一点,且△PF 1F 2的面积为6,则点P 的坐标为____________. 答案 (655,2)解析 由双曲线x 24-y 25=1的左,右焦点分别为F 1,F 2,所以F 1F 2=6,设P (x ,y ) (x >0,y >0),因为△PF 1F 2的面积为6,所以12F 1F 2·y =12×6×y =6,解得y =2,将y =2代入x 24-y25=1得x=655.所以P (655,2). 9.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,若在双曲线的右支上存在一点M ,使得(OM →+OF 2→)·F 2M →=0(其中O 为坐标原点),且|MF 1→|=3|MF 2→|,则双曲线的离心率为______. 答案3+1解析 ∵F 2M →=OM →-OF 2→,∴(OM →+OF 2→)·F 2M →=(OM →+OF 2→)·(OM →-OF 2→)=0, 即OM →2-OF 2→2=0,∴|OF 2→|=|OM →|=c ,在△MF 1F 2中,边F 1F 2上的中线等于F 1F 2的一半,可得MF 1→⊥MF 2→. ∵|MF 1→|=3|MF 2→|,∴可设|MF 2→|=λ(λ>0),|MF 1→|=3λ,得(3λ)2+λ2=4c 2,解得λ=c , ∴|MF 1→|=3c ,|MF 2→|=c ,∴根据双曲线定义得2a =|MF 1→|-|MF 2→|=(3-1)c , ∴双曲线的离心率e =2c2a=3+1.10.(2015·课标全国Ⅰ改编)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是______________. 答案 ⎝ ⎛⎭⎪⎫-33,33 解析 由题意知a =2,b =1,c =3, ∴F 1(-3,0),F 2(3,0),∴MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. 11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且PF 1=4PF 2,则此双曲线的离心率e 的最大值为________.答案 53解析 由定义,知PF 1-PF 2=2a . 又PF 1=4PF 2,∴PF 1=83a ,PF 2=23a .在△PF 1F 2中,由余弦定理,得 cos∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos∠F 1PF 2的最小值,∴当cos∠F 1PF 2=-1时,得e =53,即e 的最大值为53.12.(2015·课标全国Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 的周长最小时,该三角形的面积为________.答案 12 6解析 设左焦点为F 1,PF -PF 1=2a =2,∴PF =2+PF 1,△APF 的周长为AF +AP +PF =AF +AP +2+PF 1,△APF 周长最小即为AP +PF 1最小,当A 、P 、F 1三点在一条直线时最小,过AF 1的直线方程为x -3+y66=1,与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S △APF =S △AF 1F -S △F 1PF =12 6.13.(2016·江西丰城中学模拟)一条斜率为1的直线l 与离心率为3的双曲线x 2a 2-y 2b 2=1(a >0,b >0)交于P ,Q 两点,直线l 与y 轴交于R 点,且OP →·OQ →=-3,PR →=3RQ →,求直线和双曲线的方程.解 ∵e =3,∴b 2=2a 2, ∴双曲线方程可化为2x 2-y 2=2a 2. 设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,2x 2-y 2=2a 2,得x 2-2mx -m 2-2a 2=0,∴Δ=4m 2+4(m 2+2a 2)>0, ∴直线l 一定与双曲线相交. 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=2m ,x 1x 2=-m 2-2a 2.∵PR →=3RQ →,x R =x 1+3x 24=0,∴x 1=-3x 2,∴x 2=-m ,-3x 22=-m 2-2a 2. 消去x 2,得m 2=a 2.OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(x 1+m )(x 2+m ) =2x 1x 2+m (x 1+x 2)+m 2=m 2-4a 2=-3, ∴m =±1,a 2=1,b 2=2.直线l 的方程为y =x ±1,双曲线的方程为x 2-y 22=1.*14.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点是F 2(2,0),且b =3a .(1)求双曲线C 的方程;(2)设经过焦点F 2的直线l 的一个法向量为(m,1),当直线l 与双曲线C 的右支交于不同的两点A ,B 时,求实数m 的取值范围,并证明AB 中点M 在曲线3(x -1)2-y 2=3上; (3)设(2)中直线l 与双曲线C 的右支交于A ,B 两点,问是否存在实数m ,使得∠AOB 为锐角?若存在,请求出m 的取值范围;若不存在,请说明理由. 解 (1)由已知,得c =2,c 2=a 2+b 2,b =3a , ∴4=a 2+3a 2,∴a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.(2)由题意,得直线l :m (x -2)+y =0,由⎩⎪⎨⎪⎧y =-mx +2m ,x 2-y 23=1,得(3-m 2)x 2+4m 2x -4m 2-3=0. 由Δ>0,得4m 4+(3-m 2)(4m 2+3)>0, 12m 2+9-3m 2>0,即m 2+1>0恒成立. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4m 2m 2-3,x 1x 2=4m 2+3m 2-3.又⎩⎪⎨⎪⎧x 1+x 2>0,x 1·x 2>0,∴⎩⎪⎨⎪⎧4m2m 2-3>0,4m 2+3m 2-3>0,∴m 2>3,∴m ∈(-∞,-3)∪(3,+∞). ∵x 1+x 22=2m 2m 2-3,y 1+y 22=-2m 3m 2-3+2m=-6mm 2-3, ∴AB 的中点M (2m 2m 2-3,-6mm 2-3),∵3(2m 2m 2-3-1)2-36m 2m 2-2 =3×m 2+2m 2-2-36m 2m 2-2=3×m 4+6m 2+9-12m 2m 2-2=3,∴M 在曲线3(x -1)2-y 2=3上. (3)设A (x 1,y 1),B (x 2,y 2),假设存在实数m ,使∠AOB 为锐角,则OA →·OB →>0, ∴x 1x 2+y 1y 2>0.∵y 1y 2=(-mx 1+2m )(-mx 2+2m ) =m 2x 1x 2-2m 2(x 1+x 2)+4m 2, ∴(1+m 2)x 1x 2-2m 2(x 1+x 2)+4m 2>0, ∴(1+m 2)(4m 2+3)-8m 4+4m 2(m 2-3)>0,即7m 2+3-12m 2>0,∴m 2<35,与m 2>3矛盾,∴不存在实数m ,使得∠AOB 为锐角.。
2018届高三高考数学复习练习:9-6双曲线 含答案 精品
9-61.若双曲线E :x 29-y 216=1的左,右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A .11B .9C .5D .3【解析】 由双曲线定义||PF 2|-|PF 1||=2a , ∵|PF 1|=3,∴P 在左支上, ∵a =3,∴|PF 2|-|PF 1|=6, ∴|PF 2|=9,故选B. 【答案】 B2.(2018·郑州模拟)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±12xB .y =±22x C .y =±2xD .y =±2x【解析】 因为2b =2,所以b =1.因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x ,故选B.【答案】 B3.(2018·银川模拟)已知双曲线x 29-y 2m =1(m >0)的一个焦点在圆x 2+y 2-4x -5=0上,则双曲线的渐近线方程为( )A .y =±34xB .y =±43xC .y =±53xD .y =±324x【解析】 由⎩⎪⎨⎪⎧y =0,x 2+y 2-4x -5=0,得x 2-4x -5=0,解得x =5或x =-1,又a =3,故c =5, 所以b =4,双曲线的渐近线方程为y =±43x ,故选B. 【答案】 B4.(2017·全国Ⅱ卷)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则C 的离心率为( )A .2 B. 3 C. 2D.233【解析】 设双曲线的一条渐近线方程为y =ba x ,圆的圆心为(2,0),半径为2,由弦长为2得出圆心到渐近线的距离为22-12= 3. 根据点到直线的距离公式得|2b |a 2+b 2=3,解得b 2=3a 2, 所以C 的离心率e =ca =c 2a 2= 1+b 2a2=2. 故选A. 【答案】 A5.(2017·全国Ⅰ卷)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32【解析】 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D. 【答案】 D6.(2017·全国Ⅰ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.【解析】 如图,由题意知点A (a ,0),双曲线的一条渐近线l 的方程为y =ba x ,即bx -ay =0,∴点A 到l 的距离d =aba 2+b 2. 又∠MAN =60°,MA =NA =b ,∴△MAN 为等边三角形, ∴d =32MA =32b ,即ab a 2+b2=32b ,∴a 2=3b 2, ∴e =c a =a 2+b 2a 2=233. 【答案】2337.在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.【解析】 由已知,得a 2=7,b 2=3,则c 2=7+3=10,故焦距为2c =210. 【答案】 2108.已知双曲线的一个焦点F (0,5),它的渐近线方程为y =±2x ,则该双曲线的标准方程为________.【解析】 设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧c =5,a b=2⇒⎩⎪⎨⎪⎧a 2+b 2=5,a =2b ⇒⎩⎪⎨⎪⎧a 2=4,b 2=1,所以双曲线的标准方程为y 24-x 2=1.【答案】 y 24-x 2=19.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________.【解析】 由定义,知|PF 1|-|PF 2|=2a . 又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a 2+49a 2-4c 22·83a ·23a =178-98e 2.要求e 的最大值,即求cos ∠F 1PF 2的最小值, ∴当cos ∠F 1PF 2=-1时,得e =53,即e 的最大值为53.【答案】 5310.设双曲线C 的中心为点O ,若有且只有一对相交于点O 且所成的角为60° 的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1、B 1和A 2、B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是________.【解析】 由双曲线的对称性知,满足题意的这一对直线也关于x 轴(或y 轴)对称.又由题意知有且只有一对这样的直线,故该双曲线在第一象限的渐近线的倾斜角范围大于30° 且小于等于60° ,即tan 30° <b a ≤tan 60° ,∴13<b 2a 2≤3.又e 2=⎝⎛⎭⎫c a 2=c 2a 2=1+b 2a 2,∴43<e 2≤4, ∴233<e ≤2. 【答案】 ⎝⎛⎦⎤233,211.直线l :y =3(x -2)和双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,且|AB |=3,又l 关于直线l 1:y =bax 对称的直线l 2与x 轴平行.(1)求双曲线C 的离心率e ; (2)求双曲线C 的方程.【解析】 (1)设双曲线C :x 2a 2-y 2b 2=1过第一、三象限的渐近线l 1:x a -yb =0的倾斜角为α.因为l 和l 2关于l 1对称,记它们的交点为P ,l 与x 轴的交点为M . 而l 2与x 轴平行,记l 2与y 轴的交点为Q . 依题意有∠QPO =∠POM =∠OPM =α.又l :y =3(x -2)的倾斜角为60° ,则2α=60° ,α=30° , 所以tan 30° =b a =33.于是e 2=c 2a 2=1+b 2a 2=1+13=43,所以e =233.(2)由于b a =33,于是可设双曲线方程为x 23k 2-y 2k 2=1(k ≠0),即x 2-3y 2=3k 2.将y =3(x -2)代入x 2-3y 2=3k 2中, 得8x 2-36x +36+3k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=92,x 1x 2=36+3k 28,所以|AB |=1+3|x 1-x 2|=2(x 1+x 2)2-4x 1x 2=2×362-4×8×(36+3k 2)8=9-6k 2=3,解得k 2=1.故所求双曲线C 的方程为x 23-y 2=1.12.(2018·江南十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0. 【解析】 (1)∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0). ∵双曲线过点(4,-10),∴16-10=λ,即λ=6. ∴双曲线的方程为x 2-y 2=6.(2)证明 方法一 由(1)可知,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0),方法二 由(1)可知,a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ), ∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2. ∵点M (3,0)在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.。
新教材高考数学第九章平面解析几何6考点2双曲线的几何性质1练习(含解析)(选修2)
考点2 双曲线的几何性质(2018·浙江卷)双曲线x 23-y 2=1的焦点坐标是( )A .(-√2,0),(√2,0)B .(-2,0),(2,0)C .(0,-√2),(0,√2)D .(0,-2),(0,2) 【解析】∵双曲线方程为x 23-y 2=1, ∴a 2=3,b 2=1,且双曲线的焦点在x 轴上,∴c =√x 2+x 2=√3+1=2,即得该双曲线的焦点坐标为(-2,0),(2,0).故选B .【答案】B(2018·江苏卷)在平面直角坐标系xOy中,若双曲线x 2x 2-x 2x 2=1(a >0,b >0)的右焦点F (c,0)到一条渐近线的距离为√32c ,则其离心率的值为________.【解析】双曲线的渐近线方程为bx ±ay =0,焦点F (c,0)到渐近线的距离d =√2+x 2=B .∴b =√32c , ∴a =√x 2−x 2=12c ,∴e =x x =2. 【答案】2(2018·全国卷Ⅲ(文))已知双曲线C :x 2x 2-x 2x 2=1(a >0,b >0)的离心率为√2,则点(4,0)到C 的渐近线的距离为( )A .√2B .2C .3√22D .2√2【解析】由题意,得e =x x =√2,c 2=a 2+b 2,得a 2=b 2.又因为a >0,b >0,所以a =b ,渐近线方程为x ±y =0,所以点(4,0)到渐近线的距离为√2=2√2.【答案】D(2018·全国Ⅱ卷(文))双曲线x 2x 2-x 2x 2=1(a >0,b >0)的离心率为√3,则其渐近线方程为( ) A .y =±√2xB .y =±√3xC .y =±√22xD .y =±√32x 【解析】双曲线x 2x 2-x 2x 2=1的渐近线方程为bx ±ay =0. 又∵离心率x x =√x 2+x 2x =√3, ∴a 2+b 2=3a 2,∴b =√2a (a >0,b >0). ∴渐近线方程为√2ax ±ay =0,即y =±√2x .【答案】A(2018·北京卷(文))若双曲线x 2x 2-x 24=1(a >0)的离心率为√52,则a =________.【解析】由e =x x =√x 2+x 2x 2知,x 2+4x 2=(√52)2=54, ∴a 2=16.又∵a >0,∴a =4.【答案】4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 双曲线基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·台州调研)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A.y =±12xB.y =±22x C.y =±2xD.y =±2x解析 因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x ,故选B. 答案 B2.(2015·广东卷)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为( ) A.x 24-y 23=1B.x 29-y 216=1 C.x 216-y 29=1D.x 23-y 24=1 解析 因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1,故选C.答案 C3.(2016·浙江卷)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A.m >n 且e 1e 2>1B.m >n 且e 1e 2<1C.m <n 且e 1e 2>1D.m <n 且e 1e 2<1解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1.答案 A4.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( )A.14B.35C.34D.45解析 由x 2-y 2=2,知a =b =2,c =2. 由双曲线定义,|PF 1|-|PF 2|=2a =22, 又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.答案 C5.(2017·杭州调研)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |=( ) A.433B.2 3C.6D.4 3解析 由题意知,双曲线x 2-y 23=1的渐近线方程为y =±3x ,将x =c =2代入得y =±23,即A ,B 两点的坐标分别为(2,23),(2,-23),所以|AB |=4 3. 答案 D 二、填空题6.(2015·浙江卷)双曲线x 22-y 2=1的焦距是________,渐近线方程是________.解析 由双曲线方程得a 2=2,b 2=1,∴c 2=3,∴焦距为23,渐近线方程为y =±22x . 答案 2 3 y =±22x 7.(2016·北京卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________.解析 取B 为双曲线右焦点,如图所示.∵四边形OABC 为正方形且边长为2,∴c =|OB |=22,又∠AOB =π4,∴b a =tan π4=1,即a =b . 又a 2+b 2=c 2=8,∴a =2. 答案 28.(2016·山东卷)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝ ⎛⎭⎪⎫c a 2-3⎝ ⎛⎭⎪⎫c a -2=0,即2e 2-3e-2=0,解得e =2或e =-1(舍去). 答案 2 三、解答题9.(2017·宁波十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0. (1)解 ∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0). ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线的方程为x 2-y 2=6.(2)证明 法一 由(1)可知,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0), ∴k MF 1=m 3+23,k MF 2=m3-23,k MF 1·k MF 2=m 29-12=-m 23. ∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3, 故k MF 1·k MF 2=-1, ∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.法二 由(1)可知,a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2, ∵点M (3,0)在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1→·MF 2→=0.10.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.解 (1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1. 故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2, ∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.②由①②得13<k 2<1,故k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1. 能力提升题组 (建议用时:30分钟)11.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1D.x 212-y 24=1 解析 由双曲线方程知右顶点为(a ,0),不妨设其中一条渐近线方程为y =b ax ,因此可得点A 的坐标为(a ,b ).设右焦点为F (c ,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16,所以有(c -a )2+b2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12.故双曲线的方程为x 24-y 212=1,故选A.答案 A12.若双曲线x 2a 2-y 2b2=1(a >0,b >0)上存在一点P 满足以|OP |为边长的正方形的面积等于2ab (其中O 为坐标原点),则双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤1,52 B.⎝ ⎛⎦⎥⎤1,72 C.⎣⎢⎡⎭⎪⎫52,+∞D.⎣⎢⎡⎭⎪⎫72,+∞ 解析 由条件,得|OP |2=2ab ,又P 为双曲线上一点,从而|OP |≥a ,∴2ab ≥a 2,∴2b ≥a ,又∵c 2=a 2+b 2≥a 2+a 24=54a 2,∴e =c a ≥52.答案 C13.(2016·浙江卷)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.解析 如图,由已知可得a =1,b =3,c =2,从而|F 1F 2|=4,由对称性不妨设点P 在右支上,设|PF 2|=m ,则|PF 1|=m +2a =m +2, 由于△PF 1F 2为锐角三角形,结合实际意义需满足⎩⎪⎨⎪⎧(m +2)2<m 2+42,42<(m +2)2+m 2, 解得-1+7<m <3, 又|PF 1|+|PF 2|=2m +2, ∴27<2m +2<8. 答案 (27,8)14.已知双曲线y 2a -x 2b=1(a >0,b >0)的一条渐近线方程为2x +y =0,且顶点到渐近线的距离为255. (1)求此双曲线的方程;(2)设P 为双曲线上一点,A ,B 两点在双曲线的渐近线上,且分别位于第一、二象限,若AP →=PB →,求△AOB 的面积.解 (1)依题意得⎩⎪⎨⎪⎧a b =2,|2×0+a |5=255,解得⎩⎪⎨⎪⎧a =2,b =1,故双曲线的方程为y 24-x 2=1. (2)由(1)知双曲线的渐近线方程为y =±2x ,设A (m ,2m ),B (-n ,2n ),其中m >0,n >0,由AP →=PB →得点P 的坐标为⎝ ⎛⎭⎪⎫m -n 2,m +n . 将点P 的坐标代入y 24-x 2=1, 整理得mn =1.设∠AOB =2θ,∵tan ⎝ ⎛⎭⎪⎫π2-θ=2, 则tan θ=12,从而sin 2θ=45.又|OA |=5m ,|OB |=5n , ∴S △AOB =12|OA ||OB |sin 2θ=2mn =2.15.(2017·浙大附中模拟)已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3. (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 左支交于A 、B 两点,求k 的取值范围; (3)在(2)的条件下,线段AB 的垂直平分线l 0与y 轴交于M (0,m ),求m 的取值范围.解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,得b 2=1, ∴双曲线C 的方程为x 23-y 2=1.(2)设A (x A ,y A )、B (x B ,y B ),将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由题意知⎩⎪⎨⎪⎧1-3k 2≠0,Δ=36(1-k 2)>0,x A +x B =62k 1-3k 2<0,x A x B =-91-3k 2>0,解得33<k <1. ∴当33<k <1时,l 与双曲线左支有两个交点. (3)由(2)得:x A +x B =62k1-3k 2,∴y A +y B =(kx A +2)+(kx B +2) =k (x A +x B )+22=221-3k 2.∴AB 的中点P 的坐标为⎝⎛⎭⎪⎫32k 1-3k 2,21-3k 2. 设直线l 0的方程为:y =-1kx +m ,将P 点坐标代入直线l 0的方程,得m =421-3k 2.∵33<k <1,∴-2<1-3k 2<0. ∴m <-2 2.∴m 的取值范围为(-∞,-22).。