基于matlab德语音信号处理

合集下载

基于MATLAB的语音信号分析与处理的实验报告

基于MATLAB的语音信号分析与处理的实验报告

基于MA TLAB的语音信号分析与处理的实验报告数字信号课程设计,屌丝们有福了一.实验目的数字信号课程设计,屌丝们有福了综合计运用数字信号处理的理论知识进行频谱分析和滤波器设计,通过理论推导得出相应的结论,培养发现问题、分析问题和解决问题的能力。

并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

此外,还系统的学习和实现对语音信号处理的整体过程,从语音信号的采集到分析、处理、频谱分析、显示和储存。

二.实验的基本要求数字信号课程设计,屌丝们有福了1.进一步学习和巩固MATLAB的使用,掌握MATLAB的程序设计方法。

2.掌握在windows环境下语音信号采集的方法。

3.掌握数字信号处理的基本概念、基本理论、原理和基本方法。

4.掌握MATLAB设计FIR和IIR数字滤波器的方法。

5.学会用MATLAB对信号进行分析和处理。

三.实验内容录制一段自己的语音信号,(语音信号声音可以理解成由振幅和相位随时间缓慢变化的正弦波构成。

人的听觉对声音的感觉特征主要包含在振幅信息中,相位信息一般不起作用。

在研究声音的性质时,往往把时域信息(波形图)变换得到它的频域信息(频谱),通过研究频谱和与频谱相关联的特征获得声音的特性。

)并对录制的信号进行采样;画出采样后语音信号的时域波形和频谱图;给定滤波器的性能指标,采用窗函数法或者双线性变换设计滤波器,并画出滤波器的频率响应;然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号进行对比,分析信号发生的变化;回放语音信号。

数字信号课程设计,屌丝们有福了四.实验的实现(1).语音信号的采集采用windows下的录音机或者手机、其他的软件,录制一段自己的话音,时间控制在一分钟左右;然后在MATLAB软件平台下,利用函数wavread对自己的话音进行采样,记住采样的频率和采样的点数。

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现

基于MATLAB的语音信号处理与识别系统设计与实现一、引言语音信号处理与识别是人工智能领域中的重要研究方向之一,随着深度学习和人工智能技术的不断发展,基于MATLAB的语音信号处理与识别系统设计与实现变得越来越受到关注。

本文将介绍如何利用MATLAB进行语音信号处理与识别系统的设计与实现。

二、MATLAB在语音信号处理中的应用MATLAB作为一种强大的科学计算软件,提供了丰富的工具箱和函数库,可以方便地进行语音信号处理。

在语音信号处理中,MATLAB可以用于语音信号的采集、预处理、特征提取、模型训练等各个环节。

通过MATLAB提供的工具,可以高效地对语音信号进行分析和处理。

三、语音信号处理流程1. 语音信号采集在语音信号处理系统中,首先需要对语音信号进行采集。

通过MATLAB可以实现对声音的录制和采集,获取原始的语音信号数据。

2. 语音信号预处理采集到的语音信号数据通常包含噪声和杂音,需要进行预处理以提高后续处理的准确性。

预处理包括去噪、降噪、滤波等操作,可以有效地净化语音信号数据。

3. 特征提取在语音信号处理中,特征提取是一个关键步骤。

通过MATLAB可以提取出语音信号的频谱特征、时域特征等信息,为后续的模式识别和分类打下基础。

4. 模型训练与识别利用MATLAB可以构建各种机器学习模型和深度学习模型,对提取出的特征进行训练和识别。

通过模型训练,可以实现对不同语音信号的自动识别和分类。

四、基于MATLAB的语音信号处理与识别系统设计1. 系统架构设计基于MATLAB的语音信号处理与识别系统通常包括数据采集模块、预处理模块、特征提取模块、模型训练模块和识别模块。

这些模块相互配合,构成一个完整的系统架构。

2. 界面设计为了方便用户使用,可以在MATLAB中设计用户友好的界面,包括数据输入界面、参数设置界面、结果展示界面等。

良好的界面设计可以提升系统的易用性和用户体验。

五、基于MATLAB的语音信号处理与识别系统实现1. 数据准备首先需要准备好用于训练和测试的语音数据集,包括正样本和负样本。

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结
语音信号处理是利用数字信号处理技术对语音信号进行分析、处
理和改进的过程。

语音信号是不规则的波形,其包含了很多信息,如
语音的音高、音调、音色、语速、语气等,因此语音信号处理是一项
非常重要的技术。

语音信号处理的一般流程包括语音信号采集、预处理、特征提取、模型建立和应用,其中预处理包括信号增强、降噪、去混响等,特征
提取包括时域特征、频域特征和时频域特征,模型建立包括声学模型
和语言模型等。

为了更加深入地掌握语音信号处理技术,我们进行了一些matlab
仿真实验。

我们首先学习了语音信号的采样和量化过程,并使用
matlab软件对语音信号进行了仿真采样和量化,了解了采样率和分辨
率等概念,还了解了量化噪声的影响。

其次,我们学习了语音信号的基本特征提取技术,并用matlab仿
真实现了时域特征、频域特征和时频域特征的提取,如时域的短时能
量和短时过零率、频域的傅里叶变换和倒谱系数、时频域的小波变换等。

最后,我们学习了基于模型的语音信号处理技术,如基于隐马尔
可夫模型、高斯混合模型、人工神经网络等模型的语音识别、语音合
成等应用,并用matlab进行了相关的仿真实验。

总之,语音信号处理是一项非常重要的技术,它可以在语音识别、语音合成、语音压缩、语音增强等领域得到广泛应用。

通过学习语音
信号处理及matlab仿真实验,我们了解到了它的基本理论和应用方法,并得到了一些实践经验,这对我们今后的学习和工作将具有很大的指
导意义。

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文

基于MATLAB语音信号处理去噪毕业设计论文语音信号在实际应用中通常不可避免地受到噪音的干扰,这使得语音信号的处理变得困难。

因此,在语音信号处理领域,去噪技术一直是一个热门的研究方向。

本文将介绍一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

本文的主要内容分为以下几个部分。

首先,介绍语音信号处理的背景和意义。

在现实生活中,由于外界环境和设备的限制,语音信号往往会受到各种噪音的污染,如背景噪音、电磁干扰等。

因此,开发一种有效的语音信号处理去噪方法具有重要的实际意义。

其次,介绍基于MATLAB的语音信号处理去噪方法。

本文将采用小波降噪方法对语音信号进行去噪处理。

首先,对输入的语音信号进行小波变换,将信号转换到小波域。

然后,通过对小波系数进行阈值处理,将噪声系数置零,从而实现去噪效果。

最后,通过逆小波变换将信号转换回时域,并输出去噪后的语音信号。

接下来,介绍实验设计和结果分析。

本文将使用MATLAB软件进行实验设计,并选取一组含有不同噪声干扰的语音信号进行测试。

通过对不同噪声信号进行处理,比较不同参数设置下的去噪效果,评估提出方法的性能。

最后,总结全文并展望未来的研究方向。

通过本次研究,我们可以看到基于MATLAB的语音信号处理去噪方法在去除噪音方面具有较好的效果,并具有很大的应用潜力。

然而,该方法仍然有改进的空间。

未来的研究可以在算法优化、参数选择和应用场景等方面进行深入研究,进一步提高语音信号处理去噪的效果和性能。

总的来说,本文介绍了一种基于MATLAB的语音信号处理去噪方法的毕业设计论文。

通过对实验结果的分析和对未来研究方向的展望,本文为从事语音信号处理领域的研究人员提供了一定的参考和启示。

MATLAB语音信号采集与处理

MATLAB语音信号采集与处理

MATLAB课程设计报告课题:语音信号采集与处理目录一、实践目的 (3)二、实践原理: (3)三、课题要求: (3)四、MATLAB仿真 (4)1、频谱分析: (4)2、调制与解调: (5)3、信号变化: (8)快放: (8)慢放: (8)倒放: (8)回声: (8)男女变声: (9)4、信号加噪 (10)5、用窗函数法设计FIR滤波器 (11)FIR低通滤波器: (12)FIR高通滤波器: (13)FIR带通滤波: (14)一、实践目的本次课程设计的课题为《基于MATLAB的语音信号采集与处理》,学会运用MATLAB的信号处理功能,采集语音信号,并对语音信号进行滤波及变换处理,观察其时域和频域特性,加深对信号处理理论的理解,并为今后熟练使用MATLAB进行系统的分析仿真和设计奠定基础。

此次实习课程主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对声音信号这种实际问题进行处理,将理论应用于实际,加深对它的理解。

二、实践原理:利用MATLAB对语音信号进行分析和处理,采集语音信号后,利用MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

语音信号的“短时谱”对于非平稳信号, 它是非周期的, 频谱随时间连续变化, 因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。

如果利用加窗的方法从语音流中取出其中一个短断, 再进行傅里叶变换, 就可以得到该语音的短时谱。

三、课题要求:○1利用windows 自带的录音机或者其它录音软件,录制几段语音信号(要有几种不同的声音,要有男声、女声)。

○2对录制的语音信号进行频谱分析,确定该段语音的主要频率范围,由此频率范围判断该段语音信号的特点(低沉or 尖锐)。

○3利用采样定理,对该段语音信号进行采样,观察不同采样频率(过采样、欠采样、临界采样)对信号的影响。

基于matlab的语音信号的基本处理

基于matlab的语音信号的基本处理

专题研讨四、信号与系统综合应用确定题目(根据个人兴趣、结合实际确定题目,可从下面参考题目中选择,也可自由确定):基于matlab的语音信号的基本处理参考题目:题目1:含噪信号滤波题目2:双音多频信号的产生与检测题目3:磁盘驱动系统仿真题目4:卡尔曼滤波器的应用题目5:应用反馈扩大放大器的带宽(以上只是本专题的部分题目)开题报告课题实施过程记录包括仿真程序、仿真结果、结果分析、方案完善等 ○1语音信号的制作及描述 1) 制作语音文件:用windows 录音机录制一小段语音文件"333.wav ”,内容为"信号与信息系统",由一同学播音. 2) 用matlab 播放”333.wav ”仿真程序:3) [y,Fs,bits]=wavread('333.wav'); sound(y,Fs);pause;4) 绘画出语音文件的时域和频域波形: 仿真程序:[y,Fs,bits]=wavread('333.wav'); plot(y);仿真结果:0123456789x 104-0.8-0.6-0.4-0.20.20.40.6结果分析:随着时间变化,声音能量图形 方案完善:1.时间轴有问题,与实际的时间不一样.2.语音信号的频域分析更清楚.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y); Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength; halflength=floor(sLength/2); f=Fs*(0:halflength)/sLength; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y);xlabel('Time(s)');仿真结果:0.51 1.52 2.5x 104Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:频域分析是从另一个角度观察信号;语音信号的一般频域范围"200~2000"Hz ○2语音信号抽取及倍插仿真程序:[y,Fs,bits]=wavread('111.wav'); sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav'); sound(y,2*Fs);pause;仿真结果与分析:以Fs/2及2*Fs 播放的语音信号存在失真, 方案完善:需要做出波形,做更直观的观察. ○3语音信号的加噪1)语音信号加高频噪音及播放. 仿真程序:[y,Fs,bits]=wavread('333.wav'); y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y=y+d;sound(y,Fs);仿真结果:播放时伴有尖锐的”吱吱”声.结果分析:由于加入高频成分余弦信号,信号叠加后出现了尖锐的噪音.2)加噪后的语音信号的时域和频域波形.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');仿真结果:00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)0.51 1.522.5x 10405101520253035404550Frequency(Hz)结果分析:时域波形跟加噪前没有什么明显的区别.在频域上我们发现有一个近6000Hz的高频成分,这是产生的噪音的根本所在.方案完善:运用subplot将加噪前和加噪后的时域和频域波形进行对比,效果会更好.○4数字滤波这一部分我们学习了函数BUTTER,进行了最简单的数字滤波.[b,a]=butter(N,wc);代表数字低通滤波器,wc代表归一化频率(0<wc<=1,等于一时为奈奎斯特频率);N为滤波器的阶数.y2=filter(b,a,y1);对信号y1进行巴特滤波,滤波器为[b,a]系统滤波后信号的效果播放.仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);仿真结果:原先的噪声消失,语音信号变回原样.滤波器为低通滤波器,滤去高频成分.方案完善:1.画出滤波后的时域和频域波形2. 对滤波器进行系统分析1.画出滤波后的时域和频域波形仿真程序:[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1); sLength1=length(y2); Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1; halflength1=floor(sLength1/2); f1=Fs*(0:halflength1)/sLength1; figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)'); t=(0:sLength-1)/Fs; figure;plot(t,y2);xlabel('Time(s)');仿真结果:00.51 1.52 2.5x 1040.511.522.53Frequency(Hz)00.20.40.60.81 1.2 1.4 1.6 1.82-0.8-0.6-0.4-0.20.20.40.6Time(s)结果分析:基本效果良好,有少许失真. 2. 对滤波器进行系统分析 仿真程序:w=linspace(0,6000,10000); wc=[0.01 0.07]; N=2;[b,a]=butter(N,wc); H=freqz(b,a,w); plot(w,abs(H)); axis([0 2500 0 1.5]);仿真结果:010002000300040005000600000.511.5○3RC 模拟滤波(物理形式熟悉) [y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);结果:效果良好,声音恢复.RC 滤波器的波特图RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');-40-30-20-100M a g n i t u d e (d B)101102103104105H (j w ) (d e g )Bode Diagramw (rad/sec)总结报告摘要:利用所学的知识对实际语音信号进行时域,频域分析;体会信号的抽样定理,即信号的抽取和倍插;运用信号叠加对信号进新加噪(高频),并用数字滤波器butter 滤去高频成分去噪;课题原理框图:课题最终仿真程序:○1语音信号的制作及描述; [y,Fs,bits]=wavread('333.wav');sound(y,Fs);pause;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);Y = fft(y,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y);xlabel('Time(s)');○2语音信号抽取及倍插; [y,Fs,bits]=wavread('111.wav');sound(y,Fs/2);pause;[y,Fs,bits]=wavread('111.wav');sound(y,2*Fs);pause;○3语音信号的加噪;[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;sLength=length(y1);Y = fft(y1,sLength);Pyy = Y.* conj(Y) / sLength;halflength=floor(sLength/2);f=Fs*(0:halflength)/sLength;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');○4滤波器.[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sound(y2,Fs);[y,Fs,bits]=wavread('333.wav');y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.05;d=A*cos(2*pi*f*t)';y1=y+d;plot(t,y);xlabel('Time(s)');N=2;wc=[0.01,0.07];[b,a]=butter(N,wc);y2=filter(b,a,y1);sLength1=length(y2);Y1 = fft(y2,sLength1);Pyy = Y1.* conj(Y1) / sLength1;halflength1=floor(sLength1/2);f1=Fs*(0:halflength1)/sLength1;figure;plot(f,Pyy(1:halflength+1));xlabel('Frequency(Hz)');t=(0:sLength-1)/Fs;figure;plot(t,y2);xlabel('Time(s)');w=linspace(0,6000,10000);wc=[0.01 0.07];N=2;[b,a]=butter(N,wc);H=freqz(b,a,w);plot(w,abs(H));axis([0 2500 0 1.5]);[y,Fs,bits]=wavread('333.wav');%¶Á³öÐźţ¬²ÉÑùÂʺͲÉÑùλÊý¡£y=y(:,1);sLength=length(y);t=(0:sLength-1)/Fs;f=50000;A=0.5;d=A*cos(2*pi*f*t)';y1=y+d;RC=0.001;b=1/RC;a=[1,1/RC];sys=tf(b,a);y2=lsim(sys,y1,t);sound(y2,Fs);RC=0.001;w=linspace(0,2,1024);b=1/RC;a=[1,1/RC];g=tf(b,a);bode(g);xlabel('w');ylabel('H(jw)');课题成果:1)了解了语音信号matlab处理的基本过程及思路,重点复习了波形绘制,系统响应;2)体会到理论与实践的结合,语音信号的处理和实际生活接近,趣味性强.本课题还存在哪些问题?1)对matlab的一些函数比较模糊,比如信号的长度估计,butter滤波函数的运用2)对于信号的滤波只是在很理想的高频情形下,过于单一简单,对实际的噪声滤波还有很多需要完善的.研究性学习自我体会与评价通过研究性学习你在哪些方面有所收获?(如学习方法、合作精神、探索精神、创新意识等)。

利用Matlab进行语音合成和音频增强处理

利用Matlab进行语音合成和音频增强处理

利用Matlab进行语音合成和音频增强处理引言人类语音是一种重要的交流工具,语音合成和音频增强处理是利用计算机技术来模拟和改善语音信号的质量和特征的方法。

在实际应用中,利用Matlab进行语音合成和音频增强处理可以帮助我们实现更好的语音识别、语音合成和音频处理效果。

本文将介绍如何利用Matlab进行语音合成和音频增强处理,并探讨其在实际应用中的潜在价值。

一、语音合成语音合成是指通过计算机技术将文本转化为与人类语音相似的声音信号。

利用Matlab可以通过多种方法进行语音合成,其中最常用的方法之一是基于合成过程的参数提取和重构。

在语音合成中,首先需要从文本中提取语音的特征参数,例如基频、共振峰频率等。

然后,根据这些参数和合成模型,可以通过数字信号处理技术将这些特征参数转化为声音信号。

最后,可以应用数字信号处理算法来改善合成声音的质量。

除了基于合成过程的方法,利用深度学习和神经网络等技术进行语音合成也是一种常见的方法。

这些方法可以通过训练模型来实现高质量的语音合成,但是需要大量的数据和计算资源。

二、音频增强处理音频增强处理是指通过算法和技术改善音频信号的质量和清晰度。

利用Matlab 可以进行多种音频增强处理,例如降噪、去混响、音频增益调整等。

降噪是一种常见的音频增强处理方法,它可以通过去除环境噪声和其他干扰声音来提升语音信号的清晰度。

利用Matlab可以应用数字滤波器和自适应滤波器等算法来实现降噪处理。

去混响是另一种常见的音频增强处理方法,它可以通过去除声音的反射和共振效应来改善音频信号的质量。

利用Matlab可以应用卷积混响模型和数字滤波器等算法来实现去混响处理。

除了降噪和去混响,音频增益调整也是一种常见的音频增强处理方法。

它可以通过调整音频信号的增益来改变音频信号的音量和动态范围。

三、实例应用利用Matlab进行语音合成和音频增强处理在实际应用中具有广泛的潜在价值。

下面举例说明几个应用场景:1. 语音合成应用于自动语音电话系统。

利用Matlab进行语音编解码和语音压缩的指南

利用Matlab进行语音编解码和语音压缩的指南

利用Matlab进行语音编解码和语音压缩的指南引言语音是人类交流和表达的重要工具。

在当今数字化的世界中,对语音进行编解码和压缩是一个热门的研究领域。

本文将介绍如何使用Matlab进行语音编解码和语音压缩。

一、语音编解码语音编解码是将语音信号转换为数字信号并将其还原为声音的过程。

Matlab提供了许多强大的信号处理工具箱,可以用于语音编解码。

1. 读取语音信号在Matlab中,可以使用`audioread`函数读取音频信号。

例如:```matlab[x, fs] = audioread('speech.wav');```其中,x是音频信号,fs是采样率。

2. 语音信号预处理在进行语音编解码之前,通常需要对语音信号进行预处理。

常见的预处理操作包括去噪、语音端点检测和音频增益等。

Matlab提供了许多函数来实现这些操作,如`denoiseSignal`、`vad`和`audiogain`等。

3. 语音信号编码语音信号编码是将语音信号转换为数字信号的过程。

常见的语音编码方法包括线性预测编码(LPC)、自适应差分编码(ADPCM)等。

Matlab提供了`lpcencode`和`adpcmencode`等函数来实现这些编码方法。

4. 语音信号解码语音信号解码是将编码的数字信号还原为语音信号的过程。

对应于编码方法,Matlab提供了相应的解码函数,如`lpcdecode`和`adpcmdecode`。

二、语音压缩语音压缩是减小语音文件大小的过程,同时保持较高质量的声音。

压缩可以通过删除和减少音频信号的冗余信息来实现。

Matlab提供了一些压缩算法和工具箱。

1. 语音信号特征提取在进行语音压缩之前,需要提取语音信号的特征。

常用的特征包括梅尔倒谱系数(MFCC)、线性预测倒谱系数(LPCC)等。

Matlab提供了`mfcc`和`lpcc`等函数用于特征提取。

2. 语音信号压缩算法常见的语音压缩算法包括基于变换的压缩算法(如FFT、DCT)和无损压缩算法(如Huffman编码、LZW编码)等。

基于matlab的语音信号共振峰估计

基于matlab的语音信号共振峰估计

基于MATLAB的语音信号共振峰估计1. 概述语音信号处理是数字信号处理领域的重要分支之一,其应用范围非常广泛,包括语音识别、语音合成等领域。

语音信号的共振峰估计是语音信号处理中的一个重要任务,通过对语音信号进行共振峰估计可以对语音信号的特征进行分析和提取,为后续的语音处理任务提供重要的依据。

2. 共振峰估计的意义共振峰是声道系统在产生语音时的共振峰,它反映了声道系统的共振特性,也是语音信号的重要特征之一。

共振峰估计可以帮助我们了解语音信号的发音特点,有助于语音合成、语音识别等应用。

3. 基于MATLAB的共振峰估计方法MATLAB作为一种强大的科学计算软件,提供了丰富的信号处理工具箱和函数,可以方便地进行语音信号共振峰估计。

常用的方法包括基于自相关函数的线性预测分析法(LPC)和基于倒谱分析法等。

3.1 基于自相关函数的线性预测分析法线性预测分析(LPC)是一种常用的语音信号分析方法,它可以用来估计语音信号的共振峰。

我们需要计算语音信号的自相关函数,然后利用自相关函数进行线性预测分析,得到语音信号的LPC系数。

通过对LPC系数进行倒谱求解,可以得到语音信号的共振峰频率和幅度。

在MATLAB中,可以利用signal processing toolbox中的函数实现自相关函数的计算和LPC系数的求解。

使用函数lpc()可以直接得到语音信号的LPC系数,再通过倒谱求解方法得到共振峰频率和幅度。

3.2 基于倒谱分析法倒谱分析是一种基于信号的功率谱密度估计方法,它可以用来估计语音信号的共振峰。

在MATLAB中,可以利用函数cepstrum()进行倒谱分析,得到语音信号的倒谱系数。

通过对倒谱系数进行谱峰提取,可以得到语音信号的共振峰频率和幅度。

4. 实例分析为了更好地理解基于MATLAB的语音信号共振峰估计方法,下面我们通过一个实例来进行分析。

我们加载一个语音信号的音频文件,并进行预处理,包括时域预处理和频域预处理。

基于matlab的音频信号处理毕业设计(含源文件)

基于matlab的音频信号处理毕业设计(含源文件)

基于matlab的音频信号处理毕业设计(含源文件)毕业设计题目:基于matlab的音频信号处理专业:电子信息工程学号:作者:指导教师(职称):基于MATLAB的语音信号处理【摘要】Matlab语音信号处理是指利用matlab软件对音频信号进行读取,并对音频信号进行采样分析及离散傅里叶变换,以方便对其在频域上进行调制滤波等相关的操作.本次实验在提取音频信号后会对该信号使用在MATLAB软件中设计的滤波器进行滤波,并观察其效果,验证滤波器是否可行。

本次使用了MATLAB软件,综合运用GUI界面设计、各种函数调用等来实现音频信号的傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义.软件中自带的信号处理与分析工具箱为语音信号分析实验提供了丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化。

信号处理是MATLAB重要应用的领域之一。

【关键词】 matlab 语音信号处理数字滤波器傅里叶变换Based on MATLAB of the signal processingAudio processing design【Abstract】: The contents of the research is to filter the signal noise with using MATLAB software。

signal processing is to study the use of digital signal processing technology and knowledge of the voice signal voice processing of the emerging discipline is the fastest growing areas of information science one of the core technology。

基于MATLAB语音信号检测分析及处理

基于MATLAB语音信号检测分析及处理

第一章绪论Matlab是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink两大部分。

1.1 Matlab简介MATLAB是英文MATrix LABoratory(矩阵实验室)的缩写。

早期的MATLAB 是用FORTRAN语言编写的,尽管功能十分简单,但作为免费软件,还是吸引了大批使用者。

经过几年的校际流传,在John Little。

Cleve Moler和Steve Banger 合作,于1984年成立MathWorks公司,并正式推出MATLAB第一版版。

从这时起,MATLAB的核心采用C语言编写,功能越来越强大,除原有的数值计算功能外,还新增了图形处理功能。

MathWorks公司于1992年推出了具有划时代意义的4.0版;1994年推出了4.2版扩充了4.0版的功能,尤其在图形界面设计方面提供了新方法;1997年春5.0版问世,5.0版支持了更多的数据结构,使其成为一种更方便、更完善的编程语言;1999年初推出的MATLAB5.3版在很多方面又进一步改进了MATLAB语言的功能,随之推出的全新版本的最优化工具箱和Simulink3.0达到了很高水平;2000年10月,MATLAB6.0版问世,在操作页面上有了很大改观,为用户的使用提供了很大方便,在计算机性能方面,速度变的更快,性能也更好,在图形界面设计上更趋合理,与C语言接口及转换的兼容性更强,与之配套的Simulink4.0版的新功能也特别引人注目;2001年6月推出的MATLAB6.1版及Simulink4.1版,功能已经十分强大;2002年6月推出的MATLAB6.5版及Simulink5.0版,在计算方法、图形功能、用户界面设计、编程手段和工具等方面都有了重大改进;2004年,MathWorks公司推出了最新的MA TLAB7.0版,其中集成了最新的MATLAB7编译器、Simumlink6.0仿真软件以及很多工具箱。

基于MATLAB的语音信号的清、浊音分析

基于MATLAB的语音信号的清、浊音分析

目录1 语音信号概述 (1)1.1 语音信号的基本组成 (1)1.2 语音信号的“短时谱” (1)1.3 基音周期 (2)1.4 短时分析技术 (2)2 语音信号的采集及清浊音分析 (2)2.1 语音信号的采集 (2)2.2 采样分帧 (3)2.3短时能量和短时平均幅度 (4)2.4短时过零率 (6)2.5短时自相关函数 (8)3 心得体会 (10)主要参考资料 (10)附录 (11)1 语音信号概述1.1 语音信号的基本组成语音信号的基本组成单位是音素。

音素可分成“浊音”和“清音”两大类。

如果将不存在语音而只有背景噪声的情况称为“无声”。

那么音素可以分成“无声”、“浊音”、“清音”三类。

一个音节由元音和辅音构成。

元音在音节中占主要部分。

所有元音都是浊音。

在汉语普通话中,每个音节都是由“辅音一元音”构成的。

在信号处理中,语音按其激励形式的不同可分为2 类:(1)浊音当气流通过声门时,如果声带的张力刚好使声带发生张弛振荡式的振荡,产生一股准周期的气流,这一气流激励声道就产生了浊音。

这种语音信号是 1 种激励信号,它是由规则的全程激励产生的,其时域波形具有准周期性,语音频率集中在比较低的频率范围内,短时能量较高,由于语音信号中的高频成分有高的过零率而低频有低的过零率,因此浊音的过零率低。

通常,浊音信号可以由周期激励通过线性滤波器合成。

(2)清音当气流通过声门时,如果声带不振动,而在某处收缩,迫使气流高速通过这一收缩部分而产生湍流,就得到清音。

清音是由不规则的激励产生的,发清音时声带不振动,其时域波形不具有周期性,自相关函数没有很强的自相关周期峰,其语音频率集中在较高的范围内,短时能量较低,因而过零率较高。

通常,清音信号可由白噪声通过线性滤波器合成。

1.2 语音信号的“短时谱”对于非平稳信号,它是非周期的,频谱随时间连续变化,因此由傅里叶变换得到的频谱无法获知其在各个时刻的频谱特性。

如果利用加窗的方法从语音流中取出其中一个短段,再进行傅里叶变换,就可以得到该语音的短时谱。

基于Matlab的语音信号处理1

基于Matlab的语音信号处理1

数字信号处理课程设计题目:基于Matlab语音处理学院:信息工程学院专业:通信工程班级: 1003班学号: 2010013553、2010013579姓名:郭丹丹、武小飞指导教师:金星目录摘要 (3)第一章背景 (4)第二章设计目的与要求 (6)第三章设计过程 (7)3.1.理论依据 (7)3.2.信号采集 (7)3.3.数字滤波器设计 (8)3.4.信号处理 (8)3.5.不同的滤波器的性能比较 (8)第四章设计原理 (9)4.1语音信号的采样 (9)4.2 数字滤波器的设计 (11)4.3.滤波器的性能指标 (11)第五章实验代码及结果 (12)5.1原语音信号的波形图和频谱分析 (12)5.2 语音信号的定点分析 (13)5.3切比雪夫I型低通滤波器 (15)5.4椭圆低通滤波器 (16)5.5 语音信号滤波后的还原波形 (17)(1).I型切比雪夫FIR滤波后的还原波形 (17)(2). 椭圆FIR滤波后还原波形 (18)第六章收获与体会 (20)参考文献 (22)摘要MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件, 然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等, 信号处理是MATLAB 重要应用的领域之一。

本课程设计介绍了基于Matlab的对语音信号采集、处理及滤波器的设计,并使之实现的过程。

理解与掌握课程中的基本概念、基本原理、基本分析方法,用Matlab进行数字语音信号处理,并阐述了课程设计的具体方法、步骤和内容。

综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

关键词:MATLAB 工具信号语音采集滤波器第一章背景语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计

基于MATLAB的音频信号处理与语音识别系统设计一、引言音频信号处理与语音识别是数字信号处理领域的重要研究方向,随着人工智能技术的不断发展,语音识别系统在日常生活中得到了广泛应用。

本文将介绍如何利用MATLAB软件进行音频信号处理与语音识别系统的设计,包括信号预处理、特征提取、模式识别等关键步骤。

二、音频信号处理在进行语音识别之前,首先需要对音频信号进行处理。

MATLAB提供了丰富的信号处理工具,可以对音频信号进行滤波、降噪、增益等操作,以提高后续语音识别的准确性和稳定性。

三、特征提取特征提取是语音识别中至关重要的一步,它能够从复杂的音频信号中提取出最具代表性的信息。

常用的特征包括梅尔频率倒谱系数(MFCC)、线性预测编码(LPC)等。

MATLAB提供了丰富的工具箱,可以方便地实现这些特征提取算法。

四、模式识别模式识别是语音识别系统的核心部分,它通过对提取出的特征进行分类和识别,从而实现对不同语音信号的区分。

在MATLAB中,可以利用支持向量机(SVM)、人工神经网络(ANN)等算法来构建模式识别模型,并对语音信号进行分类。

五、系统集成将音频信号处理、特征提取和模式识别整合到一个系统中是设计语音识别系统的关键。

MATLAB提供了强大的工具和函数,可以帮助我们将各个部分有机地结合起来,构建一个完整的语音识别系统。

六、实验与结果分析通过实际案例和数据集,我们可以验证所设计的基于MATLAB的音频信号处理与语音识别系统的性能和准确性。

通过对实验结果的分析,可以进一步优化系统设计,并提高语音识别系统的性能。

七、结论基于MATLAB的音频信号处理与语音识别系统设计是一个复杂而又具有挑战性的任务,但是借助MATLAB强大的功能和工具,我们可以更加高效地完成这一任务。

未来随着人工智能技术的不断发展,基于MATLAB的语音识别系统将会得到更广泛的应用和进一步的优化。

通过本文对基于MATLAB的音频信号处理与语音识别系统设计进行介绍和讨论,相信读者对该领域会有更深入的了解,并能够在实际应用中灵活运用所学知识。

基于MATLAB语音信号处理(语音信号处理的综合仿真)

基于MATLAB语音信号处理(语音信号处理的综合仿真)

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于MATLAB语音信号处理(语音信号处理的综合仿真)摘要:针对目前在嘈杂的环境中手机接听电话时人声不清楚的缺点,本文介绍了一个基于MATLAB的算法来对语音信号进行处理。

该算法通过计算机录音系统来实现对语音信号的采集,并且利用MATLAB的计算和信号处理能力进行频谱分析和设计滤波器,最终通过仿真得到滤波前后的波形,从而达到保留语音信号中的大部分人声并且滤除掉嘈杂噪声的目的。

仿真实验表明,采用低通滤波器保留人声的效果显著,失真较少。

本算法具有操作简单,运行速度快等优点。

关键词:语音信号;MATLAB;滤波;低通;噪声Speech Signal Processing Based on MATLAB1 / 17Abstract: At present, in view of the shortcomings of that the voice is not clear when people answering the phone in a noisy environment, this paper introduces a algorithm for speech signal processing based on MATLAB. The algorithm realizes the acquisition of the speech signal through a computer recording system. And the software can realize the capabilities of frequency spectrum analysis and filter design by the use of calculation and signal processing capabilities of MATLAB. Finally it can get the waveform before and after filtering through the simulation. So that we can retain most of the voices in the speech signal and at the same time remove noisy noise through filter. Simulation results show that the low pass filter has a remarkable effect of keeping voices and the distortion is little. This algorithm has the advantages of simple to operate and fast.Key Words: Speech signal; MATLAB; Filtering; Low pass; Noise目录---------------------------------------------------------------范文最新推荐------------------------------------------------------ 摘要1引言11.研究意义及研究现状21.1研究意义21.2研究现状22. 语音信号处理的总体方案2.1 研究的主要内容本课题主要介绍的是的语音信号的简单处理,目的就是为以后在手机上的移植打下理论基础。

语音信号处理实验报告.doc

语音信号处理实验报告.doc

语音信号处理实验班级:学号:姓名:实验一基于MATLAB的语音信号时域特征分析(2 学时)1)短时能量( 1)加矩形窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32;for i=2:6h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2) ,legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.54 x 102N=32 0 0.5 1 1.5 2 2.55 x 10N=64 0 0.5 1 1.5 2 2.510 x 1050.5 1 1.5 2 2.5 N=128 020 x 10100.5 1 1.5 2 2.5 N=256 040 x 1020N=5120 0.5 1 1.5 2 2.5x 10( 2)加汉明窗a=wavread('mike.wav');a=a(:,1);subplot(6,1,1),plot(a);N=32; 3 43 43 43 43 43 4for i=2:6h=hanning(2.^(i-2)*N);% 形成一个汉明窗,长度为 2.^(i-2)*NEn=conv(h,a.*a);% 求短时能量函数Ensubplot(6,1,i),plot(En);if(i==2), legend('N=32' );elseif(i==3), legend('N=64' );elseif(i==4) ,legend('N=128' );elseif(i==5) ,legend('N=256' );elseif(i==6) ,legend('N=512' );endend1-10.5 1 1.5 2 2.52 x 101N=32 0 0.5 1 1.5 2 2.54 x 102N=64 0 0.5 1 1.5 2 2.54 x 102N=128 0 0.5 1 1.5 2 2.510 x 105N=256 0 0.5 1 1.5 2 2.520 x 1010N=5120 0.5 1 1.5 2 2.5x 102)短时平均过零率a=wavread('mike.wav');a=a(:,1);n=length(a);N=320;subplot(3,1,1),plot(a);h=linspace(1,1,N);En=conv(h,a.*a); %求卷积得其短时能量函数Ensubplot(3,1,2),plot(En);for i=1:n-1if a(i)>=0 3 43 43 43 43 43 4elseb(i) = -1;endif a(i+1)>=0b(i+1)=1;elseb(i+1)= -1;endw(i)=abs(b(i+1)-b(i)); %求出每相邻两点符号的差值的绝对值endk=1;j=0;while (k+N-1)<nZm(k)=0;for i=0:N-1;Zm(k)=Zm(k)+w(k+i);endj=j+1;k=k+N/2; % 每次移动半个窗endfor w=1:jQ(w)=Zm(160*(w-1)+1)/(2*N); %短时平均过零率endsubplot(3,1,3),plot(Q),grid;1-100.51 1.52 2.5 34x 10201000.51 1.52 2.5 34x 100.50204060801001201401601803)自相关函数N=240y=wavread('mike.wav');y=y(:,1);x=y(13271:13510);x=x.*rectwin(240);R=zeros(1,240);for k=1:240for n=1:240-kR(k)=R(k)+x(n)*x(n+k);endendj=1:240;plot(j,R);grid;2.521.510.5-0.5-1-1.5050100150200250实验二基于 MATLAB 分析语音信号频域特征1)短时谱cleara=wavread('mike.wav');a=a(:,1);subplot(2,1,1),plot(a);title('original signal');gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b)))subplot(2,1,2)plot(y);title('短时谱 ');gridoriginal signal10.5-0.5-100.51 1.52 2.5 34x 10短时谱10.500.20.40.60.81 1.2 1.4 1.6 1.8 22)语谱图[x,fs,nbits]=wavread('mike.wav')x=x(:,1);specgram(x,512,fs,100);xlabel('时间 (s)');ylabel('频率 (Hz)' );title('语谱图 ');语谱图50004000)zH3000(率频200010000.51 1.5 2时间 (s) 3)倒谱和复倒谱(1)加矩形窗时的倒谱和复倒谱cleara=wavread('mike.wav',[4000,4350]);a=a(:,1);N=300;h=linspace(1,1,N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加矩形窗时的倒谱')subplot(2,1,2)plot(c);title( '加矩形窗时的复倒谱')加矩形窗时的倒谱1-1-2050100150200250300加矩形窗时的复倒谱105-5-10050100150200250300(2)加汉明窗时的倒谱和复倒谱 cleara=wavread('mike.wav',[4000,4350]);a=a(;,1);N=300;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endc=cceps(b);c=fftshift(c);d=rceps(b);d=fftshift(d);subplot(2,1,1)plot(d);title( '加汉明窗时的倒谱')subplot(2,1,2)plot(c);title( '加汉明窗时的复倒谱')加汉明窗时的倒谱1-1-2-3050100150200250300加汉明窗时的复倒谱105-5-10050100150200250300实验三基于 MATLAB 的 LPC 分析MusicSource = wavread('mike.wav');MusicSource=MusicSource(:,1);Music_source = MusicSource';N = 256; % window length, N = 100 -- 1000;Hamm = hamming(N); % create Hamming windowframe = input( '请键入想要处理的帧位置= ' );% origin is current frameorigin = Music_source(((frame - 1) * (N / 2) + 1):((frame - 1) * (N / 2) + N));Frame = origin .* Hamm';%%Short Time Fourier Transform%[s1,f1,t1] = specgram(MusicSource,N,N/2,N);[Xs1,Ys1] = size(s1);for i = 1:Xs1FTframe1(i) = s1(i,frame);endN1 = input( '请键入预测器阶数= ' ); % N1 is predictor's order[coef,gain] = lpc(Frame,N1); % LPC analysis using Levinson-Durbin recursionest_Frame = filter([0 -coef(2:end)],1,Frame); % estimate frame(LP)FFT_est = fft(est_Frame);err = Frame - est_Frame; % error% FFT_err = fft(err);subplot(2,1,1),plot(1:N,Frame,1:N,est_Frame,'-r');grid;title('原始语音帧 vs.预测后语音帧 ')subplot(2,1,2),plot(err);grid;title('误差 ');pause%subplot(2,1,2),plot(f',20*log(abs(FTframe2)));grid;title('短时谱 ')%%Gain solution using G^2 = Rn(0) - sum(ai*Rn(i)),i = 1,2,...,P%fLength(1 : 2 * N) = [origin,zeros(1,N)];Xm = fft(fLength,2 * N);X = Xm .* conj(Xm);Y = fft(X , 2 * N);Rk = Y(1 : N);PART = sum(coef(2 : N1 + 1) .* Rk(1 : N1));G = sqrt(sum(Frame.^2) - PART);A = (FTframe1 - FFT_est(1 : length(f1'))) ./ FTframe1 ; % inverse filter A(Z)subplot(2,1,1),plot(f1',20*log(abs(FTframe1)),f1',(20*log(abs(1 ./ A))),'-r');grid;title('短时谱 ');subplot(2,1,2),plot(f1',(20*log(abs(G ./ A))));grid;title( 'LPC谱 ');pause%plot(abs(ifft(FTframe1 ./ (G ./ A))));grid;title('excited')%plot(f1',20*log(abs(FFT_est(1 : length(f1')) .* A / G )));grid;%pause%%find_pitch%temp = FTframe1 - FFT_est(1 : length(f1'));%not move higher frequncepitch1 = log(abs(temp));pLength = length(pitch1);result1 = ifft(pitch1,N);% move higher frequncepitch1((pLength - 32) : pLength) = 0;result2 = ifft(pitch1,N);%direct do real cepstrum with errpitch = fftshift(rceps(err));origin_pitch = fftshift(rceps(Frame));subplot(211),plot(origin_pitch);grid;title( '原始语音帧倒谱 (直接调用函数 )');subplot(212),plot(pitch);grid;title( '预测误差倒谱 (直接调用函数 )');pausesubplot(211),plot(1:length(result1),fftshift(real(result1)));grid;title('预测误差倒谱 (根据定义编写,没有去除高频分量)');subplot(212),plot(1:length(result2),fftshift(real(result2)));grid;title('预测误差倒谱 (根据定义编写,去除高频分量 )');原始语音帧 vs. 预测后语音帧0.40.2-0.2-0.4050100150200250300误差0.20.1-0.1-0.2050100150200250300短时谱50-50-100010203040506070LPC 谱100806040010203040506070原始语音帧倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(直接调用函数)0.5-0.5-1050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300预测误差倒谱(根据定义编写,没有去除高频分量)0.2-0.2-0.4-0.6050100150200250300预测误差倒谱(根据定义编写,去除高频分量)0.1-0.1-0.2-0.3050100150200250300实验四基于 VQ 的特定人孤立词语音识别研究1、mfcc.mfunction ccc = mfcc(x)bank=melbankm(24,256,8000,0,0.5,'m' );bank=full(bank);bank=bank/max(bank(:));for k=1:12n=0:23;dctcoef(k,:)=cos((2*n+1)*k*pi/(2*24));endw = 1 + 6 * sin(pi * [1:12] ./ 12);w = w/max(w);xx=double(x);xx=filter([1 -0.9375],1,xx);xx=enframe(xx,256,80);for i=1:size(xx,1)y = xx(i,:);s = y' .* hamming(256);t = abs(fft(s));t = t.^2;c1=dctcoef * log(bank * t(1:129));c2 = c1.*w';m(i,:)=c2';enddtm = zeros(size(m));for i=3:size(m,1)-2dtm(i,:) = -2*m(i-2,:) - m(i-1,:) + m(i+1,:) + 2*m(i+2,:);enddtm = dtm / 3;ccc = [m dtm];ccc = ccc(3:size(m,1)-2,:);2、vad.mfunction [x1,x2] = vad(x)x = double(x);x = x / max(abs(x));FrameLen = 240;FrameInc = 80;amp1 = 10;amp2 = 2;zcr1 = 10;zcr2 = 5;maxsilence = 8; % 6*10ms = 30msminlen = 15; % 15*10ms = 150msstatus = 0;count = 0;silence = 0;tmp1 = enframe(x(1:end-1), FrameLen, FrameInc);tmp2 = enframe(x(2:end) , FrameLen, FrameInc);signs = (tmp1.*tmp2)<0;diffs = (tmp1 -tmp2)>0.02;zcr = sum(signs.*diffs, 2);amp = sum(abs(enframe(filter([1 -0.9375], 1, x), FrameLen, FrameInc)), 2); amp1 = min(amp1, max(amp)/4);amp2 = min(amp2, max(amp)/8);x1 = 0;x2 = 0;for n=1:length(zcr)goto = 0;switch statuscase {0,1}if amp(n) > amp1x1 = max(n-count-1,1);status = 2;silence = 0;count= count + 1;elseif amp(n) > amp2 | ...zcr(n) > zcr2status = 1;count = count + 1;elsestatus = 0;count= 0;endcase 2,if amp(n) > amp2 | ...zcr(n) > zcr2count = count + 1;elsesilence = silence+1;if silence < maxsilence count = count + 1;elseif count < minlenstatus = 0;silence = 0;count= 0;elsestatus = 3;endendcase 3,break;endendcount = count-silence/2;x2 = x1 + count -1;3、codebook.m%clear;function xchushi= codebook(m) [a,b]=size(m);[m1,m2]=szhixin(m);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);[m15,m16]=szhixin(m8);[m13,m14]=szhixin(m7);[m11,m12]=szhixin(m6);[m9,m10]=szhixin(m5);[m7,m8]=szhixin(m4);[m5,m6]=szhixin(m3);[m3,m4]=szhixin(m2);[m1,m2]=szhixin(m1);chushi(1,:)=zhixinf(m1);chushi(2,:)=zhixinf(m2);chushi(3,:)=zhixinf(m3);chushi(4,:)=zhixinf(m4);chushi(5,:)=zhixinf(m5);chushi(6,:)=zhixinf(m6);chushi(7,:)=zhixinf(m7);chushi(8,:)=zhixinf(m8);chushi(9,:)=zhixinf(m9);chushi(10,:)=zhixinf(m10);chushi(11,:)=zhixinf(m11);chushi(12,:)=zhixinf(m12);chushi(13,:)=zhixinf(m13);chushi(14,:)=zhixinf(m14);chushi(15,:)=zhixinf(m15);chushi(16,:)=zhixinf(m16);sumd=zeros(1,1000);k=1;dela=1;xchushi=chushi;while(k<=1000)sum=ones(1,16);for p=1:afor i=1:16d(i)=odistan(m(p,:),chushi(i,:));enddmin=min(d);sumd(k)=sumd(k)+dmin;for i=1:16if d(i)==dminxchushi(i,:)=xchushi(i,:)+m(p,:);sum(i)=sum(i)+1;endendendfor i=1:16xchushi(i,:)=xchushi(i,:)/sum(i); endif k>1dela=abs(sumd(k)-sumd(k-1))/sumd(k); endk=k+1;chushi=xchushi;endreturn4、 testvq.mclear;disp('这是一个简易语音识别系统,请保证已经将您的语音保存在相应文件夹中') disp('正在训练您的语音模版指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%da.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);m = mfcc(x);m = m(x1:x2-5,:);ref(i).code=codebook(m);enddisp('语音指令训练成功,恭喜!)?'disp('正在测试您的测试语音指令,请稍后...')for i=1:10fname = sprintf(海儿的声音\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endsumsumdmax=0;sumsumdmin=0;disp('对训练过的语音进行测试')for w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd)/a;sumdmin1=min(sumd);sumdmax(w)=max(sumd)/a;sumsumdmin=sumdmin+sumsumdmax;sumsumdmax=sumdmax(w)+sumsumdmax;disp('正在匹配您的语音指令,请稍后...')for i=1:10if (sumd(i)==sumdmin1)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为:%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为 %s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendenddelamin=sumsumdmin/10;delamax=sumsumdmax/10;disp('对没有训练过的语音进行测试')disp('正在测试你的语音,请稍后...')for i=1:10fname = sprintf(o£ ?ùμ ?éùò?\\%db.wav' ,i-1);x = wavread(fname);[x1 x2] = vad(x);mn = mfcc(x);mn = mn(x1:x2-5,:);%mn = mn(x1:x2,:)test(i).mfcc = mn;endfor w=1:10sumd=zeros(1,10);[a,b]=size(test(w).mfcc);for i=1:10for p=1:afor j=1:16d(j)=odistan(test(w).mfcc(p,:),ref(i).code(j,:));enddmin=min(d);sumd(i)=sumd(i)+dmin; %×üê§??endendsumdmin=min(sumd);z=0;for i=1:10if (((sumd(i))/a)>delamax)||z=z+1;endenddisp('正在匹配您的语音指令,请稍后...')if z<=3for i=1:10if (sumd(i)==sumdmin)switch (i)case 1fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'前 ', '前 ');case2fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'后 ', '后 ');case3fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'左 ', '左 ');case4fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'右 ', '右 ');case5fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'东 ', '东 ');case6fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'南 ', '南 ');case7fprintf( '您输入的语音指令为:%s; 识别结果为%s\n' ,'西 ', '西 ');case8fprintf( '您输入的语音指令为 :%s; 识别结果为 %s\n' ,'北 ', '北 ');case9fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'上 ', '上 ');case10fprintf( '您输入的语音指令为a:%s;识别结果为%s\n' ,'下 ', '下 ');otherwisefprintf( 'error');endendendelsefprintf( '您输入的语音无效?\n'£)?endend(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。

基于MATLAB的语音处理

基于MATLAB的语音处理

基于MATLAB的语音滤波实验实验目的:1.在Matlab环境下对语音的频谱进行处理(数字滤波)并试听效果;2.在Matlab环境下对语音的抽样率进行处理(语音压缩)并试听效果实验步骤:一、音频文件的压缩(抽取)。

1.利用windows附件中的录音机功能录制8~10秒的.wav语音文件,并以lei为文件名保存到Matlab/work的文件夹中。

a.打开开始/程序/附件/娱乐/录音机;b.用windows media player播放一首音乐并用MIC对着耳机录音或自已说话录音(按键),到10秒时停止(按键);c.将录制的文件加存为C:/Matlab/work中,文件名为leii.wav;2.打开Matlab并新建一.m文件;3.在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。

4.语音压缩:在m命令窗中输入如下命令:5.运行sample2.m之后会在work文件夹中生成一个名为lei2的.wav文件,如下图:6.双击lei2音频文件,用耳机试听效果,并跟lei1的效果比较。

7.在sample2.m文件中改变抽取倍率s (必须为正整数),重复4、5、6步,观察在不同抽取倍率s下的音频质量,(注意:在运行sample2.m之前必须将work中名为lei2的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。

)二、音频信号的时域滤波(音频数据的时域卷积)。

(一)、低通滤波1.打开Matlab并新建一.m文件,在.m文件中用y=wavread(‘lei.wav’)命令读入语音文件。

2.在m命令窗中输入如下命令,并加存为sample3.m,运行该m文件。

3.双击lei3音频文件,用耳机试听效果,并跟lei1的效果比较。

4.再加一级h(n)的低通滤波,重复2、3步,如下图:(注意:在运行lei2.m之前必须将work中名为lei3的.wav音频文件删除,或在.m文件中wavwrite()中的保存文件名改为其它的名字。

基于matlab的语音信号处理

基于matlab的语音信号处理

数字信号处理设计报告题目:基于Matlab的语音信号处理系别信息工程学院专业班级通信工程1342学生姓名范泉指导教师吉李满提交日期 2016年6月 10日摘要数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。

因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。

而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。

数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。

数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。

本设计的具体内容是基于MATLAB的语音信号处理,核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。

然后添加噪声信号,选用合适的滤波器对噪声信号进行滤除,使数字信号处理从理论走向实用。

MATLAB功能强大,可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

用MATLAB来解算问题要比用其他语言简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。

可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

关键词:数字信号处理器;离散傅立叶变换;MATLAB目录第一章绪论 (1)1.1课题研究的目的 (1)1.2课题研究的意义和现状 (1)1.2.1课题研究的意义 (1)1.2.2课题研究的现状 (1)第二章课题研究方案的确定 (3)2.1概要设计 (3)2.1.1主要工作 (3)2.1.2研究步骤 (3)2.2方案选择 (3)2.2.1运行的环境 (3)2.2.2总体方案 (4)第三章课题研究内容 (5)3.1 Matlab简单介绍 (5)3.2语音信号的采样理论依据 (5)3.2.1采样频率 (5)3.2.2采样位数 (5)3.2.3采样定理 (6)3.3语音信号的采集 (6)3.4设计数字滤波器 (6)3.4.1数字滤波器设计的基本思路 (6)3.4.2 IIR数字滤波器概述 (6)3.4.3 FIR数字滤波器概述 (7)3.4.4 FIR数字滤波器和IIR数字滤波器比较 (7)3.4.5低通高通及带通滤波器 (7)3.5程序流程图 (8)第四章软件仿真调试结果分析 (9)4.1语音信号的时频分析 (9)4.2语音信号加噪与频谱分析 (10)4.3滤波器的设计 (12)4.3.1设计FIR滤波器 (12)4.3.2设计IIR滤波器 (12)4.3.3双线性变换法和窗函数法 (12)4.4验证所设计的滤波器 (13)4.5滤波 (15)第五章 GUI界面 (17)5.1 GUI界面概述 (17)5.2创建GUI界面 (17)第六章总结与展望 (20)参考文献 (21)附录I设计FIR和IIR数字滤波器 (1)附录II比较滤波前后语音信号的波形及频谱 (7)附录III 源程序代码 (16)第一章绪论1.1课题研究的目的1.学会MATLAB的使用,掌握MATLAB的程序设计方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于Matlab的数字滤波器设计及其对语音信号的应用摘要MATLAB 语言是一种数据分析和处理功能十分强大的计算机应用软件 ,它可以将声音文件变换为离散的数据文件 , 然后利用其强大的矩阵运算能力处理数据 ,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等 , 信号处理是MATLAB 重要应用的领域之一。

本课程设计介绍了基于Matlab的对语音信号采集、处理及滤波器的设计,并使之实现的过程。

理解与掌握课程中的基本概念、基本原理、基本分析方法,用Matlab进行数字语音信号处理,并阐述了课程设计的具体方法、步骤和内容。

综合运用本课程的理论知识进行频谱分析以及滤波器设计,通过理论推导得出相应结论,并利用MATLAB作为工具进行实现,从而复习巩固课堂所学的理论知识,提高对所学知识的综合应用能力,并从实践上初步实现对数字信号的处理。

关键词: MATLAB 工具信号语音采集滤波器一课程设计的目的:1.掌握数字信号的频谱分析及数字滤波器的基本概念;2.掌握基于MATLAB 的FIR和IIR数字滤波器的设计方法;3.掌握在MATLAB下语音信号的采集、时域波形分析、频谱分析及滤波设计;4.培养学生分析、解决问题的能力;5. 初步培养学生撰写论文的能力,为下一步毕业设计做准备。

二滤波器设计方法综述:1).直接设计数字滤波器;数字滤波器是数字信号处理的一个重要组成部分。

数字滤波实际上是一种运算过程,其功能是将一组输入的数字序列通过一定的运算后转变为另一组输出的数字序列。

数字滤波器一般可以用两种方法来实现:一种是根据描述数字滤波器的数学模型或信号流图,用数字硬件装配成一台专门的设备,构成专用的信号处理机;另一种方法就是直接利用通用计算机,将所需要的运算编成程序让计算机来执行,这也是用软件来实现数字滤波器。

数字滤波器是离散时间系统,所处理的信号是离散时间信号。

一般时域离散系统或网络可以用差分方程、单位脉冲响应以及系统函数进行描述。

如果输入、输出服从N阶差分方程接近于线性关系,Ω进一步增加时,ω增长变得缓慢, (ω终止于折叠频率处),所以双线性变换不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象。

双线性变换法的缺点:Ω与ω的非线性关系,导致数字滤波器的幅频响应相对于模拟滤波器的幅频响应有畸变,(使数字滤波器与模拟滤波器在响应与频率的对应关系上发生畸变)。

双线性变换比脉冲响应法的设计计算更直接和简单。

由于s与z之间的简单代数关系,所以从模拟传递函数可直接通过代数置换得到数字滤波器的传递函数。

4).使用MATLAB下的Filter Designed Tool3。

在Command Window窗口中输入fdatool,出现滤波器设计工具界面图1 滤波器设计界面设计思路:首先将数字高通滤波器的技术指标转化为模拟滤波器的技术指标,再采用Buttetworth逼近的方法求得其系统函数H(S),再利用冲激响应不变法将模拟滤波器的系统函数H(s)变为相应的数字滤波器的系统函数H(Z),然后用MATALB进行仿真,然后确定数字滤波器的结构。

5).IIR滤波器设计的基本思想将数字滤波器的设计为模拟滤波器的设计。

设计满足技术指标的模拟滤波器。

将模拟滤波器转换为数字滤波器。

无限长单位脉冲响应(IIR)数字滤波器的单位脉冲响应h(n)是一个无限长序列,器滤波器的结构采用递归结构,即在信号流图中包含反馈支路。

基本网络结构有直接型、级联型和并联型三种。

其中,直接型有可以分为直接Ⅰ型和直接Ⅱ型两种。

直接Ⅰ型()()()M Niii i y n b x n i a y n i ===-+-∑∑直接Ⅱ型121()()()1Miii Nii i b zH z H z H z a z-=-===-∑∑级联型11111(1)()1(1)MMi iii i N Nii ii i c zb zH z Aa z dz --==--==-==--∑∏∑∏并联型012()()()()N H z A H z H z H z =++++0111Ni i iA A dz -==+-∑6).设计FIR 滤波器用窗函数法设计上面要求的3种滤波器。

可以利用函数fir1设计FIR 滤波器。

滤波器的单位脉冲响应h(n)长度为N ,那么1()()N nn H z h n z--==∑H(z)是1z -的N-1次多项式(FIR 滤波器的阶数是N-1),该系统在z 平面上有N-1个零点,在z=0处有一个N-1重极点。

系统永远稳定。

与IIR 滤波器比较,设计方法差别很大,由于h(n)长度为有限的,因此FIR 滤波器设计通常是找出这有限个值。

直接型10()()N nn H z h n z--==∑级联型11201201()()()MN nii i n i H z h n zaa za z----====++∑∏频率采样型'1()()()c k k H z H z H z N==∑三课程设计的总体内容:给定滤波器的性能指标,在MATLAB平台下设计各种FIR和IIR数字滤波器,画出滤波器的频率响应;录制一段语音信号,画出语音信号的时域波形和频谱图,然后给原始语音信号加入噪声,然后用自己设计的滤波器对采集的信号进行滤波,画出滤波后信号的时域波形和频谱,并对滤波前后的信号频谱图进行对比,分析信号的变化,回放语音信号。

四课程设计的准备工作:1. 准备相关参考书,查阅相关文献,复习数字信号处理中各种滤波器的性能指标及设计方法;2. 准备基于MATLAB的语音信号的录音、读取、时域波形、频谱分析等基本知识。

3. 根据你对滤波器原理及其应用的理解,制定自己的设计方案,使用Matlab进行设计,写出源代码,得出仿真结果。

五具体步骤与要求:1.设计数字滤波器,画出其频率响应曲线各滤波器的性能指标:(1)低通滤波器性能指标fp=1000Hz, fs=1200Hz, As=40dB, Ap=1dB。

(2)高通滤波器性能指标fs=4000Hz, fp=4300Hz, As=40dB, Ap=1dB(3)带通滤波器性能指标fp1=1200 Hz, fp2=3000 Hz, fs1=1000 Hz, fs2=3200 Hz,As=40dB, Ap=1dB。

要求:(1)设计IIR滤波器:利用函数butter设计低通、利用函数cheby1设计高通,利用函数ellip设计带通。

(2)(选做)设计IIR滤波器:用双线性变换法设计上面要求的3种滤波器。

(3)(选做)设计FIR滤波器:用窗函数法设计上面要求的3种滤波器。

可以利用函数fir1设计FIR滤波器。

(4)函数freqz画出各滤波器的频率响应。

①低通滤波器图1 cheby1滤波器设计流程图程序为:[y,fs,bit]=wavread('xm.wav');fp=1000;fr=1200;ap=1;as=40;[n,fn]= buttord(fp/(fs/2),fr/(fs/2),ap,as,'z');[b,a]= buttap(n,ap,fn);freqz(b,a);[h,w]=freqz(b,a);subplot(221);plot(w*fs/(2*pi),abs(h));title(' buttap低通滤波');y1=filter(b,a,y);subplot(222);plot(y);title('原始语音信号');subplot(223);plot(y1);title('IIR滤波后语音信号');X=fft(y1,4096);subplot(224);plot(abs(X));title('滤波后信号频谱');显示为:020004000600000.511.5butter 低通滤波02000400060008000-1-0.500.51原始语音信号2000400060008000-0.50.51IIR 滤波后语音信号02000400060008000-4-2024-8FIR 滤波后语音信号图1 butter 高通滤波(a) 原始语音信号(b) IIR 滤波后语音信号(c) 滤波后信号频谱(d)②高通滤波器图2 cheby1滤波器设计流程图程序为:[y,fs,bit]=wavread('xm.wav');fp=4300;fr=4000;ap=1;as=40;[n,fn]=cheb1ord(fp/(fs/2),fr/(fs/2),ap,as,'z');[b,a]=cheby1(n,ap,fn,'high');freqz(b,a);[h,w]=freqz(b,a);subplot(221);plot(w*fs/(2*pi),abs(h));title('cheby1高通滤波');y1=filter(b,a,y);subplot(222);plot(y);title('原始语音信号');subplot(223);plot(y1);title('IIR滤波后语音信号');X=fft(y1,4096);subplot(224);plot(abs(X));title('滤波后信号频谱');显示为:图2 cheby1高通滤波(a) 原始语音信号(b)IIR滤波后语音信号(c) 滤波后信号频谱(d) ③带通滤波器程序为:[y,fs,bit]=wavread('xm.wav');fp1=1200;fr1=1000;fp2=3000;fr2=3200;ap=1;as=40;fp=[fp1,fp2];fr=[fr1,fr2];[n,fn]=cheb1ord(fp/(fs/2),fr/(fs/2),ap,as,'z');[b,a]=cheby1(n,ap,fn);[h,w]=freqz(b,a);subplot(221);plot(w*fs/(2*pi),abs(h));title('cheby1带通滤波');y1=filter(b,a,y);subplot(222);plot(y);title('原始语音信号');subplot(223);plot(y1);title('IIR滤波后语音信号');X=fft(y1,4096);subplot(224);plot(abs(X));title('滤波后信号频谱');显示为:图3 cheby1带通滤波(a) 原始语音信号(b)IIR滤波后语音信号(c) 滤波后信号频谱(d)2.语音信号的采集录制一段自己的话音,或利用老师给的语音,在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率和采样点数。

相关文档
最新文档