单片机学习独立键盘扫描
单片机独立按键识别实验报告
桂林电子科技大学
实验报告
2016-2017 学年第一学期
开课单位海洋信息工程学院
适用年级、专业 14级机械设计制造及其自动化
课程名称《单片微型计算机与接口技术-课内实验》
主讲教师周旋
课程序号 BS1615000_03
课程代码 BS1615000 实验名称《独立按键识别》
学号 1416010516 - 17 姓名林亦鹏卢炳荣
独立按键识别实验报告
电路采用无源蜂鸣器,从P1.5口形成脉冲来驱动。
因为单片机开机初始化瞬间,其I/O口为高电平,会有误响动作。
单片机的独立键盘使用的是P1口。
当有键按下时,P1口相应位为低电平。
、查找资料说明按键抖动的原因。
、延时程序是怎么实现延时的?
定义蜂鸣器的连接端口--//。
实验五 键盘扫描实验 实验报告
键盘扫描实验实验报告一、实验目的1. 掌握线反转法键盘扫描原理。
2. 了解单片机的输入和输出过程,理解单片机的数据采集过程。
二、实验内容单片机外接4x4键盘,通过线反转法判断按下的键,并在数码管上显示按键对应的数字。
第一行从左到右分别是开关K0, K1, K2, K3,第二行从左到右分别是K4, K5, K6, K7以此类推。
当按下Kn时,在数码管上显示数字n。
三、实验原理线翻转法:先对行(R0-R3)置0,对列(R4-R7)置1。
当有键被按下时,会把按键所在的列的电位从1变0,记录下位置;然后再将行列翻转,记录下按下键的所在行,两数进行或运算,就可以得到一个唯一表示按下键的数字。
例如:假定R0-R7分别与单片机的P2.0-P2.7相连。
先把R4-R7置1,R0-R3置0(通过指令MOV P2, #0F0H实现)。
当键K5被按下时,R5电位被拉低为低电平。
此时,P2口表示的数为:1101 0000(0xD0);然后再置R4-R7为0,R0-R3为1,此时,R1电位被拉低为低电平,此时,P2口表示的数为:0000 1101(0x0D)。
将两数相与取反,得到:0010 0010。
四、实验过程1. 连接好单片机及其外围设备电路2. 编写汇编程序ORG LJMP KeyLJMP K7: CJNE R2, #82H, K8ORG 0100H MOV P0, #0F8H Init: CLR P1.3 LJMP KeyMOV P0, #0C0H K8: CJNE R2, #14H, K9 Key: MOV P2, #0F0H MOV P0, #080HMOV A, P2 LJMP KeyMOV R1, A K9: CJNE R2, #24H, K10MOV P2, #0FH MOV P0, #090HMOV A, P2 LJMP KeyORL A, R1 K10: CJNE R2, #44H, K11CPL A MOV P0, #088HMOV R2, A LJMP KeyJNZ KeyPro K11: CJNE R2, #84H, K12LJMP Key MOV P0, #083H KeyPro: CJNE R2, #11H, K1 LJMP KeyMOV P0, #0C0H K12: CJNE R2, #18H, K13LJMP Key MOV P0, #0C6H K1: CJNE R2, #21H, K2 LJMP KeyMOV P0, #0F9H K13: CJNE R2, #28H, K14LJMP Key MOV P0, #0A1H K2: CJNE R2, #41H, K3 LJMP KeyMOV P0, #0A4H K14: CJNE R2, #48H, K15LJMP Key MOV P0, #086H K3: CJNE R2, #81H, K4 LJMP KeyMOV P0, #0B0H K15: CJNE R2, #88H, K16LJMP Key MOV P0, #08EH K4: CJNE R2, #12H, K5 LJMP KeyMOV P0, #099H K16: LJMP KeyLJMP Key ENDK5: CJNE R2, #22H, K6MOV P0, #092HLJMP KeyK6: CJNE R2, #42H, K7MOV P0, #082H五、实验结果1. 当按下开关Kn时,数码管能够显示对应的数字。
独立按键连按和长按处理技巧
单片机按键处理技巧及编程方式2010-10-23 15:01从这一章开始,我们步入按键程序设计的殿堂。
在基于单片机为核心构成的应用系统中,用户输入是必不可少的一部分。
输入可以分很多种情况,譬如有的系统支持PS2键盘的接口,有的系统输入是基于编码器,有的系统输入是基于串口或者USB或者其它输入通道等等。
在各种输入途径中,更常见的是,基于单个按键或者由单个键盘按照一定排列构成的矩阵键盘(行列键盘)。
我们这一篇章主要讨论的对象就是基于单个按键的程序设计,以及矩阵键盘的程序编写。
◎按键检测的原理常见的独立按键的外观如下,相信大家并不陌生,各种常见的开发板学习板上随处可以看到他们的身影。
(原文件名:1.jpg)引用图片总共有四个引脚,一般情况下,处于同一边的两个引脚内部是连接在一起的,如何分辨两个引脚是否处在同一边呢?可以将按键翻转过来,处于同一边的两个引脚,有一条突起的线将他们连接一起,以标示它们俩是相连的。
如果无法观察得到,用数字万用表的二极管挡位检测一下即可。
搞清楚这点非常重要,对于我们画PCB的时候的封装很有益。
它们和我们的单片机系统的I/O口连接一般如下:(原文件名:2.jpg)引用图片对于单片机I/O内部有上拉电阻的微控制器而言,还可以省掉外部的那个上拉电阻。
简单分析一下按键检测的原理。
当按键没有按下的时候,单片机I/O通过上拉电阻R接到VCC,我们在程序中读取该I/O的电平的时候,其值为1(高电平); 当按键S按下的时候,该I/O被短接到GND,在程序中读取该I/O的电平的时候,其值为0(低电平) 。
这样,按键的按下与否,就和与该按键相连的I/O的电平的变化相对应起来。
结论:我们在程序中通过检测到该I/O口电平的变化与否,即可以知道按键是否被按下,从而做出相应的响应。
一切看起来很美好,是这样的吗?◎现实并非理想在我们通过上面的按键检测原理得出上述的结论的时候,其实忽略了一个重要的问题,那就是现实中按键按下时候的电平变化状态。
单片机矩阵键盘扫描程序
void L1602_string(uchar hang,uchar lie,uchar *p)
{
uchar a,b=0;
if(hang == 1) a = 0x80;
{
P1 = Buffer[j];
temp = 0x10;
for(i=0; i<4; i++)
{
if(!(P1 & temp))
{
x= i+j*4;
switch(x)
{ case 0:return 1; break;
case 1:return 2; break;
case 2:return 3;break;
uint keyflag ; //键盘正在读取标志位,如果Keyflag为1,表示正在读取键盘,停止其他功能;
char x,y,m,n,c;
//Keyflag为0,读取键盘结束,恢复其他功能
char flag1=0;
//频率范围10~1000Hz
uchar Hrate = 0;//一个周期内高点平占据时间
E = 0;
delay();
P0 = del;
delay();
E = 1;
delay();
E = 0;
}
/********************************************************************
*名称: L1602_init()
*功能: 1602初始化,请参考16பைடு நூலகம்2的资料
stm32键盘扫描电路原理
stm32键盘扫描电路原理
STM32键盘扫描电路原理是通过使用STM32微控制器的GPIO(通用输入/输出)功能和外部硬件电路,实现对键盘的扫描和检测。
1. 首先需要将键盘的按键连接到STM32微控制器的GPIO引脚上。
可以使用矩阵排列的方式来连接多个按键。
2. 然后将STM32微控制器的GPIO设置为输入模式,需要扫描的按键对应的GPIO引脚设置为输入。
3. 在代码中,设置一个循环,依次对每一个按键进行扫描。
可以使用GPIO外部中断来触发按键的扫描。
4. 在每次扫描过程中,将某一个按键对应的GPIO引脚设置为高电平,并读取引脚的状态。
5. 如果读取到的引脚状态为高电平,则表示该按键被按下。
6. 根据读取到的按键状态,可以执行相应的操作。
需要注意的是,如果使用矩阵排列的方式连接多个按键,还需要使用GPIO引脚的输出模式来控制矩阵的行和列。
总之,STM32键盘扫描电路原理是通过STM32微控制器的GPIO和外部硬件电路,实现对键盘的扫描和检测。
单片机课程设计例题8-独立式小键盘输入
Vcc
P口
图437 独立式键盘结构图
4.程序设计
(1)流程图
开始 开始
键盘扫描函数 mark=01 ? Y mark=02 ? Y mark=03 ? Y LED点亮左移函数 点亮左移函数
有键按下? Y 延时 键释放? Y 置标志位 mark N LED闪烁函数 闪烁函数 结束 N
N
N
LED点亮右移函数 点亮右移函数
n n n n n n n n n n n n n n n n
void main(void) //主函数 { do { switch (key_scan()) { case 0: break; case 1:Led_left(); break; case 2:Led_right(); break; case 3:Led_flash(); break; } }while(1); //循环 }
n n n n n n n n n n n
void Led_right(void)//按键SW2,LED点亮右移函数 { unsigned char i,j=0x7F; for (i=0;i<8;i++) { P1=j ; delay() ; j=(j>>1); j=j|0x80; } }
n
void delay(void) //延时0.5s n { n unsigned int i,j; n for (i=0;i<500;i++) n for (j=0;j<120;j++); for (j=0;j<120;j++); n }
n
n n n n n n n n n n n n n n
键盘扫描程序实验报告
一、实验目的1. 理解键盘扫描的基本原理。
2. 掌握使用C语言进行键盘扫描程序设计。
3. 学习键盘矩阵扫描的编程方法。
4. 提高单片机应用系统的编程能力。
二、实验原理键盘扫描是指通过检测键盘矩阵的行列状态,判断按键是否被按下,并获取按键的值。
常见的键盘扫描方法有独立键盘扫描和矩阵键盘扫描。
独立键盘扫描是将每个按键连接到单片机的独立引脚上,通过读取引脚状态来判断按键是否被按下。
矩阵键盘扫描是将多个按键排列成矩阵形式,通过扫描行列线来判断按键是否被按下。
这种方法可以大大减少引脚数量,降低成本。
本实验采用矩阵键盘扫描方法,使用单片机的并行口进行行列扫描。
三、实验设备1. 单片机开发板(如51单片机开发板)2. 键盘(4x4矩阵键盘)3. 连接线4. 调试软件(如Keil)四、实验步骤1. 连接键盘和单片机:将键盘的行列线分别连接到单片机的并行口引脚上。
2. 编写键盘扫描程序:(1)初始化并行口:将并行口设置为输入模式。
(2)编写行列扫描函数:逐行扫描行列线,判断按键是否被按下。
(3)获取按键值:根据行列状态,确定按键值。
(4)主函数:调用行列扫描函数,读取按键值,并根据按键值执行相应的操作。
3. 调试程序:将程序下载到单片机,观察键盘扫描效果。
五、实验程序```c#include <reg51.h>#define ROW P2#define COL P3void delay(unsigned int ms) {unsigned int i, j;for (i = 0; i < ms; i++)for (j = 0; j < 123; j++);}void scan_key() {unsigned char key_val = 0xFF;ROW = 0xFF; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值ROW = 0x00; // 初始化行delay(1); // 延时消抖key_val = ROW & COL; // 获取按键值}void main() {while (1) {scan_key();if (key_val != 0xFF) {// 执行按键对应的操作}}}```六、实验结果与分析1. 实验结果:程序下载到单片机后,按键按下时,单片机能够正确读取按键值。
键盘扫描原理及应用键盘
键盘扫描原理及应⽤键盘本资源为⽹上搜集⽽来,如果该程序涉及或侵害到您的版权请⽴即写信通知我键盘扫描键盘是由按键构成,是单⽚机系统⾥最常⽤的输⼊设备。
我们可以通过键盘输⼊数据或命令来实现简单的⼈-机通信。
1.按键及键抖动按键是⼀种常开型按钮开关。
平时,按键的两个触点处于断开状态,按下按键时两个触点才闭合(短路)。
如图1-1所⽰,平常状态下,当按键K未被按下时,按键断开,PA0输⼊⼝的电平为⾼电平;当按键K被按下时,按键闭合,PA0输⼊⼝的电平为低电平。
图1-1 按键电路图1-2 按键抖动⼀般的按键所⽤开关都是机械弹性开关,由于机械触点的弹性作⽤,按键开关在闭合时不会马上稳定地连接,在断开进也不会马上完全的断开,在闭合和断开的瞬间均有⼀连串的抖动。
按键按下的电压信号波形图如图1-2所⽰,从图中可以看出按键按下和松开的时候都存在着抖动。
抖动时间的长短因按键的机械特性不同⽽有所不同,⼀般为5ms~10ms。
如果不处理键抖动,则有可能引起⼀次按键被误读成多次,所以为了确保能够正确地读到按键,必须去除键抖动,确保在按键的稳定闭合和稳定断开的时候来判断按键状态,判断后再做处理。
按键在去抖动,可⽤硬件或软件两种⽅法消除。
由于使⽤硬件⽅法消除键抖动,⼀般会给系统的成本带来提⾼,所以通常情况下都是使⽤软件⽅法去除键抖动。
常⽤的去除键抖动的软件⽅法有很多种,但是都离不开基本的原则:就是要么避开抖动的时候检测按键或是在抖动的时候检测到的按键不做处理。
这⾥说明⼀下常⽤的两种⽅法:第⼀种⽅法是检测到按键闭合电平后先执⾏⼀个延时程序,做⼀个12ms~24ms的延时,让前抖动消失后再⼀次检测按键的状态,如果仍是闭合状态的电平,则认为真的有按键按下;若不是闭合状态电平,则认为没有键按下。
若是要判断按键松开的话,也是要在检测到按键释放电平之后再给出12ms~24ms的延时,等后抖动消失后再⼀次检测按键的状态,如果仍为断开状态电平,则确认按键松开。
实验5-独立键盘和矩阵键盘
实验5 独立键盘和矩阵键盘一、实验目的1、学会用C语言进行独立按键应用程序的设计。
2、学会用C语言进行矩阵按键应用程序的设计。
二、实验内容1、独立按键:对四个独立按键编写程序:当按k1时,8个LED同时100ms闪烁;当按k2时,8个LED从左到右流水灯显示;当按k3时,8个LED从右到左流水灯显示;当按k4时,8各LED同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭;2、矩阵按键:采用键盘扫描方式,顺序按下矩阵键盘后,在一个数码管上顺序显示0~F,采用静态显示即可。
3、提高部分(独立按键、定时器、数码管动态扫描):编写程序,实现下面的功能。
用数码管的两位显示一个十进制数,变化范围为00~59,开始时显示00,每按一次k1,数值加1;每按一次k2,数值减1;每按一次k3,数值归零;按下k4,利用定时器功能使数值开始自动每秒加1;再按一次k4,数值停止自动加1,保持显示原数。
三、实验步骤1、硬件连接(1)使用MicroUSB数据线,将实验开发板与微型计算机连接起来;(2)在实验开发板上,用数据线将相应接口连接起来;2、程序烧入软件的使用使用普中ISP软件将HEX文件下载至单片机芯片内。
查看结果是否正确。
四、实验结果——源代码1. #include "reg52.h"typedef unsigned char u8;typedef unsigned int u16;#define LED P2sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;const char tab[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f}; u8 code begMid[]={0x7e, 0xbd,0xdb,0xe7, 0xdb, 0xbd, 0x7e}; void Delay(u16 i){ while(i--);}void KeyDown(){u8 i;if(key2==0){Delay(1000);if(key2==0){for(i=0;i<8;i++){LED=tab[i];Delay(50000);}while(!key2);}LED=0xff;}else if(key1==0){Delay(1000);if(key1==0)for(i=0;i<3;i++){LED=0x00;Delay(10000);LED=0xff;Delay(10000);}}}}void Int0Init(){IT0=1;EX0=1;EA=1;}void Int1Init(){IT1=1;EX1=1;EA=1;} void main(){Int0Init();Int1Init();while(1){KeyDown();}}void Int0() interrupt 0{u8 i;if(key3==0){Delay(1000);if(key3==0)for(i=7;i>=0;i--){LED=tab[i];Delay(50000);}}}}void Int1() interrupt 2{u8 i;if(key4==0){Delay(1000);if(key4==0){for(i=0;i<=6;i++){LED=begMid[i];Delay(50000);}}}}2.#include "reg52.h"typedef unsigned int u16;typedef unsigned char u8;#define GPIO_DIG P0#define GPIO_KEY P1sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;u8 KeyValue;u8 code smgduan[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//??0~F?? void delay(u16 i){while(i--);}void KeyDown(void){char a=0;GPIO_KEY=0x0f;if(GPIO_KEY!=0x0f){delay(1000);if(GPIO_KEY!=0x0f){GPIO_KEY=0X0F;switch(GPIO_KEY){case(0X07): KeyValue=0;break;case(0X0b): KeyValue=1;break;case(0X0d): KeyValue=2;break;case(0X0e): KeyValue=3;break;}GPIO_KEY=0XF0;switch(GPIO_KEY){case(0X70): KeyValue=KeyValue;break;case(0Xb0): KeyValue=KeyValue+4;break;case(0Xd0): KeyValue=KeyValue+8;break;case(0Xe0): KeyValue=KeyValue+12;break;}while((a<50)&&(GPIO_KEY!=0xf0)){delay(1000);a++;}}}}void main(){LSA=0;LSB=0;LSC=0;while(1){KeyDown();GPIO_DIG=smgduan[KeyValue];}}3.#include <reg52.h>typedef unsigned int u16;typedef unsigned char u8;#define KEYPORT P3sbit LSA=P2^2;sbit LSB=P2^3;sbit LSC=P2^4;sbit key1=P3^1;sbit key2=P3^0;sbit key3=P3^2;sbit key4=P3^3;u16 t;u8 sec;u8 DisplayData[2];u8 code smgduan[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; void Time1Init(){TMOD |= 0x10;TH1=0Xd8;TL1=0Xf0;EA=1;ET1=1;}void delay(u16 i){while(i--); }void DigDisplay(){u8 i;for(i=0;i<2;i++){switch(i){case 0:LSA=0;LSB=0;LSC=0;break;case 1:LSA=1;LSB=0;LSC=0;break;}P0=DisplayData[i];delay(100);P0=0x00;}}void datapros(){DisplayData[0]=smgduan[sec%10];DisplayData[1]=smgduan[sec/10];}void main(){Time1Init();while(1){if(key4==0){delay(1000);if(key4==0){TR1=!TR1;while(key4==0);}}if(key3==0){delay(1000);if(key3==0){sec=0;while(key3==0);}}if(key2==0){delay(1000);if(key2==0){sec--;while(key2==0);}}if(key1==0){delay(1000);if(key1==0){sec++;while(key1==0);}}}}void Time1() interrupt 2{TH1=0Xd8;TL1=0Xf0;t++;if(t==100){t=0;sec++;if(sec>=60){sec=0;}}datapros();DigDisplay();}五、实验体会——结果分析1、独立按键:位定义四个按键key1、key2、key3、key4,宏定义LED为P2口,tab数组保存流水灯D0-D7依次点亮的数值,begMid数组保存流水灯同时从两侧向中间逐步点亮,之后再从中间向两侧逐渐熄灭的赋值方式。
单片机按键 长按 短按
switch(key_num){
case 1:key_ret = 5;break;
case 2:key_ret = 6;break;
case 3:key_ret = 7;break;
case 4:key_ret = 8;break;
}
}
else{/*短按有效*/
}
ห้องสมุดไป่ตู้}
}
return key_ret;
}
if(key_flag){/*松手*/
key_flag = 0;
switch(key_num){
case 1:key_ret = 1;break;
case 2:key_ret = 2;break;
case 3:key_ret = 3;break;
case 4:key_ret = 4;break;
static bit key_flag = 0;
if((!SET)||(!KUP)||(!KDN)||(!KOK)){/*判断是否有键按下*/
if(++del_count==5){/*计数消抖*/
del_count = 0;
if(++tim_count>4){/*长按识别*/
key_flag = 0;/*短按无效*/
key_flag = 1;/*短按标志位*/
if(!SET)key_num = 1;/*一下用于识别按键*/
if(!KUP)key_num = 2;
if(!KDN)key_num = 3;
if(!KOK)key_num = 4;
实验五:独立式键盘实验
实验五:独立式键盘实验4.5.1 实验目的1. 掌握单片机独立键盘接口设计方法。
2. 掌握单片机键盘扫描程序设计方法。
3. 掌握按键功能设计方法。
4. 掌握软件消除按键抖动方法。
4.5.2 实验预习1.熟悉Keil集成编译环境的使用方法。
2. 复习单片机C语言程序设计方法。
3. 复习独立键盘工作原理。
4. 复习按键去抖动方法。
4.5.3 实验原理实验板上提供4个独立按键,与单片机接口如图4.5.1所示,每个按键单独接单片机一个I/O接口。
只要将相应端口设为1,然后判断端口状态,如果仍为1,则按键处于断开(释放)状态,如果为0,则按键处于接通(闭合)状态。
图4.5.1 独立键盘电原理图4.5.4 预作实验任务1. 用Proteus仿真软件绘制独立键盘电路图,包括如图4.5.1所示键盘接口,单片机最小系统以及数码管动态显示电路。
2. 简述按键识别过程中如何等待按键释放。
3. 简述按键抖动对单片机系统工作性能的影响,并简介消除按键抖动的方法。
4. 编写按键识别函数,要求正确识别4个按键的状态,如果有按键按下则返回键值,从左到右四个键值分别为1~4。
并通过仿真或实验板验证(要求用软件的方法消除按键抖动)。
5.为实验板上4个按键设定不同的功能,在数码管上显示数字128,4个按键按下后分别对显示的数字做如下修改:key1:数字+1;key2:数字-1;key3:数字+10;key4:数字-10;流程图如图4.5.2所示,试设计完整程序(按键识别子程序KEYSCAN和动态显示子程序DISPLAY可直接调用这里省略)。
图4.5.2 按键功能设计流程图4.5.5 实验任务1.开机时数码管显示1002.按键key1一次数字加1,按键key2一次数字减1。
加到999时再加1归零,减到000时再减1得999。
3.按住键key3不放实现连加功能,每0.2s加1。
4.按住键key4不放实现连减功能,每0.2s减1。
4.5.6 实验步骤1.分析题意,确定算法,绘制主程序流程图。
单片机按键实验报告
单片机按键实验报告篇一:单片机按键扫描实验报告键盘扫描一.实验目的(1)掌握矩阵键盘接口电路和键盘扫描编程方法。
(2)掌握按键值处理与显示电路设计。
二.实验任务(1)设计4*4键盘,编写各个键的特征码和对应的键值(0~F);(2)编程扫描按键,将按键对应的数字值使用数码管显示出来。
三.实验电路及连线方法1.采用动态显示连线方法:电路由2 片74LS573,1 个六字一体的共阴数码管组成。
由U15 输出段选码,U16 做位选码,与单片机的采用I/O 口连接方式,短路片J22 连接P2.0,J23 连接P2.3,做输出信号锁存。
(实际电路连接是d7-d6-d5-d4-d3-d2-d1-d0?h-c-d-e-g-b-a-f)。
PW12 是电源端。
2.键盘电路连线方法:电路由16 个按键组成,用P1 口扩展4×4 行列式键盘。
J20 是键盘连接端,连接到P1 口。
J21 是行列键盘、独立键盘选择端,当J21 的短路片连接2-3脚时,构成4×4 行列式键盘;当J21 的短路片连接2-1 脚时,可形成3×4 行列式键盘,4 个独立式按键S4、S8、S12、S16,这4 个独立按键分别连接P1.4~P1.7;其他12 个键3×4 行列式键盘。
PW15 是电源端。
四.编程思路1.采用反转法识别按键的闭合。
2.采用动态显示将键值显示出来。
五.算法流程图六.资源分配1.用P1口进行查找按键2.用R3做键值指针3.用R1做动态显示为选码指针。
4.R5为延时指针。
七.程序设计KPIN:ORG MOV MOV ANL MOV 0000H P1,#0F0H A,P1 A,#0F0H B,AMOVP1,#0FHMOVA,P1ANLA,#0FHORLA,BCJNE A,#0FFH,KPIN1AJMP EXITKPIN1: MOVB,AMOVDPTR,#TABKPMOVR3,#0KPIN2: MOVA,R3MOVC A,@A+DPTRCJNE A,B,KPIN3MOVA,R3LOOP: MOVR1,#0FEH;键盘动态显示 LOOP1: MOVA,R3ANLA,#0FHMOV DPTR,#TABMOVC A,@A+DPTRCLRP2.0CLRP2.1MOVP0,ASETB P2.0NOPCLRP2.0LOOP2: MOVA,R1;位选码MOVP0,ASETB P2.1MOVR5,#250LOOP3: DJNZ R5,LOOP3CLRP2.1SJMP LOOPKPIN3: INCR3CJNE A,#0FFH,KPIN2EXIT: RETTABKP: DB0EEH,0DEH,0BEH,7EH,0EDH,0DDH,0BDH,7DH,0EBHDB 0DBH,0BBH,7BH,0E7H,0D7H,0B7H,77H,67H,0FFHTAB: DB77H,44H,3EH,6EH,4DH,6BH,7BH,46H,7FH,6FH,5FHDB 79H,33H,7CH,3BH,1BHEND八.调试出现的问题及解决问题1:程序正常运行,但按键显示出现乱码解决:动态显示笔形码错误,并改正。
89c52单片机矩阵键盘扫描法
case(0xbd):display(6);break;
case(0x7d):display(7);break;
}
P1=0xfb;//第3行为0,检测是否有键按下
temp=P1;
switch(temp)
{
case(0xeb):display(8);break;
//共阳数码管显示字型码数组1011 1111 "-"
void delay(uint i);
void display(uint k);
void beep();
void delay1();
void main()
{
uchar temp,tt;
display(16); //初始显示"-"
while(1)
{
{
;
}
}
void beep()
{
P3=0xbf;//P3.6
delay1();
P3=0xff;
delay1();
}
P1=0xff; //先向P1口写1;端口读状态
P1=0xf0; //行全为0
temp=P1; //检测是否有键按下
if(temp!=0xf0)
{
delay(15); //消抖
if(temp!=0xf0)
{
P1=0xfe;//第一行为0,检测是否有键按下
temp=P1;
switch(temp)
{
case(0xee):display(0);break;
break;
case(0xd7):display(13);break;
case(0xb7):display(14);break;
基于单片机技术的按键扫描电路分析
四、实验验证
为了验证本次演示所介绍的基于单片机技术的按键扫描电路分析的正确性, 我们设计了一个简单的实验:通过单片机控制一个4×4的按键矩阵,实现8个按 键的扫描和识别。实验结果表明,该方法可以有效地实现对多个按键的扫描和识 别。
五、总结
本次演示详细介绍了基于单片机技术的按键扫描电路的基本概念、电路组成、 电路原理、电路板设计以及软件设计等方面的内容。通过实验验证,该方法可以 有效地实现对多个按键的扫描和识别。未来可以进一步研究如何提高按键扫描电 路的性能和稳定性,以及在实际应用中的优化问题。
3、输出控制:经过按键处理后,单片机根据预设的程序对外部设备进行控 制。例如,当按下某个按键时,单片机可以控制一个LED灯的亮灭。
二、单片机按键模块的设计方法
下面以8051单片机为例,介绍一种常见的单片机按键模块设计方法。
1、硬件设计:8051单片机具有 4个并行输入输出口(P0、P1、 P2、P3)
(1)按键抖动:按键抖动是由于按键过程中电压波动引起的现象。为了消 除按键抖动,可以在程序中加入去抖动算法,例如延时检测、两次确认等。
(2)连键:连键是指多个按键同时按下或相互连通的现象。为了避免连键 现象,可以在程序设计时增加防连键处理,例如为每个按键设置唯一的标识符, 同时按下多个按键时只识别其中的一个。
参考内容
在现代电子设备中,按键模块是一种常见的人机交互方式。通过按键,用户 可以向电子设备发送指令,控制设备的运行。单片机作为嵌入式系统的重要分支, 具有体积小、价格低、可靠性高等优点,因此在按键模块设计中具有广泛的应用。
一、单片机按键模块的基本原理
单片机按键模块的工作原理主要包括三个步骤:按键检测、按键处理和输出 控制。
if(KEY != key1) //如果检测到按键状态发生变化 key1 = KEY; //更新输出位状态
4×4键盘扫描程序开启原理及实例(精心整理)
单片机4*4键盘扫描程序时如何开启的?按照行顺序,一行一行的开启,如下图:4*4共16键,假设P0.0-P0.3为H0-H3,P0.4-P0.7为L0-L3(列) L0 L1 L2 L3(行) H0 0 1 2 3H1 4 5 6 7H2 8 9 A BH3 C D E F首先让H0 = 0,然后依次检测L0-L3,看那个键按下了,则对应的L0-L3为0,这样第一行检测结束。
比如扫描H0行时第一个键按下了,则L0=0,获得的P0=0xee,你也可以返回一个值,比如就是0,来代表第一个键(0)被按下,这样依次检测就扫描满16个键就行了。
4*4键盘扫描程序#include <reg52.h>//包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const dofly[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=dofly[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=dofly[1];break;//1case 0x7b:P0=dofly[2];break;//2case 0x77:P0=dofly[3];break;//3case 0xbe:P0=dofly[4];break;//4case 0xbd:P0=dofly[5];break;//5case 0xbb:P0=dofly[6];break;//6case 0xb7:P0=dofly[7];break;//7case 0xde:P0=dofly[8];break;//8case 0xdd:P0=dofly[9];break;//9case 0xdb:P0=dofly[10];break;//acase 0xd7:P0=dofly[11];break;//bcase 0xee:P0=dofly[12];break;//ccase 0xed:P0=dofly[13];break;//dcase 0xeb:P0=dofly[14];break;//ecase 0xe7:P0=dofly[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖if(cord_h!=0x0f){cord_h=P3&0x0f; //读入列线值P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}以下为详细解释:假设按下的是S1键进行如下检测(4*4键盘)先在P3口输出p3 00001111低四位行会有变化cord_h =00001111&00001110 =00001110if !=00001111延时0.1uscord_h=00001110&00001111=00001110if !=00001111P3再输出11111110P3 =00001110|11110000=11111110输出高四位cord_l=P3&0xf0 //此时P3口就是输入值01111110 而不是上面的11111110cord_l=01111110&11110000=01110000cord_h+cord_l=00001110+01110000=01111110=0x7e //此编码即为S1的编码#include <reg52.h>//包含头文件#define uchar unsigned char#define uint unsigned intunsigned char const table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//0-Fuchar keyscan(void);void delay(uint i);void main(){uchar key;P2=0x00;//1数码管亮按相应的按键,会显示按键上的字符while(1){key=keyscan();//调用键盘扫描,switch(key){case 0x7e:P0=table[0];break;//0 按下相应的键显示相对应的码值case 0x7d:P0=table[1];break;//1case 0x7b:P0=table[2];break;//2case 0x77:P0=table[3];break;//3case 0xbe:P0=table[4];break;//4case 0xbd:P0=table[5];break;//5case 0xbb:P0=table[6];break;//6case 0xb7:P0=table[7];break;//7case 0xde:P0=table[8];break;//8case 0xdd:P0=table[9];break;//9case 0xdb:P0=table[10];break;//acase 0xd7:P0=table[11];break;//bcase 0xee:P0=table[12];break;//ccase 0xed:P0=table[13];break;//dcase 0xeb:P0=table[14];break;//ecase 0xe7:P0=table[15];break;//f}}}uchar keyscan(void)//键盘扫描函数,使用行列反转扫描法{uchar cord_h,cord_l;//行列值P3=0x0f; //行线输出全为0cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f) //先检测有无按键按下{delay(100); //去抖cord_h=P3&0x0f; //读入列线值if(cord_h!=0x0f){P3=cord_h|0xf0; //输出当前列线值cord_l=P3&0xf0; //读入行线值return(cord_h+cord_l);//键盘最后组合码值}}return(0xff); //返回该值}void delay(uint i)//延时函数{while(i--);}在P3口做的键盘你的去抖检测没有做好通过电平输入来引发中断,必须是由P3.2或P3.3引脚输入,这样才能触发中断。
实验四键盘扫描及显示设计实验报告
实验四键盘扫描及显⽰设计实验报告实验四键盘扫描及显⽰设计实验报告⼀、实验要求1. 复习⾏列矩阵式键盘的⼯作原理及编程⽅法。
2. 复习七段数码管的显⽰原理。
3. 复习单⽚机控制数码管显⽰的⽅法。
⼆、实验设备1.PC 机⼀台2.TD-NMC+教学实验系统三、实验⽬的1. 进⼀步熟悉单⽚机仿真实验软件 Keil C51 调试硬件的⽅法。
2. 了解⾏列矩阵式键盘扫描与数码管显⽰的基本原理。
3. 熟悉获取⾏列矩阵式键盘按键值的算法。
4. 掌握数码管显⽰的编码⽅法。
5. 掌握数码管动态显⽰的编程⽅法。
四、实验内容根据TD-NMC+实验平台的单元电路,构建⼀个硬件系统,并编写实验程序实现如下功能:1.扫描键盘输⼊,并将扫描结果送数码管显⽰。
2.键盘采⽤ 4×4 键盘,每个数码管显⽰值可为 0~F 共 16 个数。
实验具体内容如下:将键盘进⾏编号,记作 0~F,当按下其中⼀个按键时,将该按键对应的编号在⼀个数码管上显⽰出来,当再按下⼀个按键时,便将这个按键的编号在下⼀个数码管上显⽰出来,数码管上可以显⽰最近 4 次按下的按键编号。
五、实验单元电路及连线矩阵键盘及数码管显⽰单元图1 键盘及数码管单元电路实验连线图2实验连线图六、实验说明1. 由于机械触点的弹性作⽤,⼀个按键开关在闭合时不会马上稳定地接通,在断开时也不会⼀下⼦断开。
因⽽在闭合及断开的瞬间均伴随有⼀连串的抖动。
抖动时间的长短由按键的机械特性决定,⼀般为 5~10ms。
这是⼀个很重要的时间参数,在很多场合都要⽤到。
键抖动会引起⼀次按键被误读多次。
为了确保 CPU 对键的⼀次闭合仅做⼀次处理,必须去除键抖动。
在键闭合稳定时,读取键的状态,并且必须判别;在键释放稳定后,再作处理。
按键的抖动,可⽤硬件或软件两种⽅法消除。
2. 为了减少键盘与单⽚机接⼝时所占⽤ I/O 线的数⽬,在键数较多时,通常都将键盘排列成⾏列矩阵形式。
3. 从数码管显⽰⽅式看,数码管分为静态显⽰和动态显⽰两种⽅式。
单片机按键扫描实验报告
单片机按键扫描实验报告
实验目的:
通过实验,掌握单片机按键的原理和按键的扫描方法。
实验器材:
1. STC89C52单片机开发板
2. 按键模块
3. 面包板、杜邦线等
实验原理:
单片机按键的原理是通过按键模块接通或断开单片机的某个IO口,从而改变该IO口的电平状态,由单片机检测到电平状态的改变,从而实现对按键的检测和响应。
按键模块一般采用矩阵按键的形式,通过多个IO口设为输出,多个IO口设为输入的方式,实现对多个按键的扫描检测。
按键模块一般会采用行列扫描的方法,即将按键分为多个行和列,按下按键时,某一行和某一列之间接通,从而改变了IO口的电平状态。
实验步骤:
1. 将按键模块连接到单片机开发板的IO口上。
根据按键模块的接口定义将VCC、GND和各个行列引脚分别连接到开发板上。
2. 根据按键模块的引脚定义,编写单片机程序进行按键的扫描。
通过循环检测每个行引脚和每个列引脚之间的电平变化,来判断按键是否被按下。
3. 在程序中可以通过LED等显示设备来显示按键是否被按下的状态。
4. 执行程序,观察按键是否可以正常检测和响应。
实验结果:
实验完成后,观察到按键的检测和响应正常,按下按键时,LED等显示设备可以正确显示按键被按下的状态。
经过实验,掌握了单片机按键的原理和按键的扫描方法,进一步提升了对单片机设备的理解和应用能力。
单片机 矩阵键盘实验 实验报告
实验五矩阵键盘实验一、实验内容1、编写程序,做到在键盘上每按一个数字键(0-F)用发光二极管将该代码显示出来。
按其它键退出。
2、加法设计计算器,实验板上有12个按键,编写程序,实现一位整数加法运算功能。
可定义“A”键为“+”键,“B”键为“=”键。
二、实验目的1、学习独立式按键的查询识别方法。
2、非编码矩阵键盘的行反转法识别方法。
三、实验说明1、MCS51系列单片机的P0~P3口作为输入端口使用时必须先向端口写入“1”。
2、用查询方式检测按键时,要加入延时(通常采用软件延时10~20mS)以消除抖动。
3、识别键的闭合,通常采用行扫描法和行反转法。
行扫描法是使键盘上某一行线为低电平,而其余行接高电平,然后读取列值,如读列值中某位为低电平,表明有键按下,否则扫描下一行,直到扫完所有行。
行反转法识别闭合键时,要将行线接一并行口,先让它工作在输出方式,将列线也接到一个并行口,先让它工作于输入方式,程序使CPU通过输出端口在各行线上全部送低电平,然后读入列线值,如此时有某键被按下,则必定会使某一列线值为0。
然后,程序对两个并行端口进行方式设置,使行线工作于输入方式,列线工作于输出方式,并将刚才读得的列线值从列线所接的并行端口输出,再读取行线上输入值,那么,在闭合键所在行线上的值必定为0。
这样,当一个键被接下时,必定可以读得一对唯一的行线值和列线值。
由于51单片机的并口能够动态地改变输入输出方式,因此,矩阵键盘采用行反转法识别最为简便。
行反转法识别按键的过程是:首先,将4个行线作为输出,将其全部置0,4个列线作为输入,将其全部置1,也就是向P1口写入0xF0;假如此时没有人按键,从P1口读出的值应仍为0xF0;假如此时1、4、7、0四个键中有一个键被按下,则P1.6被拉低,从P1口读出的值为0xB0;为了确定是这四个键中哪一个被按下,可将刚才从P1口读出的数的低四位置1后再写入P1口,即将0xBF写入P1口,使P1.6为低,其余均为高,若此时被按下的键是“4”,则P1.1被拉低,从P1口读出的值为0xBE;这样,当只有一个键被按下时,每一个键只有唯一的反转码,事先为12个键的反转码建一个表,通过查表就可知道是哪个键被按下了。
51单片机键盘扫描讲解
51单片机键盘扫描讲解单片机键盘扫描程序单片机键盘扫描单片机键盘扫描原理单片机基础知识讲解单片机矩阵键盘单片机矩阵键盘程序单片机矩阵键盘原理单片机键盘单片机44键盘
键盘的应用
1、键盘的分类 键盘分编码键盘和非编码键盘。键盘上 闭合键的识别由专用的硬件编码器实现,并 产生键编码号或键值的称为编码键盘,如计 算机键盘. 而靠软件编程来识别的称为非编码键盘; 在单片机组成的各种系统中,用的最多的是 非编码键盘。也有用到编码键盘的。
K0
P10
K4
0 4 8 C
4
K1
1 5 9 D
P15
K2
2 6 A E
P16
K3
3 7 B F
P17
K5
K6
K7
P11 P12 P13
K8
K9
K10
K11
89C52
E A/VP X1 X2 RE SE T RD WR
K12
K13
K14
K15
1.数码管前三位显示一个跑表,从000到 999之间以1%秒速度运行,当按下一个独 立键盘时跑表停止,松开手后跑表继续运 行。(用定时器设计表)。 在上题的基础上,用另外三个独立键盘实 现按下第一个时计时停止,按下第二个时 计时开始,按下第三个是计数值清零从头 开始。 按下16个矩阵键盘依次在数码管上显示116的平方。如按下第一个显示1,第二个 显示4...
非编码键盘有分为:独立键盘和行列式(又 称为矩阵式)键盘。
按键在闭合和断开时,触点会存在抖动现象:
+5V
无抖动
理想波形 A 实际波形
按下抖动
B 稳定闭合
释放抖动
+5V
有抖动
U1
单片机89C52行列式键盘扫描程序(汇编)
实验八键盘扫描显示实验所需软硬件:KeilSTC-ISPMCS-51 89C52实验箱程序清单:基于汇编语言//连线P0接8列(同时也是数码管的位选线)高电平选中某位。
P3低两位接行P1接数码管(段选线)低电平选中某段亮。
ORG 0000HLJMP MAINMAIN:MOV 30H,#00HMOV 31H,#00HMOV 32H,#00HMOV 33H,#00HMOV 34H,#00HMOV 35H,#00HBEGIN:ACALL SCANACALL CHECKACALL DISPSJMP BEGIN//子程序SCAN 全扫描2次扫描去抖SCAN: ;全扫描MOV R0,#00H ;去抖,扫描2次计数标志MOV A,#00HMOV P0,A ;送列扫描码LOOP:MOV A,P3 ;回读行信号ANL A,#03H ;只取低两位INC R0CJNE A,#03H,K1CLR F0 ;无键,置标志位为0K1:NOPNOPCJNE R0,#02H,LOOP;去抖,扫描2次SETB F0 ;有键,置标志位为1RET//子程序CHECK 逐列扫描确定键码CHECK:MOV R1,#0FEH ;开始逐列扫描,从第0列开始MOV R4,#00H ;记录列号MOV R5,#00H ;记录行号MOV A,R1PUSH ACC ;压栈保留第0列扫描码LOOP1:MOV P0,A ;送列扫描码MOV A,P3ANL A,#03HCJNE A,#03H,K2 ;有键转K2确定为哪一行POP ACC ;无键扫描下一列RL AINC R4CJNE R4,#08H,LOOP1 ; 是否扫描进行到最后一列RETK2:DEC SP ;为保证堆栈平衡CJNE A,#02H,K3 ;分支判断,看是否为第一行SJMP OVERK3:INC R5 ;不是第一行,就是第二行,行码加1 OVER:MOV A,R4ADD A,R5 ;行码+列码=键码PUSH ACC ;键码入栈保护NOPNOPLCALL SCAN ;扫描看手是否松开CJNE A,#03H,OVER ;A=03H,表示手未松开,继续扫描POP ACC ;手松开,键码出栈RET//子程序DISP 键码分离送数码管显示DISP:JNB F0,LOOP3 ;无键不分离键码MOV B,#10 ;有键,要进行十位和个位的分离DIV ABMOV 34H,A ;A为十位MOV 35H,B ;B为个位MOV R0,#30H ;送显示缓冲首地址MOV R2,#01H ;送位选信号,从最低位开始亮LOOP3:MOV A,#0FFHMOV P1,A ;段选:送灭码MOV A,R2MOV P0,A ;送位选信号MOV A,@R0 ;送显示缓冲数据MOV DPTR,#TAB ;查表求字形码MOVC A,@A+DPTRMOV P0,A ;送段选ACALL DELAY1MS ;延时以保持稳定INC R0 ;取下一个数MOV A,R2JB ACC.5,EXIT ;判断位选是否送到最高位RL A ;左移选下一个位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//s1按下时加1 s2 按下时减1 s3按下椒清零 s4按下自动加1
#include<reg52.h>
#define uchar unsigned char
#define uint unsigned int
sbit key1=P3^4; //定义键盘IO口
sbit key2=P3^5; //定义键盘IO口
sbit key3=P3^6; //定义键盘IO口
sbit key4=P3^7; //定义键盘IO口
sbit duan=P2^6; //定义573的锁存器端11脚
sbit wei=P2^7; //定义573的锁存器端11脚
sbit beep=P2^3; //定义轰鸣器脚
unsigned char code tab[]={0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,//数码管显示数据
0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71};
uchar numt0,num;
void init(); //声明函数
void display(uchar numdis); //声明函数
void keyscan(); //声明按键是否按下函数
//主函数
void main()
{
init();
while(1)
{
keyscan();
display(num);
}
}
void delayms(uint xms); //声明延时函数
//显示子函数
void display(uchar numdis)
{
uchar shi,ge;
shi=numdis/10; //分出十位
ge=numdis%10; //分出各位
duan=1; //十位显示
P0=tab[shi];
duan=0;
P0=0xff;
wei=1;
P0=0xfe;
wei=0;
delayms(5);
duan=1; //各位显示
P0=tab[ge];
duan=0;
P0=0xff;
wei=1;
P0=0xfd;
wei=0;
delayms(5);
}
//延时函数
void delayms(uint xms) //延时子函数
{
uint i,j;
for(i=xms;i>0;i--)
for(j=110;j>0;j--);
}
//初始化子函数
void init()
{
TMOD=0x01;
TH0=(65536-50000)/256;
TL0=(65536-50000)%256;
EA=1;
ET0=1;
}
void keyscan() //按键是否按下检测 {
if(key1==0) //按键1按下
{
delayms(10);
if(key1==0)
{
num++; //按下一次加一
beep=~beep;
delayms(50);
beep=~beep;
if(num==60) //加到六十时
num=0; //num=0
while(!key1);
}
}
if(key2==0) //按键2按下
{
delayms(10);
if(key2==0)
{
beep=~beep;
delayms(50);
beep=~beep;
if(num==0) //如果减到零时
num=60; //num=60
num--; //按下一次减一
while(!key2);
}
}
if(key3==0) //按键3按下
{
delayms(10);
if(key3==0)
{
beep=~beep;
delayms(50);
beep=~beep;
num=0; //清零
while(!key3);
}
}
if(key4==0) //按键4按下
{
delayms(10);
if(key4==0)
{
beep=~beep; //轰鸣器响
delayms(50);
beep=~beep; //轰鸣器不响
TR0=~TR0; //启动定时器即自动计数 while(!key4);
}
}
}
void T0_time() interrupt 1 //定时器0中断1
{
TH0=(65536-50000)/256; //重装数据
TL0=(65536-50000)%256; //重装数据
numt0++;
if(numt0==20) //1ms到了
{
numt0=0; //numt0=0
num++;
if(num==60) //到六十时
num=0; //num=0
}
}。