高数第五版答案(同济)总习题十
同济大学《高等数学》第五版上册答案(详解)
解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
同济高数课后习题答案全解
同济高数课后习题答案全解高等数学同济版第一章一、求下列极限、;解一: 原式原式解二:2xlim2、解一:2x13x11原式解二:sin3x~3x2xx1原式xtan2xlim3、解:原式xlim4、原式解一: 1 解二:原式、原式解一:解二:原式xlimxlim6、解一原式令2t解二: 1原式2x)]17、解:原式:、解:原式、原式解:10、解:2663xsinx1sinx1原式11、。
解:原式二、求下列导数或微分1、设,求dy 解一:解二:dx2x2、设,求解、设,求解4、设,求解:dy5、设,求dx1y解:6、设ye,求 dxx解、设,求dy解、设,求解9、设,求解:10、设,求1解、设sinxx3edt,求解12、设,求解,,3三、求下列积分1、解:原式ex2、解:原式、cscx解:原式4、1x221x2解:原式(lnx)3、 x14解:原式dx6、解:原式x47、解:原式8、解一:令原式解二:利用原式9、55解:因原式10、1elnxdx1e1解:原式e111、解:原式12、dx 2x令解:原式2413、解:原式x3 原式x,314、1027解:原式19817 272710 981 115、20 sinx3解:2sin3x20令原式20注:上题答案有误,应为(π-1)/4四、微分和积分的应用1、列表讨论下列函数的单调性、凹凸性、极值、拐点: 32; (1)解:83由或x=2.由在区间,上递3增;在区间[1,2]上递减。
在上是凸的;333在上是凹的。
点(2,2)是函数的拐点,函数在处取得极大值2,在处取得极小值1。
(2)解:没有的点,存在不可导点在区间上递增;在上是凸的;在上是凹的。
点(0,0)是函数的拐点(3)解:33399921由由55当时,y,y不存在‘‘‘在区间上递增,在-,上是凹的;上递减;在区间-在上是凸的。
点,是函数的拐点,函数在处取得极大值,在5处32取得极小值32、求函数的极值。
高等数学同济第五版第10章答案
习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为 ⎰⎰==L L ydsy x ds y x x MM x ),(),(μμ, ⎰⎰==L L x dsy x ds y x y MM y ),(),(μμ.2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 11111),(lim),(lim),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L dsy x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+Ln ds y x )(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .x d x L ⎰x d x x d x L L⎰⎰+=21⎰⎰'++'+=121022)(1])[(1dx x x dx x x⎰⎰++=1102241x d x dx x x )12655(121-+=.(4)dsey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axaaxdx e dt t a t a edx e220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧; 解 dt dtdz dt dy dtdx ds 222)()()(++= dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223s i n c o s 11dt e e t e t e ds z y x t tt t⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故y z d sx y z d s x y z d s x y z d s xCDBCAB2222⎰⎰⎰⎰++=Γ 901020030222301=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=Ldt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023c o s 1)c o s 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdy dtdx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (a t d tt t t a t t t a ds y xL ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a t d t t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==Lx x d s aMM x ϕ21⎰-⋅=ϕϕθθϕa d a ac o s 21ϕϕs i n a =,所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=.(2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=,ds z y x x M x L)(1222⎰++=⎰++=π2022222)(c o s 1dt k a t k a t a M2222436k a ak ππ+=,ds z y x y My L)(1222⎰++=⎰++=π2022222)(s i n 1dt k a t k a t a M2222436k a ak ππ+-=,ds z y x z Mz L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3ka k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())(,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtdat a P dx y x P .2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lba dx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baLb adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-Ldx x x dx y x 242221556)()(. (2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L Lx y d xx y d x x y d x ⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π302232)s i n s i ns i n (a t td tdt a πππ-=+-=⎰⎰. (3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202c o s πt d t R .(4)⎰+--+Ly x dyy x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+Ly x dyy x dx y x 22)()(⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a⎰-=-=ππ202221dt a a.(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=10)]1211(3)21(2)1[(dtt t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1,CA : x =x , y =0, z =1-x , x 从0变到1, 故y d z dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=111)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-Ldy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x1514)4(2142-=-=⎰dx x x4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y .(2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1);解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰ ⎰+=Ld s y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()c o s ,(c o s 22xx x++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰++=Lds xy x xQ y x P 241),(2),(.(3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2xx x --=τ,单位切向量为)1 ,2()c o s ,(c o s 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧, 把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)c o s ,c o s ,(c o s 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=Lds yx yR xQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx xxy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=1012243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(101245235=++--++=⎰⎰dy y y y dx x x x , 而 d x d y x d x d y yPx Q DD )21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、(2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界. 解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x)2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰⎰⎰⎰⎰+-+-+=20200222222)8()4(dy y dx x x dy y y dx x848202=-+=⎰⎰y d y x d x ,而d x d y xy y dxdy yPx Q DD)32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(2=-=⎰dx x ,所以⎰⎰⎰+=∂∂-∂∂l DQ d y P d x d x d y yPx Q )(.2. 利用曲线积分, 求下列曲线所围成的图形的面积: (1)星形线x =a cos 3t , y =a sin 3t ; 解 ⎰⎰-⋅⋅-=-=Ldt t t a t a ydx A π2023)sin (cos 3sin⎰==ππ20224283c o s s i n 3a t d t t a.(2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2=144的参数方程为 x =4cos θ, y =3sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d .(3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π, 故 ⎰-=Ly d x x d y A 21⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)c o s 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-Ly x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方向为逆时针方向. 解 )(222y x y P +=, )(222y x xQ +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周 l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+d x d y yPx Q Q d y P d x D l L ε, 即⎰⎰⎰+=+-=+-lL ldy Pdx Qdy Pdx QdyPdx .因此⎰⎰+-=+-l L y x x d yy d x y x x d yy d x )(2)(22222⎰--=πθεθεθε20222222c o s s i n d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值: (1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQy P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x⎰=+=2125)1(dx x .(2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且2312y xy xQy P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一 阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx yxy⎰⎰=++-=12135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、(3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yPx Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(d x d y yPx Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰d x d y D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2c o s s i n 2()2c o s s i n 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yPx Q , 由格林公式⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰d x d y yPx Q D. (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧;解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)c o s 26()6c o s 2(22=--+-=∂∂-∂∂x y xy xy x y yPx Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-d x d y yPx Q Q d y P d x DOBOA L , 其中L 、OA 、OB 、及D 如图所示. 故⎰⎰++=+AB OA L QdyPdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--Ldy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧. 解 P =x 2-y , Q =-x -sin 2y , 0)1(1=---=∂∂-∂∂yPx Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++d x d y yPx Q Q d y P d x DBO AB L , 其中L 、AB 、BO 及D 如图所示. 故⎰⎰++--=+--L OBBA dy y x dx y x dy y x dx y x)sin ()()sin ()(22222s i n 4167)s i n 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数 u (x , y )的全微分, 并求这样的一个u (x , y ): (1)(x +2y )dx +(2x +y )dy ; 证明 因为yPx Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分. ⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222.(2)2xydx +x 2dy ; 解 因为yPx x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分. ⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C x y d x dy 0220.(3)4sin x sin3y cos xdx –3cos3y cos2xdy 解 因为yPx y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+-=),()0,0(2c o s 3c o s 3c o s 3s i n s i n 4),(y x C x d y y x d x y x y x uC y x C x d y y dx x y+-=+-+=⎰⎰3sin 2cos 2cos 3cos 300.(4)dy ye y x x dx xy y x y )128()83(2322++++ 解 因为yPxy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分.⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x uC dx xy y x dy ye y xy +++=⎰⎰022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++ 解 因为yPy x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分⎰⎰+-+=xyC dy y x x y xdx y x u 02)sin sin 2(2),(C y x x y ++=c o s s i n 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2.由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS , 对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅ ⋅ ⋅, ∆S m ; 划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅ ⋅ ⋅, ∆S m +n , 则∆S 1, ⋅ ⋅ ⋅, ∆S m , ∆S m +1, ⋅ ⋅ ⋅, ∆S m +n 为∑的一个划分, 并且 i i i i nm m i i i i i mi i i i i nm i S f S f S f ∆+∆=∆++==+=∑∑∑),,(),,(),,(111ζηξζηξζηξ.令}{max 11i mi S ∆=≤≤λ, }{max12i nm i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当λ→0时, 有dSz y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dS z y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,d x d y d x d yz z dS y x =++=221, 故d x d y z y x f dS z y x f D ),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下: (1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d y y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ313])41(121[2202/32=+=r .(2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此d x d yy x y xdS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑⎰⎰+=πθ202241r d r r d ππ30149412222=+=⎰rdr r r .(3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 22224411++=++=. 因此dS z y x f ),,(∑⎰⎰d x d y y x y x xyD 2222441)](2[3+++-=⎰⎰ ⎰⎰+-=πθ2022241)2(3r d r r r d ππ1011141)2(6222=+-=⎰rdr r r .5. 计算dS y x )(22+∑⎰⎰, 其中∑是:(1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面; 解 将∑分解为∑=∑1+∑2, 其中 ∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x 2122=++=.dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ d x d y y x d x d y y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ20132dr r dπππ221222+=+=.提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,d x d y d x d yz z dS y x 2122=++=, 因而πθπ922)()(32202222==+=+⎰⎰⎰⎰⎰⎰∑r d r r d d x d y y x dS y x xyD .提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z yx 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤,d x d y z z dS y x 221++=d x d y 361=,61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdydxdy dS y x z xyxyD D .(2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,d x d y d x d yz z dS y x 3122=++=,dS z x xxy )22(2+--∑⎰⎰d x d yy x x xxy xyD 3)22622(2--+--=⎰⎰ ⎰⎰--+--=xdy y xy x x dx 30230)22236(3427)9103(3323-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分; 解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a ay x a y x dS z y x xyD 222222)()(----++=++⎰⎰⎰⎰∑)(||22h a a D a a d x d y xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y yx a x dS 22222222)()(1+--++--+=dxdyyx a a 222--=,(4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax 所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax , dxdy dxdy z z dS y x 2122=++=,d x d yy x y x xy dSzx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑⎰⎰++=-θππθθθθc o s202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a)c o s s i n c o s c o s (s i n 24422554⎰-++=421564a =.提示: dxdy yx y y x x dS 2222221++++=.7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2,d x d y y x d x d yz z dS y x 222211++=++=. 故 d x d yy x y x z d S M xyD 22221)(21+++==⎰⎰⎰⎰∑⎰⎰+=πθ20222121r d r r r d )136(152+=π.8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,d x d y z z dS y x 221++=d x d y yx a a 222--=,d x d yyx a a y x dS y x I z 22222022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=πθμ202230adr ya r d a 4034a πμ=.提示: dxdy yx a y yx a x dS 22222222)()(1---+---+=dxdyyx a a 222--=,习题10-51. 按对坐标的曲面积分的定义证明公式:d y d z z y x P z y x P )],,(),,([21±∑⎰⎰d y d z z y x P d y d zz y x P )],,(),,(21∑∑⎰⎰⎰⎰±=. 解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点,λ是各小块曲面的直径的最大值, 则d y d z z y x P z y x P )],,(),,([21±∑⎰⎰yz i i i i i i i ni S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i ni S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλdydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系? 解 因为∑: z =0, (x , y )∈D xy , 故d x d y z y x R d x d yz y x R xyD ),,(),,(⎰⎰⎰⎰±=∑, 当∑取的是上侧时为正号, ∑取的是下侧时为负号. 3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是z d x d yy x22∑⎰⎰d x d yy x R y xxyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ2022222s i n c o s r d r r R r r d R⎰⎰-=πθθ20052222s i n 41Rdr r r R d 71052R π=.(2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧; 解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故⎰⎰⎰⎰⎰⎰⎰-=-=-=∑30112221311dy y dy y dz dydz y xdyz yzD∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故d z d x x y d z d x zxD 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=301122131dx x dx x dz .因此 y d z d x x d y d z z d x d y ++∑⎰⎰)13(212dx x ⎰-=ππ2346=⨯=.解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为 )0 , ,(1)c o s ,c o s ,(c o s 22y x yx +=γβα,由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy)cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示:dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中 f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31,31 ,31()c o s ,c o s ,(c o s -=γβα, 由两类曲面积分之间的联系可得d x d y z z y x f d z d x y z y x f d y d zx z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰ dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑d x d ydS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧. 解 ∑=∑1+∑2+∑3+∑4, 其中 ∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z , ∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x , ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x , 于是⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdyx z d x d y4000∑⎰⎰+++= d x d y y x x xyD )1(--=⎰⎰⎰⎰-=--=110241)1(xdy y x xdx. 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz .因此 ⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x . 显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdxxydydz xzdxdyy z d z d x x y d y d z x z d x d y ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD .4. 把对坐标的曲面积分d x d y z y x R d z d x z y x Q d y d zz y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧; 解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为: )32 ,2 ,3(),,(==z y x F F F n , 单位法向量为)32 ,2 ,3(51)c o s ,c o s ,(c o s =γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰.(2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧. 解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量 n =(F x , F y , F z )=(2x , 2y , 1), 单位法向量为)1 ,2 ,2(4411)c o s ,c o s ,(c o s 22y x yx ++=γβα,于是R d x d y Q d z d x P d y d z ++∑⎰⎰ dS R Q P )cos cos cos (γβα++=∑⎰⎰dSR yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaaaa dz dy xdx xdv 040366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式 原式dv z y x dv zRy Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ204s i n 3adr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧; 解 由高斯公式 原式dv y x z d zRy Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ202022s i n adr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧; 解 由高斯公式 原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv zRy Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧. 解 由高斯公式原式dv y y z dv zRy Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=1010123)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量:(1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy , ⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv zxy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰d v . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a , 的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2, ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv zr y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=aaaa a dz xz x dy dx 02320)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z , ⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv zRy Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度: (1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ; 解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222d i vz y x z y x zRy Q x P ++=++=∂∂+∂∂+∂∂=A .(2)A =e xy i +cos(xy )j +cos(xz 2)k ; 解 P =e xy , Q =cos(xy ), R =cos(xz 2),)s i n (2s i n d i v2xz xz xy x ye zRy Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ; 解 P =y 2, Q =xy , R =xz , x x x zRy Q x P 20d i v =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, nu ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向的方向导数. 证明dS nu v n v udxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知d x d y d z zvy v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d z zv z u y v y u x v x u dS n v u)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, d x d y d zzuy u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ d x d y d zzvz u y v y u x v x u dS n u v)(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得d x d y d zuy u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰⎰⎰∑∂∂-∂∂=dS nu v n v u)(.。
工程数学线性代数(同济大学第五版)课后习题答案【精品共223页
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民ห้องสมุดไป่ตู้幸福是至高无个的法。— —西塞 罗
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
同济大学《高等数学第五版》习题答案
A\(A\B)=[−10, −5).
2. 设A、B是任意两个集合, 证明对偶律: (A∩B)C=AC ∪B C .
证明 因为
x∈(A∩B)C⇔x∉A∩B⇔ x∉A或x∉B⇔ x∈AC或x∈B C ⇔ x∈AC ∪B C, 所以 (A∩B)C=AC ∪B C .
F(−x)=f(−x)⋅g(−x)=f(x)[−g(x)]=−f(x)⋅g(x)=−F(x),
所以 F(x)为奇函数, 即偶函数与奇函数的积是奇函数.
12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?
(1)y=x2(1−x2);
(2)y=3x2−x3;
(3)
y
= 1− x2 1+ x2
(6)因为 f (−x)= a(−x) + a−(−x) = a−x + ax = f (x) , 所以 f(x)是偶函数.
பைடு நூலகம்
2
2
13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y=cos(x−2); (2)y=cos 4x; (3)y=1+sin πx; (4)y=x cos x; (5)y=sin2 x. 解 (1)是周期函数, 周期为 l=2π. (2)是周期函数, 周期为 l = π . 2 (3)是周期函数, 周期为 l=2. (4)不是周期函数. (5)是周期函数, 周期为 l=π.
(4)f(x)=1, g(x)=sec2x−tan2x . 解 (1)不同. 因为定义域不同. (2)不同. 因为对应法则不同, x<0 时, g(x)=−x. (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.
高等数学下(同济大学第五版)课后习题答案解析
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 10-1
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
<< >>
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
<<
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 9-3
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-1
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-2
>
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版[上册]的答案解析
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 11-7
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 10-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
<<
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
专业整理 知识分享
练习 9-3
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题八
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 6-3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数第五版答案(同济)总习题十总习题十 1. 填空: (1)第二类曲线积分Γ++Rdz Qdy Pdx 化成第一类曲线积分是____________, 其中α、β、γ为有向曲线弧Γ上点(x , y , z )处的_____________的方向角.解Γ++ds R Q P )cos cos cos (γβα, 切向量.(2)第二类曲面积分Rdxdy Qdzdx Pdydz ++∑化成第一类曲面积分是_______, 其中α、β、γ为有向曲面∑上点(x , y , z )处的________的方向角.解dS R Q P )cos cos cos (γβα++∑, 法向量.2. 选择下述题中给出的四个结论中一个正确的结论: 设曲面∑是上半球面: x 2+y 2+z 2=R 2(z ≥0), 曲面∑1是曲面∑在第一卦限中的部分, 则有________. (A )xdS xdS 14∑∑=; (B )xdS ydS 14∑∑=;(C )xdS zdS 14∑∑=; (D )xyzdS xyzdS 14∑∑=.解 (C ).3. 计算下列曲线积分: (1)+Lds y x 22, 其中L 为圆周x 2+y 2=ax ;解 L 的参数方程为θcos 22a a x +=, θsin 2a y =(0≤θ≤2π), 故θθθθπd y x ax ds ax ds y x LL )()()(222022'+'?==+?θθθθππd ad a=?+=204204|2cos 2|4)cos 1(2422202022)cos cos (|cos |4a tdt tdt a dt t a =-==ππππ(2θ=t 这里令).(2)?Γzds , 其中Γ为曲线x =t cos t , y =t sin t , z =t (0≤t ≤t 0); 解+++-?=Γ00221)cos (sin )sin (cos t dt t t t t t t t zds322)2(232002-+=+=?t dt t t . (3)?+-L xdy dx y a )2(, 其中L 为摆线x =a (t -sin t ), y =a (1-cos t )上对应t 从0到2π的一段弧; 解-+-?+-=+-π20]sin )sin ()cos 1()cos 2[()2(dt t a t t a t a t a a a xdy dx y a L22022sin a tdt t a ππ-==?.(4)?Γ-+-dz x yzdy dx z y 2222)(, 其中Γ是曲线x =t , y =t 2, z =t 3上由听t 1=0到t 2=1的一段弧; 解-??+?-=-+-Γ1223264222]3221)[(2)(dt t t t t t t t dz x yzdy dx z y351)32(164=+-=?dt t t . (5)-+-L x x dy y e dx y y e )2cos ()2sin (, 其中L 为上半圆周(x -a )2 +y 2=a 2, y ≥0, 沿逆时针方向;解这里P =e x sin y -2y , Q =e x cos y -2,22cos cos =+-=??-??y e y e yP x Q x x. 令L 1为x 轴上由原点到(2a , 0)点的有向直线段, D 为L 和L 1所围成的区域, 则由格林公式+-+-1)2cos ()2sin (LL x x dy y e dx y y e dxdy yPx Q D)(-??=?? 22a dxdy Dπ==??,-+--=-+-1)2cos ()2sin ()2cos ()2sin (2L x x L x x dy y e dx y y e a dy y e dx y y e π22020a dx a aππ=-=?.(6)Γxyzdz , 其中Γ是用平面y =z 截球面x 2+y 2+z 2=1所得的截痕, 从z 轴的正向看去,沿逆时针方向.解曲线Γ的一般方程为?==++z y z y x 1222, 其参数方程为tz t y t x sin 22 ,sin 22 ,cos ===, t 从0变到2π.于是tdt t t t xyzdz cos 22cos 22cos 22cos 20=??Γπππ162cos sin 422022==tdt t .4. 计算下列曲面积分: (1)222z y x dS ++∑, 其中∑是界于平面z =0及z =H 之间的圆柱面x 2+y 2=R 2; 解∑=∑1+∑2, 其中221:y R x -=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=; 221:y R x --=∑, D xy : -R ≤y ≤R , 0≤z ≤H , dydz yR R dS 22-=, 于是22222222221z y x dS z y x dS z y x dS +++++=++∑∑∑?????? ????+-=-?+=-H R R D dz z R dy y R R dydz y R R z R xt02222222211212RH arctan 2π=. (2)dxdy y x dzdx x z dydz z y )()()(222-+-+-∑, 其中∑为锥面22y x z +=(0≤z ≤h ) 的外侧;解这里P =y 2-z , Q =z 2-x , R =x 2-y ,0=??+??+??zR y Q x P . 设∑1为z =h (x 2+y 2≤h 2)的上侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式0)()()()(2221=??+??+??=-+-+-Ω∑+∑dv zR y Q x P dxdy y x dzdx x z dydz z y ,而dxdy y x dxdy y x dzdx x z dydz z y )()()()(222211-=-+-+-∑∑40222024)sin cos ()(1h d r r d dxdy y x hπθθθθπ=-=-∑, 所以42224)()()(h dxdy y x dzdx x z dydz z y π-=-+-+-∑. (3)zdxdy ydzdx xdydz ++∑, 其中∑为半球面222y x R z --=的上侧;解设∑1为xOy 面上圆域x 2+y 2≤R 2的下侧, Ω为由∑与∑1所围成的空间区域, 则由高斯公式得dv zR y Q x P zdxdy ydzdx xdydz )(1+??+??=++Ω∑+∑332)32(33R R dv ππ===Ω,而00011====++∑∑dxdy zdxdy zdxdy ydzdx xdydz xyD ,所以33202R R zdxdy ydzdx xdydz ππ=-=++∑.(4)3222)(z y x zdxdy ydzdx xdydz ++++∑??, 其中∑为曲面9)1(16)2(5122-+-=-y x z (z ≥0)的上侧;解这里3r x P =, 3r y Q =, 3r z R =, 其中222z y x r ++=. 52331r x r x P -=??, 5 2331r y r x Q -=??, 52331r z r x R -=??,033)(3352352223=-=++-=??+??+??rr r r z y x r z R y Q x P . 设∑1为z =0)19)1(16)2((22≤-+-y x 的下侧, Ω是由∑和∑1所围成的空间区域, 则由高斯公式0)()(32221=??+??+??=++++Ω∑+∑dv zR y Q x P z y x zdxdy ydzdx xdydz ,32223222)()(1z y x zdxdyydzdx xdydz z y x zdxdy ydzdx xdydz ++++-=++++∑∑0)(0322=+=dxdy y x xyD .(5)xyzdxdy ∑, 其中∑为球面x 2+y 2+z 2=1(x ≥0, y ≥0)的外侧. 解∑=∑1+∑2, 其中∑1是221y x z --=(x 2+y 2≤1, x ≥0, y ≥0)的上侧; ∑2是221y x z ---=(x 2+y 2≤1, x ≥0, y ≥0)的下侧,xyzdxdy xyzdxdy xyzdxdy 21∑∑∑+=dxdy y x xy dxdy y x xy xyxyD D )1(12222------=-??=--=13220221sin cos 212ρρρθθθπd d dxdy y x xy xyD15212sin 103220=-=?ρρρθθπd d .5. 证明22y x ydyxdx ++在整个xOy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分, 并求出一个这样的二元函数. 解这里22y x x P +=, 22y x y Q +=. 显然, 区域G 是单连通的, P 和Q 在G 内具有一阶连续偏导数, 并且xQ y x xy y P ??=+-=??222)(2, 所以22y x ydyxdx ++在开区域G 内是某个二元函数u (x , y )的全微分.C y x dy y x y dx x y x ydy xdx y x u y x y x ++=++=++=)ln(211),(220221),()0 ,1(22.6. 设在半平面x >0内有力)(3j i y x k F +-=ρ构成力场, 其中k 为常数,22y x +=ρ. 证明在此力场中场力所作的功与所取的路径无关. 解场力沿路径L 所作的功为 dy kydx kx W L33ρρ?--=.令3ρkx P -=, 3ρky Q -=. 因为P 和Q 在单连通区域x >0内具有一阶连续的偏导数, 并且xQ xy k y P ??==??53ρ, 所以上述曲线积分所路径无关, 即力场所作的功与路径无关. 7. 求均匀曲面222y x a z --=的质心的坐标. 解这里∑:222y x a z --=, (x , y )∈D xy ={(x , y )|x 2+y 2≤a 2}. 设曲面∑的面密度为ρ=1, 由曲面的对称性可知, 0==y x . 因为3222221a dxdy a dxdy z z y x a zdS xyxyD y x D π=='+'+?--=∑,222421a a dS ππ=?=∑, 所以 2223a a a z ==ππ.因此该曲面的质心为)2,0 ,0(a .8. 设u (x , y )、v (x , y )在闭区域D 上都具有二阶连续偏导数, 分段光滑的曲线L 为D 的正向边界曲线. 证明: (1)+?-=?L D D ds n u v dxdy v u udxdy v ) (grad grad ;(2)-??=?-?L D ds nu v n v u dxdy u v v u )()(, 其中n u ??、n v ??分别是u 、v 沿L 的外法线向量n 的方向导数, 符号2222yx ??+??=?称为二维拉普拉斯算子.证明设L 上的单位切向量为T =(cos α, sin α), 则n =(sin α, -cos α). (1)+??-=??-??=??L L L ds x uv y u v ds y u x u v ds n u v ]sin cos [)cos sin (ααααdxdy yu v y x u v x D )]()([??-??-=dxdy y u v y u y v x u v x u x v D)(2222??++??+=?? dxdy y u x u v dxdy y u y v x u x v DD )()(2222??+??++= udxdy v udxdy v D D ?+?=grad grad ,所以+?-=?L D D ds nu v dxdy v u udxdy v ) (grad grad . (2)dxdy yu x u v y v x v u ds n u v n v u L L )]cos sin ()cos sin ([)(αααα??-??-??-??=??- dxdy xuv x v u y u v y v u L ]sin )(cos )[(αα??-??+??+??-=?dxdy yu v y v u y x u v x v u x D )]()([??+??-??-??-=dxdy y u v y u y v y v u y v y u x u v x u x v x v u x v x u D)(22222222??--??++??--??+=?? dxdy u v v u dxdy y u x u v y v x v u D D )()]()([22222222?-?=??+??-??+??=. 9. 求向量A =x i +y j +z k 通过闭区域Ω={(x , y , z )|0≤x ≤1, 0≤y ≤1, 0≤z ≤1}的边界曲面流向外侧的通量.解设∑为区域Ω的边界曲面的外侧, 则通量为 dv zR y Q x P zdxdy ydzdx xdydz )(??+??+??=++=ΦΩ∑ 33==Ωdv .10. 求力F =y i +z j +x k 沿有向闭曲线Γ所作的功, 其中Γ为平面x +y +z =1被三个坐标面所截成的三角形的整个边界, 从z 轴正向看去, 沿顺时针方向.解设∑为平面x +y +z =1在第一卦部分的下侧, 则力场沿其边界L (顺时针方向)所作的功为++=L xdz zdy ydx W .曲面∑的的单位法向量为)cos cos ,(cos )1 ,1 ,1(31γβα=-=n , 由斯托克斯公式有dS xz y z y x W =∑γβαcos cos cos233sin )2(2133)111(312=?==----=∑∑πdS dS .。