同济大学第五版高数63059
同济大学《高等数学》第五版下册习题答案

同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-6
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
总习题八
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 12-4
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版上册答案(详解)

解 (1)列方程,(2)解方程
练习 12-11
总习题十二
解 正弦级数展开, 余弦级数展开
总习题十一
练习 12-1
练习 12-2
练习 12-3
练习 12-4
练习 12-5
练习 12-6
练习 12-7
提示:
提示:
练习 12-8
练习 12-9
总习题六
练习 7-1
练习 7-2
练习 7-3
练习 7-4
练习 7-5
练习 7-6
总习题七
练习 8-1
练习 8-2
>
练习 8-3
练习 8-4
练习 8-5
练习 2-5
总习题二
练习 3-1
练习 3-2
练习 3-3
练习 3-4
练习 3-5
练习 3-6
x
( 2)
y
y
+
yf(x) ↘
2 0 +
17/5
(2 1) 1
练习 10-4
练习 10-5
练习 10-6
练习 10-7
总习题十
练习 111
练习 112
练习 113
练习 11-4
练习 11-5
练习 11-7
练习 11-8
解 正弦级数展开, 余弦级数展开
练习 8-6
练习 8-7
练习 8-8
总习题八
练习 9-1
练习 9-2
>>
<< >>
<<
练习 9-3
练习 9-4
总习题九
练习 10-1
练习 10-2
练习 10-3
高等数学(同济大学第五版)第十二章

习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。
《同济版高数》课件

持续学习
高等数学是学习其他学科的 基础,要不断提高自己的数 学能力。
勇于挑战
数学中的难题和挑战并不可 怕,要勇敢面对并寻求解决 方法。
采用多样化的教学方法和工具, 激发学生对数学的兴趣和思考 能力。
倡导学生参与式学习,鼓励讨 论和合作,提高学生的学习效 果。
问题解决
培养学生的问题解决能力,注 重实际应用和创新思维。
PPT动效运用
1
简洁清晰
使用适度的动效,突出重点,让学生
过渡自然
2
更清晰地理解内容。
平滑的过渡效果,使切换页面更加流
提供大量习题,巩固理论知识并锻炼解题 能力。
教材简介
《同济版高数》是一套针对高等数学课程编写的教材系列。内容丰富、结构清晰,旨在帮助学生全面理 解和掌握高等数学的核心概念和方法。
PPT目录结构
第一章
函数与极限
第三章
函数的应用
第二章
导数与微分
第四章
微分中值定理与导数的应用
教学设计理念
创新教学
互动学习
畅,保持学生的专注度。
3
视觉引导
运用动画和视觉引导,帮助学生理解 步骤和概念。
学习效果评估
1 定期测评
设置阶段性测验,及时检查学生的学习进展和掌握情况。
2 反馈指导
提供个性化的学习反馈和指导,帮助学生改进学习方法和提高成绩。
3 课堂讨论
鼓励学生参与课堂讨论,提高学习的互动性和深度。
结论和要点
数学的魅力
《同济版高数》PPT课件
探索《同济版高数》的世界,与高数的魅力相遇。让我们一起学习,展现数 学的美妙与力量。
高等数学同济第五版教材

高等数学同济第五版教材高等数学是大学数学课程中的一门重要学科,是培养学生数学思维和解决实际问题能力的关键学科之一。
同济大学出版社的《高等数学同济第五版教材》是国内热门的高等数学教材之一,它覆盖了高等数学的各个分支,给予了学生全面且系统的学习资源。
本文将对该教材进行介绍和评价。
一、教材概述《高等数学同济第五版教材》由同济大学数学系主编,主要面向大学本科高等数学课程。
该教材经过多年的修订和完善,已经成为国内高校广泛采用的教材之一。
教材内容涵盖了微积分、空间解析几何和线性代数等重要内容,以及一些拓展与应用的知识点。
二、教材特点1. 内容全面:教材内容涵盖了高等数学的各个分支,包括函数与极限、微分学、积分学、多元函数微分学、重积分与曲线积分、无穷级数与幂级数、空间解析几何和线性代数等主题。
2. 知识体系清晰:教材将各个知识点有机地组织在一起,形成了一个完整的知识体系,帮助学生系统地理解高等数学的各个概念和原理。
3. 理论与实践结合:教材既注重理论的讲解与推导,又融入了大量的例题和应用题,帮助学生将理论知识应用到实际问题中去。
4. 程序化思维培养:教材在讲解的过程中注重培养学生的程序化思维,即通过一系列的步骤和方法解决问题的思维方式,对于日后学习和工作都非常重要。
三、教材优缺点分析1. 优点:a. 通俗易懂:教材采用了通俗易懂的语言,结合大量的图表和实例,使得抽象的数学理论变得更具可读性和可理解性。
b. 知识点扩展:教材在每一章节的末尾都附带了一些扩展知识点,能够满足对高等数学更深入学习的学生需求。
c. 题目丰富:教材中的习题种类多样,题量适中,既能巩固基础知识,又能拓宽应用能力。
d. 师生配套资源丰富:教材配套资源丰富,包括习题解答、教案和试卷等,在教学过程中能够提供更多的辅助资料和教学参考。
2. 缺点:a. 部分章节过于简略:由于教材篇幅的限制,部分章节的讲解过于简洁,对于一些深入的数学理论没有给予足够的解释。
同济5版高等数学教材

同济5版高等数学教材同济大学出版社出版的《同济大学高等数学教材》(第5版)是一本经典的高等数学教材,广泛应用于中国各大高校数学专业的教学中。
该教材分为上、下两册,分别涵盖了高等数学的基础知识和进阶内容。
本文将从教材的编写背景、内容特点以及教学应用等方面对《同济大学高等数学教材》(第5版)进行介绍。
一、编写背景同济大学高等数学教材(第5版)的编写背景可以追溯到上个世纪50年代初。
这个时期,中国的高等教育迎来了大规模的重建和发展,为了培养更多的数学专业人才,编写一本符合国内高等数学教学需求的教材就成为当时急需解决的问题。
同济大学被委以重任,派出一批优秀的教师和数学专家组成了编写团队,开始了《高等数学》教材的编写工作。
二、内容特点1.全面系统:《同济大学高等数学教材》(第5版)涵盖了高等数学的各个分支,包括数学分析、线性代数、概率论与数理统计等,形成了一个全面而系统的知识体系。
2.理论与实践相结合:教材注重将理论与实践相结合,将数学的抽象概念与实际问题相联系,通过大量的例题和应用题,帮助学生理解和掌握数学知识,提高问题解决能力。
3.逻辑清晰:教材结构严谨,逻辑清晰,由浅入深,层层递进。
每个章节都以明确的学习目标为导向,便于学生掌握知识的重点和难点。
4.突出思维方法:教材注重培养学生的数学思维方法,强调解题的思路和方法,注重培养学生的逻辑思维、分析问题和解决问题的能力。
三、教学应用1.大学本科教学:《同济大学高等数学教材》(第5版)在中国各个高校的本科数学专业的教学中广泛应用。
教师可以根据教学内容和学生的学习进度,灵活选用教材中的章节和题目,进行课堂讲解和习题训练。
2.自学和复习指导:除了大学本科教学外,该教材也可以作为自学和复习的指导书。
学生可以通过系统地学习教材中的知识点和例题,提高自己的数学水平。
3.参考书目:该教材还可以作为其他高校教材的参考书目,教师可以根据自己的教学需求,结合其他教材进行教学。
同济第五版高数下第七章课件

z
(3)同理在xOz面上的投影
也为线段.
1 z 2, y 0 | x | 3 2 ;
O
y
x
例4 求抛物面 y z x 与平面 x 2 y z 0 的截线在三个坐标面 上的投影曲线方程. z
2 2
解
截线方程为
y z x x 2y z 0
z: b 0 b 0 b ,
令 2 ,
h 2b
( t , b
z
x a cos t y a sin t z vt v
)
则上升的高度: 称为螺距.
h
x
o
z
y
三、空间曲线在坐标面上的投影
F ( x, y, z) 0 设空间曲线C的一般方程: G ( x , y , z ) 0
2 2
例6 求上半球面 和锥面 所围的立体在 xoy 面上的投影. 解 所求投影是二曲面交线在xoy 面上的 投影曲线所围之域 . 二曲面交线
x o
z
C
1
y
在xoy 面上的投影曲线 所围区域为圆域:
x y 1, z 0.
2 2
补充: 空间立体或曲面在坐标面上的投影.
空 间 立 体
曲 面
( t为 参 数 )
当给定 t
( x 1 , y 1 , z 1 ),
t1
时,就得到曲线上的一个点
随着参数的变化可得到曲线上的
全部点.
例3 如果空间一点M在圆柱面 x y a 上以角速度 绕z轴旋转,同时又以线速度v 沿平行于z轴上升,那么点M构成的图形叫做 螺旋线. 试建立其参数方程. z 取时间t为参数, 动点从A点出发, 解 经过t 时间,运动到M点. M 在 xoy 面的投影 M ( x , y , 0 )
同济大学第五版高等数学课件D81基本概念

微分方程的问题
微分方程的定义
微分方程是描述函数及其导数之间关系的数 学模型,通常用来描述自然现象或工程问题 中的动态变化过程。
微分方程的解法
微分方程的解法包括分离变量法、常数变易 法、参数变易法等,这些方法可以帮助我们 求解微分方程并得到其通解或特解。
空间解析几何的问题
要点一
空间解析几何的基本概念
基础性
同济大学第五版高等数学(下)课件 D81是学习高等数学的基础,对于后 续的学习具有重要的支撑作用。
同济大学第五版高等数学(下)课件D81的应用场景
科学计算
同济大学第五版高等数学(下)课件D81的概念在科学计算中有着广泛的应用 ,如物理、工程、经济等领域的研究和计算。
实际问题解决
通过同济大学第五版高等数学(下)课件D81的概念,可以解决许多实际问题 ,如优化问题、统计分析等。
同济大学第五版高 等数学(下课件 D81基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的简介
• 同济大学第五版高等数学(下)课件 D81的基本概念
目录
• 同济大学第五版高等数学(下)课件 D81的基本定理
• 同济大学第五版高等数学(下)课件 D81的基本问题
01
同济大学第五版高等数学 (下)课件D81的简介
积分的问题
01
积分的定义
积分是描述函数在某个区间上的面积 的数学概念,即函数在某个区间上的 定积分值等于该区间上所有小区间上 函数的增量之和的极限。
02
积分的性质
积分具有一些重要的性质,如线性性 、可加性、积分中值定理等,这些性 质在研究函数的性质和解决数学问题 中具有重要的作用。
03
积分的计算
积分的计算是高等数学中的基本技能 之一,包括换元法、分部积分法、有 理函数积分法等,这些方法可以帮助 我们快速准确地计算出函数的积分值 。
高等数学下(同济大学第五版)课后习题答案1(精品文档)

第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x xy x y →→→→→→==⋅=++ 解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f yf y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论 1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。
同济大学第五版高等数学下课件D10-4对面积曲面积分PPT课件一等奖新名师优质课获奖比赛公开课

函数, 叫做积分曲面.
则对面积旳曲面积分存在.
• 对积分域旳可加性.
则有
• 线性性质.
在光滑曲面 上连续,
对面积旳曲面积分与对弧长旳曲线积分性质类似.
• 积分旳存在性.
若 是分片光滑旳,
例如提成两
片光滑曲面
定理: 设有光滑曲面
第四节
一、对面积旳曲面积分旳概念与性质
二、对面积旳曲面积分旳计算法
对面积旳曲面积分
第十章
一、对面积旳曲面积分旳概念与性质
引例: 设曲面形构件具有连续面密度
类似求平面薄板质量旳思想, 采用
可得
求质
“大化小, 常代变, 近似和, 求极限”
旳措施,
量 M.
其中, 表达 n 小块曲面旳直径旳
最大值 (曲面旳直径为其上任意两点间距离旳最大者).
定义:
设 为光滑曲面,
“乘积和式极限”
都存在,
旳曲面积分
其中 f (x, y, z) 叫做被积
据此定义, 曲面形构件旳质量为
曲面面积为
f (x, y, z) 是定义在 上旳一
个有界函数,
或第一类曲面积分.
若对 做任意分割和局部区域任意取点,
例1. 计算曲面积分
其中是球面
被平面
截出旳顶部.
解:
思索:
若 是球面
被平行平面 z =±h 截
出旳上下两部分,
则
例2. 计算
其中 是由平面
坐标面所围成旳四面体旳表面.
解: 设
上旳部分, 则
与
原式 =
分别表达 在平面
例3.
最全高数教材

内容中, 运行时, 只要点击相片或有关按钮即可显示出 来, 不点击则不显示; 附录Ⅱ为常见重要曲线图形及其 特征介绍, 绝大部分都以动画形式显示了该曲线的生 成过程. 3. 平台 本软件用 powerpoint 制作而成,使用者可 平台. 方便地根据自己的意图对其进行修改与补充 ,或链入 其它媒体信息 . 为了更好地使用本软件,得到多媒体辅 助教学的良好效果, 使用者需掌握 powerpoint 的基本 操作原理和方法. 4. 教学进程 多媒体教学传递速度快, 信息量大, 尽 教学进程. 管我们的课件可以做到讲到哪儿显示到哪儿, 但仍比写 黑板快很多, 因此使用本课件授课时, 应注意熟悉播放 程序, 控制播放速度, 使观看者有充足的思考与记笔记 的时间.
主页
目录
上页
下页
返回
结束
主页
目录
上页
下页
返回
结束
第一章 函数与极限
第一节 映射与函数 第二节 数列的极限 第三节 函数的极限 第四节 无穷大与无穷小 第五节 极限运算法则 第六节 极限存在准则及两个重要极限
主页
目录
上页
下页
返回
结束
第一章(续)
第七节 无穷小的比较 第八节 函数的连续性与间断点 第九节 连续函数的运算与初等函数的连续性 第十节 闭区间上连续函数的性质 习题课
1. 对象 本电子教案以同济大学《高等数学》 对象. 第五版为蓝本,章节目录索引按原书顺序排列,该课 件适用于工科院校本科多媒体教学或网络教室上课, 也可作为学生自学的参考软件.其中的基础内容也可 供大专的高等数学课使用. 2. 内容 本软件包含《高等数学》(第五版) 全部 内容. 内容,例题丰富,除个别内容太少的节外,几乎每节都有 小结及思考练习题,此外还有一部分备用题,教师可根 据具体情况选用.每章都有习题课,仅供大家参考. 为便于教师备课参考, 本软件作了两个附录, 附录Ⅰ 为20位数学家的简介, 并以自定义动画形式穿插在相关
高等数学教材第五版

高等数学教材第五版高等数学是大学数学中的一门重要课程,它是建立在初等数学的基础上,深入研究数学分析、数理逻辑和数学推理等内容的学科。
高等数学教材第五版是一本经典教材,它在数学教学界有着广泛的影响和良好的口碑。
第一章函数与极限高等数学教材第五版的第一章主要介绍函数与极限的概念,从基本公式、性质、运算和图像等方面深入阐述了函数的基础知识。
通过该章的学习,可以帮助学生建立函数的概念,并能灵活运用。
第二章导数与微分第二章主要介绍导数与微分的概念和性质,以及它们在几何、物理、经济等领域的应用。
通过学习导数与微分的知识,可以帮助学生掌握函数变化规律,并应用于实际问题的解决中。
第三章不定积分第三章主要介绍不定积分的概念、基本公式和求法,以及它们在物理、生物、工程等领域的应用。
通过学习不定积分的知识,可以帮助学生理解积分与导数的关系,掌握积分的运算技巧。
第四章定积分与应用第四章主要介绍定积分的概念、性质和应用。
通过学习定积分的知识,可以帮助学生理解积分与面积、体积等概念的关系,并能够应用定积分解决实际问题。
第五章微分方程第五章主要介绍微分方程的基本概念、解法和应用。
通过学习微分方程的知识,可以帮助学生理解微分方程与实际问题的联系,并能够应用微分方程解决实际问题。
第六章多元函数微分学第六章主要介绍多元函数的概念、偏导数、全微分及其应用。
通过学习多元函数微分学的知识,可以帮助学生理解多元函数的变化规律,并能够应用多元函数微分学解决实际问题。
第七章重积分第七章主要介绍重积分的概念、性质和计算方法。
通过学习重积分的知识,可以帮助学生理解重积分与几何体积和质量等概念的关系,并能够应用重积分解决实际问题。
第八章曲线积分与曲面积分第八章主要介绍曲线积分与曲面积分的概念、性质和计算方法。
通过学习曲线积分与曲面积分的知识,可以帮助学生理解曲线积分与曲面积分与矢量场和流量等概念的关系,并能够应用曲线积分与曲面积分解决实际问题。
第九章空间解析几何第九章主要介绍空间解析几何的基本概念、性质和计算方法。
同济大学《高等数学》第五版[上册]的答案解析
![同济大学《高等数学》第五版[上册]的答案解析](https://img.taocdn.com/s3/m/da7bf403a0116c175e0e482a.png)
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 11-7
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 10-4
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
<<
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
专业整理 知识分享
练习 9-3
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
总习题八
专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式 专业整理 知识分享
完美 WORD 格式
练习 6-3
大学高等数知识体系概述

第五节 平面及其方程
第六节 空间直线及其方程 习题课
主页 目录 上页 下页 返回 结束
第八章 多元函数微分法 及其应用
第一节 多元函数的基本概念 第二节 偏导数 第三节 全微分 第四节 多元复合函数的求导法则 第五节 隐函数的求导方法 第六节 多元函数微分学的几何应用
主页 目录 上页 下页 返回 结束
第十章 曲线积分与曲面积分
第一节 对弧长的曲线积分
第二节 对坐标的曲线积分 第三节 格林公式及其应用 第四节 对面积的曲面积分 第五节 对坐标的曲面积分
第六节 高斯公式
通量与散度
环流量与旋度
第七节 斯托克斯公式
习题课
主页 目录 上页 下页 返回 结束
第十一章 无穷级数
第一节 常数项级数的概念与性质 第二节 常数项级数的审敛法
*第十节
欧拉方程
微分方程的幂级数解法 常系数线性微分方程组解法举例
主页 目录 上页 下页 返回 结束
第十一节
*第十二节
主页
目录
上页
下页
返回
结束
第四章 不定积分
第一节 不定积分的概念与性质 第二节 换元积分法
第三节 分部积分法
第四节 有理函数的积分
第五节 积分表的使用
习题课
主页
目录
上页
下页
返回
结束
第五章 定积分
第一节 定积分的概念与性质
第二节 微积分基本公式 第三节 定积分的换元法和分部积分法
习题课
第四节 反常积分
主页 目录 上页 下页 返回 结束
目 录 (续 )
第七章 空间解析几何与向量代数
第八章 多元函数微分法及其应用 第九章 重积分 第十章 曲线积分与曲面积分
高等数学同济大学第五版

高等数学同济大学第五版引言:高等数学作为一门重要的基础课程,对于各个理工科的学生来说都是必修的一门课程。
同济大学出版社出版的《高等数学同济大学第五版》是一本经典的教材,已经成为了国内许多高校教学的主要教材之一。
本文将就《高等数学同济大学第五版》的内容、特点以及其在数学教学中的重要作用进行详细介绍。
一、《高等数学同济大学第五版》的内容《高等数学同济大学第五版》全书共分为十四章,每章都包含了该章内容的理论点和典型例题,同时附有习题以供巩固知识和拓展思维。
首先是初等函数与极限,这一章主要介绍了数列的极限概念,以及各种初等函数的极限计算方法。
接下来是导数与微分,这一章内容涉及到函数的导数概念,各种导函数的求法以及微分的应用等。
第三章是一元函数的微分学应用,主要介绍了函数的极值与最值、函数的单调性与曲线的凹凸性等内容。
第四章是不定积分,该章内容讲解了不定积分的基本概念和计算方法,以及变量代换法等重要技巧。
接下来是定积分,这一章主要介绍了定积分的定义和性质,以及定积分的计算方法和应用等。
第六章是概率论与数理统计的基本概念,该章内容涵盖了概率论与数理统计的基本概念与计算方法,以及常见的离散型和连续型随机变量的概率分布等。
第七章是数项级数,主要介绍了数项级数的收敛性质、收敛判别法和常用的数项级数的和的计算等。
第八章是幂级数与函数展开,该章内容涵盖了幂级数的收敛性和展开式的计算方法。
第九章是常微分方程,主要介绍了常微分方程的基本概念、解法和应用等。
第十章是空间解析几何,该章内容涵盖了空间坐标系的建立、空间直线和平面的方程及其相互位置关系等。
接下来是向量代数与空间解析几何的应用,该章内容介绍了向量的内积和叉积的计算方法,以及向量与平面的垂直、平行关系等。
第十二章是多元函数微分学,主要涵盖了多元函数的极值和条件极值等。
第十三章是重积分,该章内容讲解了二重积分和三重积分的定义和性质,以及计算技巧和应用等。
最后一章是曲线积分和曲面积分,该章内容涵盖了曲线积分和曲面积分的定义、计算方法和应用等。
高数二同济第五版9-4重积分应用

02
重积分的计算方法
矩形区域上的重积分计算
矩形区域上的二重积分计算
将矩形区域划分为若干个小矩形,对每个小矩形上的函数值进行积分,再将所有小矩形的积分相加即可得到整个 矩形区域上的二重积分值。
矩形区域上的三重积分计算
将矩形区域划分为若干个小长方体,对每个小长方体上的函数值进行积分,再将所有小长方体的积分相加即可得 到整个矩形区域上的三重积分值。
在极坐标系下,重积分的计算公式为∫∫Df(x,y)ρ(x,y)dσ,其中D是积分区域,f(x,y)是 待求的函数,ρ(x,y)是极坐标系下的面积元素,dσ表示面积分。
极坐标系下重积分的应用
极坐标系下的重积分可以用于解决各种实际问题,如计算曲线的长度、曲面的面积、物 体的质量、重心等。通过将问题转化为极坐标系下的重积分,可以简化计算过程,提高
成本与收益分析
成本效益分析
成本效益分析是一种评估投资项目或决策的经济效益 的方法。通过比较项目的预期成本和预期收益,可以 确定项目的经济可行性。
机会成本
机会成本是指为了得到某种东西而放弃的其他最佳选择 所带来的收益。在经济学中,机会成本是一个重要的概 念,用于评估资源的有效利用和最大化经济效益。
供需关系分析
记号
二重积分常用符号表示为∫∫f(x,y)dxdy,三重积分常用符号表示为 ∫∫∫f(x,y,z)dxdydz。
重积分的性质
线性性质
对于任意常数a和b,,y)]dxdy=a*∫∫f(x,y)dxdy+b*∫∫g( x,y)dxdy。
积分区域的可加性
如果区域D被分成两个子区域D1和D2,则有 ∫∫f(x,y)dxdy=∫∫f(x,y)dxdy+∫∫f(x,y)dxdy。
同济大学第五高数PPT课件

N1 q)k
M2x N2 ( x2 px q)k1
Mk x Nk x2 px q
其中Mi , N i 都是常数(i 1,2,, k).
特殊地:k
1,
分解后为
x
Mx N 2 px
q
;
第20页/共45页
真分式化为部分分式之和的待定系数法
例1
x2
x3 5x 6
x3 ( x 2)( x 3)
数或反三角函数为 u.
第6页/共45页
例5 求积分 sin(ln x)dx.
解 sin(ln x)dx xsin(ln x) xd[sin(ln x)]
x sin(ln
x)
x
cos(ln
x)
1 x
dx
x sin(ln x) x cos(ln x) xd[cos(ln x)]
x[sin(ln x) cos(ln x)] sin(ln x)dx
t
3
1
t
2
t
6 t
dt
1e2 e3 e6
6
t(1
t
1 )(1
t2
dt )
6 t
1
3
t
3t 1 t
3
2
dt
第26页/共45页
6 t
1
3
t
3t 1 t
3
2
dt
6ln t 3ln(1 t) 3
2
d
(1 t 2 1 t2
)
3
1
1
t
2
dt
6ln t 3ln(1 t) 3 ln(1 t 2 ) 3arctan t C 2
f ( x)dx ex2 C ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uv uv uv, uv uv uv,
uvdx uv uvdx, udv uv vdu.
分部积分公式
例1 求积分 x cos xdx .
解(一) 令 u cos x, xdx 1 dx2 dv
2
x cos xdx
e x (sin x cos x) e x sin xdx 注意循环形式
e
x
sin
xdx
ex 2
(sin
x
cos
x)
C.
例7 求积分 x arctan x dx.
x
arctan 1 x2
x
dx
arctan
xd
1 x2
1 x2 arctan x 1 x2d(arctan x)
x)dx
x [sin(ln 2
x)
cos(ln
x)]
C.
例6 求积分 e x sin xdx.
解 e x sin xdx sin xde x e x sin x e xd(sin x) e x sin x e x cos xdx e x sin x cos xde x e x sin x (e x cos x e xd cos x)
1. 使用原则 : v易求出, uv dx易积分
2. 使用经验 : “反对幂指三” , 前 u v
后 3. 题目类型 :
分部化简 ; 循环解出;
4. 计算格式 : u u
v
v
递推公式
第四章 第四节
有理函数的积分
• 基本积分法 : 直接积分法 ; 换元积分法 ;
分部积分法
求导 • 初等函数
积分
初等函数
解 sin(ln x)dx xsin(ln x) xd[sin(ln x)]
x sin(ln
x)
x
cos(ln
x)
1 x
dx
x sin(ln x) x cos(ln x) xd[cos(ln x)]
x[sin(ln x) cos(ln x)] sin(ln x)dx
sin(ln
本节内容:
一、有理函数的积分
二、可化为有理函数的积分举例
一、有理函数的积分
有理函数的定义:
tan x lncos x tan x x C
例11. 求
解: 令 x t , 则 x t2 , dx 2t d t
原式 2 t e t d t 令 u t , v et 2(t et et ) C 2e x ( x 1) C
内容小结
分部积分公式 u vdx u v uv dx
x
dx
1 x2 arctan x ln( x 1 x2 ) C .
例 8 已知 f ( x)的一个原函数是ex2 , 求 xf ( x)dx .
解 xf ( x)dx xdf ( x) xf ( x) f ( x)dx,
f ( x)dx f ( x),
f ( x)dx ex2 C ,
高等数学
李苹 计算机科学学院
第四章 第三节
分部积分法
由导数公式 (uv) uv uv
积分得: uv uvdx uvdx
uvdx uv uv dx 或 udv uv v du
分部积分公式
1) v 容易求得 ;
容易计算 .
一、基本内容
问题 xe xdx ?
解决思路 利用两个函数乘积的求导法则.
x2e xdx x2e x 2 xe xdx
(再次使用分部积分法)u x, e xdx dv
x2e x 2( xe x e x ) C.
总结 若被积函数是幂函数和正(余)弦函数 或幂函数和指数函数的乘积, 就考虑设幂函
数为 u, 使其降幂一次(假定幂指数是正整数)
例3 求积分 x arctan xdx.
解 令 u arctan x , xdx d x2 dv
x arctan
xdx
x2 2
arctan
x
2 x
2
2
d
(arctan
x)
x2 arctan x
2
x2 2
1
1 x
2
dx
x2 arctan x
2
1 2
(1
1
1 x
2
)dx
x2 arctan x 1 ( x arctan x) C .
1 x2 arctan x
1
x2
1
1 x2
dx
1 x2 arctan x 1 dx
1 x2 令 x tan t
1
1 x2dx
1 sec2 tdt
1 tan2 t
sec tdt
ln(sec t tan t) C ln( x 1 x2 ) C
x
arctan 1 x2
两边同时对 x求导, 得 f ( x) 2 xex2 ,
xf ( x)dx xf ( x) f ( x)dx
2
x
2e
x
2
ex2
C.
例9. 求
解: 令 u
x2 a2 , v 1, 则 u
x , vx
x2a2
x2 a2 dx x x2 a2
x2 x2 a2
dx
x
x2 a2
x2 2
cos x
x2 2
sin
xdx
显然,u,v 选择不当,积分更难进行.
解(二) 令 u x, cos xdx d sin x dv
x cos xdx xd sin x x sin x sin xdx
x sin x cos x C.
例2 求积分 x2e xdx.
解 u x2 , e xdx de x dv,
2
2
例4 求积分 x3 ln xdx.
解 u ln x, x3dx d x4 dv,
4
x3
ln
xdx
1 4
x
4
ln
x
1 4
x
3dx
1 x4 ln x 1 x4 C .
4
16
总结 若被积函数是幂函数和对数函数或幂
函数和反三角函数的乘积,就考虑设对数函
数或反三角函数为 u.
例5 求积分 sin(ln x)dx.
(x2 a2 )a2 dx
x2 a2
x x2 a2
x2 a2 dx a2
dx x2 a2
∴
原式
=
1 2
x
x2 a2 a2 ln ( x 2
x2 a2 ) C
例10. 求
解:
令
u
ln cos
x,
v
1 cos2
x
,则
u tan x, v tan x
原式 = tan x lncos x tan2 x dx tan x lncos x (sec2 x 1) dx