高等数学(同济大学第五版) 第七章答案
同济大学《高等数学》第五版上册答案(详解)
解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
高等数学同济第五版第7章答案
习题7-11. 设u =a -b +2c , v =-a +3b -c . 试用a 、b 、c 表示2u -3v .解 2u -3v =2(a -b +2c )-3(-a +3b -c )=2a -2b +4c +3a -9b +3c =5a -11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形. 证明 →→→OA OB AB -=; →→→OD OC DC -=, 而→→OA OC -=, →→OB OD -=,所以→→→→→→AB OA OB OB OA DC -=-=+-=.这说明四边形ABCD 的对边AB =CD 且AB //CD , 从而四边形ABCD 是平行四边形.3. 把∆ABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以→c =AB 、→a =BC 表示向量→A D 1、→A D 2、→A D 3、→AD 4.解 →→→a c 5111--=-=BD BA A D ,→→→a c 5222--=-=BD BA A D ,→→→a c 5333--=-=BD BA A D ,→→→a c 5444--=-=BD BA A D .4. 已知两点M 1(0, 1, 2)和M 2(1, -1, 0). 试用坐标表示式表示向量→21M M 及→212M M -. 解 →)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21--=--=M M , →)4 ,4 ,2()2 ,2 ,1(2221-=---=-M M . 5. 求平行于向量a =(6, 7, -6)的单位向量. 解 11)6(76||222=-++=a ,平行于向量a =(6, 7, -6)的单位向量为)116 ,117 ,116(||1-=a a 或)116 ,117 ,116(||1--=-a a .6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, -2, 3);B (2, 3, -4);C (2, -3, -4);D (-2, -3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3, 4, 0); B (0, 4, 3); C (3, 0, 0); D (0, -1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , -c ); 点(a , b , c )关于yOz 面的对称点为(-a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , -b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , -b , -c ); 点(a , b , c )关于y 轴的对称点为(-a , b , -c ); 点(a , b , c )关于z 轴的对称点为(-a , -b , c ).(3)点(a , b , c )关于坐标原点的对称点为(-a , -b , -c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0). 在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,22(a -, )0 ,0 ,22(a , )0 ,22 ,0(a -, )0 ,22 ,0(a , ) ,0 ,22(a a -, ) ,0 ,22(a a , ) ,22 ,0(a a -, ) ,22 ,0(a a . 12. 求点M (4, -3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, -3, 5)与点(4, 0, 0)之间的距离, 即 345)3(22=+-=x d .点M 到y 轴的距离就是点(4, -3, 5)与点(0, -3, 0)之间的距离, 即 415422=+=y d .点M 到z 轴的距离就是点(4, -3, 5)与点(0, 0, 5)之间的距离, 即 5)3(422=-+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, -2, -2)和C (0, 5, 1)等距离的点. 解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则 →2222)2()1(3||-+-+=z y PA , →2222)2()2(4||++++=z y PB , →222)1()5(||-+-=z y PC . 由题意, 有→→→222||||||PC PB PA ==,即 ⎩⎨⎧-+-=++++-+-=-+-+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =-2, 故所求点为(0, 1, -2).14. 试证明以三点A (4, 1, 9)、B (10, -1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形. 解 因为→7)96()11()410(||222=-+--+-=AB , →7)93()14()42(||222=-+-+-=AC , →27)63()14()102(||222=-+++-=BC , 所以→→→222||||||AC AB BC +=, →→||||AC AB =.因此∆ABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量→21M M 的模、方向余弦和方向角. 解 →)1 ,2 ,1()12 ,20 ,43(21-=---=M M ; →21)2()1(||22221=++-=M M ;21c o s -=α, 22cos =β, 21cos =γ;32πα=, 43 πβ=, 3πγ=.16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1; (3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面. (2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面. 17. 设向量r 的模是4, 它与轴u 的夹角是60︒, 求r 在轴u 上的投影.解 22143c o s ||j Pr =⋅=⋅=πr r u .18. 一向量的终点在点B (2, -1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, -4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得⎪⎩⎪⎨⎧=--=--=-774142z y x ,解得x =-2, y =3, z =0. 点A 的坐标为A (-2, 3, 0).19. 设m =3i +5j +8k , n =2i -4j -7k 和p =5i +j -4k . 求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n -p =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k , 所以a =4m +3n -p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7-21. 设a =3i -j -2k , b =i +2j -k , 求(1)a ⋅b 及a ⨯b ; (2)(-2a )⋅3b 及a ⨯2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3⨯1+(-1)⨯2+(-2)⨯(-1)=3,k j i kj i b a 75121 213++=---=⨯.(2)(-2a )⋅3b =-6a ⋅b = -6⨯3=-18, a ⨯2b =2(a ⨯b )=2(5i +j +7k )=10i +2j +14k . (3)21236143||||||) ,cos(^==⋅=b a b a b a .2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .3. 已知M 1(1, -1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与→21M M 、→32M M 同时垂直的单位向量.解 →)1 ,4 (2,2)1 ,13 ,13(21-=-+-=M M , →)2 ,2 ,0()13 ,31 ,33(32-=---=M M .→→k j i k j i n 446220 1423221--=--=⨯=M M M M ,172161636||=++=n , )223(171)446(1721k j i k j i e --±=--±=为所求向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, -100⨯9. 8)=(0, 0, -980), →)6 ,3 ,2()82 ,14 ,31(21--=---==M M S . W =F ⋅S =(0, 0, -980)⋅(-2, 3, -6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与→1OP 成角θ1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与→2OP 成角θ1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为 x 1|F 1|⋅sin θ1-x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, -3, 4)在向量b =(2, 2, 1)上的投影. 解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=⨯+⨯-⨯=⋅-++=⋅=⋅=⋅=b a b b b a e a a b b . 7. 设a =(3, 5, -2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, -2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, -2λ+4μ)⋅(0, 0, 1)=0, 即-2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则→→OA OB -=, →→||||OA OC =. 因为→→→→→→→→→→→→0||||)()()()(22=-=+⋅-=-⋅-=⋅OA OC OA OC OA OC OB OC OA OC BC AC ,所以→→BC AC ⊥, ∠C =90︒.9. 设已知向量a =2i -3j +k , b =i -j +3k 和c =i -2j , 计算: (1)(a ⋅b )c -(a ⋅c )b ; (2)(a +b )⨯(b +c ); (3)(a ⨯b )⋅c .解 (1)a ⋅b =2⨯1+(-3)⨯(-1)+1⨯3=8, a ⋅c =2⨯1+(-3)⨯(-2)=8, (a ⋅b )c -(a ⋅c )b =8c -8b =8(c -b )=8[(i -2j )-(i -j +3k )]=-8j -24k . (2)a +b =3i -4j +4k , b +c =2i -3j +3k ,kj kj i c b b a --=--=+⨯+332443)()(.(3)kj i kj i b a +--=--=⨯58311132,(a ⨯b )⋅c =-8⨯1+(-5)⨯(-2)+1⨯0=2.10. 已知→j i 3+=OA , →k j 3+=OB , 求∆OAB 的面积.解 根据向量积的几何意义, →→||OB OA ⨯表示以→OA 和→OB 为邻边的平行四边形的面积, 于是∆OAB 的面积为→→||21OB OA S ⨯=.因为→→k j i k j i +--==⨯33310301OB OA , →→191)3()3(||223=+-+-=⨯OB OA ,所以三角形∆OAB 的面积为→→1921||21=⨯=OB OA S .12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件. 解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有||||) ,c o s (||||^b a b ab a b a ⋅≤⋅=⋅, 于是||332211232221232221b a b a b a b b b a a a ++≥++++,其中当) ,cos(^b a =1时, 即a 与b 平行是等号成立.习题7-31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程. 解 设动点为M (x , y , z ), 依题意有(x -2)2+(y -3)2+(z -1)2=(x -4)2+(y -5)2+(z -6)2, 即 4x +4y +10z -63=0.2. 建立以点(1, 3, -2)为球心, 且通过坐标原点的球面方程. 解 球的半径14)2(31222=-++=R , 球面方程为(x -1)2+(y -3)2+(z +2)2=14, 即 x 2+y 2+z 2-2x -6y +4z =0.3. 方程x 2+y 2+z 2-2x +4y +2z =0表示什么曲面? 解 由已知方程得(x 2-2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1, 即 2222)6()1()2()1(=++++-z y x ,所以此方程表示以(1, -2, -1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=-+-+-++z y x z y x ,化简整理得9116)34()1()32(222=+++++z y x ,它表示以)34 ,1 ,32(---为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2-9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为 4x 2-9y 2-9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为 4x 2+4z 2-9y 2=36.8. 画出下列方程所表示的曲面: (1)222)2()2(a y a x =+-;(2)19422=+-yx ;(3)14922=+z x ;(4)y 2-z =0;(5)z =2-x 2.9. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形: (1)x =2;解在平面解析几何中, x =2表示平行于y 轴的一条直线; 在空间解析几何中, x =2表示一张平行于yOz 面的平面.(2)y =x +1;解 在平面解析几何中, y =x +1表示一条斜率是1, 在y 轴上的截距也是1的直线; 在空间解析几何中,y =x +1表示一张平行于z 轴的平面.(3)x 2+y 2=4;解 在平面解析几何中, x 2+y 2=4表示中心在原点, 半径是4的圆; 在空间解析几何中, x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面.(4)x 2-y 2=1.解 在平面解析几何中, x 2-y 2=1表示双曲线; 在空间解析几何中, x 2-y 2=1表示母线平行于z 轴的双曲面.10. 说明下列旋转曲面是怎样形成的:(1)1994222=++z y x ;解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的. (2)14222=+-z y x ;解 这是xOy 面上的双曲线1422=-y x 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线1422=+-z y 绕y 轴旋转一周而形成的.(3)x 2-y 2-z 2=1;解 这是xOy 面上的双曲线x 2-y 2=1绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线x 2-z 2=1绕x 轴旋转一周而形成的.(4)(z -a )2=x 2+y 2 .解 这是zOx 面上的曲线(z -a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线(z -a )2=y 2绕z 轴旋转一周而形成的. 11. 画出下列方程所表示的曲面: (1)4x 2+y 2-z 2=4;(2)x 2-y 2-4z 2=4;(3)94322y x z +=.习题7-41. 画出下列曲线在第一卦限内的图形:(1)⎩⎨⎧==21y x ;(2)⎩⎨⎧=---=0422y x y x z ;(3) ⎩⎨⎧=+=+222222az x a y x .2. 指出下方程组在平面解析几何中与在空间解析几何中分别表示什么图形: (1)⎩⎨⎧-=+=3215x y x y ;解 在平面解析几何中, ⎩⎨⎧-=+=3215x y x y 表示直线y =5x +1与y =2x -3的交点)317,34(--; 在空间解析几何中, ⎩⎨⎧-=+=3215x y x y 表示平面y =5x +1与y =2x -3的交线, 它表示过点)0 ,317,34(--, 并且行于z 轴.(2)⎪⎩⎪⎨⎧==+319422y y x .解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+yx 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+yx 与其切平面y =3的交线.3. 分别求母线平行于x 轴及y轴而且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解 把方程组中的x 消去得方程3y 2-z 2=16, 这就是母线平行于x 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线⎩⎨⎧=-+=++0162222222y z x z y x 的柱面方程.4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.解 由x +z =1得z =1-x 代入x 2+y 2+z 2=9得方程2x 2-2x +y 2=8, 这是母线平行于z 轴, 准线为球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为 ⎩⎨⎧==+-082222z y x x .5. 将下列曲线的一般方程化为参数方程:(1)⎩⎨⎧==++xy z y x 9222 ;解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x . 令t x cos 23=, 则z =3sin t .故所求参数方程为t x c o s 23=, t y cos 23=, z =3sin t .(2)⎩⎨⎧==+++-04)1()1(222z z y x .解 将z =0代入(x -1)2+y 2+(z +1)2=4得(x -1)2+y 2=3. 令t x cos 31+=, 则t y sin 3=, 于是所求参数方程为t x c o s 31+=, t y sin 3=, z =0.6. 求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为⎩⎨⎧==+0222z a y x .由第三个方程得bz=θ代入第一个方程得b z a xc o s =, 即ax b z arccos =, 于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0a r c c o sy a x b z .由第三个方程得bz =θ代入第二个方程得b za ys i n =, 即a y b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==a y b z x a r c s i n 0.7. 求上半球2220y x a z --≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z --≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax . 为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax -x 2, 代入半球面方程222y x a z --=, 得ax a z -=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z -≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7-51. 求过点(3, 0, -1)且与平面3x -7y +5z -12=0平行的平面方程. 解 所求平面的法线向量为n =(3, -7, 5), 所求平面的方程为 3(x -3)-7(y -0)+5(z +1)=0, 即3x -7y +5z -4=0.2. 求过点M 0(2, 9, -6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, -6), 所求平面的方程为 2(x -2)+9(y -9)-6(z -6)=0, 即2x +9y -6z -121=0.3. 求过(1, 1, -1)、(-2, -2, 2)、(1, -1, 2)三点的平面方程.解 n 1=(1, -1, 2)-(1, 1, -1)=(0, -2, 3), n 1=(1, -1, 2)-(-2, -2, 2)=(3, 1, 0), 所求平面的法线向量为kj i kj i n n n 69301332021++-=-=⨯=,所求平面的方程为-3(x -1)+9(y -1)+6(z +1)=0, 即x -3y -2z =0. 4. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解 x =0是yOz 平面. (2)3y -1=0;解 3y -1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(.(3)2x -3y -6=0;解 2x -3y -6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和-2. (4)03=-y x ;解 03=-y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33.(5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x -2z =0;解 x -2z =0是通过y 轴的平面. (7)6x +5-z =0.解 6x +5-z =0是通过原点的平面.5. 求平面2x -2y +z +5=0与各坐标面的夹角的余弦. 解 此平面的法线向量为n =(2, -2, 1).此平面与yOz 面的夹角的余弦为321)2(22||||) ,c o s (c o s122^=+-+=⋅⋅==i n in i n α; 此平面与zOx 面的夹角的余弦为321)2(22||||) ,c o s (c o s 122^-=+-+-=⋅⋅==j n j n j nβ; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,c o s (c o s122^=+-+=⋅⋅==k n kn k n γ.6. 一平面过点(1, 0, -1)且平行于向量a =(2, 1, 1)和b =(1, -1, 0), 试求这平面方程. 解 所求平面的法线向量可取为kj i kj i b a n 3011112-+=-=⨯=,所求平面的方程为(x -1)+(y -0)-3(z +1)=0, 即x +y -3z -4=0.7. 求三平面x +3y +z =1, 2x -y -z =0, -x +2y +2z =3的交点. 解 解线性方程组⎪⎩⎪⎨⎧=++-=--=++3220213z y x z y x z y x得x =1, y =-1, z =3. 三个平面的交点的坐标为(1, -1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, -5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x -2)-5(y +5)+0⋅(z -3)=0, 即y =-5. (2)通过z 轴和点(-3, 1, -2); 解 所求平面可设为Ax +By =0. 因为点(-3, 1, -2)在此平面上, 所以 -3A +B =0,将B =3A 代入所设方程得 Ax +3Ay =0,所以所求的平面的方程为x +3y =0,(3)平行于x 轴且经过两点(4, 0, -2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, -2)和(5, 1, 7)都在所求平面上, 所以向量n 1=(5, 1, 7)-(4, 0, -2)=(1, 1, 9)与n 是垂直的, 即 b +9c =0, b =-9c ,于是 n =(0, -9c , c )=-c (0, 9, -1). 所求平面的方程为9(y -0)-(z +2)=0, 即9y -z -2=0.9. 求点(1, 2, 1)到平面x +2y +2z -10=0的距离. 解 点(1, 2, 1)到平面x +2y +2z -10=0的距离为 1221|1012221|222=++-⨯+⨯+=d .习题7-61. 求过点(4, -1, 3)且平行于直线51123-==-z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124-=+=-z y x . 2. 求过两点M 1(3, -2, 1)和M 2(-1, 0, 2)的直线方程.解 所求直线的方向向量为s =(-1, 0, 2)-(3, -2, 1)=(-4, 2, 1), 所求的直线方程为112243-=+=--x y x . 3. 用对称式方程及参数方程表示直线⎩⎨⎧=++=+-421z y x z y x .解 平面x -y +z =1和2x +y +z =4的法线向量为n 1=(1, -1, 1), n 2=(2, 1, 1), 所求直线的方向向量为kj i kj i n n s 3211211121++-=-=⨯=.在方程组⎩⎨⎧=++=+-421z y x z y x 中, 令y =0, 得⎩⎨⎧=+=+421z x z x , 解得x =3, z =-2. 于是点(3, 0, -2)为所求直线上的点.所求直线的对称式方程为32123+==--z y x ; 参数方程为x =3-2t , y =t , z =-2+3t . 4. 求过点(2, 0, -3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量, 即kj i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=.所平面的方程为-16(x -2)+14(y -0)+11(z +3)=0, 即16x -14y -11z -65=0. 5. 求直线⎩⎨⎧=+-=-+-02309335z y x z y x 与直线⎩⎨⎧=-++=+-+0188302322z y x z y x 的夹角的余弦.解 直线⎩⎨⎧=+-=-+-02309335z y x z y x 与⎩⎨⎧=-++=+-+0188302322z y x z y x 的方向向量分别为kj i kj i s -+=--=431233351,kj i kj i s 105101831222+-=-=.两直线之间的夹角的余弦为 010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+-+-++⨯-+-⨯+⨯=⋅⨯=s s s s s s .6. 证明直线⎩⎨⎧=++-=-+7272z y x z y x 与直线⎩⎨⎧=--=-+028363z y x z y x 平行.解 直线⎩⎨⎧=++-=-+7272z y x z y x 与⎩⎨⎧=--=-+028363z y x z y x 的方向向量分别为kj i kj i s 531121211++=--=,kj i kj i s 15391123632---=---=.因为s 2=-3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y -3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, -3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即kj i kj i s ++-=-=32310201.所求直线的方程为14322-=-=-z y x . 8. 求过点(3, 1, -2)且通过直线12354zy x =+=-的平面方程. 解 所求平面的法线向量与直线12354zy x =+=-的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, -2)和(4, -3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, -3, 0)-(3, 1,-2)=(1, -4, 2)也是垂直的. 因此所求平面的法线向量可取为kj i kj i s s n 229824112521--=-=⨯=.所求平面的方程为8(x -3)-9(y -1)-22(z +2)=0, 即8x -9y -22z -59=0. 9. 求直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角.解 直线⎩⎨⎧=--=++003z y x z y x 的方向向量为)2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i kj i s -+=-+=--=--⨯=,平面x -y -z +1=0的法线向量为n =(1, -1, -1). 因为s ⋅n =2⨯1+4⨯(-1)+(-2)⨯(-1)=0,所以s ⊥n , 从而直线⎩⎨⎧=--=++003z y x z y x 与平面x -y -z +1=0的夹角为0.10. 试确定下列各组中的直线和平面间的关系: (1)37423zy x =-+=-+和4x -2y -2z =3; 解 所给直线的方向向量为s =(-2, -7, 3), 所给平面的法线向量为n =(4, -2, -2). 因为s ⋅n =(-2)⨯4+(-7)⨯(-2)+3⨯(-2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(-3, -4, 0)不满足平面方程4x -2y -2z =3, 所以所给直线不在所给平面上. (2)723zy x =-=和3x -2y +7z =8; 解 所给直线的方向向量为s =(3, -2, 7), 所给平面的法线向量为n =(3, -2, 7). 因为s =n , 所以所给直线与所给平面是垂直的. (3)431232--=+=-z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, -4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3⨯1+1⨯1+(-4)⨯1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, -2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上. 11. 求过点(1, 2, 1)而与两直线 ⎩⎨⎧=-+-=+-+01012z y x z y x 和⎩⎨⎧=+-=+-002z y x z y x平行的平面的方程.解 直线⎩⎨⎧=-+-=+-+01012z y x z y x 的方向向量为kj i kj i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=,直线⎩⎨⎧=+-=+-02z y x z y x 的方向向量为kj kj i s --=--=-⨯-=111112)1 ,1 ,1()1 ,1 ,2(1.所求平面的法线向量可取为kj i kj i s s n -+-=----=⨯=11032121,所求平面的方程为-(x -1)+(y -2)-(z -1)=0, 即x -y +z =0.12. 求点(-1, 2, 0)在平面x +2y -z +1=0上的投影.解 平面的法线向量为n =(1, 2, -1). 过点(-1, 2, 0)并且垂直于已知平面的直线方程为12211-=-=+zy x . 将此方程化为参数方程x =-1+t , y =2+2t , z =-t , 代入平面方程x +2y -z +1=0中, 得 (-1+t )+2(2+2t )-(-t )+1=0, 解得32-=t . 再将32-=t 代入直线的参数方程, 得35-=x , 32=y , 32=z . 于是点(-1, 2, 0)在平面x +2y -z +1=0上的投影为点)32,32 ,25(-.13. 求点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 直线⎩⎨⎧=-+-=+-+04201z y x z y x 的方向向量为kj kj i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=.过点P 且与已知直线垂直的平面的方程为 -3(y +1)-3(z -2)=0, 即y +z -1=0. 解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得x =1, 21-=y , 23=z .点P (3, -1, 2)到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点P (3, -1, 2)与点)23,21 ,1(-间的距离,即 223)232()211()13(22=-++-+-=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ⨯=M M d .解 设点M 0到直线L 的距离为d , L 的方向向量→MN =s , 根据向量积的几何意义, 以→MM 0和→MN 为邻边的平行四边形的面积为→→→||||00s ⨯=⨯M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为→||||s ⋅=⋅d MN d . 因此→||||0s s ⨯=⋅M M d , →||||0s s ⨯=M M d .15. 求直线⎩⎨⎧=---=+-0923042z y x z y x 在平面4x -y +z =1上的投影直线的方程.解 过直线⎩⎨⎧=---=+-0923042z y x z y x 的平面束方程为(2+3λ)x +(-4-λ)y +(1-2λ)z -9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 -1, 1)⋅(2+3λ, -4-λ, 1-2λ)=0, 即 4⋅(2+3λ)+(-1)⋅(-4-λ)+1⋅(1-2λ)=0. 解之得1113-=λ. 将1113-=λ代入平面束方程中, 得 17x +31y -37z -117=0. 故投影直线的方程为⎩⎨⎧=--+=+-011737311714z y x z y x .16. 画出下列各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z -12=0;(2)x =0, z =0, x =1, y =2, 4y z =;(3)z =0, z =3, x -y =0, 03=-y x , x 2+y 2=1(在第一卦限内);(4)x =0, y =0, z =0, x 2+y 2=R 2, y 2+z 2=R 2(在第一卦限内).总习题七 1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ]坐标系中, 点M 的坐标为___________, 向量→OM 的坐标为___________. 解 M (x -x 0, y -y 0, z -z 0), →) , ,(z y x OM =.提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变. (2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, -1, 10), c =b -λa , 且a ⊥c , 则λ=____________. 解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b -λa ⋅a =2⨯4+1⨯(-1)+2⨯10-λ(22+12+22)=27-9λ, 所以λ=3. (4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________.解 23-.提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0, 即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21-=++-=⋅+⋅+⋅-=⋅+⋅+⋅c c b b a a a c c b b a .(5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ⨯b +b ⨯c +c ⨯a |=____________. 解36.提示: c =-(a +b ),a ⨯b +b ⨯c +c ⨯a =a ⨯b -b ⨯(a +b )-(a +b )⨯a =a ⨯b -b ⨯a -b ⨯a =3a ⨯b , |a ⨯b +b ⨯c +c ⨯a |=3|a ⨯b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, -3, 7)和点B (5, 7, -5)等距离的点. 解 设所求点为M (0, y , 0), 则有 12+(y +3)2+72=52+(y -7)2+(-5)2, 即 (y +3)2=(y -7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知∆ABC 的顶点为A (3,2,-1)、B (5,-4,7)和C (-1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(-=+--+. 所求中线的长度为 30)23()11()14(222=-+--++=d .4. 设∆ABC 的三边→a =BC 、→b =CA 、→c =AB , 三边中点依次为D 、E 、F , 试用向量a 、b 、c 表示→AD 、→BE 、→CF , 并证明→→→0=++CF BE AD . 解 →→→a c 21+=+=BD AB AD ,→→→b a 21+=+=CE BC BE ,→→→c b 21+=+=AF CA CF .→→→0=+-=++=++)(23)(23c c c b a CF BE AD5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE -=-=,→→→→→AB AC AC BA BC -=+=, 所以→→BCDE 21=,从而DE //BC , 且||21||BC DE =.6. 设|a +b |=|a -b |, a =(3, -5, 8), b =(-1, 1, z ), 求z .解a +b =(2, -4, 8+z ), a -b =(4, -6, 8-z ). 因为|a +b |=|a -b |, 所以 222222)8()6(4)8()4(2z z -+-+=++-+,解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a -b 的夹角.解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π,|a -b |2=(a -b )⋅(a -b )=|a |2+|b |2-2a ⋅b =|a |2+|b |2-2|a |⋅|b |cos(a ,^ b )16cos 3213=-+=π.设向量a +b 与a -b 的夹角为θ, 则721713||||||||||||)()(c o s22=⋅-=-⋅+-=-⋅+-⋅+=b a b a b a b a b a b a b a θ,72a r c c o s =θ.8. 设a +3b ⊥7a -5b , a -4b ⊥7a -2b , 求) ,(^b a . 解 因为a +3b ⊥7a -5b , a -4b ⊥7a -2b ,所以 (a +3b )⋅(7a -5b )=0, (a -4b )⋅(7a -2b )=0,即 7|a |2+16a ⋅b -15|b |2 =0, 7|a |2-30a ⋅b +8|b |2 =0, 又以上两式可得b a b a ⋅==2||||,于是 21||||) ,c o s (^=⋅⋅=b a b a b a , 3) ,(^π=b a .9. 设a =(2, -1, -2), b =(1, 1, z ), 问z 为何值时) ,(^b a 最小?并求出此最小值.解 2^2321||||) ,cos(zz+-=⋅⋅=b a b a b a .因为当2) ,(0^π<<b a 时, ) ,cos(^b a 为单调减函数. 求) ,(^b a 的最小值也就是求22321)(z z z f +-=的最大值.令0)2(431)(2/32=+--⋅='z zz f , 得z =-4. 当z =-4时, 22) ,cos(^=b a , 所以422arccos) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a -3b 为边的平行四边形的面积.解 (a +2b )⨯(a -3b )=-3a ⨯b +2b ⨯a =5b ⨯a .以a +2b 和a -3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=⨯=-⨯+b a a b a b b a b a .11. 设a =(2, -3, 1), b =(1, -2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即 2x -3y +z =0, x -2y +3z =0. 又因为Prj c r =14, 所以14||1=⋅c c r , 即2x +y +2z =42. 解线性方程组⎪⎩⎪⎨⎧=++=+-=+-4222032032z y x z y x z y x ,得x =14, y =10, z =2, 所以r =(14, 10, 2). 另解 因为r ⊥a , r ⊥b , 所以r与kj i kj i b a ---=--=⨯57321132平行, 故可设r =λ(7, 5, 1).又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即λ(7⨯2+5⨯1+1⨯2)=42, λ=2, 所以r =(14, 10, 2).12. 设a =(-1, 3, 2), b =(2, -3, -4), c =(-3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ⨯b )⋅c =0. 因为ki kj i b a 36432231--=---=⨯,(a ⨯b )⋅c =(-6)⨯(-3)+0⨯12+(-3)⨯6=0, 所以向量a 、b 、c 共面. 设c =λa +μb , 则有(-λ+2μ, 3λ-3μ, 2λ-4μ)=(-3, 12, 6), 即有方程组⎪⎩⎪⎨⎧=-=--=+-642123332μλμλμλ,解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, -1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||-+++-=z y x z , 或 z 2=(x -1)2+(y +1)2+(z -2)2, 化简得(x -1)2+(y +1)2=4(z -1), 这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴: (1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ;解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴.(3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴. (4)144222=--z y x .解 旋转曲面的一条母线为xOy 面上的曲线1422=-y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c ). →)1 ,0 ,3(-=BA , xOy 面的法线向量为k =(0, 0, 1). 按要求有→0=⋅BA n , 3cos ||||π=⋅⋅k n k n ,即 ⎪⎩⎪⎨⎧=++=-2103222cb ac c a , 解之得c =3a , a b 26±=. 于是所求的平面的方程为 0326)3(=+±-z y x ,即 3326=++z y x , 或3326=+-z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, -1, 1)到直线⎩⎨⎧==+-001x z y 的垂线, 求此平面方程. 解 直线⎩⎨⎧==+-01x z y 的方向向量为s =(0, 1, -1)⨯(1, 0, 0)=(0, -1, -1).设点(1, -1, 1)到直线⎩⎨⎧==+-01x z y 的垂线交于点(x 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+-001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为s 1=(-1, y 0+1, y 0). 显然有s ⋅s 1=0, 即-y 0-1-y 0=0, 210-=y .从而)21 ,21 ,1() ,1 ,1(001--=+-=y y s .所求平面的法线向量可取为j i k j i k s k n --=-+-⨯=⨯=21)2121(1,所求平面的方程为0)1()1(21=+---y x , 即x +2y +1=017. 求过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0, 又与直线21311zy x =-=+相交的直线的方程.解 过点(-1, 0, 4), 且平行于平面3x -4y +z -10=0的平面的方程为 3(x +1)-4(y -0)+(z -4)=0, 即3x -4y +z -1=0. 将直线21311zy x =-=+化为参数方程x =-1+t , y =3+t , z =2t , 代入平面方程3x -4y +z -1=0, 得3(-1+t )-4(3+t )+2t -1=0, 解得t =16. 于是平面3x -4y +z -1=0与直线21311zy x =-=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)-(-1, 0, 4)=(16, 19, 28), 所求直线的方程为28419161-==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使∆ABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则→) ,0 ,1(z AC -=, →)1 ,2 ,0(--=z BC .因为→→kj i kj i 2)1(212001+-+=---=⨯z z z z BC AC ,所以∆ABC 的面积为→→4)1(421||2122+-+=⨯=z z BC AC S .令04)1(4)1(284122=+-+-+⋅=z z z z dzdS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线⎩⎨⎧-+-=--=2222)1()1(2y x z y x z 在三个坐标面上的投影曲线的方程.解 在xOy 面上的投影曲线方程为 ⎩⎨⎧=--=-+-02)1()1(2222z y x y x , 即⎩⎨⎧=+=+022z yx y x .在zOx 面上的投影曲线方程为⎩⎨⎧=---±+-=0)12()1(222y z x x z , 即⎩⎨⎧==+--++002342222y z x z xz x .在yOz 面上的投影曲线方程为⎩⎨⎧=-+---±=0)1()12(222x y z y z , 即⎩⎨⎧==+--++002342222x z y z yz y .20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为 ⎩⎨⎧=+=0222z y x x , 即⎩⎨⎧==+-01)1(22z y x ,所以, 立体在xOy 面上的投影为⎩⎨⎧=≤+-01)1(22z y x .锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+-01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+-01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为 ⎩⎨⎧==0||y x z 和⎩⎨⎧==02y x z ,所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x .21. 画出下列各曲面所围立体的图形:(1)抛物柱面2y 2=x , 平面z =0及1224===zy x ;(2)抛物柱面x 2=1-z , 平面y =0, z =0及x +y =1;2y=及旋转抛物面z=2-x2-y2;z+x(4)旋转抛物面x2+y2=z,柱面y2=x,平面z=0及x=1.。
线性代数(同济大学第五版)课后习题答案 (大二所学)
第一百二十一页,共222页。
第一百二十二页,共222页。
第一百二十三页,共222页。
第一百二十四页,共222页。
第四章
第一百二十五页,共222页。
第一百二十六页,共222页。
第一百二十七页,共222页。
第一百二十八页,共222页。
第一百二十九页,共222页。
第一百三十页,共222页。
第一百六十四页,共222页。
第一百六十五页,共222页。
第五章
第一百六十六页,共222页。
第一百六十七页,共222页。
第一百六十八页,共222页。
第一百六十九页,共222页。
第一百七十页,共222页。
第一百七十一页,共222页。
第一百七十二页,共222页。
第一百七十三页,共222页。
第一百一十页,共222页。
第一百一十一页,共222页。
第一百一十二页,共222页。
第一百一十三页,共222页。
第一百一十四页,共222页。
第一百一十五页,共222页。
第一百一十六页,共222页。
第一百一十七页,共222页。
第一百一十八页,共222页。
第一百一十九页,共222页。
第一百二十页,共222页。
第十四页,共222页。
第十五页,共222页。
第十六页,共222页。
第十七页,共222页。
第十八页,共222页。
第十九页,共222页。
第二十页,共222页。
第二十一页,共222页。
第二十二页,共222页。
第二十三页,共222页。
第二十四页,共222页。
第二十五页,共222页。
第二十六页,共222页。
第一百四十二页,共222页。
同济大学第七版高等数学第七章齐次方程
齐次方程
一、齐次方程 *二、可化为齐次方程
机动 目录 上页 下页 返回 结束
一、齐次方程
形如
的方程叫做齐次方程 .
解法: 令 u y ,
x
代入原方程得 u x du (u)
dx
分离变量:
du
dx
(u) u x
两边积分, 得
du
dx
(u) u
x
积分后再用 代替 u, 便得原方程的通解.
机动 目录 上页 下页 返回 结束
hk6 0 令 x X 1, y Y 5 , 得 dY X Y
dX X Y
再令 Y=X u , 得
1u
dX
1 u2 du X
积分得
arctan u 1 ln (1 u2) 2
代回原变量, 得原方程的通解:
ln C X
机动 目录 上页 下页 返回 结束
arctan y 5 x1
1 ln 1 2
2
y5 x1
机动 目录 上页 下页 返回 结束
*二、可化为齐次方程的方程
1.当 a1 a
( c2 c12 0 )
b1 时, 作变换 x X h, y Y k
b
d x d X , d y dY, 原方程化为
a h bk c
a1h b1k c1
(齐次方程)
机动 目录 上页 下页 返回 结束
求出其解后, 程的解.
即得原方
2. 当 a1 a
b1 时 , 原方程可化为 b
dy ax by c
(b
dx (a x b y) c1
dv 令 v a x by, dx
0)
a bdy dx
dv a b v c (可分离变量方程)
课后答案网址大全
##################【公共基础课-答案】####################新视野大学英语读写教程答案(全)【khdaw】/bbs/viewthread.php?tid=108&fromuid=1039364概率论与数理统计教程 (茆诗松著) 高等教育出版社课后答案/bbs/viewthread.php?tid=234&fromuid=1039364高等数学(第五版)含上下册高等教育出版社课后答案/bbs/viewthread.php?tid=29&fromuid=1039364新视野英语听力原文及答案课后答案【khdaw】/bbs/viewthread.php?tid=586&fromuid=1039364线性代数 (同济大学应用数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=31&fromuid=103936421世纪大学英语第3册(1-4)答案【khdaw】/bbs/viewthread.php?tid=285&fromuid=1039364概率与数理统计第二,三版 (浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案/bbs/viewthread.php?tid=32&fromuid=1039364复变函数全解及导学[西安交大第四版]【khdaw】/bbs/viewthread.php?tid=142&fromuid=1039364大学英语精读第三版2册课后习题答案/bbs/viewthread.php?tid=411&fromuid=1039364线性代数(第二版)习题答案/bbs/viewthread.php?tid=97&fromuid=103936421世纪(第三册)课后答案及课文翻译(5-8)【khdaw】/bbs/viewthread.php?tid=365&fromuid=1039364大学英语精读第2册课文翻译(上外)【khdaw】/bbs/viewthread.php?tid=598&fromuid=1039364新视野英语视听说教程1-4答案【khdaw】/bbs/viewthread.php?tid=2639&fromuid=1039364物理学教程(马文蔚)答案/bbs/viewthread.php?tid=1188&fromuid=1039364毛邓三课后思考题答案(高教版)高等教育出版社【khdaw】/bbs/viewthread.php?tid=1263&fromuid=1039364##################【通信/电子/电气/自动化类--答案】####################电路第四版 (邱关源著) 高等教育出版社课后答案/bbs/viewthread.php?tid=259&fromuid=1039364电路第五版 (邱关源罗先觉著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4097&fromuid=1039364数字电子技术基础第四版 (阎石著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=215&fromuid=1039364模拟电子技术基础(第三版华成英主编)习题答案/bbs/viewthread.php?tid=242&fromuid=1039364通信原理第5版 (樊昌信著) 国防工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=34&fromuid=1039364电磁场与电磁波西安电子科技大学(第二版)/bbs/viewthread.php?tid=588&fromuid=1039364《信号与系统》第二版(郑君里)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=994&fromuid=1039364电机学 (张松林著) 机械工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=356&fromuid=1039364《数字信号处理》(第二版)西安电子科技大学(丁玉美)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=882&fromuid=1039364高频电子线路 (曾兴雯著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1110&fromuid=1039364模拟电子技术基础简明教程第三版 (杨素行著) 高等教育出版社课后答案/bbs/viewthread.php?tid=166&fromuid=1039364##################【计算机/软件/网络/信息/数学类--答案】#################### C程序设计第三版 (谭浩强著) 清华大学出版社课后答案/bbs/viewthread.php?tid=80&fromuid=1039364C语言程序设计教程第三版 (谭浩强张基温著) 高等教育出版社课后答案/bbs/viewthread.php?tid=79&fromuid=1039364复变函数与积分变换第四版 (张元林西安交大著) 高等教育出版社课后答案/bbs/viewthread.php?tid=612&fromuid=1039364离散数学(第三版) (耿素云屈婉玲张立昂著) 清华大学出版社课后答案/bbs/viewthread.php?tid=293&fromuid=1039364谭浩强C++程序设计习题答案/bbs/viewthread.php?tid=420&fromuid=1039364《微机原理与接口技术》清华(冯博琴吴宁)版课后答案/bbs/viewthread.php?tid=707&fromuid=1039364严蔚敏《数据结构(c语言版)习题集》答案/bbs/viewthread.php?tid=102&fromuid=1039364数据库系统概论 (王珊萨师煊著) 清华大学出版社课后答案/bbs/viewthread.php?tid=991&fromuid=1039364《计算机网络第四版》答案【khdaw】/bbs/viewthread.php?tid=340&fromuid=1039364《数学物理方法》(梁昆淼第二版)习题解答/bbs/viewthread.php?tid=334&fromuid=1039364谢希仁版《计算机网络教程》课后答案/bbs/viewthread.php?tid=203&fromuid=1039364清华大学《数据结构》习题+课后答案/bbs/viewthread.php?tid=249&fromuid=1039364数据结构习题集(C版)答案/bbs/viewthread.php?tid=374&fromuid=1039364刘绍学版《近世代数基础》课后习题答案/bbs/viewthread.php?tid=177&fromuid=1039364计算机组成原理习题&答案唐朔飞高等教育出版社【khdaw】/bbs/viewthread.php?tid=984&fromuid=1039364离散数学 (左孝凌著) 上海科学技术文献出版社课后答案/bbs/viewthread.php?tid=466&fromuid=1039364计算机网络(第4版)清华(Andrew S.Tanenbaum)版答案(中文版)/bbs/viewthread.php?tid=201&fromuid=1039364耿国华数据结构课后答案/bbs/viewthread.php?tid=103&fromuid=1039364计算机操作系统 (汤子赢著) 西安电子科技大学课后答案/bbs/viewthread.php?tid=1083&fromuid=1039364《编译原理》课后习题答案/bbs/viewthread.php?tid=175&fromuid=1039364《常微分方程》王高雄高等教育出版社课后答案/bbs/viewthread.php?tid=567&fromuid=1039364##################【物理/光学/声学/热学/力学类--答案】#################### 理论力学第六版 (哈尔滨工业大学理论力学教研室著) 高等教育出版社课后答案/bbs/viewthread.php?tid=932&fromuid=1039364理论力学第六版 (哈尔滨工业大学理论力学教研室编著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=461&fromuid=1039364《热力学统计物理》汪志诚(第三版)高教出版社 (手抄版)习题答案【khdaw】/bbs/viewthread.php?tid=84&fromuid=1039364原子物理学褚圣麟版课后答案【khdaw】/bbs/viewthread.php?tid=368&fromuid=1039364《物理学教程》 (马文蔚著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=2782&fromuid=1039364《光学》姚启钧第三版高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=178&fromuid=1039364大学物理实验报告与部分范例陈金太厦门大学【khdaw】/bbs/viewthread.php?tid=2350&fromuid=1039364梁昆淼数学物理方法第三版的课后答案/bbs/viewthread.php?tid=2600&fromuid=1039364《理论力学教程》周衍柏高等教育出版社完整版课后答案【khdawlxywyl】/bbs/viewthread.php?tid=676&fromuid=1039364固体物理 (黄昆版) 课后习题答案【khdaw】/bbs/viewthread.php?tid=339&fromuid=1039364哈工大《理论力学》第6版 (赵诒枢尹长城沈勇著) 华中科技大学出版社课后答案/bbs/viewthread.php?tid=1033&fromuid=1039364热力学统计物理汪志诚第三版高等教育出版课后答案【khdaw】/bbs/viewthread.php?tid=289&fromuid=1039364《量子力学教程》周习勋课后习题答案【khdaw】/bbs/viewthread.php?tid=388&fromuid=1039364《原子物理学》杨福家版部分答案高等教育出版社【khdaw】/bbs/viewthread.php?tid=1065&fromuid=1039364热力学·统计物理汪志诚高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=566&fromuid=1039364《固体物理教程》王矜奉山东大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=1645&fromuid=1039364##################【化学/环境/生物/医学/制药类--答案】#################### 物理化学 (董元彦著) 科学出版社课后答案/bbs/viewthread.php?tid=412&fromuid=1039364化工原理 (陈敏恒著) 化学工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=704&fromuid=1039364生物化学第三版 (王镜岩朱圣庚著) 高等教育出版社课后答案/bbs/viewthread.php?tid=241&fromuid=1039364遗传学第三版 (朱军著) 农业大学出版社课后答案/bbs/viewthread.php?tid=39&fromuid=1039364有机化学 (汪小兰著) 高等教育出版社课后答案/bbs/viewthread.php?tid=841&fromuid=1039364武汉大学版《无机化学》(第三版) 上册【khdaw】/bbs/viewthread.php?tid=196&fromuid=1039364有机化学 (徐寿昌著) 高教出版社课后答案/bbs/viewthread.php?tid=1752&fromuid=1039364物理化学习题及答案【khdaw】/bbs/viewthread.php?tid=965&fromuid=1039364有机化学第二版 (胡宏纹著) 高等教育出版社课后答案/bbs/viewthread.php?tid=41&fromuid=1039364分析化学第三版武汉大学课后答案/bbs/viewthread.php?tid=199&fromuid=1039364武汉大学版<无机化学>(第三版) 下册【khdaw】/bbs/viewthread.php?tid=200&fromuid=1039364物理化学第四版 (傅献彩著) 高等教育出版社课后答案/bbs/viewthread.php?tid=3611&fromuid=1039364##################【土建/机械/车辆/制造/材料类--答案】#################### 西工大机械原理配套作业题答案/bbs/viewthread.php?tid=570&fromuid=1039364机械设计基础(第五版) 杨可桢程光蕴李仲生高教版课后答案/bbs/viewthread.php?tid=2316&fromuid=1039364材料力学第4版(刘鸿文)答案(有附件)/bbs/viewthread.php?tid=1931&fromuid=1039364材料力学课后答案/bbs/viewthread.php?tid=96&fromuid=1039364材料力学 (范钦珊主编著) 高等教育出版社课后答案/bbs/viewthread.php?tid=120&fromuid=1039364机械设计基础(第五版) 答案7-18章杨可桢程光蕴李仲生/bbs/viewthread.php?tid=2570&fromuid=1039364《结构力学习题集》课后答案【khdaw】/bbs/viewthread.php?tid=3016&fromuid=1039364电工学第六版秦曾煌高等教育出版社课后答案/bbs/viewthread.php?tid=2986&fromuid=1039364机械原理学习指南(第二版) (孙恒著) 课后答案/bbs/viewthread.php?tid=569&fromuid=1039364机械原理高等教育出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=664&fromuid=1039364电力电子技术试题习题考题及答案题解【khdaw】/bbs/viewthread.php?tid=1169&fromuid=1039364机械原理习题+答案【khdaw_cola】/bbs/viewthread.php?tid=1210&fromuid=1039364材料力学第四版 (刘鸿文著) 高等教育出版社课后答案/bbs/viewthread.php?tid=2461&fromuid=1039364机械设计及答案【khdaw_cola】/bbs/viewthread.php?tid=1172&fromuid=1039364材料力学(I)第四版(孙训方)高等教育出版社课后答案/bbs/viewthread.php?tid=5342&fromuid=1039364##################【经济/金融/营销/管理/电子商务类--答案】#################### 高鸿业版西方经济学习题答案(微观.宏观)【khdaw】/bbs/viewthread.php?tid=92&fromuid=1039364西方经济学(微观部分) (高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=2817&fromuid=1039364袁卫统计学(第二版)习题答案【khdaw】/bbs/viewthread.php?tid=98&fromuid=1039364曼昆《经济学原理》题目及课后答案/bbs/viewthread.php?tid=162&fromuid=1039364统计学(贾俊平第二版)中国人民大学出版社课后答案/bbs/viewthread.php?tid=42&fromuid=1039364运筹学教程第三版 (甘应爱胡运权等著) 清华大学出版社课后答案/bbs/viewthread.php?tid=7016&fromuid=1039364高鸿业版西方经济学习题答案(第三版)/bbs/viewthread.php?tid=1277&fromuid=1039364西方经济学(宏观部分)第四版 (高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=7171&fromuid=1039364财务管理学课后答案荆新王化成中国人民大学出版社/bbs/viewthread.php?tid=3433&fromuid=1039364西方经济学课后答案 (高鸿业著) 人民大学出版社/bbs/viewthread.php?tid=6189&fromuid=1039364克鲁格曼_国际经济学(第六版)的教师手册(含习题答案)/bbs/viewthread.php?tid=237&fromuid=1039364微观经济学第二版 (高鸿业著) 西方经济学课后答案/bbs/viewthread.php?tid=577&fromuid=1039364罗宾斯《管理学(第7版)》课后习题答案【khdaw】/bbs/viewthread.php?tid=513&fromuid=1039364曼昆宏观经济学习题答案及讲义【khdaw】##################【法学/哲学/心理学/政治学类--答案】#################### 毛邓三课后答案(高教版) 课后答案【khdaw】/bbs/viewthread.php?tid=1184&fromuid=1039364《马克思主义基本原理概论》最新版课后题答案(部分)及复习资料【khdaw】/bbs/viewthread.php?tid=1406&fromuid=1039364马克思主义哲学原理课后习题答案【khdaw】/bbs/viewthread.php?tid=512&fromuid=1039364马克思主义基本原理概论课后思考题答案【khdaw】/bbs/viewthread.php?tid=1145&fromuid=1039364马基(马克思主义基本原理概论)课后思考题答案【khdaw】/bbs/viewthread.php?tid=1371&fromuid=1039364《逻辑学》课后练习题及参考答案【khdaw】/bbs/viewthread.php?tid=2980&fromuid=1039364##################【文学/史学/外语/教育类--答案】####################《中国近现代史纲要》课后答案(高教版)【khdaw】/bbs/viewthread.php?tid=1154&fromuid=1039364《中国教育史》孙培青主编 (华东师范大学出版社)习题答案【khdaw】/bbs/viewthread.php?tid=89&fromuid=1039364《大学日语》汉译日标准答案【khdaw】/bbs/viewthread.php?tid=2954&fromuid=1039364俄语模拟真题下载【khdaw】/bbs/viewthread.php?tid=859&fromuid=1039364。
同济高数课后习题答案解析
同济大学高等数学一、求下列极限1、sin ()lim x x x →−−22111;解一:()()12sin 1cos 1lim 02x x x x→−−==原式解二:()()11sin 1sin 1lim lim11x x x x x x →→−−==−+原式2、lim sin x x x →2203解一:00021311lim lim lim 6sin3cos39sin3cos39x x x x x x x x x →→→==⋅=原式解二:sin 3~30021limlim 6sin 3cos 39cos 39x xx x x x x xx x →→===原式3、20tan 2lim sin 3x x xx →解:()2tan 2~2,sin3~3222lim93x x x xx xx →=原式=4、0lim ln(1)x x x →+解一:()001lim lim 1111x x x x→→==+=+原式解二:()1011lim1ln ln 1x xex →===+原式5、2lim xx x x →∞−⎛⎞⎜⎟⎝⎠解一:()2222lim 1xx ex −⋅−−→∞⎛⎞=−=⎜⎟⎝⎠原式解二:()1211ln 2ln 22limlim ln2lim22lim x x x x xx x x x xx xx x x eeeee−−→∞→∞→∞−−−−−−→∞−−−=====原式6、()111lim 32x x x −→−解一:()()112220lim 12t x tt t e=−−−−→=−=令原式解二:1(2)221122221lim[1(22)]{lim[1(22)]}xx x x x x e−−→−−−→=+−=+−=i 原式7、30sin lim x x x x →−解:2001cos sin 1lim lim 366x x x x x x →→−===原式8、111lim ln 1x x x →⎛⎞−⎜⎟−⎝⎠解:111111ln 11lim lim lim 1(1)ln ln 1ln 11lim ln 112x x x x x x x x x x x x x x x xx →→→→−−+−===−−+−+−==−++原式9、12lim 22n n n n →∞+++⎛⎞−⎜⎟+⎝⎠⋯解:()()221122lim lim22221lim 422n n n n n n n n n n n n n n →∞→∞→∞⎛⎞+⎜⎟+−−=−=⎜⎟++⎜⎟⎝⎠−==−+原式10、329sin limx x t dtx →∫解:26686003sin 1sin 1lim lim 933x x x x x x x →→===原式11、arctan limx x tdt →+∞。
大学所有课程课后答案
我为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案10-25新编大学英语(第四册)课文翻译及课后习题答案。
同济大学第七版高等数学第七章可分离
y(0) 1
解: 分离变量得 d y
y
1
x x2
d
x
两边积分得
即 y x2 1 C
( C 为任意常数 )
由初始条件得 C = 1, 故所求特解为
y x2 1 1
机动 目录 上页 下页 返回 结束
例3. 求下述微分方程的通解:
解: 令 u x y 1, 则
故有 1 u sin2 u 即
机动 目录 上页 下页 返回 结束
M ( 0)
M0 (初始条件)
对方程分离变量, 然后积分:
得 ln M
t ln C, 即 M C e t
M
利用初始条件,得 C M0
M0
故所求铀的变化规律为 M M0 e t . o
t
机动 目录 上页 下页 返回 结束
思考与练习
求下列方程的通解 :
提示: (1) 分离变量
y 1 y2 dy
x 1 x2 dx
函数, G( y) F( x) C 为微分方程的解.
2021/3/11
2
例1.求微分方程
的通解.
解:分离变量得 d y 3x2d x y
两边积分
得 ln y x3 C1
或
即
令C
eC1
ln y x3 ln C
( C为任意常数 )
机动 目录 上页 下页 返回 结束
x yd x ( x2 1) d y 0
第二节
可分离变量微分方程
机动 目录 上页 下页 返回 结束
可分离变量的微分方程
g( y)dy f ( x)dx 可分离变量的微分方程.
dy
4
2x2 y5
y
高等数学课后答案 第七章 习题详细解答
习题7-11.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并指出集合的边界.(1){}(,)0,0x y x y ≠≠;(2){}22(,)14x y x y <+≤;(3){}2(,)x y y x >;(4){}2222(,)(1)1(2)4x y x y x y +-≥+-≤且.解 (1)集合是开集,无界集;边界为{(,)0x y x =或0}y =. (2)集合既非开集,又非闭集,是有界集;边界为2222{(,)1}{(,)4}x y x y x y x y +=+= .(3)集合是开集,区域,无界集;边界为2{(,)}x y y x =. (4)集合是闭集,有界集;边界为2222{(,)(1)1}{(,)(2)4}x y x y x y x y +-=+-=2.已知函数(,)v f u v u =,试求(,)f xy x y +. 解 ()()(,)x y f xy x y xy ++=.3.设(,)2f x y xy =,证明:2(,)(,)f tx ty t f x y =.解)222(,)222f tx ty t xy t t xy t xy ===2(,)t f x y =.4.设y f x ⎛⎫=⎪⎝⎭(0)x >,求()f x . 解由于y f x ⎛⎫==⎪⎝⎭,则()f x =5.求下列各函数的定义域:(1)2222x y z x y+=-; (2)ln()arcsin y z y x x =-+;(3)ln()z xy =; (4)z =;(5)z =(6)u =.解 (1)定义域为{}(,)x y y x ≠±; (2)定义域为{}(,)x y x y x <≤-;(3)定义域为{}(,)0x y xy >,即第一、三象限(不含坐标轴);(4)定义域为2222(,)1x y x y a b ⎧⎫+≤⎨⎬⎩⎭; (5)定义域为{}2(,)0,0,x y x y x y ≥≥≥;(6)定义域为{}22222(,,)0,0x y z x y z x y +-≥+≠.6.求下列各极限:(1)22(,)(2,0)lim x y x xy y x y →+++; (2)(,)(0,0)lim x y →; (3)22(,)(0,0)1lim ()sinx y x y xy →+; (4)(,)(2,0)sin()lim x y xy y→;(5)1(,)(0,1)lim (1)xx y xy →+; (6)22(,)(,)lim()x y x y x y e --→+∞+∞+.解:(1)22(,)(2,0)4lim (2,0)22x y x xy y f x y →++===+;(2)(,)(0,0)00112lim lim 2x y u u u u →→→===;(3)因为22(,)(0,0)lim ()0x y x y →+=,且1s i n1xy≤有界,故22(,)(0,0)1lim ()sin 0x y x y xy →+=; (4)(,)(2,0)(,)(2,0)sin()sin()limlim 212x y x y xy xy x y xy →→==⋅=;(5)111(,)(0,1)(,)(0,1)lim (1)lim (1)y xyxx y x y xy xy e e ⋅→→+=+==;(6)当0x N >>,0y N >>时,有222()()0x y x yx y x y e e ++++<<,而()22(,)(,)22limlim lim lim 0x yu u u x y u u u x y u u e e e e+→+∞+∞→+∞→+∞→+∞+==== 按夹逼定理得22(,)(,)lim()0.x y x y x y e --→+∞+∞+=7.证明下列极限不存在: (1)(,)(0,0)limx y x yx y →+-;(2)设2224222,0,(,)0,0,x yx y x yf x y x y ⎧+≠⎪+=⎨⎪+=⎩(,)(0,0)lim (,)x y f x y →.证明 (1)当(,)x y 沿直线y kx =趋于(0,0)时极限(,)(0,0)01limlim 1x y x y kxx y x kx kx y x kx k →→=+++==--- 与k 有关,上述极限不存在.(2)当(,)x y 沿直线y x =和曲线2y x =趋于(0,0)有2242422(,)(0,0)00lim lim lim 01x y x x y x y xx y x x x x y x x x →→→=====+++, 2222442444(,)(0,0)001lim lim lim 22x y x x y xy xx y x x x x y x x x →→→=====++, 故函数(,)f x y 在点(0,0)处二重极限不存在.8.指出下列函数在何处间断:(1)22ln()z x y =+; (2)212z y x=-. 解(1)函数在(0,0)处无定义,故该点为函数22ln()z x y =+的间断点; (2)函数在抛物线22y x =上无定义,故22y x =上的点均为函数212z y x=-的间断点.9.用二重极限定义证明:(,)lim0x y →=.证22102ρ=≤=(,)P x y ,其中||OP ρ==,于是,0ε∀>,20δε∃=>;当0ρδ<<时,0ε-<成立,由二重极限定义知(,)lim0x y →=.10.设(,)sin f x y x =,证明(,)f x y 是2R 上的连续函数.证 设2000(,)P x y ∈R .0ε∀>,由于sin x 在0x 处连续,故0δ∃>,当0||x x δ-<时,有0|sin sin |x x ε-<.以上述δ作0P 的δ邻域0(,)U P δ,则当0(,)(,)P x y U P δ∈时,显然 00||(,)x x P P ρδ-<<,从而000|(,)(,)||sin sin |f x y f x y x x ε-=-<,即(,)sin f x y x =在点000(,)P x y 连续.由0P 的任意性知,sin x 作为x 、y 的二元函数在2R 上连续.习题7-21.设(,)z f x y =在00(,)x y 处的偏导数分别为00(,)x f x y A =,00(,)y f x y B =,问下列极限是什么?(1)00000(,)(,)limh f x h y f x y h →+-; (2)00000(,)(,)lim h f x y f x y h h→--;(3)00000(,2)(,)lim h f x y h f x y h →+-; (4)00000(,)(,)lim h f x h y f x h y h→+--.解 (1)0000000(,)(,)lim(,)x h f x h y f x y z x y A h→+-==; (2)000000000000(,)(,)(,)(,)limlim (,)y h h f x y f x y h f x y h f x y z x y B h h→→----===-; (3)0000000000(,2)(,)(,2)(,)limlim 222h h f x y h f x y f x y h f x y B h h→→+-+-=⋅=;(4)00000(,)(,)limh f x h y f x h y h→+--[][]0000000000000000000000000000(,)(,)(,)(,)lim(,)(,)(,)(,)lim (,)(,)(,)(,)lim lim 2.h h h h f x h y f x y f x y f x h y hf x h y f x y f x h y f x y h f x h y f x y f x h y f x y h h A A A →→→→+-+--=+----=+---=+-=+= 2.求下列函数的一阶偏导数: (1)x z xy y=+; (2)ln tan x z y =;(3)e xyz =; (4)22x y z xy+=;(5)222ln()z x x y =+; (6)z = (7)sec()z xy =; (8)(1)y z xy =+;(9)arctan()z u x y =- (10)zx u y ⎛⎫= ⎪⎝⎭.解(1)1z y x y ∂=+∂,2z x x y y∂=-∂; (2)12211tan sec cot sec z x x x x x y y y y y y -⎛⎫⎛⎫∂=⋅⋅= ⎪ ⎪∂⎝⎭⎝⎭, 12222tan sec cot sec z x x x x x x y y y y y y y-⎛⎫⎛⎫⎛⎫∂=⋅⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭; (3)xy xy z e y ye x ∂=⋅=∂,xy xy ze x xe y∂=⋅=∂; (4)()2222222222()2()1z x xy x y y x y x y y y x x y y x xy ∂⋅-+⋅-+⋅===-∂, ()2222222222()2()1z y xy x y x xy x y x x y x y x y xy ∂⋅-+⋅-+⋅===-∂;(5)232222222222ln()22ln()z x x x x y x x x y x x y x y ∂=++⋅=++∂++, 22222222z x x yy y x y x y∂=⋅=∂++; (6)1z y x xy ∂=⋅=∂1z x y xy ∂=⋅=∂ (7)tan()sec()tan()sec()zxy xy y y xy xy x∂=⋅=∂, tan()sec()tan()sec()zxy xy x x xy xy y∂=⋅=∂; (8)121(1)(1)y y zy xy y y xy x--∂=+⋅=+∂, ln(1)(1)ln(1)1y xy z xy e y xy xy y y xy +⎡⎤∂∂⎡⎤==+⋅++⎢⎥⎣⎦∂∂+⎣⎦; (9)11221()()1()1()z z z zu z x y z x y x x y x y --∂-=⋅-=∂+-+-, 11221()()(1)1()1()z z z zu z x y z x y y x y x y --∂-=⋅-⋅-=-∂+-+-, 221()ln()()ln()1()1()z zz zu x y x y x y x y z x y x y ∂--=⋅-⋅-=∂+-+-; (10)111z z ux z x z x y y y y --⎛⎫⎛⎫∂=⋅= ⎪ ⎪∂⎝⎭⎝⎭,12z zux x z x z y y y y y -⎛⎫⎛⎫⎛⎫∂=⋅-=- ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭, ln z u x x y y y⎛⎫∂=⋅ ⎪∂⎝⎭. 3.设(,)ln 2y f x y x x ⎛⎫=+⎪⎝⎭,求(1,0)x f ,(1,0)y f . 解法一 由于(,0)ln f x x =,所以1(,0)x f x x=,(1,0)1x f =; 由于(1,)ln 12y f y ⎛⎫=+⎪⎝⎭,所以11(1,)212yf y y =⋅+,1(1,0)2y f =.解法二 21(,)122x y f x y y x x x ⎛⎫=⋅- ⎪⎝⎭+,11(,)22y f x y y x x x=⋅+, 10(1,0)110212x f ⎛⎫=⋅-= ⎪⎝⎭+,111(1,0)02212y f =⋅=+. 4.设(,)(f x y x y =+-(,1)x f x . 解法一由于(,1)(11)arcsinf x x x =+-,(,1)()1x f x x '==. 解法二1(,)1x f x y y =,(,1)1x f x =. 5.设2(,)xt yf x y e dt -=⎰,求(,)x f x y ,(,)y f x y .解 2(,)x x f x y e -=,2(,)y f x y e -=-. 6.设yxz xy xe =+,证明z zxy xy z x y∂∂+=+∂∂. 解 由于21y y yx x x z y y y e xe y e x x x ⎛⎫∂⎛⎫=+-⋅=+-⎪ ⎪∂⎝⎭⎝⎭, 1y y x x z x xe x e y x∂=+⋅=+∂, 所以1()yy y yx x x xz z y x y x y e y x e xy e x y xy ye x y x ⎡⎤⎛⎫∂∂⎛⎫+=+-++=+-++ ⎪⎢⎥ ⎪∂∂⎝⎭⎣⎦⎝⎭yxxy xe xy xy z =++=+.7.(1)22,44x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与x 轴正向所成的倾角是多少? (2)1z x ⎧=⎪⎨=⎪⎩在点(1,1处的切线与y 轴正向所成的倾角是多少?解 (1)按偏导数的几何意义,(2,4)x z 就是曲线在点(2,4,5)处的切线对于x 轴正向所成倾角的斜率,而21(2,4)12x x z x ===,即tan 1k α==,于是倾角4πα=. (2)按偏导数的几何意义,(1,1)y z就是曲线在点(1,1处的切线对于y 轴正向所成倾角的斜率,而11(1,1)3y z ===,即1tan 3k α==,于是倾角6πα=.8.求下列函数的二阶偏函数:(1)已知33sin sin z x y y x =+,求2z x y ∂∂∂; (2)已知ln xz y =,求2z x y∂∂∂;(3)已知ln(z x =+,求22z x ∂∂和2zx y∂∂∂;(4)arctan y z x =求22z x ∂∂、22z y ∂∂、2z x y ∂∂∂和2zy x∂∂∂.解(1)233sin cos z x y y x x ∂=+∂,2223cos 3cos z x y y x x y∂=+∂∂; (2)ln ln 1ln ln x x z y y y y x x x∂=⋅=∂, 2ln ln 1ln 1111ln ln (1ln ln )xx x z y y x y y x y x y x y x--⎛⎫∂=+⋅⋅=+ ⎪∂∂⎝⎭; (3)1z x ⎛⎫∂==∂==,()232222zxx xy∂-==∂+,()23222z yx y xy∂-==∂∂+;(4)222211z y y xx x y y x ∂⎛⎫=⋅-=- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭,222111z x y x x y y x ∂=⋅=∂+⎛⎫+ ⎪⎝⎭, ()222222z xy x x y ∂=∂+,()222222z xyy x y ∂-=∂+,()()2222222222222z x y y y x x y x y x y ∂+--=-=∂∂++,()()2222222222222z x y x y x y x x y x y ∂+--==∂∂++. 9.设222(,,)f x y z xy yz zx =++,求(0,0,1xx f ,(1,0,2)xz f ,(0,1,0)yz f -及(2,0,1)zzx f .解 因为22x f y xz =+,2xx f z =,2xz f x =, 22y f xy z =+,2yz f z =,22z f yz x =+,2zz f y =,0zzx f =,所以(0,0,1)2xx f =,(1,0,2)2xz f =,(0,1,0)0yz f -=,(2,0,1)0zzx f =.10.验证: (1)2esin kn ty nx -=满足22y yk t x∂∂=∂∂;(2)r =2222222r r r x y z r∂∂∂++=∂∂∂.证 (1)因为22e sin kn t y kn nx t -∂=-∂,2e cos kn t y n nx x -∂=∂,2222e sin kn ty n nx x-∂=-∂ 所以()2222e sin kn ty y k n nx k t x-∂∂=-=∂∂; (2)因为r x x r ∂==∂,2222231r x x x r x x x r r r r r ∂∂-⎛⎫==-⋅= ⎪∂∂⎝⎭, 由函数关于自变量的对称性,得22223r r y y r ∂-=∂,22223r r z z r ∂-=∂, 所以 2222222222223332r r r r x r y r z x y z r r r r∂∂∂---++=++=∂∂∂. 习题7-31.求下列函数的全微分:(1)2222s tu s t+=-; (2)2222()e x y xyz x y +=+;(3)arcsin(0)xz y y=>; (4)ey x x y z ⎛⎫-+ ⎪⎝⎭=;(5)222ln()u x y z =++; (6)yzu x =.解 (1)()()222222222222()2()4u s s t s s t st s s t s t ∂--+==-∂--, ()()222222222222()2()4u t s t t s t s tt s t s t ∂-++==∂--, ()()()22222222222444d d d (d d )st s tstu s t t s s t ststst=-+=-----;(2)22222222244222222()2()2x y x y x y xyxyxyzx y x y yx y xe x y eex xx y x y +++⎛⎫∂-+-=++=+ ⎪∂⎝⎭,由函数关于自变量的对称性可得224422x y xyzy x e y yxy +⎛⎫∂-=+ ⎪∂⎝⎭, 22444422d 2d 2d x y xyx y y x z ex x y y x y xy +⎡⎤⎛⎫⎛⎫--=+++⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦; (3)21d d arcsind d x x x z x y y yy y ⎛⎫⎫===- ⎪⎪⎝⎭⎭)d d y x x y =-;(4)d d d y x y x x y x y y x z e e x y ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭⎡⎤⎛⎫⎢⎥==-⋅+ ⎪⎢⎥⎝⎭⎣⎦2211d d y x x y y x ex y y x x y ⎛⎫-+ ⎪⎝⎭⎡⎤⎛⎫⎛⎫=--+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦;(5)()2222222221d d ln()d u x y z x y zx y z ⎡⎤=++=++⎣⎦++2222222d 2d 2d 2(d d d )x x y y z z x x y y z z x y z x y z++==++++++; (6)()1d d d ln d ln d yz yz yz yzu x yzx x x z x y x y x z -==++()1d ln d ln d yz x yz x xz x y xy x z -=++.2.求下列函数的全微分:(1)22ln(1)z x y =++在1x =,2y =处的全微分; (2)2arctan 1xz y=+在1x =,1y =处的全微分. 解 (1)因为2222222211d d ln(1)d(1)(2d 2d )11z x y x y x x y y x y x y ⎡⎤=++=++=+⎣⎦++++ 所以12112d (2d 4d )d d 633x y z x y x y ===+=+; (2)因为22221d d arctand 1111x x z y y x y ⎛⎫⎛⎫== ⎪ ⎪++⎛⎫⎝⎭⎝⎭+ ⎪+⎝⎭()22222222211212d d d d 11111y xy xy x y x y y x y y x y y ⎡⎤⎛⎫+⎢⎥=-=- ⎪⎢⎥++++++⎝⎭+⎣⎦ 所以()1222111121d d d d d 113x y x y xy z x y x y y x y ====⎛⎫=-=- ⎪+++⎝⎭. 3. 求函数23z x y =当2x =,1y =-,0.02x ∆=,0.01y ∆=-时的全微分.解 因为()23322322d d 2d 3d 23z x y xy x x y y xy x x y y ==+=∆+∆所以当2x =,1y =-,0.02x ∆=,0.01y ∆=-时全微分为d 4120.080.120.2z x y =-∆+∆=--=-.4.求函数22xyz x y=-当2x =,1y =,0.01x ∆=,0.03y ∆=时的全微分和全增量,并求两者之差.解 因为()()222222222d()d()d d x y xy xy x y xy z x y x y ---⎛⎫== ⎪-⎝⎭- ()()()()()222332222222(d d )(2d 2d )d d x y y x+x y xy x x y y x y y x+x +xy y xyx y -----==-- 所以当2x =,1y =,0.01x ∆=,0.03y ∆=时全微分的值为()()()2332222(,)(2,1)0.01,0.030.25d 0.0277779x y x y x y y x+x +xy yz x y =∆=∆=--∆∆==≈-, 而当2x =,1y =,0.01x ∆=,0.03y ∆=时的全增量为()()()()2222(,)(2,1)0.010.030.028252x y x y x x y y xy z x y x x y y =∆=∆=⎡⎤+∆+∆∆=-≈⎢⎥-+∆-+∆⎢⎥⎣⎦, 全增量与全微分之差为d 0.0282520.0277770.000475z z ∆-≈-=.习题7-41.设2e x yu -=,sin x t =,3y t =,求d d u t. 解3222sin 22d d d cos 23(cos 6)d d d x y x y t t u u x u ye t e t e t t t x t y t---∂∂=+=-⋅=-∂∂. 2.设arccos()z u v =-,而34u x =,3v x =,求d d z x. 解2d d d 123d d d z z u z v x x u x v x ∂∂=+=+∂∂2314x -=3.设22z u v uv =-,cos u x y =,sin v x y =,求z x ∂∂,z y∂∂. 解()()222cos 2sin z z u z v uv v y u uv y x u x v x∂∂∂∂∂=⋅+⋅=-⋅+-⋅∂∂∂∂∂ 23sin cos (cos sin )x y y y y =-,()()()222sin 2cos z z u z v uv v x y u uv x y y u y v y∂∂∂∂∂=⋅+⋅=-⋅-+-⋅∂∂∂∂∂ 33232(sin 2sin cos cos 2cos sin )x y y y y y y =-+-.4.设2ln z u v =,而32u x y =+,y v x =,求z x ∂∂,z y∂∂. 解 222ln 3z z u z v u y u v x u x v x v x ∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅- ⎪∂∂∂∂∂⎝⎭216(32)ln(32)y x y x y x x=+-+, 22112ln 24(32)ln (32)z z u z v u y u v x y x y y u y v y v x x y∂∂∂∂∂=⋅+⋅=⋅+⋅=+++∂∂∂∂∂. 5. 设2(,,)ln(sin )z f u x y u y x ==+,ex yu +=,求z x ∂∂,zy∂∂. 解22112cos sin sin x y z z u f u e y x x u x x u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222cos sin x y x y e y xe y x+++=+, 22112sin sin sin x y z z u f u e x y u y y u y x u y x+∂∂∂∂=⋅+=⋅⋅+⋅∂∂∂∂++ ()()222sin sin x y x y e xe y x+++=+. 6.设222sin()u x y z =++,x r s t =++,y rs st tr =++,z rst =,求u r ∂∂,us∂∂,ut∂∂. 解[]22222()2cos()u u x u y u z x y s t zst x y z r x r y r z r∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr s t rs t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u zx y r t zrt x y z s x s y s z s∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r t r st r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦,[]22222()2cos()u u x u y u z x y s r zrs x y z t x t y t z t∂∂∂∂∂∂∂=⋅+⋅+⋅=+++++∂∂∂∂∂∂∂ 222222()()cos ()()()r s t rs st tr r s r s t r s t rs st tr rst ⎡⎤⎡⎤=+++++++++++++⎣⎦⎣⎦.7.设arctanxz y=,x u v =+,y u v =-,求z u ∂∂,z v ∂∂,并验证:22z z u vu v u v∂∂-+=∂∂+.解222221111111z z x z y x y xu x u y uy y x y x x y y ⎛⎫∂∂∂∂∂-=⋅+⋅=⋅⋅+⋅-⋅= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, ()222221111111z z x z yx y xv x v y vy y x y x x y y ⎛⎫∂∂∂∂∂+=⋅+⋅=⋅⋅+⋅-⋅-= ⎪∂∂∂∂∂+⎛⎫⎛⎫⎝⎭++ ⎪ ⎪⎝⎭⎝⎭, 则222222222()()()z z y x y x u v u vu v x y x y u v u v u v ∂∂-+--+=+==∂∂++++-+. 8.设22(,,)z f x y t x y t ==-+,sin x t =,cos y t =,求d d z t. 解d d d 2cos 2(sin )12sin 21d d d z z x z y f x t y t t t x t y t t∂∂∂=⋅+⋅+=--+=+∂∂∂. 9.求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1)22()z f x y =-; (2),x y u f y z ⎛⎫=⎪⎝⎭; (3)(,,)u f x xy xyz =; (4)22(,,ln )xy u f x y e x =-. 解(1)222()z xf x y x ∂'=-∂,222()zyf x y y∂'=--∂; (2)111f u f x y y '∂'=⋅=∂,12122211u x x f f f f y y z y z ⎛⎫∂''''=⋅-+⋅=-+ ⎪∂⎝⎭, 2222u y y f f z z z ∂⎛⎫''=⋅-=- ⎪∂⎝⎭; (3)123u f yf yzf x ∂'''=++∂,23uxf xzf y ∂''=+∂,3u xyf z ∂'=∂; (4)12312xy u xf ye f f x x ∂'''=++∂,122xy u yf xe f y∂''=-+∂. 10.设()z xy xF u =+,而yu x=,()F u 为可导函数,证明: z zxy z xy x y∂∂+=+∂∂.证 ()()()z z u u xy x y F u xF u y x xF u x y x y ⎡⎤∂∂∂∂⎡⎤''+=++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦ []()()()yx y F u F u y x F u x ⎡⎤''=+-++⎢⎥⎣⎦()xy xF u xy z xy =++=+. 11.设[cos()]z y x y ϕ=-,试证:z z zx y y∂∂+=∂∂. 证sin()[cos()]sin()z z y x y x y y x y x yϕϕϕ∂∂''+=--+-+-∂∂ [cos()]z x y yϕ=-=. 12.设,kz y u x F x x ⎛⎫=⎪⎝⎭,且函数,z y F x x ⎛⎫⎪⎝⎭具有一阶连续偏导数,试证: u u uxy z ku x y z∂∂∂++=∂∂∂. 证11222k k u z y kx F x F F x x x -∂⎡⎤⎛⎫⎛⎫''=+-+- ⎪ ⎪⎢⎥∂⎝⎭⎝⎭⎣⎦,1221k k ux F x F y x -∂''=⋅=∂, 1111k k u x F x F z x-∂''=⋅=∂, 11111111k k k k k u u u xy z kx F x zF x yF x yF x zF ku x y z----∂∂∂''''++=--++=∂∂∂. 13.设sin (sin sin )z y f x y =+-,试证:sec sec 1z zxy x y∂∂+=∂∂. 证cos z f x x ∂'=∂,cos (cos )zy y f y∂'=+-∂, sec sec sec cos sec cos sec (cos )1z zxy x xf y y y y f x y∂∂''+=++-=∂∂. 14.求下列函数的二阶偏导数22z x ∂∂,2z x y ∂∂∂,22zy ∂∂(其中f 具有二阶连续偏导数):(1)(,)z f xy y =; (2)22()z f x y =+;(3)22(,)z f x y xy =; (4)(sin ,cos ,)x y z f x y e +=. 解 (1)令s xy =,t y =,则(,)z f xy y =,s 和t 是中间变量.11z s f yf x x ∂∂''=⋅=∂∂,1212d d z s tf f xf f y y y∂∂''''=⋅+⋅=+∂∂. 因为(,)f s t 是s 和t 的函数,所以1f '和2f '也是s 和t 的函数,从而1f '和2f '是以s 和t 为中间变量的x 和y 的函数.故()22111112z z s yf yf y f x x x x x∂∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()211111211112d d z z s t yf f y f f f xyf yf x y y x y y y ⎛⎫∂∂∂∂∂⎛⎫'''''''''''===+⋅+⋅=++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭,()212111221222d d d d z z s t s t xf f x f f f f y y y y yy y y ⎛⎫⎛⎫∂∂∂∂∂∂''''''''''==+=+++ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭ 21112222x f xf f ''''''=++. (2)令22s x y =+,则22()z f x y =+是以s 为中间变量的x 和y 的函数.2z s f xf x x ∂∂''=⋅=∂∂,2z sf yf y y∂∂''=⋅=∂∂. 因为()f s 是s 的函数,所以f '也是s 的函数,从而f '是以s 中间变量的x 和y 的函数.故()()222222224z z xf f xf x f x f x x x x∂∂∂∂⎛⎫'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭, ()()22224z z xf xf y xyf x y y x y∂∂∂∂⎛⎫'''''===⋅= ⎪∂∂∂∂∂⎝⎭, ()()222222224z z yf f yf y f y f y y y y⎛⎫∂∂∂∂'''''''===+⋅=+ ⎪∂∂∂∂⎝⎭. (3)令2s xy =2t x y =,则212122z s t f f y f xyf x x x ∂∂∂''''=⋅+⋅=+∂∂∂,212122z s tf f xyf x f y y y∂∂∂''''=⋅+⋅=+∂∂∂. ()221222z z y f xyf x x x x∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭211122212222s t s t y f f yf xy f f x x x x ∂∂∂∂⎛⎫⎛⎫'''''''''=⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭()()2221112221222222y y f xyf yf xy y f xyf '''''''''=++++ 43222111222244yf y f xy f x y f '''''''=+++, ()22122z z y f xyf x y y x y∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭ 21111222122222s t s t yf y f f xf xy f f y y y y ⎛⎫⎛⎫∂∂∂∂''''''''''=+⋅+⋅++⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()222111122212222222yf y xyf x f xf xy xyf x f ''''''''''=+++++ 32231211122222252yf xf xy f x y f x yf ''''''''=++++, ()221222z z xyf x f y y y y⎛⎫∂∂∂∂''==+ ⎪∂∂∂∂⎝⎭ 211112212222s t s t xf xy f f x f f y y y y ⎛⎫⎛⎫∂∂∂∂'''''''''=+⋅+⋅+⋅+⋅ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭ ()()2221111221222222xf xy xyf x f x xyf x f '''''''''=++++ 22341111222244xf x y f x yf x f '''''''=+++. (4)令sin u x =,cos v y =,x yw e +=,则1313d cos d x y z u w f f xf e f x x x +∂∂''''=+=+∂∂,2323d sin d x y z v w f f yf e f y y y+∂∂''''=+=-+∂∂. ()2132cos x y z z xf e f x x x x+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂⎝⎭ 1111333133d d sin cos d d x y x y u w u w xf x f f e f e f f x x xx ++∂∂⎛⎫⎛⎫''''''''''=-+++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()1111333133sin cos cos cos x yx y x y x y xf x xf e f e f e xf e f ++++''''''''''=-+++++ ()2231111333sin cos 2cos x y x yx y ef xf xf e xf e f +++''''''''=-+++, ()213cos x y z z xf e f x y y x y+∂∂∂∂⎛⎫''==+ ⎪∂∂∂∂∂⎝⎭121333233d d cos d d x y x y v w v w x f f e f e f f y y yy ++⎛⎫⎛⎫∂∂'''''''''=++++ ⎪ ⎪∂∂⎝⎭⎝⎭()()121333233cos sin sin x yx y x y x y x yf e f e f e yf e f ++++'''''''''=-+++-+ ()2312133233cos sin cos sin x y x yx y x y ef x yf e xf e yf e f ++++'''''''''=-+-+, ()2232sin x y z z yf e f y y y y+⎛⎫∂∂∂∂''==-+ ⎪∂∂∂∂⎝⎭ 2222333233d d cos sin d d x y x y v w v w yf y f f e f e f f y y yy ++⎛⎫⎛⎫∂∂''''''''''=--++++ ⎪ ⎪∂∂⎝⎭⎝⎭ ()()2222333233cos sin sin sin x yx y x y x y yf y yf e f e f e yf e f ++++''''''''''=---+++-+ ()2232222333cos sin 2sin x y x yx y e f yf yf e yf e f +++''''''''=-+-+.习题7-51.设2cos e 0x y x y +-=,求d d yx. 解 设2(,)cos e x F x y y x y =+-,则22d e 2e 2d sin sin x x x y F y xy xyx F y x y x --=-=-=--+. 2.设ln ln 1xy y x ++=,求1d d x yx =. 解 设(,)ln ln 1F x y xy y x =++-,则221d 1d x y y F y xy y x x F x y x x y++=-=-=-++. 当1x =时,由ln ln 1xy y x ++=知1y =,所以1d 1d x yx ==-. 3.设arctany x =,求d d y x. 解设(,)ln arctan y F x y x=,则2222222222211d11d1xyyx x yyFy x yx y x yxy xx F x yx x y x yyx⎛⎫-⋅- ⎪⎝⎭⎛⎫++ ⎪+++⎝⎭=-=-=-=--⋅-++⎛⎫+ ⎪⎝⎭.4.设222cos cos cos1x y z++=,求zx∂∂,zy∂∂.解设222(,,)cos cos cos1F x y z x y z=++-,则2cos sin sin22cos sin sin2xzFz x x xx F z z z∂-=-=-=-∂-,2cos sin sin22cos sin sin2yzFz y y yy F z z z∂-=-=-=-∂-.5.设方程(,)0F x y z xy yz zx++++=确定了函数(,)z z x y=,其中F存在偏导函数,求zx∂∂,zy∂∂.解1212()()xzF F y z Fzx F F y x F''++∂=-=-∂''++,1212()()yzF F x z Fzy F F y x F''++∂=-=-∂''++.6.设由方程(,,)0F x y z=分别可确定具有连续偏导数的函数(,)x x y z=,(,)y y x z=,(,)z z x y=,证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证因为yxFxy F∂=-∂,zyFyz F∂=-∂,xzFzx F∂=-∂,所以1y xzx y zF FFx y zy z x F F F⎛⎫⎛⎫⎛⎫∂∂∂⋅⋅=-⋅-⋅-=-⎪⎪ ⎪⎪∂∂∂⎝⎭⎝⎭⎝⎭.7.设(,)u vϕ具有连续偏导数,证明由方程(,)0cx az cy bzϕ--=所确定的函数(,)z f x y=满足z za b cx y∂∂+=∂∂.证令u cx az=-,v cy bz=-,则x u u u c x ϕϕϕ∂=⋅=∂,y v v vc yϕϕϕ∂=⋅=∂,z u v u v u v a b z z ϕϕϕϕϕ∂∂=⋅+⋅=--∂∂. x u z u v c z x a b ϕϕϕϕϕ∂=-=∂+,y v z u vc zy a b ϕϕϕϕϕ∂=-=∂+. 于是 u v u v u vc c z zab a bc x y a b a b ϕϕϕϕϕϕ∂∂+=⋅+⋅=∂∂++. 8.设0ze xyz -=,求22zx∂∂.解 设(,,)zF x y z e xyz =-,则x F yz =-,z z F e xy =-. 于是x zz F z yzx F e xy ∂=-=∂-, ()222()z z zz z ye xy yz e y z z x x x x x e xy ∂∂⎛⎫--- ⎪∂∂∂∂∂⎛⎫⎝⎭== ⎪∂∂∂⎝⎭-()22z z zyzy z yz e y e xy e xy ⎛⎫-⋅- ⎪-⎝⎭=-()2322322z zzy ze xy z y z e exy --=-.9.设(,)z z x y =是由方程2e 0zxz y --=所确定的隐函数,求2(0,1)zx y∂∂∂.解 设2(,,)e z F x y z xz y =--,则x F z =-,e z z F x =-,2y F y =-. 于是x z z F z z x F e x ∂=-=∂-,2y zz F z yy F e x∂=-=∂-, ()()22z z zz z e x z e z z y yx y y x ex ∂∂--⋅⋅∂∂∂∂∂⎛⎫== ⎪∂∂∂∂⎝⎭-()()222z zz zz y y e x ze e x e x e x ----=-()()322z zzy e x yze ex --=-.由20ze xz y --=,知(0,1)0z =,得2(0,1)2zx y∂=∂∂.10.求由方程xyz +=(,)z z x y =在点(1,0,1)-处的全微分d z .解设(,,)F x y z xyz =x z F zx F xy ∂=-==∂+,y z F zy F xy ∂=-==∂+,d d d z zz x y x y x y ∂∂=+=∂∂,(1,0,1)d d z x y -=.11.求由下列方程组所确定的函数的导数或偏导数:(1)设22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求d d y x ,d d z x; (2)设0,1,xu yv yu xv -=⎧⎨+=⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy ∂∂; (3)设sin ,cos ,uux e u v y e u v ⎧=+⎪⎨=-⎪⎩求u x ∂∂,u y ∂∂,v x ∂∂,vy∂∂. 解 (1)分别在两个方程两端对x 求导,得d d 22,d d d d 2460.d d zy x y x xy z x y z x x ⎧=+⎪⎪⎨⎪++=⎪⎩称项,得d d 22,d d d d 23.d d y z y x x xy z y z x xx ⎧-=-⎪⎪⎨⎪+=-⎪⎩ 在 2162023y D yz y y z-==+≠的条件下,解方程组得213d 6(61)d 622(31)x x z yxz x x z x D yz y y z ------+===++. 222d 2d 6231y xy x z xy xx D yz y z --===++. (2)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =,将所给方程的两边对x 求导并移项,得,.uv x y u x xu v y x v xx ∂∂⎧-=-⎪⎪∂∂⎨∂∂⎪+=-⎪∂∂⎩ 在220x yJ x y y x-==+≠的条件下,22u y v x u xu yvx y x x y y x ---∂+==--∂+, 22x uy v v yu xvx y x x yy x--∂-==-∂+. 将所给方程的两边对y 求导,用同样方法在220J x y =+≠的条件下可得22u xv yu y x y∂-=∂+,22v xu yv y x y ∂+=-∂+. (3)此方程组确定两个二元隐函数(,)u u x y =,(,)v v x y =是已知函数的反函数,令(,,,)sin u F x y u v x e u v =--,(,,,)cos u G x y u v y e u v =-+.则 1x F =,0y F =,sin u u F e v =--,cos v F u v =-, 0x G =,1y G =,cos u u G e v =-+,sin v G u v =-.在sin cos (,)(sin cos )0(,)cos sin u u u e v u v F G J ue v v u u v e v u v---∂===-+≠∂-+-的条件下,解方程组得1cos 1(,)1sin 0sin (,)(sin cos )1uu v u F G vu v x J x v J e v v -∂∂=-=-=-∂∂-+, 0cos 1(,)1cos 1sin (,)(sin cos )1uu v u F G vu v y J y v J e v v -∂∂-=-=-=-∂∂-+, sin 11(,)1cos (,)[(sin cos )1]cos 0u uu ue v v F G v e x J u x J u e v v e v --∂∂-=-=-=∂∂-+-+, sin 01(,)1sin (,)[(sin cos )1]cos 1u uu u e v v F G v e x J u x J u e v v e v --∂∂+=-=-=∂∂-+-+.习题7-61.求下列曲线在指定点处的切线方程和法平面方程: (1)2x t =,1y t =-,3z t =在(1,0,1)处; (2)1t x t =+,1t y t+=,2z t =在1t =的对应点处;(3)sin x t t =-,1cos y t =-,4sin2t z =在点2π⎛- ⎝处; (4)2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩在点(1,1,3)处. 解 (1)因为2t x t '=,1t y '=-,23t z t '=,而点(1,0,1)所对应的参数1t =,所以(2,1,3)=-T .于是,切线方程为11213x y z --==-. 法平面方程为2(1)3(1)0x y z --+-=,即 2350x y z -+-=.(2)因为2211(1)(1)t t t x t t +-'==++,22(1)1t t t y t t -+'==-,2t z t '=,1t =对应着点1,2,12⎛⎫⎪⎝⎭,所以 1,1,24⎛⎫=- ⎪⎝⎭T .于是,切线方程为 1212148x y z ---==-. 法平面方程为 281610x y z -+-=.(3)因为1cos t x t '=-,sin t y t '=,2cos 2t t z '=,点1,12π⎛- ⎝对应在的参数为2t π=,所以(=T .于是,切线方程为112x y π-+=-=. 法平面方程为402x y π++--=. (4)将2222100,100,x y y z ⎧+-=⎪⎨+-=⎪⎩的两边对x 求导并移项,得 d 22,d d d 220,d d yy x xy z y z xx ⎧=-⎪⎪⎨⎪+=⎪⎩ 由此得 2002d 420d 422x z y xz x y x yz y y z --===-,2220d 420d 422y x y z xy xy x yz z y z-===.(1,1,3)d 1d y x =-,(1,1,3)d 1d 3z x =.从而 1,1,3=- ⎪⎝⎭T . 故所求切线方程为113331x y z ---==-. 法平面方程为 3330x y z -+-=.2.在曲线x t =,2y t =,3z t =上求一点,使此点的切线平行于平面24x y z ++=.解 因为1t x '=,2t y t '=,23t z t '=,设所求点对应的参数为0t ,于是曲线在该点处的切向量可取为200(1,2,3)t t =T .已知平面的法向量为(1,2,1)=n ,由切线与平面平行,得0⋅=T n ,即2001430t t ++=,解得01t =-和13-.于是所求点为(1,1,1)--或111,,3927⎛⎫-- ⎪⎝⎭. 3.求下列曲面在指定点处的切平面和法线方程: (1)222327x y z +-=在点(3,1,1)处; (2)22ln(12)z x y =++在点(1,1,ln 4)处; (3)arctany z x =在点1,1,4π⎛⎫ ⎪⎝⎭处. 解(1)222(,,)327F x y z x y z =+--,(,,)(6,2,2)x y z F F F x y z ==-n ,(3,1,1)(18,2,2)=-n .所以在点(3,1,1)处的切平面方程为9(3)(1)(1)0x y z -+---=,即 9270x y z +--=. 法线方程为311911x y z ---==-. (2)22(,,)ln(12)F x y z x y z =++-,222224(,,),,11212x y z x yF F F x y x y ⎛⎫==- ⎪++++⎝⎭n ,(1,1,ln 4),1,12=- ⎪⎝⎭n .所以在点(1,1,ln 4)处的切平面方程为2234ln 20x y z +--+=.法线方程为 12ln 2122y z x ---==-. (3)(,,)arctanyF x y z z x=-, 2222(,,),,1x y z y xF F F x y x y ⎛⎫-==- ⎪++⎝⎭n , 1,1,411,,122π⎛⎫ ⎪⎝⎭⎛⎫=-- ⎪⎝⎭n . 所以在点1,1,4π⎛⎫⎪⎝⎭处的切平面方程为 202x y z π-+-=. 法线方程为 114112z x y π---==-. 4.求曲面2222321x y z ++=上平行于平面460x y z ++=的切平面方程.解 设222(,,)2321F x y z x y z =++-,则曲面在点(,,)x y z 处的一个法向量(,,)(2,4,6)x y z n F F F x y z ==.已知平面的法向量为(1,4,6),由已知平面与所求切平面平行,得246146x y z ==,即12x z =,y z =. 代入曲面方程得 22223214z z z ++=. 解得 1z =±,则12x =±,1y =±. 所以切点为 1,1,12⎛⎫±±± ⎪⎝⎭. 所求切平面方程为 21462x y z ++=±5.证明:曲面(,)0F x az y bz --=上任意点处的切平面与直线x yz a b==平行(a ,b 为常数,函数(,)F u v 可微).证 曲面(,)0F x az y bz --=的法向量为1212(,,)F F aF bF ''''=--n ,而直线的方向向量(,,1)a b =s ,由0⋅=n s 知⊥n s ,即曲面0F =上任意点的切平面与已知直线x yz a b==平行. 6.求旋转椭球面222316x y z ++=上点(1,2,3)--处的切平面与xOy 面的夹角的余弦.解 令222(,,)316F x y z x y z =++-,曲面的法向量为(,,)(6,2,2)x y z F F F x y z ==n ,曲面在点(1,2,3)--处的法向量为1(1,2,3)(6,4,6)--==--n n ,xOy 面的法向量2(0,0,1)=n ,记1n 与2n 的夹角为θ,则所求的余弦值为1212cos θ⋅===n n n n . 7.证明曲面3xyz a =(0a >,为常数)的任一切平面与三个坐标面所围成的四面体的体积为常数.证 设3(,,)F x y z xyz a =-,曲面上任一点(,,)x y z 的法向量为(,,)n yz xz xy =,该点的切平面方程为()()()0yz X x xz Y y xy Z z -+-+-=,即 33yzX xzY xyZ a ++=.这样,切平面与三个坐标面所围成的四面体体积为33331333962a a a V a yz xz xy =⋅⋅⋅=.习题7-71.求函数22z x y =+在点(1,2)处沿从点(1,2)到点(2,2的方向的方向导数.。
同济大学《高等数学第五版》习题答案
A\(A\B)=[−10, −5).
2. 设A、B是任意两个集合, 证明对偶律: (A∩B)C=AC ∪B C .
证明 因为
x∈(A∩B)C⇔x∉A∩B⇔ x∉A或x∉B⇔ x∈AC或x∈B C ⇔ x∈AC ∪B C, 所以 (A∩B)C=AC ∪B C .
F(−x)=f(−x)⋅g(−x)=f(x)[−g(x)]=−f(x)⋅g(x)=−F(x),
所以 F(x)为奇函数, 即偶函数与奇函数的积是奇函数.
12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?
(1)y=x2(1−x2);
(2)y=3x2−x3;
(3)
y
= 1− x2 1+ x2
(6)因为 f (−x)= a(−x) + a−(−x) = a−x + ax = f (x) , 所以 f(x)是偶函数.
பைடு நூலகம்
2
2
13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y=cos(x−2); (2)y=cos 4x; (3)y=1+sin πx; (4)y=x cos x; (5)y=sin2 x. 解 (1)是周期函数, 周期为 l=2π. (2)是周期函数, 周期为 l = π . 2 (3)是周期函数, 周期为 l=2. (4)不是周期函数. (5)是周期函数, 周期为 l=π.
(4)f(x)=1, g(x)=sec2x−tan2x . 解 (1)不同. 因为定义域不同. (2)不同. 因为对应法则不同, x<0 时, g(x)=−x. (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.
高等数学下(同济大学第五版)课后习题答案解析
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济第五版高数答案(高等数学课后习题解答)
(7) yarcsin(x3);
解 由|x3|1 得函数的定义域 D[24]. 1 (8) y 3 x arctan ; x 解 由 3x0 且 x0 得函数的定义域 D(0)(03).
(9) yln(x1);
解 由 x10 得函数的定义域 D(1).
解 (1)是周期函数周期为 l2.
(2)是周期函数周期为 l . 2 (3)是周期函数周期为 l2. (4)不是周期函数. (5)是周期函数周期为 l. 14. 求下列函数的反函数 (1) y 3 x 1 (2) y 1 x 1 x (3) y ax b (adbc0); cx d (4) y2sin3x; (5) y1ln(x2); 2x . (6) y x 2 1
解 (1)由 y 3 x 1 得 xy31所以 y 3 x 1 的反函数为 yx31.
1 y (2)由 y 1 x 得 x 所以 y 1 x 的反函数为 y 1 x . 1 x 1 x 1 x 1 y dy b 所以 y ax b 的反函数为 y dx b . (3)由 y ax b 得 x cx d cy a cx d cx a
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为偶函数即两个偶函数的和是偶函数. 如果 f(x)和 g(x)都是奇函数则
F(x)f(x)g(x)f(x)g(x)F(x)
所以 F(x)为奇函数即两个奇函数的和是奇函数.
解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 . 4 4 2 4 4 6 6 2 2
9. 试证下列函数在指定区间内的单调性: x (1) y , (, 1); 1 x (2)yxln x, (0, ).
高等数学(同济大学第五版)第七章 空间解析几何与向量代数()
习题7-11. 设u =a −b +2c , v =−a +3b −c . 试用a 、b 、c 表示2u −3v .解 2u −3v =2(a −b +2c )−3(−a +3b −c )=2a −2b +4c +3a −9b +3c =5a −11b +7c .2. 如果平面上一个四边形的对角线互相平分, 试用向量证明这是平行四边形. 证明 ; ,→→→OA OB AB −=→→→OD OC DC −=而, ,→→OA OC −=→→OB OD −=所以.→→→→→→AB OA OB OB OA DC −=−=+−=这说明四边形ABCD 的对边AB =CD 且AB //CD ,从而四边形ABCD 是平行四边形.3. 把ΔABC 的BC 边五等分, 设分点依次为D 1、D 2、D 3、D 4, 再把各分点与点A 连接. 试以、表示向量、、A 3、A4.→c =AB →a =BC →A D 1→A D 2→D D →解 →→→a c 5111−−=−=BD BA A D , →→→a c 5222−−=−=BD BA A D , →→→a c 5333−−=−=BD BA A D , →→→a c 5444−−=−=BD BA A D . 4. 已知两点M 1(0, 1, 2)和M 2(1, −1, 0). 试用坐标表示式表示向量及.→→21M M 212M M −→)2 ,2 ,1()2 ,1 ,0()0 ,1 ,1(21−−=−−=M M )4 ,4 ,2()2 ,2 ,1(2221−=−−−=−M M 解 , .→ 5. 求平行于向量a =(6, 7, −6)的单位向量.解 11)6(76||222=−++=a ,平行于向量a =(6, 7, −6)的单位向量为6 ,7 ,6(1−=a 111111||a 或)6 ,7 ,6(1−−=−a 111111||a . 6. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解 A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.7. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置:A (3, 4, 0);B (0, 4, 3);C (3, 0, 0);D (0, −1, 0).解 在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.8. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标.解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a , b , c ); 点(a , b , c )关于zOx 面的对称点为(a , −b , c ).(2)点(a , b , c )关于x 轴的对称点为(a , −b , −c ); 点(a , b , c )关于y 轴的对称点为(−a , b , −c ); 点(a , b , c )关于z 轴的对称点为(−a , −b , c ).(3)点(a , b , c )关于坐标原点的对称点为(−a , −b , −c ).9. 自点P 0(x 0, y 0, z 0)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标. 解 在xOy 面、yOz 面和zOx 面上, 垂足的坐标分别为(x 0, y 0, 0)、(0, y 0, z 0)和(x 0, 0, z 0). 在x 轴、y 轴和z 轴上, 垂足的坐标分别为(x 0, 0, 0), (0, y 0, 0)和(0, 0, z 0).10. 过点P 0(x 0, y 0, z 0)分别作平行于z 轴的直线和平行于xOy 面的平面, 问在它们上面的点的坐标各有什么特点?解 在所作的平行于z 轴的直线上, 点的坐标为(x 0, y 0, z ); 在所作的平行于xOy 面的平面上, 点的坐标为(x , y , z 0).11. 一边长为a 的立方体放置在xOy 面上, 其底面的中心在坐标原点, 底面的顶点在x 轴和y 轴上, 求它各顶点的坐标.解 因为底面的对角线的长为a 2, 所以立方体各顶点的坐标分别为)0 ,0 ,2(a −, )0 ,0 ,2(a , )0 ,2 ,0(a −, )0 ,2 ,0(a , ) ,0 ,22(a a −, ) ,0 ,22(a a , ) ,22 ,0(a a −, ) ,22 ,0(a a . 12. 求点M (4, −3, 5)到各坐标轴的距离.解 点M 到x 轴的距离就是点(4, −3, 5)与点(4, 0, 0)之间的距离, 即345)3(22=+−=x d .点M 到y 轴的距离就是点(4, −3, 5)与点(0, −3, 0)之间的距离, 即415422=+=y d .点M 到z 轴的距离就是点(4, −3, 5)与点(0, 0, 5)之间的距离, 即5)3(422=−+=z d .13. 在yOz 面上, 求与三点A (3, 1, 2)、B (4, −2, −2)和C (0, 5, 1)等距离的点.解 设所求的点为P (0, y , z )与A 、B 、C 等距离, 则,→2222)2()1(3||−+−+=z y PA ,→2222)2()2(4||++++=z y PB .→222)1()5(||−+−=z y PC 由题意, 有, →→→222||||||PC PB PA ==即 ⎩⎨⎧−+−=++++−+−=−+−+2222222222)1()5()2()2(4)1()5()2()1(3z y z y z y z y 解之得y =1, z =−2, 故所求点为(0, 1, −2).14. 试证明以三点A (4, 1, 9)、B (10, −1, 6)、C (2, 4, 3)为顶点的三角形是等腰三角直角三角形.解 因为→7)96()11()410(||222=−+−−+−=AB ,→7)93()14()42(||222=−+−+−=AC ,→27)63()14()102(||222=−+++−=BC ,所以, .→→→222||||||AC AB BC +=→→||||AC AB = 因此ΔABC 是等腰直角三角形.15. 设已知两点1) ,2 ,4(1M 和M 2(3, 0, 2). 计算向量的模、方向余弦和方向角. →21M M 解 →)1 ,2 ,1()12 ,20 ,43(21−=−−−=M M ;→21)2()1(||22221=++−=M M ;21cos −=α, 22cos =β, 21cos =γ; 32πα=, 43 πβ=, 3πγ=. 16. 设向量的方向余弦分别满足(1)cos α=0; (2)cos β=1; (3)cos α=cos β=0, 问这些向量与坐标轴或坐标面的关系如何?解 (1)当cos α=0时, 向量垂直于x 轴, 或者说是平行于yOz 面.(2)当cos β=1时, 向量的方向与y 轴的正向一致, 垂直于zOx 面.(3)当cos α=cos β=0时, 向量垂直于x 轴和y 轴, 平行于z 轴, 垂直于xOy 面.17. 设向量r 的模是4, 它与轴u 的夹角是60°, 求r 在轴u 上的投影.解 22143cos ||j Pr =⋅=⋅=πr r u . 18. 一向量的终点在点B (2, −1, 7), 它在x 轴、y 轴和z 轴上的投影依次为4, −4, 7. 求这向量的起点A 的坐标.解 设点A 的坐标为(x , y , z ). 由已知得,⎪⎩⎪⎨⎧=−−=−−=−774142z y x 解得x =−2, y =3, z =0. 点A 的坐标为A (−2, 3, 0).19. 设m =3i +5j +8k , n =2i −4j −7k 和p =5i +j −4k . 求向量a =4m +3n −p 在x 轴上的投影及在y 轴上的分向量.解 因为a =4m +3n −p =4(3i +5j +8k )+3(2i −4j −7k )−(5i +j −4k )=13i +7j +15k ,所以a =4m +3n −p 在x 轴上的投影为13, 在y 轴上的分向量7j .习题7−21. 设a =3i −j −2k , b =i +2j −k , 求(1)a ⋅b 及a ×b ; (2)(−2a )⋅3b 及a ×2b ; (3)a 、b 夹角的余弦.解 (1)a ⋅b =3×1+(−1)×2+(−2)×(−1)=3,k j i kj i b a 75121 213++=−−−=×. (2)(−2a )⋅3b =−6a ⋅b = −6×3=−18,a ×2b =2(a ×b )=2(5i +j +7k )=10i +2j +14k .(3)21236143||||||) ,cos(^==⋅=b a b a b a . 2. 设a 、b 、c 为单位向量, 且满足a +b +c =0, 求a ⋅b +b ⋅c +c ⋅a .解 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0, 于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . 3. 已知M 1(1, −1, 2)、M 2(3, 3, 1)和M 3(3, 1, 3). 求与、同时垂直的单位向量.→21M M →32M M 解 , . →)1 ,4 (2,2)1 ,13 ,13(21−=−+−=M M →)2 ,2 ,0()13 ,31 ,33(32−=−−−=M M →→k j i k j i n 446 220 1423221−−=−−=×=M M M M , 172161636||=++=n ,)223(171)446(1721k j i k j i e −−±=−−±=为所求向量. 4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).解F =(0, 0, −100×9. 8)=(0, 0, −980), . →)6 ,3 ,2()82 ,14 ,31(21−−=−−−==M M S W =F ⋅S =(0, 0, −980)⋅(−2, 3, −6)=5880(焦耳).5. 在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ→1OP 1的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ→2OP 1的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解 因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的规定可得, 使杠杆保持平衡的条件为x 1|F 1|⋅sin θ1−x 2|F 2|⋅sin θ2=0,即 x 1|F 1|⋅sin θ1=x 2|F 2|⋅sin θ2.6. 求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影.解2)142324(31)1 ,2 ,2()4 ,3 ,4(1221||1||j Pr 222=×+×−×=⋅−++=⋅=⋅=⋅=b a b b b a e a a b b .7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直? 解 λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ),λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直.8. 试用向量证明直径所对的圆周角是直角.证明 设AB 是圆O 的直径, C 点在圆周上, 则, .→→OA OB −=→→||||OA OC = 因为,→→→→→→→→→→→→0||||)()()()(22=−=+⋅−=−⋅−=⋅OA OC OA OC OA OC OB OC OA OC BC AC 所以, ∠C =90°.→→BC AC ⊥ 9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c );(3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k .(2)a +b =3i −4j +4k , b +c =2i −3j +3k ,k j k j i c b b a −−=−−=+×+332443)()(. (3)k j i k j i b a +−−=−−=×58311132, (a ×b )⋅c =−8×1+(−5)×(−2)+1×0=2.10. 已知, , 求ΔOAB 的面积.→j i 3+=OA →k j 3+=OB 解 根据向量积的几何意义, 表示以和为邻边的平行四边形的面积, 于是ΔOAB 的面积为→→||OB OA ×→OA →OB →→|21OB OA S ×=.因为→→k j i k j i +−−==×33310301OB OA , →→191)3()3(||223=+−+−=×OB OA , 所以三角形ΔOAB 的面积为→→1921|21=×=OB OA S . 12. 试用向量证明不等式:||332211232221232221b a b a b a b b b a a a ++≥++++,其中a 1、a 2、a 3、b 1、b 2、b 3为任意实数, 并指出等号成立的条件.解 设a =(a 1, a 2, a 3), b =(b 1, b 2, b 3), 则有,||||) ,cos(||||^b a b a b a b a ⋅≤⋅=⋅于是 ||332211232221232221b a b a b a b b b a a a ++≥++++, 其中当=1时, 即a 与b 平行是等号成立.) ,cos(^b a习题7−31. 一动点与两定点(2, 3, 1)和(4, 5, 6)等距离, 求这动点的轨迹方程.解 设动点为M (x , y , z ), 依题意有(x −2)2+(y −3)2+(z −1)2=(x −4)2+(y −5)2+(z −6)2,即 4x +4y +10z −63=0.2. 建立以点(1, 3, −2)为球心, 且通过坐标原点的球面方程.解 球的半径14)2(31222=−++=R ,球面方程为(x −1)2+(y −3)2+(z +2)2=14,即 x 2+y 2+z 2−2x −6y +4z =0.3. 方程x 2+y 2+z 2−2x +4y +2z =0表示什么曲面?解 由已知方程得(x 2−2x +1)+(y 2+4y +4)+(z 2+2z +1)=1+4+1,即 2222)6()1()2()1(=++++−z y x ,所以此方程表示以(1, −2, −1)为球心, 以6为半径的球面.4. 求与坐标原点O 及点(2, 3, 4)的距离之比为1:2的点的全体所组成的曲面的方程, 它表示怎样曲面?解 设点(x , y , z )满足题意, 依题意有21)4()3()2(222222=−+−+−++z y x z y x , 化简整理得9116)34()1()32(222=+++++z y x , 它表示以)34 ,1 ,32(−−−为球心, 以2932为半径的球面. 5. 将zOx 坐标面上的抛物线z 2=5x 绕x 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的z 换成22z y +±得旋转曲面的方程y 2+z 2=5x .6. 将zOx 坐标面上的圆x 2+z 2=9绕z 轴旋转一周, 求所生成的旋转曲面的方程. 解 将方程中的x 换成22y x +±得旋转曲面的方程x 2+y 2+z 2=9.7. 将xOy 坐标面上的双曲线4x 2−9y 2=36分别绕x 轴及y 轴旋转一周, 求所生成的旋转曲面的方程.解 双曲线绕x 轴旋转而得的旋转曲面的方程为4x 2−9y 2−9z 2=36.双曲线绕y 轴旋转而得的旋转曲面的方程为4x 2+4z 2−9y 2=36.8. 画出下列方程所表示的曲面:(1)222)2()2(a y a x =+−;(2)19422=+−y x ;(3)14922=+z x ;(4)y 2−z =0;(5)z =2−x 2.9. 指出下列方程在平面解析几何中和在空间解析几何中分别表示什么图形:析几何中, x =2表示平行于y 轴的一条直线; 在空间解析几何中, x =2表示一析几何中, y =x +1表示一条斜率是1, 在y 轴上的截距也是1的直线; 在空几何中, x 2+y 2=4表示中心在原点, 半径是4的圆; 在空间解析几何中, 几何中, x 2−y 2=1表示双曲线; 在空间解析几何中, x 2−y 2=1表示母线平行旋转曲面是怎样形成的:(1)x =2;解在平面解张平行于yOz 面的平面.(2)y =x +1;解 在平面解间解析几何中,y =x +1表示一张平行于z 轴的平面.(3)x 2+y 2=4;解 在平面解析x 2+y 2=4表示母线平行于z 轴, 准线为x 2+y 2=4的圆柱面.(4)x 2−y 2=1.解 在平面解析于z 轴的双曲面.10. 说明下列 (1)1222=++z y x ; 994 解 这是xOy 面上的椭圆19422=+y x 绕x 轴旋转一周而形成的, 或是zOx 面上的椭圆19422=+z x 绕x 轴旋转一周而形成的. (2)122=+−z y ; 42x 这是xOy 面上的双曲线1422=−y x 解 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线142=+−z y 绕y 轴旋转一周而形 z 1面上的双曲线x 2−y 2=12成的. (3)x 2−y 2−2=; 解 这是xOy 绕x 轴旋转一周而形成的, 或是zOx 面上的双曲线而形成的.a )2=x 2绕z 轴旋转一周而形成的, 或是yOz 面上的曲线而形成的.( (3x 2−z 2=1绕x 轴旋转一周 (4)(z −a )2=x 2+y 2 .解 这是zOx 面上的曲线(z −(z −a )2=y 2绕z 轴旋转一周 11. 画出下列方程所表示的曲面:(1)4x 2+y 2−z 2=4;2)x 2−y 2−4z 2=4; )94322y x z +=.习题7−41. 画出下列曲线在第一卦限内的图形:(1 (2)⎩⎨⎧==21y x ;)⎩⎨⎧=−−−=0422y x y x z ;(3) =+222az x .2. 下方程组在平面解析几何中与在空间解析几何中分别表示什么图形:⎩⎨⎧=+222a yx 指出(1)⎧+=15x y ; ⎩⎨−=32x y 解 在平面解析几何中, 表示直线y =5x +1与y =2x −3的交点⎩⎨⎧−=+=3215x y x y )317 ,34(−−; 在空间解析几何中, 表示平面y =5x +1与y =2x −3的交线, 它表示过点⎩⎨⎧−=+=3215x y x y )0 ,317 ,34(−−, 并且行于z 轴.(2)⎪⎩⎪⎨⎧22y x ==+3194y . 解 在平面解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆19422=+y x 与其切线y =3的交点(0, 3); 在空间解析几何中, ⎪⎩⎪⎨⎧==+319422y y x 表示椭圆柱面19422=+y x 与其切平面y =3的交线. 3. 分别求母线平行于x 轴及y 轴而且通过曲线的柱面方程. 解 把方程组中的x 消去得方程3y 2−z 2=16, 这就是母线平行于x 轴且通过曲线y z x z y 的柱面方程. 把方程组中的y 消去得方程3x 2+2z 2=16, 这就是母线平行于y 轴且通过曲线y z x z y 的柱面方程. 4. 求球面x 2+y 2+z 2=9与平面x +z =1的交线在xOy 面上的投影的方程.行于z 轴, 准线为=0z 列曲线的一般方程化为参数方程:(1; ⎩⎨⎧=−+=++0162222222y z x z y x ⎩⎨⎧=−+=++0162222222x ⎩⎨⎧=−+=++0162222222x 解 由x +z =1得z =1−x 代入x 2+y 2+z 2=9得方程2x 2−2x +y 2=8, 这是母线平球面x 2+y 2+z 2=9与平面x +z =1的交线的柱面方程, 于是所求的投影方程为⎧=+−82222y x x . ⎩⎨ 5. 将下)⎩⎨⎧==++x y z y x 9222解 将y =x 代入x 2+y 2+z 2=9得2x 2+z 2=9, 即13)23(2222=+z x . 令t x cos 23=, 则z =3sin t . 故所求参数方程为t x cos 23=, t y cos 23=, z =3sin t . (2). ⎩⎨⎧==+++−04)1()1(222z z y x 解 将z =0代入(x −1)2+y 2+(z +1)2=4得(x −1)2+y 2=3.令t x cos 31+=, 则t y sin 3=,于是所求参数方程为t x cos 31+=, t y sin 3=, z =0.6. 求螺旋线在三个坐标面上的投影曲线的直角坐标方程.⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 解 由前两个方程得x 2+y 2=a 2, 于是螺旋线在xOy 面上的投影曲线的直角坐标方程为. ⎩⎨⎧==+0222z a y x 由第三个方程得bz =θ代入第一个方程得 b z a x cos =, 即ax b z arccos =, 于是螺旋线在zOx 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==0arccos y a x b z . 由第三个方程得bz =θ代入第二个方程得 b z a y sin =, 即ay b z arcsin =, 于是螺旋线在yOz 面上的投影曲线的直角坐标方程为⎪⎩⎪⎨⎧==a y b z x arcsin 0. 7. 求上半球2220y x a z −−≤≤与圆柱体x 2+y 2≤ax (a >0)的公共部分在xOy 面和zOx 面上的投影.解 圆柱体x 2+y 2≤ax 在xOy 面上的投影为x 2+y 2≤ax , 它含在半球2220y x a z −−≤≤在xOy 面上的投影x 2+y 2≤a 2内, 所以半球与圆柱体的公共部分在xOy 面上的投影为x 2+y 2≤ax . 为求半球与圆柱体的公共部分在zOx 面上的投影, 由圆柱面方程x 2+y 2=ax 得y 2=ax −x 2, 代入半球面方程222y x a z −−=, 得ax a z −=2(0≤x ≤a ), 于是半球与圆柱体的公共部分在zOx 面上的投影为ax a z −≤≤20(0≤x ≤a ), 即z 2+ax ≤a 2, 0≤x ≤a , z ≥0.8. 求旋转抛物面z =x 2+y 2(0≤z ≤4)在三坐标面上的投影.解 令z =4得x 2+y 2=4, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在xOy 面上的投影为x 2+y 2≤4. 令x =0得z =y 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在yOz 面上的投影为y 2≤z ≤4. 令y =0得z =x 2, 于是旋转抛物面z =x 2+y 2(0≤z ≤4)在zOx 面上的投影为x 2≤z ≤4.习题7−51. 求过点(3, 0, −1)且与平面3x −7y +5z −12=0平行的平面方程.解 所求平面的法线向量为n =(3, −7, 5), 所求平面的方程为3(x −3)−7(y −0)+5(z +1)=0, 即3x −7y +5z −4=0.2. 求过点M 0(2, 9, −6)且与连接坐标原点及点M 0的线段OM 0垂直的平面方程. 解 所求平面的法线向量为n =(2, 9, −6), 所求平面的方程为2(x −2)+9(y −9)−6(z −6)=0, 即2x +9y −6z −121=0.3. 求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解 n 1=(1, −1, 2)−(1, 1, −1)=(0, −2, 3), n 1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为k j i k j i n n n 69301332021++−=−=×=, 所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.4. 指出下列各平面的特殊位置, 并画出各平面:(1)x =0;解 x =0是yOz 平面.(2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点)0 ,31 ,0(. (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2.(4)03=−y x ;解 03=−y x 是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解 y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1.(6)x −2z =0;解 x −2z =0是通过y 轴的平面.(7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.5. 求平面2x −2y +z +5=0与各坐标面的夹角的余弦.解 此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为321)2(22||||) ,cos(cos 122^=+−+=⋅⋅==i n i n i n α; 此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^−=+−+−=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为311)2(21||||) ,cos(cos 122^=+−+=⋅⋅==k n k n k n γ. 6. 一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程. 解 所求平面的法线向量可取为k j i k j i b a n 3011112−+=−=×=, 所求平面的方程为(x −1)+(y −0)−3(z +1)=0, 即x +y −3z −4=0.7. 求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解 解线性方程组⎪⎩⎪⎨⎧=++−=−−=++3220213z y x z y x z y x 得x =1, y =−1, z =3. 三个平面的交点的坐标为(1, −1, 3).8. 分别按下列条件求平面方程:(1)平行于zOx 面且经过点(2, −5, 3);解 所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5.(2)通过z 轴和点(−3, 1, −2);解 所求平面可设为Ax +By =0.因为点(−3, 1, −2)在此平面上, 所以−3A +B =0,将B =3A 代入所设方程得Ax +3Ay =0,所以所求的平面的方程为x +3y =0,(3)平行于x 轴且经过两点(4, 0, −2)和(5, 1, 7).解 所求平面的法线向量可设为n =(0, b , c ). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上,所以向量n 1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n 是垂直的, 即b +9c =0, b =−9c ,于是 n =(0, −9c , c )=−c (0, 9, −1).所求平面的方程为9(y −0)−(z +2)=0, 即9y −z −2=0.9. 求点(1, 2, 1)到平面x +2y +2z −10=0的距离.解 点(1, 2, 1)到平面x +2y +2z −10=0的距离为1221|1012221|222=++−×+×+=d .习题7−61. 求过点(4, −1, 3)且平行于直线51123−==−z y x 的直线方程. 解 所求直线的方向向量为s =(2, 1, 5), 所求的直线方程为531124−=+=−z y x . 2. 求过两点M 1(3, −2, 1)和M 2(−1, 0, 2)的直线方程.解 所求直线的方向向量为s =(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为112243−=+=−−x y x . 3. 用对称式方程及参数方程表示直线. ⎩⎨⎧=++=+−421z y x z y x 解 平面x −y +z =1和2x +y +z =4的法线向量为n 1=(1, −1, 1), n 2=(2, 1, 1), 所求直线的方向向量为k j i k j i n n s 3211211121++−=−=×=. 在方程组中, 令y =0, 得, 解得x =3, z =−2. 于是点(3, 0, −2)为所求直线上的点.⎩⎨⎧=++=+−421z y x z y x ⎩⎨⎧=+=+421z x z x 所求直线的对称式方程为32123+==−−z y x ; 参数方程为x =3−2t , y =t , z =−2+3t .4. 求过点(2, 0, −3)且与直线垂直的平面方程. ⎩⎨⎧=+−+=−+−012530742z y x z y x 解 所求平面的法线向量n 可取为直线的方向向量, 即 ⎩⎨⎧=+−+=−+−012530742z y x z y x k j i k j i n 111416253421)2 ,5 ,3()4 ,2 ,1(++−=−−=−×−=. 所平面的方程为−16(x −2)+14(y −0)+11(z +3)=0, 即16x −14y −11z −65=0.5. 求直线与直线的夹角的余弦. ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=+−=−+−02309335z y x z y x ⎩⎨⎧=−++=+−+0188302322z y x z y xk j i k j i s −+=−−=431233351, k j i k j i s 105101831222+−=−=. 两直线之间的夹角的余弦为010)5(10)1(4310)1()5(4103||||) ,cos(2222222121^21=+−+−++×−+−×+×=⋅×=s s s s s s . 6. 证明直线与直线平行. ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x 解 直线与的方向向量分别为 ⎩⎨⎧=++−=−+7272z y x z y x ⎩⎨⎧=−−=−+028363z y x z y x k j i k j i s 531121211++=−−=, k j i k j i s 15391123632−−−=−−−=. 因为s 2=−3s 1, 所以这两个直线是平行的.7. 求过点(0, 2, 4)且与两平面x +2z =1和y −3z =2平行的直线方程.解 因为两平面的法线向量n 1=(1, 0, 2)与n 2=(0, 1, −3)不平行, 所以两平面相交于一直线, 此直线的方向向量可作为所求直线的方向向量s , 即k j i k j i s ++−=−=32310201. 所求直线的方程为14322−=−=−z y x . 8. 求过点(3, 1, −2)且通过直线12354z y x =+=−的平面方程. 解 所求平面的法线向量与直线12354z y x =+=−的方向向量s 1=(5, 2, 1)垂直. 因为点(3, 1, −2)和(4, −3, 0)都在所求的平面上, 所以所求平面的法线向量与向量s 2=(4, −3, 0)−(3, 1, −2)=(1, −4, 2)也是垂直的. 因此所求平面的法线向量可取为k j i k j i s s n 229824112521−−=−=×=. 所求平面的方程为8(x −3)−9(y −1)−22(z +2)=0, 即8x −9y −22z −59=0.9. 求直线与平面x −y −z +1=0的夹角. ⎩⎨⎧=−−=++003z y x z y x解 直线的方向向量为 ⎩⎨⎧=−−=++003z y x z y x )2(2242111311)1 ,1 ,1()3 ,1 ,1(k j i k j i k j i s −+=−+=−−=−−×=, 平面x −y −z +1=0的法线向量为n =(1, −1, −1).因为s ⋅n =2×1+4×(−1)+(−2)×(−1)=0,所以s ⊥n , 从而直线与平面x −y −z +1=0的夹角为0. ⎩⎨⎧=−−=++003z y x z y x 10. 试确定下列各组中的直线和平面间的关系:(1)37423z y x =−+=−+和4x −2y −2z =3; 解 所给直线的方向向量为s =(−2, −7, 3), 所给平面的法线向量为n =(4, −2, −2).因为s ⋅n =(−2)×4+(−7)×(−2)+3×(−2)=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(−3, −4, 0)不满足平面方程4x −2y −2z =3, 所以所给直线不在所给平面上.(2)723z y x =−=和3x −2y +7z =8; 解 所给直线的方向向量为s =(3, −2, 7), 所给平面的法线向量为n =(3, −2, 7). 因为s =n , 所以所给直线与所给平面是垂直的.(3)431232−−=+=−z y x 和x +y +z =3. 解 所给直线的方向向量为s =(3, 1, −4), 所给平面的法线向量为n =(1, 1, 1).因为s ⋅n =3×1+1×1+(−4)×1=0, 所以s ⊥n , 从而所给直线与所给平面平行. 又因为直线上的点(2, −2, 3)满足平面方程x +y +z =3, 所以所给直线在所给平面上.11. 求过点(1, 2, 1)而与两直线和 ⎩⎨⎧=−+−=+−+01012z y x z y x ⎩⎨⎧=+−=+−002z y x z y x 平行的平面的方程.解 直线的方向向量为 ⎩⎨⎧=−+−=+−+01012z y x z y x k j i k j i s 32111121)1 ,1 ,1()1 ,2 ,1(1−−=−−=−×−=, 直线的方向向量为 ⎩⎨⎧=+−=+−002z y x z y xk j k j i s −−=−−=−×−=111112)1 ,1 ,1()1 ,1 ,2(1. 所求平面的法线向量可取为k j i k j i s s n −+−=−−−−=×=11032121, 所求平面的方程为−(x −1)+(y −2)−(z −1)=0, 即x −y +z =0.12. 求点(−1, 2, 0)在平面x +2y −z +1=0上的投影.解 平面的法线向量为n =(1, 2, −1). 过点(−1, 2, 0)并且垂直于已知平面的直线方程为12211−=−=+z y x . 将此方程化为参数方程x =−1+t , y =2+2t , z =−t , 代入平面方程x +2y −z +1=0中, 得(−1+t )+2(2+2t )−(−t )+1=0, 解得32−=t . 再将32−=t 代入直线的参数方程, 得35−=x , 32=y , 32=z . 于是点(−1, 2, 0)在平面x +2y −z +1=0上的投影为点32 ,32 ,25(−. 13. 求点P (3, −1, 2)到直线的距离. ⎩⎨⎧=−+−=+−+04201z y x z y x 解 直线的方向向量为 ⎩⎨⎧=−+−=+−+04201z y x z y x k j k j i s 33112111)1 ,1 ,2()1 ,1 ,1(−−=−−=−×−=. 过点P 且与已知直线垂直的平面的方程为−3(y +1)−3(z −2)=0, 即y +z −1=0.解线性方程组,⎪⎩⎪⎨⎧=−+=−+−=+−+0104201z y z y x z y x 得x =1, 21−=y , 23=z . 点P (3, −1, 2)到直线的距离就是点P (3, −1, 2)与点⎩⎨⎧=−+−=+−+04201z y x z y x )23 ,21 ,1(−间的距离, 即 23)32()11()13(22=−++−+−=d .14. 设M 0是直线L 外一点, M 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点M 0到直线L 的距离→||||0s s ×=M M d . 解 设点M 0到直线L 的距离为d , L 的方向向量, 根据向量积的几何意义, 以和为邻边的平行四边形的面积为 →MN =s →M M 0→MN ,→→→||||00s ×=×M M MN M M 又以和为邻边的平行四边形的面积为. 因此→M M 0→MN →||||s ⋅=⋅d MN d , →||||0s s ×=⋅M M d →||||0s s ×=M M d . 15. 求直线在平面4x −y +z =1上的投影直线的方程. ⎩⎨⎧=−−−=+−0923042z y x z y x 解 过直线的平面束方程为 ⎩⎨⎧=−−−=+−0923042z y x z y x (2+3λ)x +(−4−λ)y +(1−2λ)z −9λ=0.为在平面束中找出与已知平面垂直的平面, 令(4 −1, 1)⋅(2+3λ, −4−λ, 1−2λ)=0, 即4⋅(2+3λ)+(−1)⋅(−4−λ)+1⋅(1−2λ)=0. 解之得1113−=λ. 将1113−=λ代入平面束方程中, 得 17x +31y −37z −117=0.故投影直线的方程为. ⎩⎨⎧=−−+=+−011737311714z y x z y x 16. 画出下列各曲面所围成的立体图形:(1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;4y z =; (2)x =0, z =0, x =1, y =2, (3)z =0, z =3, x −y =0,03=−y x , x 2+y 2=1(在第一卦限内);2, y 2+z 2=R 2(在第一卦限内).(4)x =0, y =0, z =0, x 2+y 2=R总习题七1. 填空(1)设在坐标系[O ; i , j , k ]中点A 和点M 的坐标依次为(x 0, y 0, z 0)和(x , y , z ), 则在[A ; i , j , k ] 坐标系中, 点M 的坐标为___________, 向量的坐标为___________.→OM 解 M (x −x 0, y −y 0, z −z 0), .→) , ,(z y x OM = 提示: 自由向量与起点无关, 它在某一向量上的投影不会因起点的位置的不同而改变.(2)设数λ1、λ2、λ3不全为0, 使λ1a +λ2b +λ3c =0, 则a 、b 、c 三个向量是__________的. 解 共面.(3)设a =(2, 1, 2), b =(4, −1, 10), c =b −λa , 且a ⊥c , 则λ=____________.解3.提示: 因为a ⊥c , 所以a ⋅c =0.又因为由a ⋅c =a ⋅b −λa ⋅a =2×4+1×(−1)+2×10−λ(22+12+22)=27−9λ, 所以λ=3.(4)设a 、b 、c 都是单位向量, 且满足a +b +c =0, 则a ⋅b +b ⋅c +c ⋅a =____________. 解 23−. 提示: 因为a +b +c =0, 所以(a +b +c )⋅(a +b +c )=0,即 a ⋅a +b ⋅b +c ⋅c +2a ⋅b +2a ⋅c +2c ⋅a =0,于是 23)111(21)(21−=++−=⋅+⋅+⋅−=⋅+⋅+⋅c c b b a a a c c b b a . (5)设|a |=3, |b |=4, |c |=5, 且满足a +b +c =0, 则|a ×b +b ×c +c ×a |=____________.解36.提示: c =−(a +b ),a ×b +b ×c +c ×a =a ×b −b ×(a +b )−(a +b )×a =a ×b −b ×a −b ×a =3a ×b ,|a ×b +b ×c +c ×a |=3|a ×b |=3|a |⋅|b |=3⋅3⋅4=36.2. 在y 轴上求与点A (1, −3, 7)和点B (5, 7, −5)等距离的点.解 设所求点为M (0, y , 0), 则有12+(y +3)2+72=52+(y −7)2+(−5)2,即 (y +3)2=(y −7)2,解得y =2, 所求的点为M (0, 2, 0).3. 已知ΔABC 的顶点为A (3,2,−1)、B (5,−4,7)和C (−1,1,2), 求从顶点C 所引中线的长度. 解 线段AB 的中点的坐标为)3 ,1 ,4()271 ,242 ,253(−=+−−+. 所求中线的长度为 30)23()11()14(222=−+−−++=d .4. 设ΔABC 的三边、、, 三边中点依次为D 、E 、F , 试用向量a 、→a =BC →b =CA →c =ABb 、c 表示→AD 、、, 并证明→BE →CF.→→→0=++CF BE AD 解 →→→a c 21+=+=BD AB AD , →→→b a 21+=+=CE BC BE , →→→c b 21+=+=AF CA CF . →→→0=+−=++=++)(23)(23c c c b a CF BE AD 5. 试用向量证明三角形两边中点的连线平行于第三边, 且其长度等于第三边长度的一半.证明 设D , E 分别为AB , AC 的中点, 则有→→→→→)(21AB AC AD AE DE −=−=, ,→→→→→AB AC AC BA BC −=+=所以 →→BC DE 21=, 从而DE //BC , 且||21||BC DE =. 6. 设|a +b |=|a −b |, a =(3, −5, 8), b =(−1, 1, z ), 求z .解a +b =(2, −4, 8+z ), a −b =(4, −6, 8−z ). 因为|a +b |=|a −b |, 所以222222)8()6(4)8()4(2z z −+−+=++−+, 解得z =1.7. 设3||=a , |b |=1, 6) ,(^π=b a , 求向量a +b 与a −b 的夹角. 解 |a +b |2=(a +b )⋅(a +b )=|a |2+|b |2+2a ⋅b =|a |2+|b |2+2|a |⋅|b |cos(a ,^ b )76cos 3213=++=π, |a −b |2=(a −b )⋅(a −b )=|a |2+|b |2−2a ⋅b =|a |2+|b |2−2|a |⋅|b |cos(a ,^ b )16cos 3213=−+=π. 设向量a +b 与a −b 的夹角为θ, 则721713||||||||||||)()(cos 22=⋅−=−⋅+−=−⋅+−⋅+=b a b a b a b a b a b a b a θ, 72arccos =θ.8. 设a +3b ⊥7a −5b , a −4b ⊥7a −2b , 求 .) ,(^b a 解 因为a +3b ⊥7a −5b , a −4b ⊥7a −2b ,所以 (a +3b )⋅(7a −5b )=0, (a −4b )⋅(7a −2b )=0,即 7|a |2+16a ⋅b −15|b |2 =0, 7|a |2−30a ⋅b +8|b |2 =0,又以上两式可得b a b a ⋅==2||||,于是 21||||) ,cos(^=⋅⋅=b a b a b a , 3) ,(^π=b a . 9. 设a =(2, −1, −2), b =(1, 1, z ), 问z 为何值时最小?并求出此最小值. ) ,(^b a 解 2^2321||||) ,cos(z z +−=⋅⋅=b a b a b a . 因为当2) ,(0^π<<b a 时, 为单调减函数. 求的最小值也就是求) ,cos(^b a ) ,(^b a 22321)(z zz f +−=的最大值.令0)2(431)(2/32=+−−⋅=′z z z f , 得z =−4. 当z =−4时, 22) ,cos(^=b a , 所以422arccos ) ,(min ^π==b a .10. 设|a |=4, |b |=3, 6) ,(^π=b a , 求以a +2b 和a −3b 为边的平行四边形的面积. 解 (a +2b )×(a −3b )=−3a ×b +2b ×a =5b ×a .以a +2b 和a −3b 为边的平行四边形的面积为3021435) ,sin(||||5||5|)3()2(|^=⋅⋅⋅=⋅=×=−×+b a a b a b b a b a . 11. 设a =(2, −3, 1), b =(1, −2, 3), c =(2, 1, 2), 向量r 满足r ⊥a , r ⊥b , Prj c r =14, 求r . 解 设r =(x , y , z ).因为r ⊥a , r ⊥b , 所以r ⋅a =0, r ⋅b =0, 即2x −3y +z =0, x −2y +3z =0.又因为Prj c r =14, 所以14||1=⋅c c r , 即 2x +y +2z =42.解线性方程组,⎪⎩⎪⎨⎧=++=+−=+−4222032032z y x z y x z y x 得x =14, y =10, z =2, 所以r =(14, 10, 2).另解 因为r ⊥a , r ⊥b , 所以r 与k j i k j i b a −−−=−−=×57321132平行, 故可设r =λ(7, 5, 1). 又因为Prj c r =14, 所以14||1=⋅c c r , r ⋅c =42, 即 λ(7×2+5×1+1×2)=42, λ=2,所以r =(14, 10, 2).12. 设a =(−1, 3, 2), b =(2, −3, −4), c =(−3, 12, 6), 证明三向量a 、b 、c 共面, 并用a 和b 表示c .证明 向量a 、b 、c 共面的充要条件是(a ×b )⋅c =0. 因为k i k j i b a 36432231−−=−−−=×, (a ×b )⋅c =(−6)×(−3)+0×12+(−3)×6=0,所以向量a 、b 、c 共面.设c =λa +μb , 则有(−λ+2μ, 3λ−3μ, 2λ−4μ)=(−3, 12, 6),即有方程组,⎪⎩⎪⎨⎧=−=−−=+−642123332μλμλμλ解之得λ=5, μ=1, 所以c =5a +b .13. 已知动点M (x ,y ,z )到xOy 平面的距离与点M 到点(1, −1, 2)的距离相等, 求点M 的轨迹方程.解 根据题意, 有222)2()1()1(||−+++−=z y x z ,或 z 2=(x −1)2+(y +1)2+(z −2)2,化简得(x −1)2+(y +1)2=4(z −1),这就是点M 的轨迹方程.14. 指出下列旋转曲面的一条母线和旋转轴:(1)z =2(x 2+y 2);解 旋转曲面的一条母线为zOx 面上的曲线z =2x 2, 旋转轴为z 轴.(2)136936222=++z y x ; 解 旋转曲面的一条母线为xOy 面上的曲线193622=+y x , 旋转轴为y 轴. (3)z 2=3(x 2+y 2);解 旋转曲面的一条母线为yOz 面上的曲线y z 3=, 旋转轴为z 轴.(4)144222=−−z y x . 解 旋转曲面的一条母线为xOy 面上的曲线1422=−y x , 旋转轴为x 轴.15. 求通过点A (3, 0, 0)和B (0, 0, 1)且与xOy 面成3π角的平面的方程. 解 设所求平面的法线向量为n =(a , b , c )., xOy 面的法线向量为k =(0, 0, 1).→)1 ,0 ,3(−=BA 按要求有, →0=⋅BA n 3cos ||||π=⋅⋅k n k n , 即 ⎪⎩⎪⎨⎧=++=−2103222c b a c c a ,解之得c =3a , a b 26±=. 于是所求的平面的方程为0326)3(=+±−z y x ,即 3326=++z y x , 或3326=+−z y x .16. 设一平面垂直于平面z =0, 并通过从点(1, −1, 1)到直线的垂线, 求此平面方程.⎩⎨⎧==+−001x z y 解 直线的方向向量为s =(0, 1, −1)×(1, 0, 0)=(0, −1, −1). ⎩⎨⎧==+−001x z y 设点(1, −1, 1)到直线的垂线交于点(x ⎩⎨⎧==+−001x z y 0, y 0, z 0). 因为点(x 0, y 0, z 0)在直线⎩⎨⎧==+−001x z y 上, 所以(x 0, y 0, z 0)=(0, y 0, y 0+1). 于是, 垂线的方向向量为 s 1=(−1, y 0+1, y 0).显然有s ⋅s 1=0, 即−y 0−1−y 0=0, 210−=y . 从而)21 ,21 ,1() ,1 ,1(001−−=+−=y y s . 所求平面的法线向量可取为j i k j i k s k n −−=−+−×=×=21)2121(1, 所求平面的方程为0)1()1(21=+−−−y x , 即x +2y +1=017. 求过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0, 又与直线21311z y x =−=+相交的直线的方程.解 过点(−1, 0, 4), 且平行于平面3x −4y +z −10=0的平面的方程为3(x +1)−4(y −0)+(z −4)=0, 即3x −4y +z −1=0.将直线21311z y x =−=+化为参数方程x =−1+t , y =3+t , z =2t , 代入平面方程3x −4y +z −1=0, 得3(−1+t )−4(3+t )+2t −1=0,解得t =16. 于是平面3x −4y +z −1=0与直线21311z y x =−=+的交点的坐标为(15, 19, 32), 这也是所求直线与已知直线的交点的坐标.所求直线的方向向量为s =(15, 19, 32)−(−1, 0, 4)=(16, 19, 28),所求直线的方程为28419161−==+z y x . 18. 已知点A (1, 0, 0)及点B (0, 2, 1), 试在z 轴上求一点C , 使ΔABC 的面积最小. 解 设所求的点为C (0, 0, z ), 则, .→) ,0 ,1(z AC −=→)1 ,2 ,0(−−=z BC 因为 →→k j i k j i 2)1(212001+−+=−−−=×z z z z BC AC , 所以ΔABC 的面积为→→4)1(421|2122+−+=×=z z BC AC S . 令04)1(4)1(284122=+−+−+⋅=z z z z dz dS , 得51=z , 所求点为)51 ,0 ,0(C . 19. 求曲线在三个坐标面上的投影曲线的方程. ⎩⎨⎧−+−=−−=2222)1()1(2y x z y x z 解 在xOy 面上的投影曲线方程为, 即. ⎩⎨⎧=−−=−+−02)1()1(2222z y x y x ⎩⎨⎧=+=+022z y x y x 在zOx 面上的投影曲线方程为⎩⎨⎧=−−−±+−=0)12()1(222y z x x z , 即. ⎩⎨⎧==+−−++002342222y z x z xz x 在yOz 面上的投影曲线方程为⎩⎨⎧=−+−−−±=0)1()12(222x y z y z , 即. ⎩⎨⎧==+−−++002342222x z y z yz y 20. 求锥面22y x z +=与柱面z 2=2x 所围立体在三个坐标面上的投影. 解 锥面与柱面交线在xOy 面上的投影为, 即, ⎩⎨⎧=+=0222z y x x ⎩⎨⎧==+−01)1(22z y x 所以, 立体在xOy 面上的投影为. ⎩⎨⎧=≤+−01)1(22z y x 锥面与柱面交线在yOz 面上的投影为⎪⎩⎪⎨⎧=+=0)21(222x y z z , 即⎪⎩⎪⎨⎧==+−01)22(222x y z , 所以, 立体在yOz 面上的投影为⎪⎩⎪⎨⎧=≤+−01)22(222x y z .锥面22y x z +=与柱面z 2=2x 与平面y =0的交线为和⎩⎨⎧==0||y x z ⎩⎨⎧==02y x z , 所以, 立体在zOx 面上的投影为⎩⎨⎧=≤≤02y x z x . 21. 画出下列各曲面所围立体的图形:1224===z y x ; (1)抛物柱面2y 2=x , 平面z =0及 0及x +y =1;(2)抛物柱面x 2=1−z , 平面y =0, z =(3)圆锥面22z y x +=2−x −y =及旋转抛物面z 22;(y 2=x , 平面z =0及x =1.4)旋转抛物面x 2+y 2=z , 柱面。
同济大学《高等数学》第五版[上册]的答案解析
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 11-7
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 10-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
<<
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
专业整理 知识分享
练习 9-3
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题八
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 6-3
高等数学(同济大学数学系第七版)上册第七章课后答案
微分方程课后习题答案word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档整理分享参考资料word文档