高等数学(同济大学第五版) 第八章答案
同济大学《高等数学》第五版上册答案(详解)
解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
线性代数(同济大学第五版)课后习题答案 (大二所学)
第一百二十一页,共222页。
第一百二十二页,共222页。
第一百二十三页,共222页。
第一百二十四页,共222页。
第四章
第一百二十五页,共222页。
第一百二十六页,共222页。
第一百二十七页,共222页。
第一百二十八页,共222页。
第一百二十九页,共222页。
第一百三十页,共222页。
第一百六十四页,共222页。
第一百六十五页,共222页。
第五章
第一百六十六页,共222页。
第一百六十七页,共222页。
第一百六十八页,共222页。
第一百六十九页,共222页。
第一百七十页,共222页。
第一百七十一页,共222页。
第一百七十二页,共222页。
第一百七十三页,共222页。
第一百一十页,共222页。
第一百一十一页,共222页。
第一百一十二页,共222页。
第一百一十三页,共222页。
第一百一十四页,共222页。
第一百一十五页,共222页。
第一百一十六页,共222页。
第一百一十七页,共222页。
第一百一十八页,共222页。
第一百一十九页,共222页。
第一百二十页,共222页。
第十四页,共222页。
第十五页,共222页。
第十六页,共222页。
第十七页,共222页。
第十八页,共222页。
第十九页,共222页。
第二十页,共222页。
第二十一页,共222页。
第二十二页,共222页。
第二十三页,共222页。
第二十四页,共222页。
第二十五页,共222页。
第二十六页,共222页。
第一百四十二页,共222页。
[讲解]大学所有课程课后答案
天天learn为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到 查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案∙10-25新编大学英语(第四册)课文翻译及课后习题答案。
课后答案网址大全
##################【公共基础课-答案】####################新视野大学英语读写教程答案(全)【khdaw】/bbs/viewthread.php?tid=108&fromuid=1039364概率论与数理统计教程 (茆诗松著) 高等教育出版社课后答案/bbs/viewthread.php?tid=234&fromuid=1039364高等数学(第五版)含上下册高等教育出版社课后答案/bbs/viewthread.php?tid=29&fromuid=1039364新视野英语听力原文及答案课后答案【khdaw】/bbs/viewthread.php?tid=586&fromuid=1039364线性代数 (同济大学应用数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=31&fromuid=103936421世纪大学英语第3册(1-4)答案【khdaw】/bbs/viewthread.php?tid=285&fromuid=1039364概率与数理统计第二,三版 (浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案/bbs/viewthread.php?tid=32&fromuid=1039364复变函数全解及导学[西安交大第四版]【khdaw】/bbs/viewthread.php?tid=142&fromuid=1039364大学英语精读第三版2册课后习题答案/bbs/viewthread.php?tid=411&fromuid=1039364线性代数(第二版)习题答案/bbs/viewthread.php?tid=97&fromuid=103936421世纪(第三册)课后答案及课文翻译(5-8)【khdaw】/bbs/viewthread.php?tid=365&fromuid=1039364大学英语精读第2册课文翻译(上外)【khdaw】/bbs/viewthread.php?tid=598&fromuid=1039364新视野英语视听说教程1-4答案【khdaw】/bbs/viewthread.php?tid=2639&fromuid=1039364物理学教程(马文蔚)答案/bbs/viewthread.php?tid=1188&fromuid=1039364毛邓三课后思考题答案(高教版)高等教育出版社【khdaw】/bbs/viewthread.php?tid=1263&fromuid=1039364##################【通信/电子/电气/自动化类--答案】####################电路第四版 (邱关源著) 高等教育出版社课后答案/bbs/viewthread.php?tid=259&fromuid=1039364电路第五版 (邱关源罗先觉著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4097&fromuid=1039364数字电子技术基础第四版 (阎石著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=215&fromuid=1039364模拟电子技术基础(第三版华成英主编)习题答案/bbs/viewthread.php?tid=242&fromuid=1039364通信原理第5版 (樊昌信著) 国防工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=34&fromuid=1039364电磁场与电磁波西安电子科技大学(第二版)/bbs/viewthread.php?tid=588&fromuid=1039364《信号与系统》第二版(郑君里)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=994&fromuid=1039364电机学 (张松林著) 机械工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=356&fromuid=1039364《数字信号处理》(第二版)西安电子科技大学(丁玉美)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=882&fromuid=1039364高频电子线路 (曾兴雯著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1110&fromuid=1039364模拟电子技术基础简明教程第三版 (杨素行著) 高等教育出版社课后答案/bbs/viewthread.php?tid=166&fromuid=1039364##################【计算机/软件/网络/信息/数学类--答案】#################### C程序设计第三版 (谭浩强著) 清华大学出版社课后答案/bbs/viewthread.php?tid=80&fromuid=1039364C语言程序设计教程第三版 (谭浩强张基温著) 高等教育出版社课后答案/bbs/viewthread.php?tid=79&fromuid=1039364复变函数与积分变换第四版 (张元林西安交大著) 高等教育出版社课后答案/bbs/viewthread.php?tid=612&fromuid=1039364离散数学(第三版) (耿素云屈婉玲张立昂著) 清华大学出版社课后答案/bbs/viewthread.php?tid=293&fromuid=1039364谭浩强C++程序设计习题答案/bbs/viewthread.php?tid=420&fromuid=1039364《微机原理与接口技术》清华(冯博琴吴宁)版课后答案/bbs/viewthread.php?tid=707&fromuid=1039364严蔚敏《数据结构(c语言版)习题集》答案/bbs/viewthread.php?tid=102&fromuid=1039364数据库系统概论 (王珊萨师煊著) 清华大学出版社课后答案/bbs/viewthread.php?tid=991&fromuid=1039364《计算机网络第四版》答案【khdaw】/bbs/viewthread.php?tid=340&fromuid=1039364《数学物理方法》(梁昆淼第二版)习题解答/bbs/viewthread.php?tid=334&fromuid=1039364谢希仁版《计算机网络教程》课后答案/bbs/viewthread.php?tid=203&fromuid=1039364清华大学《数据结构》习题+课后答案/bbs/viewthread.php?tid=249&fromuid=1039364数据结构习题集(C版)答案/bbs/viewthread.php?tid=374&fromuid=1039364刘绍学版《近世代数基础》课后习题答案/bbs/viewthread.php?tid=177&fromuid=1039364计算机组成原理习题&答案唐朔飞高等教育出版社【khdaw】/bbs/viewthread.php?tid=984&fromuid=1039364离散数学 (左孝凌著) 上海科学技术文献出版社课后答案/bbs/viewthread.php?tid=466&fromuid=1039364计算机网络(第4版)清华(Andrew S.Tanenbaum)版答案(中文版)/bbs/viewthread.php?tid=201&fromuid=1039364耿国华数据结构课后答案/bbs/viewthread.php?tid=103&fromuid=1039364计算机操作系统 (汤子赢著) 西安电子科技大学课后答案/bbs/viewthread.php?tid=1083&fromuid=1039364《编译原理》课后习题答案/bbs/viewthread.php?tid=175&fromuid=1039364《常微分方程》王高雄高等教育出版社课后答案/bbs/viewthread.php?tid=567&fromuid=1039364##################【物理/光学/声学/热学/力学类--答案】#################### 理论力学第六版 (哈尔滨工业大学理论力学教研室著) 高等教育出版社课后答案/bbs/viewthread.php?tid=932&fromuid=1039364理论力学第六版 (哈尔滨工业大学理论力学教研室编著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=461&fromuid=1039364《热力学统计物理》汪志诚(第三版)高教出版社 (手抄版)习题答案【khdaw】/bbs/viewthread.php?tid=84&fromuid=1039364原子物理学褚圣麟版课后答案【khdaw】/bbs/viewthread.php?tid=368&fromuid=1039364《物理学教程》 (马文蔚著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=2782&fromuid=1039364《光学》姚启钧第三版高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=178&fromuid=1039364大学物理实验报告与部分范例陈金太厦门大学【khdaw】/bbs/viewthread.php?tid=2350&fromuid=1039364梁昆淼数学物理方法第三版的课后答案/bbs/viewthread.php?tid=2600&fromuid=1039364《理论力学教程》周衍柏高等教育出版社完整版课后答案【khdawlxywyl】/bbs/viewthread.php?tid=676&fromuid=1039364固体物理 (黄昆版) 课后习题答案【khdaw】/bbs/viewthread.php?tid=339&fromuid=1039364哈工大《理论力学》第6版 (赵诒枢尹长城沈勇著) 华中科技大学出版社课后答案/bbs/viewthread.php?tid=1033&fromuid=1039364热力学统计物理汪志诚第三版高等教育出版课后答案【khdaw】/bbs/viewthread.php?tid=289&fromuid=1039364《量子力学教程》周习勋课后习题答案【khdaw】/bbs/viewthread.php?tid=388&fromuid=1039364《原子物理学》杨福家版部分答案高等教育出版社【khdaw】/bbs/viewthread.php?tid=1065&fromuid=1039364热力学·统计物理汪志诚高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=566&fromuid=1039364《固体物理教程》王矜奉山东大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=1645&fromuid=1039364##################【化学/环境/生物/医学/制药类--答案】#################### 物理化学 (董元彦著) 科学出版社课后答案/bbs/viewthread.php?tid=412&fromuid=1039364化工原理 (陈敏恒著) 化学工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=704&fromuid=1039364生物化学第三版 (王镜岩朱圣庚著) 高等教育出版社课后答案/bbs/viewthread.php?tid=241&fromuid=1039364遗传学第三版 (朱军著) 农业大学出版社课后答案/bbs/viewthread.php?tid=39&fromuid=1039364有机化学 (汪小兰著) 高等教育出版社课后答案/bbs/viewthread.php?tid=841&fromuid=1039364武汉大学版《无机化学》(第三版) 上册【khdaw】/bbs/viewthread.php?tid=196&fromuid=1039364有机化学 (徐寿昌著) 高教出版社课后答案/bbs/viewthread.php?tid=1752&fromuid=1039364物理化学习题及答案【khdaw】/bbs/viewthread.php?tid=965&fromuid=1039364有机化学第二版 (胡宏纹著) 高等教育出版社课后答案/bbs/viewthread.php?tid=41&fromuid=1039364分析化学第三版武汉大学课后答案/bbs/viewthread.php?tid=199&fromuid=1039364武汉大学版<无机化学>(第三版) 下册【khdaw】/bbs/viewthread.php?tid=200&fromuid=1039364物理化学第四版 (傅献彩著) 高等教育出版社课后答案/bbs/viewthread.php?tid=3611&fromuid=1039364##################【土建/机械/车辆/制造/材料类--答案】#################### 西工大机械原理配套作业题答案/bbs/viewthread.php?tid=570&fromuid=1039364机械设计基础(第五版) 杨可桢程光蕴李仲生高教版课后答案/bbs/viewthread.php?tid=2316&fromuid=1039364材料力学第4版(刘鸿文)答案(有附件)/bbs/viewthread.php?tid=1931&fromuid=1039364材料力学课后答案/bbs/viewthread.php?tid=96&fromuid=1039364材料力学 (范钦珊主编著) 高等教育出版社课后答案/bbs/viewthread.php?tid=120&fromuid=1039364机械设计基础(第五版) 答案7-18章杨可桢程光蕴李仲生/bbs/viewthread.php?tid=2570&fromuid=1039364《结构力学习题集》课后答案【khdaw】/bbs/viewthread.php?tid=3016&fromuid=1039364电工学第六版秦曾煌高等教育出版社课后答案/bbs/viewthread.php?tid=2986&fromuid=1039364机械原理学习指南(第二版) (孙恒著) 课后答案/bbs/viewthread.php?tid=569&fromuid=1039364机械原理高等教育出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=664&fromuid=1039364电力电子技术试题习题考题及答案题解【khdaw】/bbs/viewthread.php?tid=1169&fromuid=1039364机械原理习题+答案【khdaw_cola】/bbs/viewthread.php?tid=1210&fromuid=1039364材料力学第四版 (刘鸿文著) 高等教育出版社课后答案/bbs/viewthread.php?tid=2461&fromuid=1039364机械设计及答案【khdaw_cola】/bbs/viewthread.php?tid=1172&fromuid=1039364材料力学(I)第四版(孙训方)高等教育出版社课后答案/bbs/viewthread.php?tid=5342&fromuid=1039364##################【经济/金融/营销/管理/电子商务类--答案】#################### 高鸿业版西方经济学习题答案(微观.宏观)【khdaw】/bbs/viewthread.php?tid=92&fromuid=1039364西方经济学(微观部分) (高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=2817&fromuid=1039364袁卫统计学(第二版)习题答案【khdaw】/bbs/viewthread.php?tid=98&fromuid=1039364曼昆《经济学原理》题目及课后答案/bbs/viewthread.php?tid=162&fromuid=1039364统计学(贾俊平第二版)中国人民大学出版社课后答案/bbs/viewthread.php?tid=42&fromuid=1039364运筹学教程第三版 (甘应爱胡运权等著) 清华大学出版社课后答案/bbs/viewthread.php?tid=7016&fromuid=1039364高鸿业版西方经济学习题答案(第三版)/bbs/viewthread.php?tid=1277&fromuid=1039364西方经济学(宏观部分)第四版 (高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=7171&fromuid=1039364财务管理学课后答案荆新王化成中国人民大学出版社/bbs/viewthread.php?tid=3433&fromuid=1039364西方经济学课后答案 (高鸿业著) 人民大学出版社/bbs/viewthread.php?tid=6189&fromuid=1039364克鲁格曼_国际经济学(第六版)的教师手册(含习题答案)/bbs/viewthread.php?tid=237&fromuid=1039364微观经济学第二版 (高鸿业著) 西方经济学课后答案/bbs/viewthread.php?tid=577&fromuid=1039364罗宾斯《管理学(第7版)》课后习题答案【khdaw】/bbs/viewthread.php?tid=513&fromuid=1039364曼昆宏观经济学习题答案及讲义【khdaw】##################【法学/哲学/心理学/政治学类--答案】#################### 毛邓三课后答案(高教版) 课后答案【khdaw】/bbs/viewthread.php?tid=1184&fromuid=1039364《马克思主义基本原理概论》最新版课后题答案(部分)及复习资料【khdaw】/bbs/viewthread.php?tid=1406&fromuid=1039364马克思主义哲学原理课后习题答案【khdaw】/bbs/viewthread.php?tid=512&fromuid=1039364马克思主义基本原理概论课后思考题答案【khdaw】/bbs/viewthread.php?tid=1145&fromuid=1039364马基(马克思主义基本原理概论)课后思考题答案【khdaw】/bbs/viewthread.php?tid=1371&fromuid=1039364《逻辑学》课后练习题及参考答案【khdaw】/bbs/viewthread.php?tid=2980&fromuid=1039364##################【文学/史学/外语/教育类--答案】####################《中国近现代史纲要》课后答案(高教版)【khdaw】/bbs/viewthread.php?tid=1154&fromuid=1039364《中国教育史》孙培青主编 (华东师范大学出版社)习题答案【khdaw】/bbs/viewthread.php?tid=89&fromuid=1039364《大学日语》汉译日标准答案【khdaw】/bbs/viewthread.php?tid=2954&fromuid=1039364俄语模拟真题下载【khdaw】/bbs/viewthread.php?tid=859&fromuid=1039364。
同济高数课后习题答案解析
同济大学高等数学一、求下列极限1、sin ()lim x x x →−−22111;解一:()()12sin 1cos 1lim 02x x x x→−−==原式解二:()()11sin 1sin 1lim lim11x x x x x x →→−−==−+原式2、lim sin x x x →2203解一:00021311lim lim lim 6sin3cos39sin3cos39x x x x x x x x x →→→==⋅=原式解二:sin 3~30021limlim 6sin 3cos 39cos 39x xx x x x x xx x →→===原式3、20tan 2lim sin 3x x xx →解:()2tan 2~2,sin3~3222lim93x x x xx xx →=原式=4、0lim ln(1)x x x →+解一:()001lim lim 1111x x x x→→==+=+原式解二:()1011lim1ln ln 1x xex →===+原式5、2lim xx x x →∞−⎛⎞⎜⎟⎝⎠解一:()2222lim 1xx ex −⋅−−→∞⎛⎞=−=⎜⎟⎝⎠原式解二:()1211ln 2ln 22limlim ln2lim22lim x x x x xx x x x xx xx x x eeeee−−→∞→∞→∞−−−−−−→∞−−−=====原式6、()111lim 32x x x −→−解一:()()112220lim 12t x tt t e=−−−−→=−=令原式解二:1(2)221122221lim[1(22)]{lim[1(22)]}xx x x x x e−−→−−−→=+−=+−=i 原式7、30sin lim x x x x →−解:2001cos sin 1lim lim 366x x x x x x →→−===原式8、111lim ln 1x x x →⎛⎞−⎜⎟−⎝⎠解:111111ln 11lim lim lim 1(1)ln ln 1ln 11lim ln 112x x x x x x x x x x x x x x x xx →→→→−−+−===−−+−+−==−++原式9、12lim 22n n n n →∞+++⎛⎞−⎜⎟+⎝⎠⋯解:()()221122lim lim22221lim 422n n n n n n n n n n n n n n →∞→∞→∞⎛⎞+⎜⎟+−−=−=⎜⎟++⎜⎟⎝⎠−==−+原式10、329sin limx x t dtx →∫解:26686003sin 1sin 1lim lim 933x x x x x x x →→===原式11、arctan limx x tdt →+∞。
大学所有课程课后答案
我为大家收集了大学所有课程的课后答案,这里只列出了一部分,要想找到更多的答案,请到查找。
资料打开方法:按住 Ctrl键,在你需要的资料上用鼠标左键单击资料搜索方法:Ctrl+F 输入关键词查找你要的资料【数学】∙01-08数值分析清华大学出版社第四版课后答案∙01-08微分几何第三版梅向明黄敬之主编课后答案∙01-07高等代数与解析几何陈志杰主编第二版课后答案∙01-07高等代数第三版北京大学数学系主编高等教育出版社出版课后答案∙01-07数学分析陈纪修主编第二版课后答案∙01-07数学分析华东师大第三版课后答案∙12-27高等数学同济大学出版社第五版课后答案∙12-08积分变换(第四版)东南大学数学系张元林编高等教育出版社课后答案∙11-30微积分复旦大学出版社曹定华主编课后答案∙11-21人大-吴赣昌-高等数学/微积分(经管类)课后答案∙11-09概率统计简明教程同济版课后答案∙11-09复变函数钟玉泉课后答案∙11-09微积分范培华章学诚刘西垣中国商业出版社课后答案∙11-09线性代数同济大学第四版课后答案∙11-08概率论与数理统计浙大版盛骤谢式千课后答案∙11-08复变函数西安交通大学第四版高等教育出版社课后答案∙11-07离散数学教程肖新攀编著课后习题答案∙11-07离散数学(第三版)清华大学出版社(耿素云,屈婉玲,张立昂)课后习题答案∙11-04高等数学同济大学出版社第六版课后答案∙10-27高等数学北大版课后答案∙【通信/电子/电气/自动化】∙01-08信号与线性系统分析吴大正第4版课后答案∙01-08信号与系统刘泉主编课后答案∙01-08信号与系统奥本海姆英文版课后答案∙01-08数字信号处理吴镇扬高等教育出版社课后答案∙01-08通信原理樊昌信第六版国防大学出版社课后答案∙01-08通信原理北京邮电大学课后答案∙12-10数字逻辑第四版(毛法尧著) 高等教育出版社∙12-10数字逻辑第二版(毛法尧著) 高等教育出版社课后答案∙12-08电路第五版邱关源罗先觉高等教育出版社课后答案∙12-03数字信号处理教程(程佩青第二版) 清华大学出版社课后答案∙12-02数字信号处理教程程佩青(第三版)清华大学出版社课后答案∙11-09模拟电子技术基础童诗白第三版习题答案∙11-09数字电子技术基础阎石第五版课后答案∙11-06信号与系统郑君里主编第二版课后答案∙11-06信号与系统哈工大课后答案∙10-31模拟电子技术基础(第四版童诗白、华成英主编)习题答案∙10-29模拟电路康华光【计算机/网络/信息】∙01-08数据结构(C语言版) 李春葆主编课后答案∙12-05计算机网络教程第五版谢希仁电子工业出版社课后答案∙11-09c程序设计谭浩强主编清华大学出版社习题答案及上机指导∙10-26C语言程序设计教程习题参考答案∙10-26MATLAB程序设计与应用(第二版)刘卫国主编实验答案【经济/金融/营销/管理/电子商务】∙01-06现代西方经济学(宏观)尹伯平主编课后答案∙01-06现代西方经济学(微观经济学) 宋承先主编第3版笔记和课后习题详解∙01-06微观经济学:现代观点范里安主编第5版课后答案∙01-05微观经济学平狄克主编第4和5版笔记和课后习题详解∙01-05宏观经济学曼昆主编第五版课后答案∙01-05宏观经济学多恩布什主编课后习题答案∙01-05企业会计学赵惠芳主编课后答案∙12-05市场调研与预测习题与实例陈启杰上海财经大学出版社课后答案∙11-28西方经济学高鸿业第四版(微观宏观)课后答案∙11-10中级财务会计刘兵初宜红山东人民出版社课后答案∙11-09经济法概论课后答案∙11-08中级财务会计(第二版)刘永泽东北财经大学课后答案【物理/光学/声学/热学/力学】∙01-19机电传动控制华中科技大学出版社邓星钟主编课后答案∙01-05量子力学张永德主编课后答案∙01-04量子力学导论曾谨言著第二版课后答案∙01-04量子力学曾谨言著高等教育出版社第三版第一卷课后答案∙01-04量子力学教程周世勋著高等教育出版社课后答案∙01-04量子力学教程曾谨言著课后答案∙01-04电动力学郭硕鸿主编第三版课后答案∙01-04理论力学卢圣治著课后答案∙01-03理论力学周衍柏著第二版课后答案∙11-09普通物理学程守洙江之咏第五版习题分析与解答∙11-09物理学马文蔚(第五版) 习题分析与解答∙11-09大学基础物理学.2版.清华.张三慧习题答案∙11-06大学物理学赵近芳主编第二版课后答案【土建/机械/车辆/制造/材料】∙01-08机械设计基础(第五版) 高等教育出版社课后答案∙01-07材料力学单辉祖主编课后答案∙01-06材料力学刘鸿文主编哈工大第四版课后答案∙11-11机械原理第六版课后答案【化学/环境/生物/医学/制药】∙01-03高分子化学潘祖仁著第四版课后答案∙01-03物理化学辅导与习题详解第五版傅献彩著∙01-02物理化学南开大学第五版课后答案∙01-02物理化学周亚平天津大学第四版课后答案∙01-02分析化学武汉大学第四版思考题答案∙01-02分析化学武汉大学第四版课后答案∙01-02基础有机化学邢其毅著课后答案∙01-01有机化学莫里森著课后答案∙12-31有机化学(第四版)高鸿宾著课后答案∙12-31有机化学(汪小兰著) 课后答案∙12-31无机化学第三版武汉大学吉林大学编高等教育出版社课后答案∙12-31中级无机化学(朱文祥著) 高等教育出版社课后答案∙12-31无机化学第三版(宋天佑著) 高等教育出版社课后答案∙12-30生物化学解题指导与测验张楚富高等教育出版社课后答案∙12-30生物化学简明教程第四版(张丽萍著) 高等教育出版社课后答案∙12-30生物化学原理(张洪渊著) 科学出版社课后答案∙12-30生物化学第三版(沈同王镜岩著) 高等教育出版社课后答案∙10-31有机化学第三版(胡宏纹著) 高等教育出版社课后答案∙10-29有机化学第四版答案曾昭琼主编高等教育出版社【法学/哲学/心理学/政治学】∙12-29实验心理学杨治良版练习题及答案07年心理学考研∙12-29《心理学》考试题库及答案程素萍浙江大学出版社∙12-29教育心理学第三版(皮连生著) 上海教育出版社课后答案∙12-04毛邓三(2007 华中科技大学版)(毛邓三编写组著) 高等教育出版社课后答案∙11-07毛邓三课后简答题答案∙10-29逻辑学参考答案∙10-26思想道德修养与法律基础罗国杰主编高教版课后答案∙10-26毛泽东思想和中国特色社会主义理论体系概论(吴树青等著) 高等教育出版社课后答案∙10-25马克思主义基本原理概论左伟清华南理工大学出版社课后答案∙10-25毛邓三思考题课后答案【英语/文学/史学/外语/教育】∙01-30step_by_step 2000 第四册听力答案课后答案∙01-30step_by_step 2000 第三册听力答案课后答案∙01-30step_by_step 2000 第二册听力答案课后答案∙01-30step_by_step 2000 第一册听力答案课后答案∙01-09大学体验英语综合教程第四册课后答案及课文翻译∙01-09大学体验英语综合教程第三册课后答案及课文翻译∙01-09大学体验英语综合教程第二册课后答案及课文翻译∙01-09大学体验英语综合教程第一册课后答案及课文翻译∙01-09新视野大学英语第五册课后答案∙01-09新视野大学英语第四册课后答案及课文翻译∙01-09新视野大学英语第三册课后答案及课文翻译∙01-09新视野大学英语第二册课后答案及课文翻译∙01-09新视野大学英语第一册课后答案及课文翻译∙01-05文学理论童庆炳主编修订二版课后答案∙01-05语言学教程胡壮麟主编课后答案[适合背诵]∙11-08中国近代史纲要沙健孙高等教育出版社课后答案∙11-07全新版大学英语综合教程第四册课后答案及课文翻译∙11-07全新版大学英语综合教程第三册课后答案及课文翻译∙11-06全新版大学英语综合教程第二册课后答案及课文翻译∙11-06全新版大学英语综合教程第一册课后答案及课文翻译∙11-06新世纪大学英语综合教程3 课后答案∙11-06新世纪大学英语综合教程2 课后答案∙11-06新世纪大学英语综合教程1 课后答案∙10-25新编大学英语(第一册)习题答案第二版∙10-25新编大学英语(第二册)习题答案∙10-25新编大学英语(第三册)习题答案10-25新编大学英语(第四册)课文翻译及课后习题答案。
同济第五版高数下册答案
高等数学同步练习第八章 多元函数微分法及其应用第一节 多元函数的基本概念1. 求定义域(1){(x,y ) 1xy e e≤≤};(2)},122),{(22N k k y x k y x ∈+≤+≤; (3){(x,y,z )22219x y z <++≤}.2.求极限(1)001)2x y →→=;(2)0 ;(3)22222002sin2lim 0()xyx y x y x y e →→+=+; (4)20sin cos lim.2x y xy xyx xy →→=.3.判断下列极限是否存在,若存在,求出极限值(1)沿直线y=kx 趋于点(0,0)时,2222222201lim 1x x k x k x k x k→--=++,不存在; (2)沿直线y =0,极限为1;沿曲线y,极限为0,不存在 ;(3)222222221100x y x y x y x y x y x y x y x y+≤≤+≤+=+→+++.极限为0 .4.因当220x y +≠时,2222220.x y x y y x y x y ≤=≤++, 所以0lim (,)0(0,0)x y f x y f →→==,故连续.1. 求下列函数的偏导数(1)2(1).2(1)xy y y xy +=+; 2x (1+xy ); (2)yz cos(xyz )+2xy ; xz cos(xyz )+2x ; (3)22()1()x y x y -+- , 22()1()x y x y --+-. 2.6π.3.11(11xy y =+-==. 4.1222222222222222222222222222221ln()ln(),212.,2()2,()()()z x y x y z x x x x y x y z x y x x y x x y x y z y x y x y -=+=-+∂=-=-∂++∂+--=-=∂++∂-=∂+5.22002202010sin,lim (,)0(0,0),1sin00lim 10sin 00(0,0)lim 0x y x y x x x yf x y f x f x x xf y y y→→∆→∆→≤≤+==∆-∂∆+=∂∆-∂+∆==∂∆g 因为所以连续.(0,0),不存在,.1. 求下列函数的全微分 解:(1)21z z dz dx dy x y x ∂∂=+∂∂-=+=.(2)1ln ln yz yz yz u u u du dx dy dz x y zyzx dx zx xdy yx xdz -∂∂∂=++∂∂∂=++.2.解:33222222220033332222(0,0)0033322322200,(,)(0,0)lim (,)0(0,0),000000(0,0)lim 1,lim 11x y x y x y x y x y x y x y x y x y x y x y f x y f y x yx f f x y x y x x y x y y x y z x y →→∆→∆→+≤=+≤+→→+++==+∆∆+--+∆∆+====∆∆∆+∆∆+∆∆+∆∆+∆-∆∆∆==∆+∆.所以连续.两个偏导数都存在,为222222211(0,0)0,.x y x y x yx y x y x y y x ρρ→→-∆∆∆∆+∆∆=∆+∆-∆+∆∆+∆=→==≠g g 当沿时,故不可微第四节 1.解:322235221''(1)22323(21)(5456)1(2)1(3)()ln()v vdzuv w u v w x u v x x x xdxdzdx xdz z du z duvu f x u u g xdx u dx v dx-=⋅+⋅+⋅=++-===+∂∂=⋅+⋅=⋅+⋅∂∂...2.解:(1)222221121(arctan ln21()uxy xy vz z x z y u uvye xe e u vuu x u y u u v u v vv∂∂∂∂∂=+=⋅⋅+⋅=+∂∂∂∂∂+++.221(arctanuvz z x z y ue u vv x v y v u v v∂∂∂∂∂=+=-∂∂∂∂∂+.(2)'''()(1)()()()uf x xy xyz y yzxuf x xy xyz x xzyuf x xy xyz xyz∂=++++∂∂=+++∂∂=++⋅∂3. 解:''''1212.z z zf a f b f ft x yz z za bt x y∂∂∂=⋅+⋅==∂∂∂∂∂∂=+∂∂∂,,,所以,4. 解:'222'222''2222''22''22()22(()2())2()24()zf x y xxzf x y x f x yxzx f x y y xyf x yx y∂=+⋅∂∂=+++∂∂=⋅+⋅=+∂∂第五节1.解:令(,,)sin()01cos()1cos()1cos()1cos()x z y z F x y z x y z xyz F z yz xyz x F xy xyz F z xz xyz y F xy xyz =++-=∂-=-=-∂-∂-=-=-∂- 2. .解:令22222222(0,0,1)2(,,)10()|1x z F x y z x y z F z x x F z z xz x z x zx z x z zzx=++-=∂=-=-∂∂-⋅--∂∂=-=-∂∂=-∂ 3.证明:''11''''1212'1''12()().x z c c zx a b a b c z y a b z zab C x yφφφφφφφφφφφ⋅⋅∂=-=-=∂-+-+⋅∂=∂+∂∂+=∂∂所以6.(1)解:方程两边对y 求导,得:222460222642146212622242(62)(62)2(61)(61)22(61)61dz dxx ydy dy dx dz x y z dydy dx dz x y dy dy dx dz x z y dy dyy y z x x zx yx ydx y z y z dyx z x z dz y dy x z z =+++=-=-+=-------⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩-++===-++-==++(3)''12''12()(1)2u u v f u x f x x x v u vg g vy x xx ∂∂∂=⋅++⋅∂∂∂∂∂∂=⋅-+⋅⋅∂∂∂⎧⎨⎩'''121'''121''12'''''''1212121''''''''21212112''12''11''11'''''212121(1)(21)212221121122u v xf f uf x x u v g vyg g x xuf f g vyg uvyf g uf f g u x vyg vxyf g xf f g xf f g vyg xf uf g g uy vyg vxyf g xf f g ∂∂-⋅-=∂∂∂∂+-=∂∂---+∂==∂-++-----∂=∂-++'''''11111'''''''2121211221g xf g uf g vyg vxyf g xf f g --=--++-7.证明:x t dy f dx f dt =+ →x tdy dtf f dx dx=+ ① 0x y t dF F dx F dy F dt =++= → x y tF dx F dydt F +=-→y x t t F F dtdy dx F F dx=--⋅ ② ②代入①,得:()(1)y x x t t t t y t x x t tt t y x t t xt t x t t x t t yF F dydy f f dx F F dx f F f Fdy f F dx F F f F f F f F dy F dx F f F f F dy dx F f F =+--⋅+=-+-⋅=-∴=+第六节 多元函数微分学的几何应用1.解:切向量),cos ,sin (=b t a t a T 。
高数(同济)第五版习题答案1-6
习题1-61. 计算下列极限:(1)xx x ωsin lim 0→; 解 ωωωωω==→→x x xx x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x . (4)x x x cot lim 0→; 解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→x x x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sin lim 2sin 2lim . 2. 计算下列极限:(1)x x x 10)1(lim -→;解 {}11)(10)1()(1010)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x . (2)x x x 10)21(lim +→; 解 []22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 []222)11(lim )1(lim e xx x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ; 证明 因为nn 11111+<+<, 而 11lim =∞→n 且1)11(lim =+∞→n n , 由极限存在准则I, 111lim =+∞→nn . (2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+, 222++, ⋅ ⋅ ⋅ 的极限存在; 证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增. 因为数列{x n }单调增加有上界, 所以此数列是有极限的.(4)11lim 0=+→n x x ; 证明 当|x |≤1时, 则有1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n ,从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 00=+=-→→x x x x , 根据夹逼准则, 有11lim 0=+→n x x . (5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x . 又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→x x x .。
高等数学下(同济大学第五版)课后习题答案解析
word 完美格式第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim ),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xy xy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x x y x y →→→→→→==⋅=++解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数word 完美格式本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂word 完美格式4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f y f y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y -+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
总习题二
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
练习 3-5
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
练习 2-3
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》上册答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 10-1
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
<< >>
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
<<
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 9-3
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-1
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-2
>
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版[上册]的答案解析
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 11-7
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 10-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
<<
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
专业整理 知识分享
练习 9-3
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题八
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 6-3
同济大学(高等数学)-第八章-向量代数与解析几何
第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzAB C(,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出以下各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -.4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求以下各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终ab Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1)a +b =b +a (交换律).(2)()()a +b +c =a +b +c (结合律). (3)0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向: 当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb -a bBAC对于任意向量a ,b 以与任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法与数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式说明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -. 2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 与NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3向量可以用它的模与方向来表示,设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角.解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 22αβγ=-==; 23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 {}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1)2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 与任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4)0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点与向量积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b 2222(3)3=7=+⨯-+,因此+=a b .在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =.(8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以与两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则=a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 与F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 与任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律:()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式与三阶行列式有111111222222y z x z x y y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解211112121012120201----⨯--=-i j ka b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而302111⨯--i j kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯=故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明 2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模与d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1)⋅a b ;(2) 25⋅a b ;(3) a ;(4)cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面与其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。
课后习题答案全集
3500份课后答案,很值得收藏,这里只介绍了一部分。
还有很多,可以去课后答案网(/bbs)查找。
##################【公共基础课-答案】####################新视野大学英语读写教程答案(全)【khdaw】/bbs/viewthread.php?tid=108&fromuid=1104018概率论与数理统计教程(茆诗松著) 高等教育出版社课后答案/bbs/viewthread.php?tid=234&fromuid=1104018高等数学(第五版)含上下册高等教育出版社课后答案/bbs/viewthread.php?tid=29&fromuid=1104018新视野英语听力原文及答案课后答案【khdaw】/bbs/viewthread.php?tid=586&fromuid=1104018线性代数(同济大学应用数学系著) 高等教育出版社课后答案/bbs/viewthread.php?tid=31&fromuid=110401821世纪大学英语第3册(1-4)答案【khdaw】/bbs/viewthread.php?tid=285&fromuid=1104018概率与数理统计第二,三版(浙江大学盛骤谢式千潘承毅著) 高等教育出版社课后答案/bbs/viewthread.php?tid=32&fromuid=1104018复变函数全解及导学[西安交大第四版]【khdaw】/bbs/viewthread.php?tid=142&fromuid=1104018大学英语精读第三版2册课后习题答案/bbs/viewthread.php?tid=411&fromuid=1104018线性代数(第二版)习题答案/bbs/viewthread.php?tid=97&fromuid=110401821世纪(第三册)课后答案及课文翻译(5-8)【khdaw】/bbs/viewthread.php?tid=365&fromuid=1104018大学英语精读第2册课文翻译(上外)【khdaw】/bbs/viewthread.php?tid=598&fromuid=1104018新视野英语视听说教程1-4答案【khdaw】/bbs/viewthread.php?tid=2639&fromuid=1104018物理学教程(马文蔚)答案/bbs/viewthread.php?tid=1188&fromuid=1104018毛邓三课后思考题答案(高教版)高等教育出版社【khdaw】/bbs/viewthread.php?tid=1263 &fromuid=1104018##################【通信/电子/电气/自动化类--答案】####################电路第四版(邱关源著) 高等教育出版社课后答案/bbs/viewthread.php?tid=259&fromuid=1104018电路第五版(邱关源罗先觉著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=4097&fromuid=1104018数字电子技术基础第四版(阎石著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=215&fromuid=1104018模拟电子技术基础(第三版华成英主编)习题答案/bbs/viewthread.php?tid=242&fromuid=1104018通信原理第5版(樊昌信著) 国防工业出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=34&fromuid=1104018电磁场与电磁波西安电子科技大学(第二版)/bbs/viewthread.php?tid=588&fromuid=1104018《信号与系统》第二版(郑君里)高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=994&fromuid=1104018电机学(张松林著) 机械工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=356&fromuid=1104018《数字信号处理》(第二版)西安电子科技大学(丁玉美)课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=882&fromuid=1104018高频电子线路(曾兴雯著) 高等教育出版社课后答案【khdaw_lxywyl】/bbs/viewthread.php?tid=1110&fromuid=1104018模拟电子技术基础简明教程第三版(杨素行著) 高等教育出版社课后答案/bbs/viewthread.php?tid=166&fromuid=1104018##################【计算机/软件/网络/信息/数学类--答案】#################### C程序设计第三版(谭浩强著) 清华大学出版社课后答案/bbs/viewthread.php?tid=80&fromuid=1104018C语言程序设计教程第三版(谭浩强张基温著) 高等教育出版社课后答案/bbs/viewthread.php?tid=79&fromuid=1104018复变函数与积分变换第四版(张元林西安交大著) 高等教育出版社课后答案/bbs/viewthread.php?tid=612&fromuid=1104018离散数学(第三版)(耿素云屈婉玲张立昂著) 清华大学出版社课后答案/bbs/viewthread.php?tid=293&fromuid=1104018谭浩强C++程序设计习题答案/bbs/viewthread.php?tid=420&fromuid=1104018《微机原理与接口技术》清华(冯博琴吴宁)版课后答案/bbs/viewthread.php?tid=707&fromuid=1104018严蔚敏《数据结构(c语言版)习题集》答案/bbs/viewthread.php?tid=102&fromuid=1104018数据库系统概论(王珊萨师煊著) 清华大学出版社课后答案/bbs/viewthread.php?tid=991&fromuid=1104018《计算机网络第四版》答案【khdaw】/bbs/viewthread.php?tid=340&fromuid=1104018《数学物理方法》(梁昆淼第二版)习题解答/bbs/viewthread.php?tid=334&fromuid=1104018谢希仁版《计算机网络教程》课后答案/bbs/viewthread.php?tid=203&fromuid=1104018清华大学《数据结构》习题+课后答案/bbs/viewthread.php?tid=249&fromuid=1104018数据结构习题集(C版)答案/bbs/viewthread.php?tid=374&fromuid=1104018刘绍学版《近世代数基础》课后习题答案/bbs/viewthread.php?tid=177&fromuid=1104018计算机组成原理习题&答案唐朔飞高等教育出版社【khdaw】/bbs/viewthread.php?tid=984&fromuid=1104018离散数学(左孝凌著) 上海科学技术文献出版社课后答案/bbs/viewthread.php?tid=466&fromuid=1104018计算机网络(第4版)清华(Andrew S.Tanenbaum)版答案(中文版)/bbs/viewthread.php?tid=201&fromuid=1104018耿国华数据结构课后答案/bbs/viewthread.php?tid=103&fromuid=1104018计算机操作系统(汤子赢著) 西安电子科技大学课后答案/bbs/viewthread.php?tid=1083&fromuid=1104018《编译原理》课后习题答案/bbs/viewthread.php?tid=175&fromuid=1104018《常微分方程》王高雄高等教育出版社课后答案/bbs/viewthread.php?tid=567&fromuid=1104018##################【物理/光学/声学/热学/力学类--答案】####################理论力学第六版(哈尔滨工业大学理论力学教研室著) 高等教育出版社课后答案/bbs/viewthread.php?tid=932&fromuid=1104018理论力学第六版(哈尔滨工业大学理论力学教研室编著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=461&fromuid=1104018《热力学统计物理》汪志诚(第三版)高教出版社(手抄版)习题答案【khdaw】/bbs/viewthread.php?tid=84&fromuid=1104018原子物理学褚圣麟版课后答案【khdaw】/bbs/viewthread.php?tid=368&fromuid=1104018《物理学教程》(马文蔚著) 高等教育出版社【khdaw】/bbs/viewthread.php?tid=2782&fromuid=1104018《光学》姚启钧第三版高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=178&fromuid=1104018大学物理实验报告与部分范例陈金太厦门大学【khdaw】/bbs/viewthread.php?tid=2350&fromuid=1104018梁昆淼数学物理方法第三版的课后答案/bbs/viewthread.php?tid=2600&fromuid=1104018《理论力学教程》周衍柏高等教育出版社完整版课后答案【khdawlxywyl】/bbs/viewthread.php?tid=676&fromuid=1104018固体物理(黄昆版) 课后习题答案【khdaw】/bbs/viewthread.php?tid=339&fromuid=1104018哈工大《理论力学》第6版(赵诒枢尹长城沈勇著) 华中科技大学出版社课后答案/bbs/viewthread.php?tid=1033&fromuid=1104018热力学统计物理汪志诚第三版高等教育出版课后答案【khdaw】/bbs/viewthread.php?tid=289&fromuid=1104018《量子力学教程》周习勋课后习题答案【khdaw】/bbs/viewthread.php?tid=388&fromuid=1104018《原子物理学》杨福家版部分答案高等教育出版社【khdaw】/bbs/viewthread.php?tid=1065&fromuid=1104018热力学·统计物理汪志诚高等教育出版社课后答案【khdaw】/bbs/viewthread.php?tid=566&fromuid=1104018《固体物理教程》王矜奉山东大学出版社课后答案【khdaw】/bbs/viewthread.php?tid=1645&fromuid=1104018##################【化学/环境/生物/医学/制药类--答案】#################### 物理化学(董元彦著) 科学出版社课后答案/bbs/viewthread.php?tid=412&fromuid=1104018化工原理(陈敏恒著) 化学工业出版社课后答案【khdaw】/bbs/viewthread.php?tid=704&fromuid=1104018生物化学第三版(王镜岩朱圣庚著) 高等教育出版社课后答案/bbs/viewthread.php?tid=241&fromuid=1104018遗传学第三版(朱军著) 农业大学出版社课后答案/bbs/viewthread.php?tid=39&fromuid=1104018有机化学(汪小兰著) 高等教育出版社课后答案/bbs/viewthread.php?tid=841&fromuid=1104018武汉大学版《无机化学》(第三版) 上册【khdaw】/bbs/viewthread.php?tid=196&fromuid=1104018有机化学(徐寿昌著) 高教出版社课后答案/bbs/viewthread.php?tid=1752&fromuid=1104018物理化学习题及答案【khdaw】/bbs/viewthread.php?tid=965&fromuid=1104018有机化学第二版(胡宏纹著) 高等教育出版社课后答案/bbs/viewthread.php?tid=41&fromuid=1104018分析化学第三版武汉大学课后答案/bbs/viewthread.php?tid=199&fromuid=1104018武汉大学版<无机化学>(第三版) 下册【khdaw】/bbs/viewthread.php?tid=200&fromuid=1104018物理化学第四版(傅献彩著) 高等教育出版社课后答案/bbs/viewthread.php?tid=3611&fromuid=1104018##################【土建/机械/车辆/制造/材料类--答案】#################### 西工大机械原理配套作业题答案/bbs/viewthread.php?tid=570&fromuid=1104018机械设计基础(第五版) 杨可桢程光蕴李仲生高教版课后答案/bbs/viewthread.php?tid=2316&fromuid=1104018材料力学第4版(刘鸿文)答案(有附件)/bbs/viewthread.php?tid=1931&fromuid=1104018材料力学课后答案/bbs/viewthread.php?tid=96&fromuid=1104018材料力学(范钦珊主编著) 高等教育出版社课后答案/bbs/viewthread.php?tid=120&fromuid=1104018机械设计基础(第五版) 答案7-18章杨可桢程光蕴李仲生/bbs/viewthread.php?tid=2570&fromuid=1104018《结构力学习题集》课后答案【khdaw】/bbs/viewthread.php?tid=3016&fromuid=1104018电工学第六版秦曾煌高等教育出版社课后答案/bbs/viewthread.php?tid=2986&fromuid=1104018机械原理学习指南(第二版)(孙恒著) 课后答案/bbs/viewthread.php?tid=569&fromuid=1104018机械原理高等教育出版社课后答案【khdaw_cola】/bbs/viewthread.php?tid=664&fromuid=1104018电力电子技术试题习题考题及答案题解【khdaw】/bbs/viewthread.php?tid=1169&fromuid=1104018机械原理习题+答案【khdaw_cola】/bbs/viewthread.php?tid=1210&fromuid=1104018材料力学第四版(刘鸿文著) 高等教育出版社课后答案/bbs/viewthread.php?tid=2461&fromuid=1104018机械设计及答案【khdaw_cola】/bbs/viewthread.php?tid=1172&fromuid=1104018材料力学(I)第四版(孙训方)高等教育出版社课后答案/bbs/viewthread.php?tid=5342&fromuid=1104018##################【经济/金融/营销/管理/电子商务类--答案】####################高鸿业版西方经济学习题答案(微观.宏观)【khdaw】/bbs/viewthread.php?tid=92&fromuid=1104018西方经济学(微观部分) (高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=2817&fromuid=1104018袁卫统计学(第二版)习题答案【khdaw】/bbs/viewthread.php?tid=98&fromuid=1104018曼昆《经济学原理》题目及课后答案/bbs/viewthread.php?tid=162&fromuid=1104018统计学(贾俊平第二版)中国人民大学出版社课后答案/bbs/viewthread.php?tid=42&fromuid=1104018运筹学教程第三版(甘应爱胡运权等著) 清华大学出版社课后答案/bbs/viewthread.php?tid=7016&fromuid=1104018高鸿业版西方经济学习题答案(第三版)/bbs/viewthread.php?tid=1277&fromuid=1104018西方经济学(宏观部分)第四版(高鸿业著) 中国人民大学出版社课后答案/bbs/viewthread.php?tid=7171&fromuid=1104018财务管理学课后答案荆新王化成中国人民大学出版社/bbs/viewthread.php?tid=3433&fromuid=1104018西方经济学课后答案(高鸿业著) 人民大学出版社/bbs/viewthread.php?tid=6189&fromuid=1104018克鲁格曼_国际经济学(第六版)的教师手册(含习题答案)/bbs/viewthread.php?tid=237&fromuid=1104018微观经济学第二版(高鸿业著) 西方经济学课后答案/bbs/viewthread.php?tid=577&fromuid=1104018罗宾斯《管理学(第7版)》课后习题答案【khdaw】/bbs/viewthread.php?tid=513&fromuid=1104018曼昆宏观经济学习题答案及讲义【khdaw】/bbs/viewthread.php?tid=115&fromuid=1104018##################【法学/哲学/心理学/政治学类--答案】####################毛邓三课后答案(高教版) 课后答案【khdaw】/bbs/viewthread.php?tid=1184&fromuid=1104018《马克思主义基本原理概论》最新版课后题答案(部分)及复习资料【khdaw】/bbs/viewthread.php?tid=1406&fromuid=1104018马克思主义哲学原理课后习题答案【khdaw】/bbs/viewthread.php?tid=512&fromuid=1104018马克思主义基本原理概论课后思考题答案【khdaw】/bbs/viewthread.php?tid=1145&fromuid=1104018马基(马克思主义基本原理概论)课后思考题答案【khdaw】/bbs/viewthread.php?tid=1371&fromuid=1104018《逻辑学》课后练习题及参考答案【khdaw】/bbs/viewthread.php?tid=2980&fromuid=1104018##################【文学/史学/外语/教育类--答案】#################### 《中国近现代史纲要》课后答案(高教版)【khdaw】/bbs/viewthread.php?tid=1154&fromuid=1104018《中国教育史》孙培青主编(华东师范大学出版社)习题答案【khdaw】/bbs/viewthread.php?tid=89&fromuid=1104018《大学日语》汉译日标准答案【khdaw】/bbs/viewthread.php?tid=2954&fromuid=1104018俄语模拟真题下载【khdaw】/bbs/viewthread.php?tid=859&fromuid=1104018。