专题03 方程(组)和不等式(组)-2017年中考数学分项汇编

合集下载

专题03 方程(组)和不等式(组)-2017版上海市2002-2016年中考数学试题分项解析(解析版

专题03 方程(组)和不等式(组)-2017版上海市2002-2016年中考数学试题分项解析(解析版

【答案】 y 2 y 1 0 。
14.(上海市 2007 年 3 分)若方程 x 2 x 1 0 的两个实数根为 x1 , x2 ,则 x1 x2
2


[来源:学科网 ZXXK]
【答案】2。 【考点】一元二次方程根与系数的关系。 【分析】根据两根之和公式直接求出: x1 x2 15.(上海市 2007 年 3 分)方程 1 x 2 的根是
a= 2 。故选 C。
4.(上海市 2008 年Ⅰ组 4 分)如果 x1,x2 是一元二次方程 x 6 x 2 0 的两个实数根,那么 x1 x2 的值
2
是【 A. 6
】 B. 2 C. 6 D. 2
【答案】C。 【考点】一元二次方程根与系数的关系。 【分析】根据两根之和公式直接求出: x1 x2 5.(上海市 2009 年 4 分) 不等式组 A. x 1 B. x 3
2 2
x 2 1=0 ,
x= 1 。
代入原方程得:当 x =1 时,等式成立;当 x= 1 时,等式无意义。 故方程 2 x 1 =x 的根是 1。
2
2.(上海市 2002 年 2 分)在方程 x 2 整式方程是 ▲ .
1 3x 4 中,如果设 y x 2 3x ,那么原方程可化为关于 y 的 x 3x
1 x a 1 的根,那么 a 的值是【 2

D. 6
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
【答案】C。 【考点】方程的根。 【分析】根据方程根的定义,把 x 2 代入方程
1 1 x a 1 , 得到关于 a 的方程 2 a 1 ,解得 2 2

2017年中考数学试题分项版解析汇编第04期专题03方程组和不等式组含解析20170816151

2017年中考数学试题分项版解析汇编第04期专题03方程组和不等式组含解析20170816151

专题 03 方程(组)和不等式(组)一、选择题1. (2017贵州遵义第 7题)不等式 6﹣4x≥3x ﹣8 的非负整数解为( ) A .2个 B .3个 C .4个 D .5个 【答案】B.考点:一元一次不等式的整数解.2. (2017贵州遵义第 9题)关于 x 的一元二次方程 x 2+3x+m=0有两个不相等的实数根,则 m 的取值范围为( ) A .m≤94B .m<9 4 C .m≤ 4 9D .m<4 9【答案】B. 【解析】试题分析:根据题意得△=32﹣4m >0, 解得 m < 9 4.故选 B .考点:根的判别式.3. (2017湖南株洲第 4题)已知实数 a ,b 满足 a+1>b+1,则下列选项错误的为( ) A .a >b B .a+2>b+2 C .﹣a <﹣b D .2a >3b 【答案】D. 【解析】试题分析:由不等式的性质得 a >b ,a+2>b+2,﹣a <﹣b . 故选 D .考点:不等式的性质.4. (2017内蒙古通辽第8题)若关于x的一元二次方程(k1)x22(k1)x k20有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【答案】A考点:1、根的判别式;2、在数轴上表示不等式的解集5. (2017湖北咸宁第6题)已知a,b,c为常数,点P(a,c)在第二象限,则关于x的方程ax2bx c0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根 C.没有实数根D.无法判断【答案】B.试题分析:已知点P(a,c)在第二象限,可得a<0,c>0,所以ac<0,即可判定△=b2﹣4ac>0,所以方程有两个不相等的实数根.故选B.考点:根的判别式;点的坐标.6. (2017湖南常德第3题)一元二次方程3x24x10的根的情况为()A.没有实数根B.只有一个实数根C.两个相等的实数根D.两个不相等的实数根【答案】D.【解析】试题分析:∵△=(﹣4)2﹣4×3×1=4>0,∴方程有两个不相等的实数根.故选D.考点:根的判别式.7. (2017广西百色第12题)关于x的不等式组0x a2x3a0的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C. 1 D.2 3【答案】B考点:一元一次不等式组的整数解.8. (2017哈尔滨第6题)方程21=x+3x-1的解为( )A.x=3B.x=4C.x=5D.x=-5【答案】C【解析】试题分析:方程两边同乘(x+3)(x-1)得,2(x﹣1)=x+3,2x﹣2=x+3,x=5,检验:当x=5时(x+3)(x﹣1)≠0,所以x=5是原方程的根;故选C.考点:解分式方程.9. (2017黑龙江齐齐哈尔第5题)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【答案】A【解析】试题分析:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16 23,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选A.考点:一元一次不等式的应用.910. (2017黑龙江齐齐哈尔第6题)若关于x的方程kx23x 0有实数根,则实数k的4取值范围是()A.k0B.k1或k0C.k1D.k1【答案】C【解析】93试题分析:当k=0时,方程化为﹣3x﹣=0,解得x= ;4 49当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.4故选C.考点:根的判别式.x1311. (2017黑龙江绥化第5题)不等式组的解集是()x13A.x 4B.2x 4C.2x 4D.x 2【答案】B考点:解一元一次不等式组.3x的解集在数轴上表示正确的是()12. (2017湖北孝感第5题)不等式2x40A.B.C.D.【答案】D【解析】试题分析:x①30,2x40②解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选D.考点:在数轴上表示不等式组的解集.2113. (2017湖北孝感第6题)方程的解是()x3x1 5A.x B.x5 C.x4D.x53【答案】B考点:分式方程的解法.14. (2017内蒙古呼和浩特第5题)关于x的一元二次方程x2(a22a)x a10的两个实数根互为相反数,则a的值为()A.2B.0C.1D.2或0【答案】B【解析】试题分析:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.考点:根与系数的关系.2x1315. (2017青海西宁第5题)不等式组的解集在数轴上表示正确的是()x1A.B.C. D.【答案】B考点:1.解一元一次不等式组;2.在数轴上表示不等式的解集.16. (2017青海西宁第9题)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为()1.2 1.2B.1.2 1.21 C. 1.21.2 1 A.16x6x23x2 1.2 1.2D.13x【答案】B【解析】1.2 1.21,故选B.试题分析:由题意可得,6x2考点:分式方程的应用.17. (2017上海第2题)下列方程中,没有实数根的是()A.x2﹣2x=0B.x2﹣2x﹣1=0C.x2﹣2x+1=0D.x2﹣2x+2=0【答案】D 【解析】试题分析:A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以 A 选项错误; B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以 B 选项错误; C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以 C 选项错误; D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以 D 选项正确. 故选 D .考点:根的判别式18. (2017河池第 10题)若关于 x 的一元二次方程 x 2 2x a 0 的两个相等的实数根,则 a的值是() A .1 B .1C.4 D . 4【答案】A.考点:一元二次方程根的判别式.19. (2017贵州六盘水第 6题)不等式3x6 9的解集在数轴上表示正确的是()【答案】C.3x 6 9 3x 3x 试题分析:9 6 3,故选 C . x1考点:解一元一次不等式;在数轴上表示不等式的解集.20. (2017贵州六盘水第 12题)三角形的两边 a ,b 的夹角为 60° 且满足方程 x 2 - 3 2x +4 = 0 , 则第三边长的长是( )A. 6B.2 2C.2 3D.3 2【答案】试题分析:解方程 x 2 - 3 2x +4 = 0 可 a=2 2,b2 ,如图所示,在 Rt △ACD 中,CD= 2 ×cos60° = 2 2, BD=2 2 - 2 2=3 2 2, AD= 2 × sin60° =6 2, 所 以2 23 2 2 6 2AB AD BD( ) ( ) 6 ,故选 A.2 2考点:一元二次方程;勾股定理.21.(2017新疆乌鲁木齐第 7题)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市 环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多 20 0 0 ,结果提前5天完成任务,设原计划每天植树 x 万棵,可列方程是 ()3030A .xx 120 05B .30 30x20 0 x5C. 30 30 5D .20 0 xx3030120xx0 05 【答案】A.考点:由实际问题抽象出分式方程. 二、填空题1. (2017湖南株洲第13题)分式方程41x x 20的解为.【答案】x=﹣83.【解析】试题分析:去分母,得4x+8﹣x=0,移项、合并同类项,得3x=﹣8,方程两边同时除以3,得x=﹣83.8经检验,x=﹣是原方程的解.38故答案为:x=﹣.3考点:解分式方程.2. (2017湖南株洲第14题)已知“x的3倍大于5,且x的一半与1的差不大于2”,则x的取值范围是.【答案】53<x≤6.【解析】试题分析:依题意有3x 51,解得x12253<x≤6.故x的取值范围是53<x≤6.故答案为:53<x≤6.考点:解一元一次不等式.12x 13. (2017内蒙古通辽第11题)不等式组的整数解是.2x 1x 13【答案】0,1,2考点:一元一次不等式组的整数解4. (2017湖南常德第10题)分式方程24的解为.1x x【答案】x=2.【解析】试题分析:2,方程两边都乘以x得:2+x=4,解得:x=2,检验:当x=2时,x≠0,41x x即x=2是原方程的解,故答案为:x=2.考点:解分式方程.ì-£ï52x15. (2017哈尔滨第16题)不等式组的解集是.íïx-3<0 î【答案】2≤x<3.【解析】试题分析:ì-£ï52x1①íïx-3<0②î,由①得:x≥2,由②得:x<3,则不等式组的解集为2≤x<3.考点:解一元一次不等式组.6. (2017内蒙古呼和浩特第14题)下面三个命题:①若x a,||2,x的解,则a b 1或a b0;是方程组y b2x y3②函数y2x24x 1通过配方可化为y2(x 1)23;③最小角等于50的三角形是锐角三角形.其中正确命题的序号为.【答案】②③考点:命题与定理.7. (2017青海西宁第 15题)若 x 1, x 2 是一元二次方程 x 23x 5 0 的两个根,则 x 2 xx x 2 1 21 2的值是 .【答案】15 【解析】试题分析:∵x 1,x 2是一元二次方程 x 2+3x ﹣5=0的两个根, ∴x 1+x 2=﹣3,x 1x 2=﹣5,∴x 12x 2+x 1x 22=x 1x 2(x 1+x 2)=﹣5×(﹣3)=15. 考点: 根与系数的关系.2x 6 8. (2017上海第 8题)不等式组x 2 0的解集是 . 【答案】x >3考点:解一元一次不等式组. 9.(2017上海第 9题)方程 2x 3 =1的解是 .【答案】x=2 【解析】 试题分析: 2x 3 =1,两边平方得,2x ﹣3=1,解得,x=2;经检验,x=2是方程的根; 故答案为 x=2. 考点:解无理方程.x 110. (2017湖南张家界第 9题)不等式组的解集是 .x2【答案】x≥1.【解析】试题分析:不等式组1xx2的解集是:x≥1.故答案为:x≥1.考点:不等式的解集.11. (2017湖南张家界第12题)已知一元二次方程x23x 40的两根是m,n,则m2n2= .【答案】17.【解析】试题分析:∵m,n是一元二次方程x23x 40的两个根,∴m+n=3,mn=﹣4,则m2n2=(m n)2mn=9+8=17.故答案为:17.2考点:根与系数的关系.12. (2017辽宁大连第13题)关于x的方程x22x c0有两个不相等的实数根,则c的取值范围为.【答案】c<1.考点:根的判别式.13. (2017辽宁大连第14题)某班学生去看演出,甲种票每张30元,乙种票每张20元.如果36名学生购票恰好用去860元.设甲种票买了x张,乙种票买了y张,依据题意,可列方程组为.【答案】x y 36,30x20y860.【解析】试题分析:设甲种票买了x张,乙种票买了y张,根据“36名学生购票恰好用去860元”作为相等关系列方程组.设甲种票买了x张,乙种票买了y张,根据题意,得:36,x y30x20y860,故答案为x y 36,30x20y860.考点:由实际问题抽象出二元一次方程组.14. (2017海南第15题)不等式2x+1>0的解集是.【答案】1x.2考点:一元一次不等式的解法.15. (2017贵州六盘水第17题)方程21-=1的解为x=.x-1x-12【答案】﹣2.试题分析:两边都乘以x2﹣1,得:2﹣(x+1)=x2﹣1,整理化简x2+x-2=0,解得:x1=﹣2,x2=1检验:当x=﹣2时,x﹣3=﹣5≠0,当x=1时,x2﹣1=0,故方程的解为x=﹣2.考点:分式方程16.(2017新疆乌鲁木齐第13题)一件衣服售价为200元,六折销售,仍可获利2000,则这件衣服的进价是元.【答案】100.【解析】试题解析:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.考点:一元一次方程的应用.三、解答题1. (2017贵州遵义第25题)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500 元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8a240a辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【答案】问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为15.考点:分式方程的应用;二元一次方程组的应用.2. (2017湖北咸宁第17题)⑴计算:|3|4820170;⑵解方程:12xx13.【答案】(1)1﹣3 3;(2)x=﹣1.试题分析:(1)根据实数的运算法则,零指数幂的性质计算即可;(2)根据分式方程的解法即可得到结论.试题解析:(1)原式= 3﹣4 3+1=1﹣3 3;(2)方程两边通乘以2x(x﹣3)得,x﹣3=4x,解得:x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,∴原方程的根是x=﹣1.考点:实数的运算;解分式方程.的整数解.x4(1)5x1①323. (2017湖南常德第18题)求不等式组35(3x2)x②2【答案】0,1,2.考点:一元一次不等式组的整数解.4. (2017广西百色第24题)某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【答案】(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.【解析】试题分析:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.试题解析:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,考点:1.一元一次不等式的应用;2.二元一次方程组的应用.5. (2017哈尔滨第25题)威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?【答案】(1)A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)威丽商场至少需购进6件A种商品.【解析】试题分析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元建立两个方程,构成方程组求出其解就可以;(2)设购进A种商品a件,则购进B种商品(34﹣a)件.根据获得的利润不低于4000元,建立不等式求出其解即可.试题解析:(1)设A种商品售出后所得利润为x元,B种商品售出后所得利润为y元.由题意,得x4y6003x5y1100,解得:x200y100,答:A种商品售出后所得利润为200元,B种商品售出后所得利润为100元.(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得200a+100(34﹣a)≥4000,解得:a≥6答:威丽商场至少需购进6件A种商品.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.6. (2017黑龙江绥化第24题)已知关于x的一元二次方程x2(2m 1)x m240.(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.174【答案】(1)当m>﹣时,方程有两个不相等的实数根;(2)m的值为﹣4.考点:1.根的判别式;2.根与系数的关系;3.菱形的性质.7. (2017黑龙江绥化第25题)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【答案】(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.x x.1,2(1)求m的取值范围;(2)若x x满足1,23x x2,求m的值.12【答案】(1)m≤5;(2)4.【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.试题解析:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.考点:1.根与系数的关系;2.根的判别式.9. (2017内蒙古呼和浩特第20题)某专卖店有A,B两种商品.已知在打折前,买60件A 商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元;A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【答案】打了八折.考点:二元一次方程组的应用.2m mx110.(2017内蒙古呼和浩特第21题)已知关于x的不等式x1.22(1)当 m 1时,求该不等式的解集;(2) m 取何值时,该不等式有解,并求出解集.【答案】(1)x <2;(2)当 m ≠﹣1 时,不等式有解,当 m >﹣1 时,不等式解集为 x <2;当 x <﹣1 时,不等式的解集为 x >2.考点:不等式的解集.11. (2017上海第 20题)解方程:311.xx x 233【答案】x=﹣1 【解析】试题分析:两边乘 x (x ﹣3)把分式方程转化为整式方程即可解决问题. 试题解析:两边乘 x (x ﹣3)得到 3﹣x=x 2﹣3x , ∴x 2﹣2x ﹣3=0, ∴(x ﹣3)(x+1)=0, ∴x=3或﹣1,经检验 x=3是原方程的增根, ∴原方程的解为 x=﹣1. 考点:解分式方程12. (2017湖南张家界第 18题)某校组织“大手拉小手,义卖献爱心”活动,购买了黑白两 种颜色的文化衫共 140件,进行手绘设计后了出售,所获利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:批发价(元)零售价(元)黑色文化衫1025白色文化衫820假设文化衫全部售出,共获利1860元,求黑白两种文化衫各多少件?【答案】黑色文化衫60件,白色文化衫80件.考点:二元一次方程组的应用.12x 3 13. (2017辽宁大连第18题)解不等式组:2xx33. 2【答案】2<x<4.【解析】试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解不等式2x﹣3>1,得:x>2,解不等式2,得:x<4,x x233∴不等式组的解集为2<x<4. 考点:解一元一次不等式组.14. (2017辽宁大连第21题)某工厂现在平均每天比原计划多生产25个零件,现在生产600 个零件所需时间与原计划生产450个零件所需时间相同,原计划每天生产多少个零件?【答案】75.考点:分式方程的应用.15. (2017海南第20题)在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【解析】试题分析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.试题解析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,5x2y 64,,3x y36.解得:x8,.y12.答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.. 考点:二元一次方程组的应用.2x116. (2017河池第20题)解不等式组:.x1 3【答案】0.5<x<2.考点:解一元一次不等式组.17. (2017河池第24题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?【答案】(1)排球单价是50元,则足球单价是80元;(2)有两种方案:①购买排球5个,购买足球16个.②购买排球10个,购买足球8个.【解析】试题分析:(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500 元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x元,则足球单价为(x+30)元,由题意得:500800x x30,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣85n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.考点:分式方程的应用;二元一次方程的应用.18. (2017贵州六盘水第24题)甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】试题分析:(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y(2)解方程组.试题解析:(1)x y 100 5x6y(2)x y 100 5x6y解得,x600y500答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.考点:列二元一次方程组解应用题.3x x 2419. (2017新疆乌鲁木齐第16题)解不等式组:2x12x1x 13.【答案】1<x<4.所以,不等式组的解集为1<x<4.考点:解一元一次不等式组.20. (2017新疆乌鲁木齐第18题)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【答案】笼中鸡有23只,兔有12只.考点:二元一次方程组的应用.。

[推荐学习]2017年中考数学试题分项版解析汇编第01期专题03方程组和不等式组含解析

[推荐学习]2017年中考数学试题分项版解析汇编第01期专题03方程组和不等式组含解析

专题3 方程(组)和不等式(组)一、选择题1. (2017浙江衢州第6题)二元一次方程组⎩⎨⎧-=-=+236y x y x 的解是A. ⎩⎨⎧==15y x B. ⎩⎨⎧==24y x C. ⎩⎨⎧-=-=15y x D. ⎩⎨⎧-=-=24y x【答案】B .考点:解二元一次方程组.2.(2017山东德州第8题)不等式组31+2-132+9x x x ⎧≥>⎪⎨⎪⎩的解集为( )A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 4 【答案】B 【解析】试题分析:2x+9≥3的解集是x≥-3;1+2-13xx >的解集是x<4, ∴不等式组的解集为:-3≤x<4 故选B.考点: 解不等式组3.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A.240120-=4-20x x B. 240120-=4+20x xC.120240-=4-20xx D. 120240-=4+20x x 【答案】D考点:列分式方程解应用题4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x++=--的解为正数,且使关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( ) A .10 B .12 C .14 D .16 【答案】B. 【解析】试题解析:分式方程2411y a x x ++=--的解为x=6-4a,∵关于x 的分式方程+=4的解为正数,∴6-4a>0, ∴a <6.y 123)02(2①y ②ya ⎧+>≤--⎪⎨⎪⎩, 解不等式①得:y <﹣2; 解不等式②得:y ≤a .∵关于y 的不等式组12()y 232y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,∴a≥﹣2.∴﹣2≤a<6.∵a为整数,∴a=﹣2、﹣1、0、1、2、3、4、5,(﹣2)+(﹣1)+0+1+2+3+4+5=12.故选B.考点:1.分式方程的解;2.解一元一次不等式组.5.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32-2x)(20-x)=570 B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570 D.32x+2×20x-2x2=570【答案】A.【解析】试题解析:设道路的宽为xm,根据题意得:(32-2x)(20-x)=570,故选A.考点:由实际问题抽象出一元二次方程.6.(2017贵州安顺第8题)若关于x的方程x2+mx+1=0有两个不相等的实数根,则m的值可以是()A.0 B.﹣1 C.2 D.﹣3【答案】D.考点:根的判别式.7.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x --=的两个根,则12x x ×的值是( ) A.2B.2-C.4D.3-【答案】D. 【解析】试题解析:∵x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根, ∴x 1+x 2=2,x 1•x 2=﹣3. 故选D .考点:根与系数的关系.8. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5% 【答案】C . 【解析】试题解析:设该店销售额平均每月的增长率为x ,则二月份销售额为2(1+x )万元,三月份销售额为2(1+x )2万元,由题意可得:2(1+x )2=4.5,解得:x 1=0.5=50%,x 2=﹣2.5(不合题意舍去), 答即该店销售额平均每月的增长率为50%; 故选C .考点:一元二次方程的应用.9.(2017甘肃兰州第6题)如果一元二次方程2230x x m ++=有两个相等的实数根,那么是实数m 的取值为( )A.98m >B.89m >C.98m =D.89m =【答案】98m =【解析】试题解析:∵一元二次方程2x 2+3x+m=0有两个相等的实数根, ∴△=32﹣4×2m=9﹣8m=0,解得:98m =.故选C .考点:根的判别式.10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.()()80703000x x --=B.2807043000x ?=C.()()8027023000x x --=D.()28070470803000x x ?-+=【答案】C 【解析】试题解析:由题意可得, (80﹣2x )(70﹣2x )=3000, 故选C .考点:由实际问题抽象出一元二次方程.11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x的值为( ) A .2B .﹣1C .-12D .﹣2【答案】D . 【解析】试题解析:根据题意得x 1+x 2=2,x 1x 2=﹣1, 所以121212112=21x x x x x x ++==--.故选D .考点:根与系数的关系.12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3【答案】C 【解析】试题解析:去分母得:3=x2+x ﹣3x , 解得:x=﹣1或x=3,经检验x=﹣1是增根,分式方程的根为x=3, 故选C考点:解分式方程.13.(2017山东烟台第10题)若21,x x 是方程01222=--+-m m mx x 的两个根,且21211x x x x -=+,则m 的值为( )A .1-或2B .1或2- C. 2- D .1 【答案】D . 【解析】试题解析:∵x 1,x 2是方程x 2﹣2mx+m 2﹣m ﹣1=0的两个根, ∴x 1+x 2=2m ,x 1•x 2=m 2﹣m ﹣1. ∵x 1+x 2=1﹣x 1x 2,∴2m=1﹣(m 2﹣m ﹣1),即m 2+m ﹣2=(m+2)(m ﹣1)=0, 解得:m 1=﹣2,m 2=1.∵方程x 2﹣2mx+m 2﹣m ﹣1=0有实数根, ∴△=(﹣2m )2﹣4(m 2﹣m ﹣1)=4m+4≥0,解得:m≥﹣1.∴m=1.故选D.考点:根与系数的关系.14.(2017四川宜宾第4题)一元二次方程4x2﹣2x+14=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断【答案】B.考点:根的判别式.15.(2017四川自贡第4题)不等式组23-42+1xx>≤⎧⎨⎩的解集表示在数轴上正确的是()【答案】C 【解析】试题解析:23-42+1①x②x>≤⎧⎨⎩解①得:x>1,解②得:x≤2,不等式组的解集为:1<x≤2,在数轴上表示为,故选C.考点:1.解一元一次不等式组;2.在数轴上表示不等式组的解集.16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3 D .6【答案】A. 【解析】试题解析:设方程的另一个根为t , 根据题意得2+t=﹣1,解得t=﹣3, 即方程的另一个根是﹣3. 故选A .考点:根与系数的关系.17. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x =- B .600480+40x x=C .600480+40xx =D .600480-40xx =【答案】B. 【解析】试题解析:设原计划平均每天生产x 台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程600480+40x x=.故选B .考点:由实际问题抽象出分式方程.18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )A .1B .3C .14-D .74【答案】D. 【解析】试题解析:∵x+y=3,3x-5y=4,∴两式相加可得:(x+y )+(3x-5y )=3+4, ∴4x -4y=7, ∴x -y=74, ∵x=a,y=b , ∴a -b=x-y=74故选D.考点:二元一次方程组的解.19.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( ) A .2(2)2x += B .2(1)2x +=C .2(2)3x +=D .2(1)3x +=【答案】B . 【解析】试题解析:∵x 2+2x-1=0, ∴x 2+2x-1=0, ∴(x+1)2=2. 故选B .考点:解一元二次方程-配方法. 二、填空题1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是 【答案】x 1=1,x 2=-23. 【解析】试题解析:3x(x-1)=2(x-1) 3x(x-1)-2 (x-1) =0 (3x-2)(x-1)=0 3x-2=0,x-1=0 解得:x 1=1,x 2=-23.考点:解一元二次方程---因式分解法.2.(2017浙江宁波第14题)分式方程21332xx+=-的解是.【答案】x=1【解析】试题分析:去分母得:4x+2=9-3x解得:x=1经检验:x=1是原方程的解.考点:解分式方程.3.(2017甘肃庆阳第15题)若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是【答案】k≤5且k≠1.考点:根的判别式.4.(2017江苏盐城第13题)若方程x2-4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为【答案】5.【解析】试题解析:根据题意得x1+x2=4,x1x2=1,所以x1(1+x2)+x2=x1+x1x2+x2=x1+x2+x1x2=4+1=5.考点:要有与系数的关系.5.(2017山东烟台第15题)运行程序如图所示,从“输入实数x”到“结果是否18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是 .【答案】x<8.【解析】试题解析:依题意得:3x﹣6<18,解得x<8.考点:一元一次不等式的应用.考点:1.分式方程的解;2.解一元一次不等式7.(2017四川宜宾第13题)若关于x、y的二元一次方程组2m133x yx y⎧-=+⎨+=⎩的解满足x+y>0,则m的取值范围是.【答案】m>﹣2.【解析】试题解析:2m133x yx y⎧-=+⎨+=⎩,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >﹣2.考点:1.解一元一次不等式;2.二元一次方程组的解.8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .【答案】50(1﹣x )2=32【解析】试题解析:由题意可得,50(1﹣x )2=32考点:由实际问题抽象出一元二次方程.9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 . 【答案】13+=1003x+y=100x y ⎧⎪⎨⎪⎩【解析】试题解析:设大、小和尚各有x ,y 人,则可以列方程组:13+=1003x+y=100x y ⎧⎪⎨⎪⎩. 考点:由实际问题抽象出二元一次方程组.10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是 元.【答案】1000.【解析】试题解析:设该商品的进价为x 元,根据题意得:2000×0.6﹣x=x ×20%,解得:x=1000.故该商品的进价是1000元.考点:一元一次方程的应用.三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:【答案】﹣1<x≤4.考点:解一元一次不等式组.2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

专题03 方程(组)和不等式(组)-2017版[中考15年]河北省2002-2016年中考数学试题分项解析(解析版)

专题03 方程(组)和不等式(组)-2017版[中考15年]河北省2002-2016年中考数学试题分项解析(解析版)

2017版[中考15年]河北省2002-2016年中考数学试题分项解析专题03 方程(组)和不等式(组)1. (2002年河北省2分)不等式组2x 35x 24+-⎧⎨⎩><的解集是【 】A .x >1B .x <6C .1<x <6D .x <1或x >6【答案】C 。

【考点】解一元一次不等式组。

2. (2002年河北省2分)已知一个直角三角形两条直角边的长是方程22x 8x 70-+=的两个根,则这个直角三角形的斜边长是【 】 A 、3B 、3-C 、2D 、2-【答案】A 。

3. (2003年河北省2分)赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是【 】 A 、14014014x x 12+=- B 、28028014x x 21+=+ C 、10101x x 21+=+ D 、14014014x x 21+=+【答案】D 。

4. (2004年河北省大纲2分)若x 1、x 2是一元二次方程22x 3x 10-+=的两个根,则2212x x +的值是【 】A .54 B .94C .114D .7 【答案】A 。

5. (2004年河北省大纲2分)如图所示的电路的总电阻为10Ω,若R 1=2R 2,则R 1,R 2的值分别是【 】A .12R 30R 15=Ω=Ω,B .122010R R 33=Ω=Ω, C .12R 15R 30=Ω=Ω, D .121020R R 33=Ω=Ω,【答案】A 。

【考点】分式方程的应用(跨学科问题)。

∴22111102R R =+,解得R 2=15。

∴R 1=2R 2=30。

故选A 。

6. (2004年河北省课标2分)如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g )的取值范围,在数轴上可表示为【 】【答案】A 。

浙江省2017年中考数学真题分类解析:专题3-方程(组)(Word版,含答案)

浙江省2017年中考数学真题分类解析:专题3-方程(组)(Word版,含答案)

浙江省2017年中考数学真题分类汇编:方程(组)(解析版)一、单选题(共7题;共14分)1、(2017·衢州)二元一次方程组的解是()A、B、C、D、2、(2017·嘉兴)用配方法解方程时,配方结果正确的是()A、B、C、D、3、(2017·嘉兴)若二元一次方程组的解为则()A、B、C、D、4、(2017•温州)我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A、x1=1,x2=3B、x1=1,x2=﹣3C、x1=﹣1,x2=3D、x1=﹣1,x2=﹣35、(2017•杭州)设x,y,c是实数,()A、若x=y,则x+c=y﹣cB、若x=y,则xc=ycC、若x=y,则D、若,则2x=3y6、(2017•杭州)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A、10.8(1+x)=16.8B、16.8(1﹣x)=10.8C、10.8(1+x)2=16.8D、10.8[(1+x)+(1+x)2]=16.87、(2017·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、运途费三部分,其中里程费按行车的实际里程计费;时长费按行车的实际时间计算,运途费的收取方式为:行车7公里以内(含7公里)不收运途费超过7公里的,超出部分每公里收0.8元小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A、10分钟B、13分钟C、15分钟D、19分钟二、填空题(共5题;共5分)8、(2017•宁波)分式方程的解是________9、(2017·嘉兴)若分式的值为0,则的值为________.10、(2017•杭州)若•|m|= ,则m=________.11、(2017•温州)甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:________.12、(2017•杭州)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉________千克.(用含t的代数式表示.)三、解答题(共2题;共15分)13、(2017·金华)(本题6分) 解分式方程: .14、(2017•宁波)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?答案解析部分一、单选题1、【答案】B【考点】二元一次方程组的解【解析】【解答】解:①-②得:4y=8, 解得y=2;将y=2代入①得x=4;∴原方程组的解为:;故选B.【分析】利用两个方程作差就可以直接求出y=2,将其代入即可求出x=4,从而得出答案.2、【答案】B【考点】解一元二次方程-配方法【解析】【解答】解:方程两边都“+2”,得x2+2x+1=2,则(x+1)2=2。

中考冲刺--名校总结专题03 方程(组)和不等式(组)-2017年中考数学试题分项版解析汇编(解析版)

中考冲刺--名校总结专题03 方程(组)和不等式(组)-2017年中考数学试题分项版解析汇编(解析版)

专题3:方程(组)和不等式(组)一、选择题1.(2017天津第8题)方程组⎩⎨⎧=+=1532y x xy 的解是( )A .⎩⎨⎧==32y xB .⎩⎨⎧==34y x C. ⎩⎨⎧==84y x D .⎩⎨⎧==63y x【答案】D. 【解析】试题分析:把方程①代入方程②可得,3x+2x=15,解得x=3,把x=3代入方程①可得y=6,所以方程组的解为⎩⎨⎧==63y x ,故选D.2.(2017福建第6题) 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x ≤2,由②得x>-3,所以解集为:-3<x ≤2,故选A.3.(2017河南第4题)解分式方程13211x x-=--,去分母得( ) A .12(1)3x --=- B .12(1)3x --= C.1223x --=- D .1223x -+=【答案】A. 【解析】试题分析:方程两边同乘以x-1得到12(1)3x --=-,故选A. 考点:解分式方程.4.(2017河南第6题)一元二次方程22520x x --=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C. 只有一个实数根 D .没有实数根 【答案】B. 【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410--⨯⨯-=+=f ,即可得方程22520x x --=有有两个不相等的实数根,故选B.考点:根的判别式.6.(2017广东广州第5题)关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是( )A .16q <B .16q > C. 4q ≤ D .4q ≥ 【答案】A 【解析】试题分析:根的判别式为△=6440q ->,解得:16q <.故选答案A. 考点:一元二次方程根的判别式的性质7.(2017湖南长沙第11题)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()A.24里 B.12里 C.6里 D.3里【答案】C考点:等比数列9.(2017山东临沂第4题)不等式组21,512xx->⎧⎪⎨+≥⎪⎩①②中,不等式①和②的解集在数轴上表示正确的是()A. B.C. D.【答案】B【解析】试题分析:解不等式①可得x<1,解不等式②得x≥-3,根据不等式解集的确定法“都大取大,都小取小,大小小大取中间,大大小小无解了”,得到不等式组的解集为:-3≤x<1,由此可知用数轴表示为:故选:B.考点:解不等式组10. (2017山东临沂第8题)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()学*科网A.90606x x=+B.90606x x=+C.90606x x=-D.90606x x=-【答案】B考点:分式方程的应用11. (2017山东滨州第9题)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27-x) B.16x=22(27-x)C.2×16x=22(27-x) D.2×22x=16(27-x)【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D.12.(2017山东滨州第6题)分式方程311(1)(2)x x x x -=--+的解为( ) A .x =1 B .x =-1 C .无解 D .x =-2【答案】C.【解析】方程两边同乘以(x-1)(x+2)得,x (x+2)-(x-1)(x+2)=3,解得x=1,经检验,x=1不是原方程的根,原分式方程无解,故选C.13. (2017江苏宿迁第5题)已知45m <<,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有A .1个B .2个 C.3个 D .4个 【答案】B.14. (2017江苏苏州第8题)若二次函数21y ax =+的图像经过点()2,0-,则关于x 的方程()2210a x -+=的实数根为A .10x =,24x =B .12x =-,26x = C.132x =,252x = D .14x =-,20x =【解析】试题分析:14104a a +=⇒=-则:()21212100,44x x x --+=⇒==,故答案选A. 考点:一元二次方程的解法15. (2017江苏苏州第4题)关于x 的一元二次方程220x x k -+=有两个相等的实数根,则k 的值为A .1B .1- C.2 D .2- 【答案】A. 【解析】试题分析:=4401k k ∆-=⇒= 故答案选A. 考点:根的判别式的性质.16. (2017浙江湖州第4题)一元一次不等式组21112x x x >-⎧⎪⎨≤⎪⎩的解是( )A .1x >-B .2x ≤ C.12x -<≤ D .1x >-或2x ≤ 【答案】C考点:解不等式组17. (2017湖南湘潭第3题)不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为( )A .B .C .D .【答案】B. 【解析】试题分析:x<2,不包括2,画空心圆圈,小于向左拐;x >-1,不包括-1,画空心圆圈,大于向右拐,故选B.18. (2017浙江舟山第6题)若二元一次方程组⎩⎨⎧=-=+4533y x y x 的解为⎩⎨⎧==by ax ,则=-b a ( )A .1B .3 C. 41-D .47【答案】D. 【解析】试题分析:将两个方程相加,可得(x+y)+(3x-5y)=3+4,整理得4x-4y=7,即x-y=74,所以a-b=74,故选D.考点:二元一次方程组的解,解二元一次方程组.19. (2017浙江台州第9题)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.相同,那么这两辆滴滴快车的行车时间相差()A. 10分钟 B.13分钟 C. 15分钟 D.19分钟【答案】D考点:1、列代数式,2、二元一次方程的应用,3、根据数量关系列出方程20. (2017浙江金华第9题)若关于x 的一元一次不等式组()2132,x x x m->-⎧⎪⎨<⎪⎩的解是5x <,则m的取值范围是( )A .5m ≥B .5m > C.5m ≤ D .5m < 【答案】A. 【解析】试题分析:解第一个不等式得:x <5;解第二个不等式得:x <m ;因为不等式组的解是x <5,根据不等式组解集的判定方法即可得m ≥5,故选A.21. (2017浙江舟山第8题)用配方法解方程0122=-+x x 时,配方结果正确的是( ) A .2)2(2=+x B .2)1(2=+x C. 3)2(2=+x D .3)1(2=+x 【答案】B. 【解析】试题分析::方程两边都加2,得x 2+2x+1=2,则(x+1)2=2,故选B. 考点:解一元二次方程-配方法. 二、填空题1.(2017北京第12题)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.【答案】454353x y x y +=⎧⎨-=⎩ .。

江西省2017年中考数学 第一部分 考点研究 第二章 方程(组)与不等式(组)课时7 可化为一元一次方程的分式

江西省2017年中考数学 第一部分 考点研究 第二章 方程(组)与不等式(组)课时7 可化为一元一次方程的分式

第二章 方程(组)与不等式(组)
课时7 可化为一元一次方程的分式方程解法及应用
玩转江西9年中考真题(2008~2016年)
命题点1 解分式方程
1. (2010江西18题7分)解方程:
224+1+24
x x x -=-.
命题点2 分式方程的实际应用
2. (2008江西21题8分)甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l 起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑;用时少者胜.结果甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,乙同学说:“我俩所用的全部时间的和为50秒.捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?
第2题图
【答案】
命题点1 解分式方程
1. 解:方程的两边同乘以x2-4,得(x-2)2+4=x2-4,(3分)
解得x=3,(6分)
检验:当x=3时,x2-4≠0,
所以x=3是原方程的解.(7分)
命题点2 分式方程的实际应用
2. 解:设乙同学的速度为x米/秒,则甲同学的速度为1.2x米/秒,根据题意得:(1分) 6060
(6)50
1.2x x
++=,(3分)
解得x=2.5.(4分)
经检验,x=2.5是原方程的解,且符合题意,(5分)
∴甲同学所用的时间为:
60
1.2×
2.5
+6=26(秒),(6分)
乙同学所用的时间为:60
2.5
=24(秒).(7分)
∵26>24,
∴乙同学获胜.(8分)
2。

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题02代数式和因式分解(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)下列计算正确的是( ) A.842a a a ÷= B .236(2)6a a = C .3232a a a -=D .23(1)33a a a a -=-【答案】D . 【解析】试题分析:A .原式=4a ,不符合题意; B .原式=68a ,不符合题意; C .原式不能合并,不符合题意; D .原式=233a a -,符合题意. 故选D .考点:整式的混合运算.2.(2017四川省广安市)下列运算正确的是( )A .|√2−1|=√2−1B .x 3⋅x 2=x 6C .x 2+x 2=x 4D .(3x 2)2=6x 4 【答案】A . 【解析】试题分析:A .|√2−1|=√2−1,正确,符合题意; B .325x x x ⋅=,故此选项错误; C .2222x x x +=,故此选项错误;D .224(3)9x x =,故此选项错误;故选A .考点:1.幂的乘方与积的乘方;2.实数的性质;3.合并同类项;4.同底数幂的乘法.学科*网 3.(2017四川省广安市)要使二次根式√2x −4在实数范围内有意义,则x 的取值范围是( ) A .x >2 B .x ≥2 C .x <2 D .x =2 【答案】B .【解析】试题分析:∵二次根式√2x −4在实数范围内有意义,∴2x ﹣4≥0,解得:x ≥2,则实数x 的取值范围是:x ≥2.故选B .考点:二次根式有意义的条件.4.(2017四川省眉山市)下列运算结果正确的是( )A-= B .2(0.1)0.01--= C .222()2a b ab a b ÷= D .326()m m m -=-【答案】A .考点:1.二次根式的加减法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.分式的乘除法;5.负整数指数幂.5.(2017四川省眉山市)已知2211244m n n m +=--,则11m n -的值等于( ) A .1 B .0 C .﹣1 D .14-【答案】C . 【解析】试题分析:由2211244m n n m +=--,得:22(2)(2)0m n ++-= ,则m =﹣2,n =2,∴11m n -=1122--=﹣1.故选C .考点:1.分式的化简求值;2.条件求值. 6.(2017四川省绵阳市)使代数式√x+3+√4−3x 有意义的整数x 有( )A .5个B .4个C .3个D .2个 【答案】B .考点:二次根式有意义的条件.7.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则1a 1+1a 2+1a 3+⋯+1a 19的值为( )A .2021B .6184C .589840D .421760【答案】C . 【解析】试题分析:a 1=3=1×3,a 2=8=2×4,a 3=15=3×5,a 4=24=4×6,…,a n =n (n +2);∴1a 1+1a 2+1a3+⋯+1a 19=11111 (13243546)1921+++++⨯⨯⨯⨯⨯ =1111111111(1...)232435461921-+-+-+-++-=1111(1)222021+--=589840,故选C .学科#网 考点:1.规律型:图形的变化类;2.综合题. 8.(2017四川省达州市)下列计算正确的是( ) A .235a b ab +=B 6=±C .22122a b ab a ÷=D .()323526ab a b =【答案】C .【解析】试题分析:A .2a 与3b 不是同类项,故A 不正确; B .原式=6,故B 不正确; C .22122a b ab a÷=,正确;D .原式=368a b ,故D 不正确; 故选C .考点:1.整式的除法;2.算术平方根;3.合并同类项;4.幂的乘方与积的乘方. 9.(2017山东省枣庄市)下列计算,正确的是( )A-= B .13|2|22-=-C= D .11()22-=【答案】D . 【解析】=,A 错误;13|2|22-=,B 错误;2,C 错误;11()22-=,D 正确,故选D .考点:1.立方根;2.有理数的减法;3.算术平方根;4.负整数指数幂. 10.(2017山东省枣庄市)实数a ,b在数轴上对应点的位置如图所示,化简||a 的结果是( )A .﹣2a +bB .2a ﹣bC .﹣bD .b 【答案】A .考点:1.二次根式的性质与化简;2.实数与数轴.11.(2017山东省济宁市)单项式39m x y 与单项式24n x y 是同类项,则m +n 的值是( ) A .2 B .3 C .4 D .5 【答案】D . 【解析】试题分析:由题意,得m =2,n =3.m +n =2+3=5,故选D . 考点:同类项.12.(20171+在实数范围内有意义,则x 满足的条件是( )A .x ≥12B .x ≤12C .x =12D .x ≠12【答案】C . 【解析】试题分析:由题意可知:210120x x -≥⎧⎨-≥⎩,解得:x =12.故选C .考点:二次根式有意义的条件. 13.(2017山东省济宁市)计算()322323a a a a a -+-÷,结果是( )A .52a a - B .512a a -C .5aD .6a【答案】D .考点:1.幂的乘方与积的乘方;2.同底数幂的乘法;3.负整数指数幂.14.(2017山西省)如图,将矩形纸片ABCD 沿BD 折叠,得到△BC ′D ,C ′D 与AB 交于点E .若∠1=35°,则∠2的度数为( )A .20B .30C .35D .55 【答案】A . 【解析】试题分析:由翻折的性质得,∠DBC =∠DBC ′,∵∠C =90°,∴∠DBC =∠DBC ′=90°-35°=55°,∵矩形的对边AB ∥DC ,∴∠1=∠DBA =35°,∴∠2=∠DBC ′-∠DBA =55°-35°=20°.故选A . 考点:1.平行线的性质;2.翻折变换(折叠问题). 15.(2017广东省)下列运算正确的是( )A .223a a a +=B .325a a a ⋅=C .426()a a =D .424a a a +=【答案】B . 【解析】试题分析:A .a +2a =3a ,此选项错误; B .325a a a ⋅=,此选项正确;C .428()a a =,此选项错误;D .4a 与2a 不是同类项,不能合并,此选项错误;故选B .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法. 16.(2017广西四市)下列运算正确的是( )A .−3(x −4)=−3x +12B .(−3x)2⋅4x 2=−12x 4C .3x +2x 2=5x 3D .x 6÷x 2=x 3 【答案】A .考点:整式的混合运算.17.(2017江苏省盐城市)下列运算中,正确的是( )A .277a a aB .236a aa C .32a aa D .22abab【答案】C . 【解析】 试题分析:A .错误、7a +a =8a .B .错误.235aa a . C .正确.32a aa .D .错误.222aba b故选C .考点:1.幂的乘方与积的乘方;2.合并同类项;3.同底数幂的乘法.18.(2017江苏省连云港市)计算2a a 的结果是( )A .aB .2aC .22aD .3a 【答案】D .考点:同底数幂的乘法.19.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O 上的A 0点出发,沿着射线A 0O 方向运动到⊙O 上的点A 1处,再向左沿着与射线A 1O 夹角为60°的方向运动到⊙O 上的点A 2处;接着又从A 2点出发,沿着射线A 2O 方向运动到⊙O 上的点A 3处,再向左沿着与射线A 3O 夹角为60°的方向运动到⊙O 上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.23C.2D.0【答案】A.【解析】试题分析:如图,∵⊙O的半径=2,由题意得,OA1=4,OA2=,OA3=2,OA4=,OA5=2,OA6=0,OA7=4,…∵2017÷6=336…1,∴按此规律运动到点A2017处,A2017与A1重合,∴OA2017=2R=4.故选A.考点:1.规律型:图形的变化类;2.综合题.20.(2017河北省)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是()A.446+=B.004446++=C.46+=D.1446-=【答案】D.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.图表型.21.(2017河北省)若321xx--= +11x-,则中的数是()A.﹣1B.﹣2C.﹣3D.任意实数【答案】B.【解析】试题分析:∵321xx-- = +11x-,∴321xx--﹣11x-=3211xx---=2(1)1xx--=﹣2,故____中的数是﹣2.故选B.考点:分式的加减法.22.(2017浙江省丽水市)计算23a a⋅,正确结果是()A.5a B.4a C.8a D.9a 【答案】A.【解析】试题分析:23a a⋅=23a+=5a,故选A.考点:同底数幂的乘法.23.(2017浙江省丽水市)化简2111x x x +--的结果是( )A .x +1B .x ﹣1C .21x -D .211x x +-【答案】A .考点:分式的加减法.24.(2017浙江省台州市)下列计算正确的是( ) A .()()2222a a a +-=-B .()()2122a a a a +-=+-C .()222a b a b +=+D .()2222a b a ab b -=-+【答案】D . 【解析】试题分析:A .原式=24a -,不符合题意;B .原式=22a a --,不符合题意; C .原式=222a ab b ++,不符合题意;D .原式=222a ab b -+,符合题意. 故选D .考点:整式的混合运算.25.(2017湖北省襄阳市)下列运算正确的是( )A .32a a -=B .()325a a = C . 235a a a = D .632a a a ÷=【答案】C .考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.学科*网 26.(2017重庆市B 卷)计算53a a ÷结果正确的是( ) A .a B .2a C .3a D .4a 【答案】B . 【解析】试题分析:53a a ÷=2a .故选B . 考点:同底数幂的除法.27.(2017重庆市B 卷)若x =﹣3,y =1,则代数式2x ﹣3y +1的值为( ) A .﹣10 B .﹣8 C .4 D .10 【答案】B . 【解析】试题分析:∵x =﹣3,y =1,∴2x ﹣3y +1=2×(﹣3)﹣3×1+1=﹣8,故选B . 考点:代数式求值.28.(2017重庆市B卷)若分式13x -有意义,则x 的取值范围是( )A .x >3B .x <3C .x ≠3D .x =3 【答案】C . 【解析】试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C .考点:分式有意义的条件.29.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 【答案】B .考点:规律型:图形的变化类. 二、填空题目30.(2017四川省南充市)计算:0|1(π+= .【解析】试题分析:原式1+1 考点:1.实数的运算;2.零指数幂.31.(2017四川省广安市)分解因式:24mx m -= . 【答案】m (x +2)(x ﹣2). 【解析】试题分析:24mx m -=2(4)m x -=m (x +2)(x ﹣2).故答案为:m (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.32.(2017四川省眉山市)分解因式:228ax a -= . 【答案】2a (x +2)(x ﹣2).考点:提公因式法与公式法的综合运用.33.(2017四川省绵阳市)分解因式:282a -= . 【答案】2(2a +1)(2a ﹣1). 【解析】试题分析:282a -=22(41)a - =2(2a +1)(2a ﹣1).故答案为:2(2a +1)(2a ﹣1).考点:提公因式法与公式法的综合运用.34.(2017四川省达州市)因式分解:3228a ab -= .【答案】2a (a +2b )(a ﹣2b ). 【解析】试题分析:2a 3﹣8ab 2 =2a (a 2﹣4b 2) =2a (a +2b )(a ﹣2b ).故答案为:2a (a +2b )(a ﹣2b ). 考点:提公因式法与公式法的综合运用.35.(2017山东省枣庄市)化简:2223321(1)x x xx x x ++÷-+-= . 【答案】1x .【解析】试题分析:2223321(1)x x x x x x ++÷-+-=223(1)(1)(3)x x x x x +-⋅-+=1x ,故答案为:1x . 考点:分式的乘除法.36.(2017山东省济宁市)分解因式:222ma mab mb ++=.【答案】2()m a b + .【解析】试题分析:原式=22(2)m a ab b ++=2()m a b +,故答案为:2()m a b +.考点:提公因式法与公式法的综合运用.37.(2017山西省)计算:-= .【答案】.考点:二次根式的加减法.38.(2017广东省)分解因式:a a +2= .【答案】a (a +1). 【解析】试题分析:a a +2=a (a +1).故答案为:a (a +1).考点:因式分解﹣提公因式法.学&科网39.(2017广东省)已知4a +3b =1,则整式8a +6b ﹣3的值为 . 【答案】﹣1. 【解析】试题分析:∵4a +3b =1,∴8a +6b =2,8a +6b ﹣3=2﹣3=﹣1;故答案为:﹣1. 考点:1.代数式求值;2.整体思想.40.(2017江苏省盐城市)分解因式2a b a 的结果为 .【答案】a (ab ﹣1). 【解析】试题分析:2a b a =a (ab ﹣1),故答案为:a (ab ﹣1).考点:提公因式法与公式法的综合运用.41.(2017在实数范围内有意义,则x 的取值范围是 . 【答案】x ≥3. 【解析】试题分析:根据题意得x ﹣3≥0,解得x ≥3.故答案为:x ≥3. 考点:二次根式有意义的条件.42.(2017江苏省连云港市)分式11x 有意义的x 的取值范围为 . 【答案】x ≠1.考点:分式有意义的条件.43.(2017江苏省连云港市)计算(a ﹣2)(a +2)=. 【答案】24a -. 【解析】试题分析:(a ﹣2)(a +2)=24a -,故答案为:24a -. 考点:平方差公式.44.(2017浙江省丽水市)分解因式:22m m += . 【答案】m (m +2). 【解析】试题分析:原式=m (m +2).故答案为:m (m +2). 考点:因式分解﹣提公因式法.45.(2017浙江省丽水市)已知21a a +=,则代数式23a a --的值为 . 【答案】2. 【解析】试题分析:∵21a a +=,∴原式=23()a a -+=3﹣1=2.故答案为:2.考点:1.代数式求值;2.条件求值;3.整体思想.46.(2017浙江省台州市)因式分解:26x x += .【答案】x (x +6). 【解析】试题分析:原式=x (6+x ),故答案为:x (x +6). 考点:因式分解﹣提公因式法.47.(2017浙江省绍兴市)分解因式:2x y y -= .【答案】y (x +1)(x ﹣1).考点:1.提公因式法与公式法的综合运用;2.因式分解.48.(2017重庆市B 卷)计算:0|3|(4)-+- .【答案】4. 【解析】试题分析:原式=3+1=4.故答案为:4. 考点:1.实数的运算;2.零指数幂.三、解答题49.(2017四川省南充市)化简21(1)1x x x x x --÷++,再任取一个你喜欢的数代入求值.【答案】1x x -,当x =5时,原式=54.【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值代入进行计算即可.试题解析:原式=2211x x x x x xx +-+⋅+-=21(1)1x x x x x +⋅+-=1x x - ∵x ﹣1≠0,x (x +1)≠0,∴x ≠±1,x ≠0,当x =5时,原式=551-=54.考点:分式的化简求值.50.(2017四川省广安市)计算:6118cos 4520173--+⨯-+.【答案】13 .考点:1.二次根式的混合运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.51.(2017四川省广安市)先化简,再求值:2211a a a aa +-⎛⎫+÷⎪⎝⎭,其中a =2. 【答案】11a a +-,3.【解析】试题分析:先化简分式,再代入求值.试题解析:原式=221(1)(1)a a a a a a ++⨯+-=2(1)(1)(1)a a a a a +⨯+-=11a a +- 当a =2时,原式=3. 考点:分式的化简求值.52.(2017四川省眉山市)先化简,再求值:2(3)2(34)a a +-+,其中a =﹣2. 【答案】21a +,5. 【解析】试题分析:原式利用完全平方公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值. 试题解析:原式=26968a a a ++--=21a +,当a =﹣2时,原式=4+1=5. 考点:整式的混合运算—化简求值.53.(2017四川省绵阳市)(1)计算:√0.04+cos 2450−(−2)−1−|−12|;(2)先化简,再求值:(x−y x 2−2xy +y 2−x x 2−2xy )÷yx−2y ,其中x=y.【答案】(1)0.7;(2)1y x -,.考点:1.分式的化简求值;2.实数的运算;3.负整数指数幂;4.特殊角的三角函数值.54.(2017四川省达州市)计算:11201712cos453-⎛⎫--+︒⎪⎝⎭.【答案】5.【解析】试题分析:首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=1132+++55.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.学科#网55.(2017四川省达州市)设A=223121a aaa a a-⎛⎫÷-⎪+++⎝⎭.(1)化简A;(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…解关于x的不等式:()()()27341124x xf f f---≤+++,并将解集在数轴上表示出来.【答案】(1)21a a+;(2)x≤4.考点:1.分式的混合运算;2.在数轴上表示不等式的解集;3.解一元一次不等式;4.阅读型;5.新定义.56.(2017山东省枣庄市)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=p q.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=3 4.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【答案】(1)证明见解析;(2)15,26,37,48,59;(3)3 4.考点:1.因式分解的应用;2.新定义;3.因式分解;4.阅读型.57.(2017广东省)计算:()11713π-⎛⎫---+ ⎪⎝⎭.【答案】9. 【解析】试题分析:直接利用绝对值的性质以及零指数幂的性质和负整数指数幂的性质分别化简求出答案. 试题解析:原式=7﹣1+3=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.58.(2017广东省)先化简,再求值:()211422x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中x【答案】2x , 【解析】试题分析:先计算括号内分式的加法,再计算乘法即可化简原式,将x 的值代入求解可得.试题解析:原式=()()()()222222x x x x x x ++-+--+=2x当x= 考点:分式的化简求值.59.(2017广西四市)先化简,再求值:2211121x x x x x ---÷++,其中x =√5−1. 【答案】11x +考点:分式的化简求值.60.(201711()20172.【答案】3. 【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可. 试题解析:原式=2+2﹣1=3.考点:1.实数的运算;2.零指数幂;3.负整数指数幂. 61.(2017江苏省盐城市)先化简,再求值:35222x x x x ,其中33x .【答案】13x -.【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把x 的值代入计算即可求出值. 试题解析:原式=3(2)(2)5[]222x x x x x x =23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -当33x 时,原式.考点:分式的化简求值.62.(2017江苏省连云港市)计算:0318 3.14.【答案】0. 【解析】试题分析:先去括号、开方、零指数幂,然后计算加减法. 试题解析:原式=1﹣2+1=0.考点:1.实数的运算;2.零指数幂.63.(2017江苏省连云港市)化简: 211a aa a .【答案】21a .考点:分式的乘除法.64.(2017河北省)发现 任意五个连续整数的平方和是5的倍数.验证 (1)22222(1)0123-++++的结果是5的几倍?(2)设五个连续整数的中间一个为n ,写出它们的平方和,并说明是5的倍数. 延伸 任意三个连续整数的平方和被3整除余数是几呢?请写出理由. 【答案】(1)3;(2)见解析;延伸 2,理由见解析. 【解析】试题分析:(1)直接计算这个算式的值;(2)先用代数式表示出这几个连续整数的平方和,再化简,根据代数式的形式作出结论. 试题解析:(1)∵()2222210123-++++=1+0+1+4+9=15=5×3,∴结果是5的3倍.(2)()()()()() 2222222 211251052n n n n n n n-+-+++++=+=+.∵n为整数,∴这个和是5的倍数.延伸余数是2.理由:设中间的整数为n,()()22221132n n n n-+++=+被3除余2.考点:1.完全平方公式;2.整式的加减.65.(2017浙江省丽水市)计算:011(2017)()3---【答案】1.【解析】试题分析:本题涉及零指数幂、负整数指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.学&科网试题解析:原式=1﹣3+3=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.66.(2017)013 +---.【答案】1.考点:1.实数的运算;2.零指数幂.67.(2017浙江省台州市)先化简,再求值:1211x x⎛⎫-⋅⎪+⎝⎭,其中x=2017.【答案】21x+,11009.【解析】试题分析:根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.试题解析:原式=1121xx x+-⨯+ =21xx x⨯+=21x+当x =2017时,原式=220171+=22018=11009.考点:分式的化简求值.68.(2017浙江省绍兴市)(1)计算:()4π-+-(2)解不等式:()4521x x +≤+.【答案】(1)﹣3;(2)x ≤32-.考点:1.解一元一次不等式;2.实数的运算;3.零指数幂.69.(2017湖北省襄阳市)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中2x =,2y =-.【答案】2xy x y -,12.【解析】试题分析:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.试题解析:原式=1[]()()()()()x y x y x y x y x y x y y x y -++÷+-+-+=2()()()x y x y x y x y ⋅++- =2xyx y -当2x =+,2y =-时,原式24=12. 考点:分式的化简求值. 70.(2017重庆市B 卷)计算:(1)2()(2)x y x y x+--;(2)23469 (2)22a a aaa a--++-÷--.【答案】(1)222x y+;(2)3aa-.考点:1.分式的混合运算;2.单项式乘多项式;3.完全平方公式.71.(2017重庆市B卷)对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k= ()()F sF t中,找出最大值即可.试题解析:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6.∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴16x y =⎧⎨=⎩或25x y =⎧⎨=⎩或34x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩或61x y =⎧⎨=⎩.∵s 是“相异数”,∴x ≠2,x ≠3.∵t 是“相异数”,∴y ≠1,y ≠5,∴16x y =⎧⎨=⎩或43x y =⎧⎨=⎩或52x y =⎧⎨=⎩,∴()6()12F s F t =⎧⎨=⎩或()9()9F s F t =⎧⎨=⎩或()10()8F s F t =⎧⎨=⎩,∴k =()()F s F t =12或k =()()F s F t =1或k =()()F s F t =54,∴k 的最大值为54.考点:1.因式分解的应用;2.二元一次方程的应用;3.新定义;4.阅读型;5.最值问题;6.压轴题.祝你考试成功!祝你考试成功!。

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题03方程(组)和不等式(组)(第01期)-2017年中考数学试题分项版解析汇编(原卷版)

专题3 方程(组)和不等式(组)一、选择题目1. (2017浙江衢州第6题)二元一次方程组的解是A. B. C. D. 2.(2017山东德州第8题)不等式组的解集为( )学科网A .x≥3B .-3≤x<4 C.-3≤x<2 D.x> 43.(2017山东德州第10题)某美术社团为练习素描,他们第一次用120元买了买了若干本资料,第二次用240元在同一家商店买同一样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. B.C. D.4.(2017重庆A 卷第12题)若数a 使关于x 的分式方程2411y ax x ++=--的解为正数,且使关于y的不等式组12()y 2320y a y⎧+->-≤⎪⎨⎪⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( )A .10B .12C .14D .165.(2017甘肃庆阳第9题)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是⎩⎨⎧-=-=+236y x y x ⎩⎨⎧==15y x ⎩⎨⎧==24y x ⎩⎨⎧-=-=15y x ⎩⎨⎧-=-=24y x 31+2-132+9x xx ⎧≥>⎪⎨⎪⎩240120-=4-20x x 240120-=4+20x x 120240-=4-20xx 120240-=4+20x x( )A .(32-2x )(20-x )=570B .32x+2×20x=32×20-570C .(32-x )(20-x )=32×20-570D .32x+2×20x -2x 2=5706.(2017贵州安顺第8题)若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则m 的值可以是( ) A .0B .﹣1C .2D .﹣37.(2017湖南怀化第7题)若12,x x 是一元二次方程2230x x 的两个根,则12x x 的值是( )A.2B.2C.4D.38. (2017江苏无锡第7题)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是( ) A .20% B .25% C .50% D .62.5%9.(2017甘肃兰州第6题)如果一元二次方程2230x x m 有两个相等的实数根,那么是实数m 的取值为( ) A.98mB.89mC.98mD.89m10. (2017甘肃兰州第10题)王叔叔从市场上买一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱,如图,他将矩形铁皮的四个角各剪掉一个边长cm x 的正方形后,剩余的部分刚好能围成一个底面积为23000cm 的无盖长方形工具箱,根据题意列方程为( )A.80703000x xB.2807043000xC.8027023000x xD.28070470803000x x11.(2017贵州黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则1211x x +的值为( ) A .2B .﹣1C .-12D .﹣2 12.(2017贵州黔东南州第7题)分式方程331x (1)1x x =-++的根为( )A .﹣1或3B .﹣1C .3D .1或﹣313.(2017山东烟台第10题)若是方程的两个根,且,则的值为( )A .或2B .1或 C. D .114.(2017四川宜宾第4题)一元二次方程4x 2﹣2x+=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断15.(2017四川自贡第4题)不等式组23-42+1x x >≤⎧⎨⎩的解集表示在数轴上正确的是( )16.(2017新疆建设兵团第7题)已知关于x 的方程x 2+x ﹣a=0的一个根为2,则另一个根是( ) A .﹣3 B .﹣2 C .3D .617. (2017新疆建设兵团第8题)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( )A .60048040x x =- B .600480+40x x =C .600480+40xx =D .600480-40xx =18. (2017浙江嘉兴第6题)若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )21,x x 01222=--+-m m mx x 21211x x x x -=+m 1-2-2-14A .1B .3C .14-D .7419.(2017浙江嘉兴第8题)用配方法解方程2210x x +-=时,配方结果正确的是( )A .2(2)2x += B .2(1)2x += C .2(2)3x += D .2(1)3x += 二、填空题目1.(2017山东德州第15题)方程3x(x-1)=2(x-1)的根是2.(2017浙江宁波第14题)分式方程21332x x的解是 .3.(2017甘肃庆阳第15题)若关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是 4.(2017江苏盐城第13题)若方程x 2-4x+1=0的两根是x 1,x 2,则x 1(1+x 2)+x 2的值为 5.(2017山东烟台第15题)运行程序如图所示,从“输入实数”到“结果是否”为一次程序操作,若输入后程序操作仅进行了一次就停止,则的取值范围是 .6.(2017四川泸州第15题)若关于x 的分式方程x 2322m mx x ++=--的解为正实数,则实数m 的取值范围是 .7.(2017四川宜宾第13题)若关于x 、y 的二元一次方程组的解满足x+y >0,则m 的取值范围是 .8.(2017四川宜宾第14题)经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x ,根据题意可列方程是 .9.(2017四川自贡第15题)我国明代数学家程大位的名著《直接算法统宗》里有一道著名算题: “一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,正好分完;如果大和尚一人分3个,小和尚3人分一个,试问大、小和尚各几人?设大、小和尚各有x ,y 人,则可以列方程组 .10. (2017新疆建设兵团第13题)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.x 18<x x 2m 133x y x y ⎧-=+⎨+=⎩三、解答题1.(2017浙江衢州第18题)解下列一元一次不等式组:2.(2017浙江衢州第20题)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,2016年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示。

中考数学真题分项汇编(江苏专用)方程与不等式

中考数学真题分项汇编(江苏专用)方程与不等式

中考数学真题分项汇编 (江苏专用)专题03方程与不等式(江苏)一.选择题(共6小题) 1.(2022•无锡)分式方程2x−3=1x的解是( )A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案. 【解析】2x−3=1x,方程两边都乘x (x ﹣3)得:2x =x ﹣3, 解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0, ∴x =﹣3是原方程的解. 故选:D .2.(2022•南通)李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是( ) A .10.5%B .10%C .20%D .21%【分析】设该超市的月平均增长率为x ,根据等量关系:1月份盈利额×(1+增长率)2=3月份的盈利额列出方程求解即可.【解析】设从1月到3月,每月盈利的平均增长率为x ,由题意可得: 3000(1+x )2=3630,解得:x 1=0.1=10%,x 2=﹣2.1(舍去), 答:每月盈利的平均增长率为10%. 故答案为:B .3.(2022•宿迁)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,房客y 人,则列出关于x 、y 的二元一次方程组正确的是( ) A .{7x −7=y 9(x −1)=yB .{7x +7=y 9(x −1)=yC .{7x +7=y 9x −1=yD .{7x −7=y 9x −1=y【分析】设该店有客房x 间,房客y 人;根据“一房七客多七客,一房九客一房空”得出方程组即可.【解析】设该店有客房x 间,房客y 人;根据题意得:{7x +7=y9(x −1)=y ,故选:B .4.(2022•苏州)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术,其中方程术是其最高的代数成就.《九章算术》中有这样一个问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注:步为长度单位)”设走路快的人要走x 步才能追上,根据题意可列出的方程是( ) A .x =100−60100x B .x =100+60100xC .10060x =100+x D .10060x =100﹣x【分析】设走路快的人要走x 步才能追上,由走路快的人走x 步所用时间内比走路慢的人多行100步,即可得出关于x 的一元一次方程,此题得解. 【解析】设走路快的人要走x 步才能追上,则走路慢的人走x 100×60,依题意,得:x100×60+100=x .故选:B .5.(2022•扬州)《孙子算经》是我国古代经典数学名著,其中有一道“鸡兔同笼”问题:“今们可以非常顺捷地解决这个问题.如果设鸡有x 只,兔有y 只,那么可列方程组为( ) A .{x +y =35,4x +4y =94B .{x +y =35,4x +2y =94 C .{x +y =94,2x +4y =35D .{x +y =35,2x +4y =94【分析】关系式为:鸡的只数+兔的只数=35;2×鸡的只数+4×兔的只数=94,把相关数值代入即可求解.【解析】设鸡有x 只,兔有y 只,可列方程组为: {x +y =352x +4y =94. 故选:D .6.(2022•宿迁)如果x <y ,那么下列不等式正确的是( ) A .2x <2yB .﹣2x <﹣2yC .x ﹣1>y ﹣1D .x +1>y +1【分析】根据不等式的性质逐个判断即可. 【解析】A 、∵x <y ,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.二.填空题(共11小题)7.(2022•徐州)若一元二次方程x2+x﹣c=0没有实数根,则c的取值范围是c<−14.【分析】根据判别式的意义得到=12+4c<0,然后解不等式即可.【解析】根据题意得Δ=12+4c<0,解得c<−1 4.故答案为:c<−1 4.8.(2022•盐城)分式方程x+12x−1=1的解为x=2.【分析】先把分式方程转化为整式方程,再求解即可.【解析】方程的两边都乘以(2x﹣1),得x+1=2x﹣1,解得x=2.经检验,x=2是原方程的解.故答案为:x=2.9.(2022•泰州)方程x2﹣2x+m=0有两个相等的实数根,则m的值为1.【分析】由题可得Δ=(﹣2)2﹣4×1×m=0,即可得m的值.【解析】∵方程x2﹣2x+m=0有两个相等的实数根,∴Δ=(﹣2)2﹣4×1×m=0,解得m=1.故答案为:1.10.(2022•泰州)已知a=2m2﹣mn,b=mn﹣2n2,c=m2﹣n2(m≠n),用“<”表示a、b、c的大小关系为b<c<a.【分析】代数式的比较,常用的方法是作差法或者作商法,由于填空题不需要过程的特殊性,还可以考虑特殊值代入法.考虑到答案唯一,因此特殊值代入法最合适,也最简单.【解析】解法1:令m=1,n=0,则a =2,b =0,c =1. ∵0<1<2. ∴b <c <a .解法2:∵a ﹣c =(2m 2﹣mn )﹣(m 2﹣n 2)=(m ﹣0.5n )2+0.75n 2>0; ∴c <a ;∵c ﹣b =(m 2﹣n 2)﹣(mn ﹣2n 2)=(m ﹣0.5n )2+.075n 2>0; ∴b <c ; ∴b <c <a .11.(2022•无锡)二元一次方程组{3x +2y =12,2x −y =1的解为 {x =2y =3 .【分析】根据代入消元法求解即可得出答案. 【解析】{3x +2y =12①2x −y =1②,由②得:y =2x ﹣1③,将③代入①得:3x +2(2x ﹣1)=12, 解得:x =2,将x =2代入③得:y =3, ∴原方程组的解为{x =2y =3. 故答案为:{x =2y =3.12.(2022•宿迁)若关于x 的一元二次方程x 2﹣2x +k =0有实数根,则实数k 的取值范围是 k ≤1 .【分析】先计算根的判别式,根据一元二次方程解的情况得不等式,求解即可. 【解析】∵Δ=(﹣2)2﹣4×1×k =4﹣4k .又∵关于x 的一元二次方程x 2﹣2x +k =0有实数根, ∴4﹣4k ≥0. ∴k ≤1. 故答案为:k ≤1.13.(2022•扬州)请填写一个常数,使得关于x 的方程x 2﹣2x + 0(答案不唯一) =0有两个不相等的实数根.【分析】根据方程的系数结合根的判别式Δ=b 2﹣4ac >0,即可得出关于c 的不等式,解之即可求出c 的值. 【解析】a =1,b =﹣2.∵Δ=b2﹣4ac=(﹣2)2﹣4×1×c>0,∴c<1.故答案为:0(答案不唯一).14.(2022•连云港)若关于x的一元二次方程mx2+nx﹣1=0(m≠0)的一个解是x=1,则m+n的值是1.【分析】把x=1代入方程mx2+nx﹣1=0得到m+n﹣1=0,然后求得m+n的值即可.【解析】把x=1代入方程mx2+nx﹣1=0得m+n﹣1=0,解得m+n=1.故答案为:1.15.(2022•徐州)方程3x =2x−2的解为x=6.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:3x﹣6=2x,解得:x=6,经检验x=6是分式方程的解.故答案为:x=616.(2022•南通)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱.问人数、羊价各是多少?若设人数为x,则可列方程为5x+45=7x ﹣3.【分析】根据购买羊的总钱数不变得出方程即可.【解析】若设人数为x,则可列方程为:5x+45=7x﹣3.故答案为:5x+45=7x﹣3.17.(2022•镇江)已知关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m=4.【分析】根据一元二次方程根的判别式可得Δ=b2﹣4ac=(﹣4)2﹣4m=0,再求出m 的值即可.【解析】∵关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4m=0,解得:m=4.故答案为:4.三.解答题(共14小题)18.(2022•徐州)(1)解方程:x2﹣2x﹣1=0;(2)解不等式组:{2x−1≥11+x3<x−1.【分析】(1)方程移项后,利用完全平方公式配方,开方即可求出解;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解析】(1)方程移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±√2,解得:x1=1+√2,x2=1−√2;(2){2x−1≥1①1+x3<x−1②,由①得:x≥1,由②得:x>2,则不等式组的解集为x>2.19.(2022•镇江)(1)解方程:2x−2=1+xx−2+1;(2)解不等式组:{x−1<2x2(x−3)≤3−x.【分析】(1)方程两边同时乘以(x﹣2),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解;(2)根据解不等式组的一般步骤,进行解答,即可得出答案.【解析】(1)去分母得:2=1+x+x﹣2,解得:x=3 2,检验:当x=32时,x﹣2≠0,∴原分式方程的解为x=3 2;(2){x−1<2x①2(x−3)≤3−x②,解不等式①得:x>﹣1,解不等式②得:x≤3,∴原不等式组的解集是﹣1<x≤3.20.(2022•盐城)解不等式组:{2x+1≥x+22x−1<12(x+4).【分析】分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解析】{2x +1≥x +2①2x −1<12(x +4)②, 解不等式①,得x ≥1, 解不等式②,得x <2,故原不等式组的解集为:1≤x <2.21.(2022•常州)解不等式组{5x −10≤0,x +3>−2x,并把解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集. 【解析】由5x ﹣10≤0,得:x ≤2, 由x +3>﹣2x ,得:x >﹣1, 则不等式组的解集为﹣1<x ≤2, 将不等式组的解集表示在数轴上如下:22.(2022•无锡)(1)解方程:x 2﹣2x ﹣5=0; (2)解不等式组:{2(x +1)>43x ≤x +5.【分析】(1)根据配方法可以解答此方程;(2)先解出每个不等式,然后即可得到不等式组的解集. 【解析】(1)x 2﹣2x ﹣5=0, x 2﹣2x =5, x 2﹣2x +1=5+1, (x ﹣1)2=6, ∴x ﹣1=±√6,解得x 1=1+√6,x 2=1−√6; (2){2(x +1)>4①3x ≤x +5②,解不等式①,得:x >1, 解不等式②,得:x ≤52, ∴原不等式组的解集是1<x ≤52.23.(2022•苏州)解方程:xx+1+3x=1.【分析】先两边同乘以x(x+1)化为整式方程:x2+3(x+1)=x(x+1),解整式方程得x=−32,再检验即可得答案.【解析】方程两边同乘以x(x+1)得:x2+3(x+1)=x(x+1),解整式方程得:x=−3 2,经检验,x=−32是原方程的解,∴原方程的解为x=−3 2.24.(2022•连云港)解不等式2x﹣1>3x−12,并把它的解集在数轴上表示出来.【分析】去分母、移项、合并同类项可得其解集.【解析】去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>﹣1+2,合并同类项,得:x>1,将不等式解集表示在数轴上如下:.25.(2022•宿迁)解方程:2xx−2=1+1x−2.【分析】根据解分式方程的步骤,先去分母化为整式方程,再求出方程的解,最后进行检验即可.【解析】2xx−2=1+1x−2,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.26.(2022•连云港)我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.【分析】设有x个人,物品的价格为y钱,由题意:每人出8钱,剩余3钱;每人出7钱,还缺4钱.列出二元一次方程组,解方程组即可.【解析】设有x 个人,物品的价格为y 钱, 由题意得:{y =8x −3y =7x +4,解得:{x =7y =53,答:有7个人,物品的价格为53钱.27.(2022•扬州)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名? 【分析】设每个小组有学生x 名,由题意得:3603x−3604x=3,解分式方程并检验后即可得出答案.【解析】设每个小组有学生x 名, 由题意得:3603x−3604x=3,解得:x =10, 当x =10时,12x ≠0, ∴x =10是分式方程的根, 答:每个小组有学生10名.28.(2022•扬州)解不等式组{x −2≤2x ,x −1<1+2x 3,并求出它的所有整数解的和.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后即可求得该不等式组所有整数解的和.【解析】{x −2≤2x ①x −1<1+2x3②, 解不等式①,得:x ≥﹣2, 解不等式②,得:x <4,∴原不等式组的解集是﹣2≤x <4,∴该不等式组的整数解是﹣2,﹣1,0,1,2,3, ∵﹣2+(﹣1)+0+1+2+3=3, ∴该不等式组所有整数解的和是3.29.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 300 元;乙超市的购物金额为 240 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【分析】(1)利用总价=单价×数量,可求出购买30件这种文化用品所需原价,再结合两超市给出的优惠方案,即可求出在两家超市的购物金额;(2)设购买x件这种文化用品,当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为8x元,显然在乙超市支付的费用较少;当x>40时,在甲超市的购物金额为(6x+160)元,在乙超市的购物金额为8x元,分6x+160>8x,6x+160=8x及6x+160<8x三种情况,可求出x的取值范围或x的值,综上,即可得出结论.【解析】(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.30.(2022•泰州)如图,在长为50m、宽为38m的矩形地面内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为1260m2,道路的宽应为多少?【分析】要求路宽,就要设路宽应为x米,根据题意可知:矩形地面﹣所修路面积=草坪面积,利用平移更简单,依此列出等量关系解方程即可.【解析】设路宽应为x米根据等量关系列方程得:(50﹣2x)(38﹣2x)=1260,解得:x=4或40,40不合题意,舍去,11 / 11 所以x =4,答:道路的宽应为4米.31.(2022•徐州)《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x 个,鸟有y 只,可列方程组为 {6x +4y =764x +2y =46; (2)求兽、鸟各有多少.【分析】(1)根据“兽与鸟共有76个头与46只脚”,即可得出关于x ,y 的二元一次方程组;(2)解方程组,即可得出结论.【解析】(1)∵兽与鸟共有76个头,∴6x +4y =76;∵兽与鸟共有46只脚,∴4x +2y =46.∴可列方程组为{6x +4y =764x +2y =46. 故答案为:{6x +4y =764x +2y =46. (2)原方程组可化简为{3x +2y =38①2x +y =23②, 由②可得y =23﹣2x ③,将③代入①得3x +2(23﹣2x )=38,解得x =8,∴y =23﹣2x =23﹣2×8=7.答:兽有8只,鸟有7只.。

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题11圆(第03期)-2017年中考数学试题分项版解析汇编(解析版)

一、选择题目1.(2017四川省南充市)如图,在Rt △ABC 中,AC =5cm ,BC =12cm ,∠ACB =90°,把Rt △ABC 所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A .60πcm 2B .65πcm 2C .120πcm 2D .130πcm 2 【答案】B .考点:1.圆锥的计算;2.点、线、面、体.2.(2017四川省广安市)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为( )A .32B .65C .1D .67【答案】D . 【解析】试题分析:连接OD ,如图所示:∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD =∠BHD =90°,∵cos ∠CDB =DHBD=45,BD =5,∴DH =4,∴BH3,设OH =x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得:x 2+42=(x +3)2,解得:x =67,∴OH =67;故选D .考点:1.圆周角定理;2.解直角三角形.3.(2017四川省眉山市)如图,在△ABC 中,∠A =66°,点I 是内心,则∠BIC 的大小为( )A .114°B .122°C .123°D .132° 【答案】C . 【解析】试题分析:∵∠A =66°,∴∠ABC +∠ACB =114°,∵点I 是内心,∴∠IBC =12∠ABC ,∠ICB =12∠ACB ,∴∠IBC +∠ICB =57°,∴∠BIC =180°﹣57°=123°,故选C .学*科网 考点:三角形的内切圆与内心.4.(2017四川省绵阳市)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB =8cm ,圆柱体部分的高BC =6cm ,圆锥体部分的高CD =3cm ,则这个陀螺的表面积是( )A .68πcm 2B .74πcm 2C .84πcm 2D .100πcm 2【答案】C.【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:1.圆锥的计算;2.几何体的表面积.5.(2017四川省达州市)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A B C.D【答案】A.考点:正多边形和圆.6.(2017山东省枣庄市)如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.r << Br << C5r << D.5r <<【答案】B . 【解析】试题分析:给各点标上字母,如图所示. AB==,AC =AD==,AE==,AF==,AG =AM =AN5r <<A 为圆心,r 为半径画圆,选取的格点中除点A 外恰好有3个在圆内.故选B .考点:1.点与圆的位置关系;2.勾股定理;3.推理填空题目.7.(2017山东省济宁市)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =1,将Rt △ABC 绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为,则图中阴影部分的面积是( )A . 6πB . 3πC .122π-D . 12【答案】A.【解析】试题分析:∵∠ACB=90°,AC=BC=1,∴AB,∴S扇形ABD=6π.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=6π.故选A.考点:1.扇形面积的计算;2.等腰直角三角形;3.旋转的性质.学科*网8.(2017广东省)如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为()A.130°B.100°C.65°D.50°【答案】C.考点:圆内接四边形的性质.9.(2017广西四市)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧BC的长等于()A.2π3B.π3C.2√3π3D.√3π3【答案】A.【解析】试题分析:如图,连接OB 、OC ,∵∠BAC =30°,∴∠BOC =2∠BAC =60°,又OB =OC ,∴△OBC 是等边三角形,∴BC =OB =OC =2,∴劣弧BC 的长为:602180π⨯ =2π3.故选A .考点:1.弧长的计算;2.圆周角定理. 二、填空题目10.(2017四川省眉山市)如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =8cm ,DC =2cm ,则OC = cm .【答案】5. 【解析】试题分析:连接OA ,∵OC ⊥AB ,∴AD =12AB =4cm ,设⊙O 的半径为R ,由勾股定理得,OA 2=AD 2+OD 2,∴R 2=42+(R ﹣2)2,解得R =5,∴OC =5cm .故答案为:5.考点:1.垂径定理;2.勾股定理.11.(2017四川省达州市)如图,矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取点O ,以O 为圆心,OF 长为半径作⊙O 与AD 相切于点P.若AB =6,BC=F 是CD 的中点;②⊙O 的半径是2;③AE =92CE;④S =阴影.其中正确结论的序号是 .【答案】. 【解析】试题分析:①∵AF 是AB 翻折而来,∴AF =AB =6,∵AD =BC=DF=3,∴F 是CD中点;∴①正确;②连接OP ,∵⊙O 与AD 相切于点P ,∴OP ⊥AD ,∵AD ⊥DC ,∴OP ∥CD ,∴AO OP AF DF =,设OP =OF =x ,则636x x -=,解得:x =2,∴②正确;③∵RT △ADF 中,AF =6,DF =3,∴∠DAF =30°,∠AFD =60°,∴∠EAF =∠EAB =30°,∴AE =2EF ; ∵∠AFE =90°,∴∠EFC =90°﹣∠AFD =30°,∴EF =2EC ,∴AE =4CE ,∴③错误;④连接OG ,作OH ⊥FG ,∵∠AFD =60°,OF =OG ,∴△OFG 为等边△;同理△OPG 为等边△;∴∠POG =∠FOG =60°,OHOG,S 扇形OPG =S 扇形OGF ,∴S 阴影=(S 矩形OPDH ﹣S 扇形OPG ﹣S △OGH )+(S 扇形OGF ﹣S △OFG )=S 矩形OPDH ﹣32S △OFG=312(222-⨯⨯.∴④正确;故答案为:①②④.考点:1.切线的性质;2.矩形的性质;3.扇形面积的计算;4.翻折变换(折叠问题);5.综合题.12.(2017山东省枣庄市)如图,在▱ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则FE的长为.【答案】π.考点:1.切线的性质;2.平行四边形的性质;3.弧长的计算.学&科网13.(2017山东省济宁市)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.考点:1.正多边形和圆;2.规律型;3.综合题.14.(2017四川省南充市)如图,在Rt △ABC 中,∠ACB =90°,以AC 为直径作⊙O 交AB 于点D ,E 为BC 的中点,连接DE 并延长交AC 的延长线于点F . (1)求证:DE 是⊙O 的切线;(2)若CF =2,DF =4,求⊙O 直径的长.【答案】(1)证明见解析;(2)6. 【解析】试题分析:(1)连接OD 、CD ,由AC 为⊙O 的直径知△BCD 是直角三角形,结合E 为BC的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.考点:切线的判定与性质.15.(2017四川省广安市)如图,已知AB是⊙O的直径,弦CD与直径AB相交于点F.点E在⊙O外,做直线AE,且∠EAC=∠D.(1)求证:直线AE是⊙O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.【答案】(1)证明见解析;(2【解析】试题分析:(1)由直径所对的圆周角是直角得:∠ADB=90°,则∠ADC+∠CDB=90°,所以∠EAC+∠BAC=90°,则直线AE是⊙O的切线;(2)分别计算AC和BD的长,证明△DFB∽△AFC,列比例式得:BF BDFC AC,得出结论.试题解析:(1)连接BD,∵AB是⊙O的直径,∴∠ADB=90°,即∠ADC+∠CDB=90°,∵∠EAC=∠ADC,∠CDB=∠BAC,∴∠EAC+∠BAC=90°,即∠BAE=90°,∴直线AE是⊙O的切线;(2)∵AB是⊙O的直径,∴∠ACB=90°,Rt△ACB中,∠BAC=30°,∴AB=2BC=2×4=8,由勾股定理得:AC=,Rt△ADB中,cos∠BAD=34=ADAB,∴34=8AD,∴AD=6,∴BD=,∵∠BDC=∠BAC,∠DFB=∠AFC,∴△DFB∽△AFC,∴BF BDFC AC=,∴103BF=,∴BF=考点:1.切线的判定与性质;2.解直角三角形.16.(2017四川省绵阳市)如图,已知AB是圆O的直径,弦CD⊥AB,垂足为H,与AC平行的圆O的一条切线交CD的延长线于点M,交AB的延长线于点E,切点为F,连接AF交CD于点N.(1)求证:CA=CN;(2)连接DF,若cos∠DF A=45,AN=,求圆O的直径的长度.【答案】(1)证明见解析;(2)503.学&科网【解析】试题分析:(1)连接OF,根据切线的性质结合四边形内角和为360°,即可得出∠M+∠FOH=180°,由三角形外角结合平行线的性质即可得出∠M=∠C=2∠OAF,再通过互余利用角的计算即可得出∠CAN=90°﹣∠OAF=∠ANC,由此即可证出CA=CN;(2)连接OC,如图2所示.∵cos∠DF A=45,∠DF A=∠ACH,∴CHAC=45.设CH=4a,则AC=5a,AH=3a,∵CA=CN,∴NH=a,∴AN=a=,∴a=2,AH=3a=6,CH=4a=8.设圆的半径为r,则OH=r﹣6,在Rt△OCH中,OC=r,CH=8,OH=r﹣6,∴OC2=CH2+OH2,r2=82+(r﹣6)2,解得:r=253,∴圆O的直径的长度为2r=503.考点:1.切线的性质;2.勾股定理;3.圆周角定理;4.解直角三角形.17.(2017四川省达州市)如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.(1)求证:PQ是⊙O的切线;(2)求证:BD2=AC•BQ;(3)若AC、BQ的长是关于x的方程4x mx+=的两实根,且tan∠PCD=13,求⊙O的半径.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据平行线的性质和圆周角定理得到∠ABD=∠BDQ=∠ACD,连接OB,OD,交AB于E,根据圆周角定理得到∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,根据三角形的内角和得到2∠ODB+2∠O=180°,于是得到∠ODB+∠O=90°,根据切线的判定定理即可得到结论;(2)证明:连接AD,根据等腰三角形的判定得到AD=BD,根据相似三角形的性质即可得到结论;试题解析:(1)证明:∵PQ∥AB,∴∠ABD=∠BDQ=∠ACD,∵∠ACD=∠BCD,∴∠BDQ=∠ACD,如图1,连接OB,OD,交AB于E,则∠OBD=∠ODB,∠O=2∠DCB=2∠BDQ,在△OBD中,∠OBD+∠ODB+∠O=180°,∴2∠ODB+2∠O=180°,∴∠ODB+∠O=90°,∴PQ是⊙O的切线;(2)证明:如图2,连接AD,由(1)知PQ是⊙O的切线,∴∠BDQ=∠DCB=∠ACD=∠BCD=∠BAD,∴AD=BD,∵∠DBQ=∠ACD,∴△BDQ∽△ACD,∴AD ACBQ BD=,∴BD2=AC•BQ;(3)解:方程4x mx+=可化为x2﹣mx+4=0,∵AC、BQ的长是关于x的方程4x mx+=的两实根,∴AC•BQ=4,由(2)得BD2=AC•BQ,∴BD2=4,∴BD=2,由(1)知PQ是⊙O的切线,∴OD⊥PQ,∵PQ∥AB,∴OD⊥AB,由(1)得∠PCD=∠ABD,∵tan∠PCD=13,∴tan∠ABD=13,∴BE=3DE,∴DE 2+(3DE )2=BD 2=4,∴DE=,∴BE=,设OB =OD =R ,∴OE =R﹣,∵OB 2=OE 2+BE 2,∴R 2=(R)2+2,解得:R=,∴⊙O的半径为.考点:1.相似三角形的判定与性质;2.分式方程的解;3.圆周角定理;4.切线的判定与性质;5.解直角三角形;6.压轴题.18.(2017山东省枣庄市)如图,在△ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,点O 在AB 上,以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC ,AB 于点E ,F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD=BF =2,求阴影部分的面积(结果保留π).【答案】(1)BC 与⊙O 相切;(2)23π.【解析】试题分析:(1)连接OD ,证明OD ∥AC ,即可证得∠ODB =90°,从而证得BC 是圆的切线;(2)设OF =OD =x ,则OB =OF +BF =x +2,由勾股定理得:OB 2=OD 2+BD 2,即(x +2)2=x 2+12,解得:x =2,即OD =OF =2,∴OB =2+2=4,∵Rt △ODB 中,OD =12OB ,∴∠B =30°,∴∠DOB =60°,∴S扇形AOB =604360π⨯ =23π,则阴影部分的面积为S △ODB ﹣S 扇形DOF =12×2×﹣23π=23π-.故阴影部分的面积为23π.考点:1.直线与圆的位置关系;2.扇形面积的计算;3.探究型.19.(2017山东省济宁市)如图,已知⊙O 的直径AB =12,弦AC =10,D 是BC 的中点,过点D 作DE ⊥AC ,交AC 的延长线于点E . (1)求证:DE 是⊙O 的切线; (2)求AE 的长.【答案】(1)证明见解析;(2)11. 【解析】试题分析:(1)连接OD ,由D 为弧BC 的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE 平行,利用两直线平行同旁内角互补得到OD 与DE 垂直,即可得证;(2)解:过点O 作OF ⊥AC ,∵AC =10,∴AF =CF=12AC =5,∵∠OFE =∠DEF =∠ODE =90°,∴四边形OFED 为矩形,∴FE =OD =12AB ,∵AB =12,∴FE =6,则AE =AF +FE =5+6=11.考点:1.切线的判定与性质;2.勾股定理;3.垂径定理.20.(2017广东省)如图,AB 是⊙O 的直径,AB =E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当34CF CP =时,求劣弧BC 的长度(结果保留π)【答案】(1)证明见解析;(2)证明见解析;(3.【解析】试题分析:(1)根据等角的余角相等证明即可; (2)欲证明CF =CE ,只要证明△ACF ≌△ACE 即可;(3)作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,利用相似三角形的性质求出BM ,求出tan ∠BCM 的值即可解决问题;试题解析:(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF ≌△ACE ,∴CF =CE .(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =4a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM CMPM BM =,∴BM 2=CM •PM =3a 2,∴BM=a ,∴tan ∠BCM=BM CM =,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长.考点:1.相似三角形的判定与性质;2.垂径定理;3.切线的性质;4.弧长的计算.21.(2017江苏省盐城市)如图,△ABC 是一块直角三角板,且∠C =90°,∠A =30°,现将圆心为点O 的圆形纸片放置在三角板内部.(1)如图①,当圆形纸片与两直角边AC 、BC 都相切时,试用直尺与圆规作出射线CO ;(不写作法与证明,保留作图痕迹)(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC =9,圆形纸片的半径为2,求圆心O 运动的路径长.【答案】(1)作图见解析;(2)15+ 【解析】试题分析:(1)作∠ACB 的平分线得出圆的一条弦,再作此弦的中垂线可得圆心O ,作射线CO 即可; (2)添加如图所示辅助线,圆心O 的运动路径长为12OO O C ∆,先求出△ABC 的三边长度,得出其周长,证四边形OEDO 1、四边形O 1O 2HG 、四边形OO 2IF 均为矩形、四边形OECF 为正方形,得出∠OO 1O 2=60°=∠ABC 、∠O 1OO 2=90°,从而知△OO 1O 2∽△CBA ,利用相似三角形的性质即可得出答案. 试题解析:(1)如图①所示,射线OC 即为所求;(2)如图2,圆心O 的运动路径长为12OO O C ∆,过点O 1作O 1D ⊥BC 、O 1F ⊥AC 、O 1G ⊥AB ,垂足分别为点D 、F 、G ,过点O 作OE ⊥BC ,垂足为点E ,连接O 2B ,过点O 2作O 2H ⊥AB ,O 2I ⊥AC ,垂足分别为点H 、I ,在Rt △ABC 中,∠ACB =90°、∠A =30°,∴AC =tan 30BC==,AB =2BC =18,∠ABC =60°,∴C △ABC =9++18=27+,∵O 1D ⊥BC 、O 1G ⊥AB ,∴D 、G 为切点,∴BD =BG ,在Rt △O 1BD 和Rt △O 1BG 中,∵BD =BG ,O 1B =O 1B ,∴△O 1BD ≌△O 1BG (HL ),∴∠O 1BG =∠O 1BD=30°,在Rt△O1BD中,∠O1DB=90°,∠O1BD=30°,∴BD=1tan 30O D==,∴OO1=9﹣2﹣=7﹣O1D=OE=2,O1D⊥BC,OE⊥BC,∴O1D∥OE,且O1D=OE,∴四边形OEDO1为平行四边形,∵∠OED=90°,∴四边形OEDO1为矩形,同理四边形O1O2HG、四边形OO2IF、四边形OECF为矩形,又OE=OF,∴四边形OECF为正方形,∵∠O1GH=∠CDO1=90°,∠ABC=60°,∴∠GO1D=120°,又∵∠FO1D=∠O2O1G=90°,∴∠OO1O2=360°﹣90°﹣90°=60°=∠ABC,同理,∠O1OO2=90°,∴△OO1O2∽△CBA,∴1212OO OABCC O OC BC∆∆==,∴12OO OC∆=15+,即圆心O运动的路径长为15+考点:1.轨迹;2.切线的性质;3.作图—复杂作图;4.综合题.学科*网22.(2017江苏省连云港市)如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D.C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【答案】(1)y=2x+4;(21112.【解析】试题分析:(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.试题解析:(1)∵OB=4,∴B(0,4).∵A(﹣2,0),设直线AB的解析式为y=kx+b,则420bk b,解得24kb,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴12AD•OB=5,∴12(m+2)•m=5,即22100m m+-=,解得111m 或111m(舍去),∵∠BOD=90°,∴点B 的运动路径长为:1111211142.考点:1.一次函数图象与几何变换;2.轨迹;3.弧长的计算.学#科网23.(2017河北省)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O 逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=QD的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.【答案】(1)见解析;(2)143π;(3)4<OC<8.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP =∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cos B =43382QB OB==,∴∠B =30°,∠BOQ =60°,∴OQ =12OB =4,∵∠COD =90°,∴∠QOD =90°+60°=150°,∴优弧QD 的长=2104180π⨯=143π;(3)∵△APO 的外心是OA 的中点,OA =8,∴△APO 的外心在扇形COD 的内部时,OC 的取值范围为4<OC <8.考点:1.切线的性质;2.弧长的计算;3.旋转的性质.24.(2017河北省)平面内,如图,在ABCD 中,AB =10,AD =15,tan A =43.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90°得到线段PQ .(1)当∠DPQ =10°时,求∠APB 的大小;(2)当tan∠A tan A=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积(结果保留π).【答案】(1)100°或80°;(2)(3)16π或20π或32π.【解析】试题分析:(1)根据点Q与点B和PD的位置关系分类讨论;(2)因为△PBQ是等腰直角三角形,所以求BQ的长,只需求PB,过点P作PH⊥AB于点H,确定BH,求得AH和BH,解直角△APH求PH,由勾股定理求PB;(2)如图2,过点P作PH⊥AB于点H,连接BQ.∵tan∠A tan A=:3:2PH PHHB AH=,∴HB=3:2.而AB=10,∴AH=6,HB=4.在Rt△PHA中,PH=AH·tan A=8,∴PQ=PB==Rt△PQB中,QBPB=(3)①点Q在AD上时,如图3,由tan A=43得,PB=AB·sin A=8,∴扇形面积为16π.②点A 在CD 上时,如图4,过点P 作PH ⊥AB 于点H ,交CD 延长线于点K ,由题意∠K =90°,∠KDP =∠A .设AH =x ,则PH =AH ·tan A =43x .∵∠BPH =∠KQP =90°-∠KPQ ,PB =QP ,∴Rt △HPB ≌Rt △KQP .∴KP =HB =10-x ,∴AP =53x,PD =()5104x -,AD =15=()551034x x +-,解得x =6.∵22280PB PH HB =+=,∴扇形的面积为20π.③点Q 在BC 延长线上时,如图5,过点B 作BM ⊥AD 于点M ,由①得BM =8.又∠MPB =∠PBQ =45°,∴PB =,∴扇形面积为32π. 所以扇形的面积为16π或20π或32π.考点:1.解直角三角形;2.勾股定理;3.扇形面积的计算;4.分类讨论;5.压轴题.25.(2017浙江省丽水市)如图,在Rt △ABC 中,∠C =Rt ∠,以BC 为直径的⊙O 交AB 于点D ,切线DE 交AC 于点E .(1)求证:∠A =∠ADE ;(2)若AD =16,DE =10,求BC 的长.【答案】(1)证明见解析;(2)15. 【解析】试题分析:(1)只要证明∠A +∠B =90°,∠ADE +∠B =90°即可解决问题;(2)连接CD .∵∠ADE =∠A ,∴AE =DE ,∵BC 是⊙O 的直径,∠ACB =90°,∴EC 是⊙O 的切线,∴ED =EC ,∴AE =EC ,∵DE =10,∴AC =2DE =20,在Rt △ADC 中,DC 12,设BD =x ,在Rt △BDC 中,BC 2=x 2+122,在Rt △ABC 中,BC 2=(x +16)2﹣202,∴x 2+122=(x +16)2﹣202,解得x =9,∴BC 15.考点:1.切线的性质;2.勾股定理.26.(2017浙江省台州市)如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形; (2)若⊙O 的直径为2,求22PC PB +的值.【答案】(1)证明见解析;(2)4. 【解析】试题分析:(1)只要证明∠AEP =∠ABP =45°,∠P AB =90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=2PM,PB=2PN,∴22PC PB+=222()PM PN+ =222()AN PN+=22PA =2PE =22 =4.考点:1.三角形的外接圆与外心;2.等腰直角三角形.27.(2017湖北省襄阳市)如图,AB为⊙O的直径,C、D为⊙O上的两点,∠BAC=∠DAC,过点C做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若DE=1,BC=2,求劣弧BC的长l.【答案】(1)证明见解析;(2)23π.【解析】试题分析:(1)连接OC,根据等腰三角形的性质得到∠OAC=∠DAC,求得∠DAC=∠OCA,推出AD∥OC,得到∠OCF=∠AEC=90°,于是得到结论;(2)连接OD,DC,∵∠DAC=12∠DOC ,∠OAC=12∠BOC,∴∠DAC=∠OAC,∵ED=1,DC=2,∴sin∠ECD=12DEDC=,∴∠ECD=30°,∴∠OCD=60°,∵OC=OD,∴△DOC是等边三角形,∴∠BOC=∠COD=60°,OC=2,∴l=602180π⨯=23π.考点:1.切线的判定与性质;2.弧长的计算.祝你考试成功!祝你考试成功!。

中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)

中考数学专题12探索性问题(第03期)-2017年中考数学试题分项版解析汇编(原卷版)

一、选择题目1.(2017四川省绵阳市)如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a1,第2幅图形中“●”的个数为a2,第3幅图形中“●”的个数为a3,…,以此类推,则1a1+1a2+1a3+⋯+1a19的值为()A.2021B.6184C.589840D.4217602.(2017四川省达州市)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π3.(2017江苏省连云港市)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;…按此规律运动到点A2017处,则点A2017与点A0间的距离是()A.4B.C.2D.04.(2017重庆市B 卷)下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150 二、填空题目 5.(2017山东省济宁市)请写出一个过点(1,1),且与x 轴无交点的函数解析式: .6.(2017山东省济宁市)如图,正六边形A 1B 1C 1D 1E 1F 1的边长为1,它的六条对角线又围成一个正六边形A 2B 2C 2D 2E 2F 2,如此继续下去,则正六边形A 4B 4C 4D 4E 4F 4的面积是 .三、解答题7.(2017四川省南充市)如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =14AB .(1)求证:EF ⊥AG ;(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OABS S ∆∆=,求△P AB 周长的最小值.8.(2017四川省达州市)如图,在△ABC中,点O是边AC上一个动点,过点O作直线EF∥BC分别交∠ACB、外角∠ACD的平分线于点E、F.(1)若CE=8,CF=6,求OC的长;(2)连接AE、AF.问:当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.9.(2017四川省达州市)探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:()()22 122121 PP x x y y =-+-他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:122x xx+=,122y yy+=.(1)请你帮小明写出中点坐标公式的证明过程;运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为;②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标:;拓展:(3)如图3,点P(2,n)在函数43y x=(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.10.(2017山东省枣庄市)如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=BF=2,求阴影部分的面积(结果保留π).11.(2017山东省枣庄市)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F 在线段CB的延长线上,连接EA,EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断△ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC 的度数.12.(2017山西省)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.13.(2017江苏省盐城市)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.14.(2017江苏省盐城市)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.15.(2017江苏省盐城市)(探索发现】如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为.【拓展应用】如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为.(用含a,h的代数式表示)【灵活应用】如图③,有一块“缺角矩形”ABCDE ,AB =32,BC =40,AE =20,CD =16,小明从中剪出了一个面积最大的矩形(∠B 为所剪出矩形的内角),求该矩形的面积. 【实际应用】如图④,现有一块四边形的木板余料ABCD ,经测量AB =50cm ,BC =108cm ,CD =60cm ,且tan B =tan C =43,木匠徐师傅从这块余料中裁出了顶点M 、N 在边BC 上且面积最大的矩形PQMN ,求该矩形的面积.16.(2017江苏省连云港市)如图,已知等腰三角形ABC 中,AB =AC ,点D 、E 分别在边AB .AC 上,且AD =AE ,连接BE 、CD ,交于点F .(1)判断∠ABE 与∠ACD 的数量关系,并说明理由; (2)求证:过点A 、F 的直线垂直平分线段BC .17.(2017江苏省连云港市)问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2ABCDEFGHS S 矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1.如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2S四边形EFGH =S矩形ABCD +S.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S四边形EFGH 、S矩形ABCD与S之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S四边形EFGH=11,HF,求EG 的长.(2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=10,连接EF、HG,请直接写出四边形EFGH面积的最大值.18.(2017湖北省襄阳市)如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中:①探究三条线段AB,CE,CF之间的数量关系,并说明理由;②若CE=4,CF=2,求DN的长.祝你考试成功!祝你考试成功!。

2017届中考数学 第2章 方程(组)与不等式(组)2.1 剖析

2017届中考数学 第2章 方程(组)与不等式(组)2.1 剖析

2.(14,曲靖)某工厂加强节能措施,去年下半年与上半 年相比,月平均用电量减少2000度,全年用电15万度,
如果设上半年每月平均用电x度,则所列方程正确的是
( ) A. 6x+6(x-2000)=150000 B. 6x+6(x+2000)=150000 C. 6x+6(x-2000)=15 D. 6x+6(x+2000)=15
2.1 一次方程与方程组
考 点 地区试卷 近五年考点分布情况 2017年预测 主要在求直线或 抛物线的解析式 中进行考查
(一元或二 云南省卷 元)一次方 昆明卷 程及解法 曲靖卷 2011(选择,第4题)
云南省卷 2016(解答,第17题6分); 2015(解答,第17题7分); 2012(解答,第17题6分) 一次方程 列方程组解实际 (组)的应 昆明卷 2016(解答,第21题(1)4 问题,9分 分);2014(解答,第21题 (年年必考) 用 (1)4分) 曲靖卷 2016(选择,第6题); 2015(解答,第20题9分); 2014(选择,第4题);2013( 解答,第19题8分)
②去括号(每一项与整式去括号相类似);
③移项,变符号(实质:把未知数项与常数项分别移
到等号两边);
④合并同类项:化成ax=b(a≠0)的形式,即只把系数 相加(或常数项相加),字母的指数不变; ⑤系数化为1:等式两边同时乘未知数系数的倒数.
4.二元一次方程:指含有 次数一次的方程.
5.二元一次方程组
答:商场共获得利润6600元.
• 1.某小区为了绿化环境,计划分两次购进A、B两种花草, 第一次分别购进A、B两种花草30棵和15棵,共花费675 元;第二次分别购进A、B两种花草12棵和5棵.两次共

浙江省2017年中考数学真题分类汇编 不等式(组)(解析版)

浙江省2017年中考数学真题分类汇编 不等式(组)(解析版)

浙江省2017年中考数学真题分类汇编:不等式(组)(解析版)一、单选题(共3题;共6分)1、(2017•杭州)若x+5>0,则()A、x+1<0B、x﹣1<0C、<﹣1D、﹣2x<122、(2017·金华)若关于x的一元一次不等式组的解是x<5,则m的取值范围是( )A、m≥5B、m>5C、m≤5D、m<53、(2017•湖州)一元一次不等式组的解是()A、B、C、D、或二、填空题(共1题;共1分)4、(2017·台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克三、解答题(共4题;共30分)5、(2017·衢州)解下列一元一次不等式组:6、(2017·嘉兴)小明解不等式的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.7、(2017•湖州)对于任意实数,,定义关于“ ”的一种运算如下:.例如:,.(1)若,求的值;(2)若,求的取值范围.8、(2017•绍兴)计算题。

(1)计算:.(2)解不等式:4x+5≤2(x+1).答案解析部分一、单选题1、【答案】D【考点】不等式的性质【解析】【解答】解:∵x+5>0,∴x>﹣5,A、根据x+1<0得出x<﹣1,故本选项不符合题意;B、根据x﹣1<0得出x<1,故本选项不符合题意;C、根据<﹣1得出x<5,故本选项不符合题意;D、根据﹣2x<12得出x>﹣6,故本选项符合题意;故选D.【分析】求出已知不等式的解集,再求出每个选项中不等式的解集,即得出选项.2、【答案】A【考点】解一元一次不等式组,一元一次不等式组的应用【解析】【解答】解:解第一个不等式得:x<5;解第二个不等式得:x<m;∵不等式组的解是x<5∴m≥5;故选A.【分析】分别解每一个不等式的解集范围,根据不等式组的解,结合所得两个不等式的解集对m的值进行分析判断即可。

2017年中考数学试题分类汇编专题3:方程(组)与不等式(组)(内蒙古)

2017年中考数学试题分类汇编专题3:方程(组)与不等式(组)(内蒙古)

2017年中考数学试题分类汇编专题3:方程(组)与不等式(组)(内蒙古)1.(2014年,内蒙古包头市,3分)关于x的一元二次方程x2+ 2(m�1)x+m2=0的两个实数根分别为x1,x2,且x1+x2>0,x1x2>0,则m的取值范围是() A.m≤ B.m≤ 且m≠0 C. m<1 D. m <1且m≠0 2.(2014年,内蒙古呼和浩特市,3分)已知函数的图象在第一象限的一支曲线上有一点A(a,c),点B(b ,c+1)在该函数图象的另外一支上,则关于一元二次方程ax2+bx+c = 0的两根x1,x2判断正确的是【】 A.x1 + x2 >1,x1•x2 > 0 B.x1 + x2 < 0,x1•x2 > 0 C.0 < x1 + x2 < 1,x1•x2 > 0 D.x1 +x2与x1•x2 的符号都不确定【答案】C.【解析】考点:1.反比例函数的性质;2.曲线上点的坐标与方程的关系;3. 一元二次方程根与系数的关系;4.分类思想的应用. 3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A. B. C. D.【答案】B.考点:由实际问题抽象出一元二次方程. 4.(2015年,内蒙古巴彦淖尔,3分)不等式组的解集在数轴上表示正确的是() A. B. C. D. 5.(2015年,内蒙古包头市、乌兰察布市,3分)不等式组的最小整数解是() A.�1 B.0 C.1 D.2 6. (2015年,内蒙古赤峰市,3分)解不等式组的解集在数轴上表示正确的是() 7.(2016年,内蒙古包头市,3分)不等式�≤1的解集是() A.x≤4 B.x≥4 C.x≤�1 D.x≥�1 【答案】A.【解析】试题分析::去分母,得:3x�2(x�1 )≤6,去括号,得:3x�2x+2≤6,移项、合并,得:x≤4,故答案选A.考点:解一元一次不等式. 8.(2016年,内蒙古包头市,3分)若关于x的方程x2+(m+1)x+ =0的一个实数根的倒数恰是它本身,则m的值是() A.�B. C.�或 D.1 【答案】C.【解析】试题分析:由根与系数的关系可得x1+x2=�(m+1),x1•x2= ,又知个实数根的倒数恰是它本身,则该实根为 1或�1,若是1时,即1+x2=�(m+1),而x2= ,解得m= �;若是�1时,则m= .故答案选:C.考点:一元二次方程的解;根与系数的关系. 9.(2 016年,内蒙古呼和浩特市,3分)已知a≥2,m2�2am +2=0,n2�2an+2=0,则(m�1)2+(n�1)2的最小值是() A.6 B.3 C.�3 D.0 【答案】A 【解析】试题分析:根据已知条件得到m,n是关于x的方程x2�2ax+2=0的两个根,根据根与系数的关系得到m+n=2a,mn=2,于是可知(m�1)2+(n�1)2=m2�2m+1+n2�2n+1=(m+n)2�2mn�2(m+n )+2=4a2�4�4a+2=4(a�)2�3,∵a≥2,∴当a=2时,(m�1)2+(n�1)2有最小值,∴(m�1)2+(n�1)2的最小值=4(a�)2+3=4(2�)2�3=6,故选A.考点:1、根与系数的关系;2、二次函数的最值 10. (2017年内蒙古通辽市第8题)若关于的一元二次方程有实数根,则的取值范围在数轴上表示正确的是() A. B. C. D.【答案】A 考点:1、根的判别式;2、在数轴上表示不等式的解集 11.(2017年内蒙古包头市第8题)若关于x的不等式的解集为x<1,则关于x 的一元二次方程根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.无实数根 D.无法确定【答案】C.【解析】试题分析:解不等式得x<,而不等式的解集为x<1,所以 =1,解得a=0,又因为△= =�4,所以关于x的一元二次方程没有实数根.故选C.考点:根的判别式;不等式的解集. 12.(2017年内蒙古包头市第11题)已知一次函数,二次函数,在实数范围内,对于x的同一个值,这两个函数所对应的函数值为与,则下列关系正确的是()A.B.C.D.【答案】D.【解析】试题分析:由消去y得到:,∵△=0,∴直线y=4x与抛物线只有一个交点,如图所示,观察图象可知:,故选D.考点:二次函数与不等式(组). 13. (2017年内蒙古呼和浩特市第5题)关于的一元二次方程的两个实数根互为相反数,则的值为()A. B. C. D.或【答案】B 故选B.考点:根与系数的关系.1.(2014年,内蒙古包头市,3 分)方程�=0的解为x= .经检验x=2是分式方程的解.故答案为:2 考点:解分式方程 2.(2014年,内蒙古呼和浩特市,3分)已知m,n是方程x2+2x-5=0的两个实数根,则m2-mn+3m+n=______ 3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)不等式的解集为.【答案】x<2.考点:解一元一次不等式. 4. (2015年,内蒙古呼和浩特市,3分)若实数 a、b满足(4a +4b) (4a+4b-2)-8=0,则a+b=__________. 【答案】-或1 考点:利用整体思想求解、一元二次方程的解. 5.(20 15年,内蒙古巴彦淖尔,3分)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为.【答案】.【解析】 6.(2015年,内蒙古包头市、乌兰察布市,3分)已知关于x的一元二次方程有两个不相等的实数根,则k的取值范围是. 7. (2015年,内蒙古赤峰市,3分)若关于x的一元二次方程x2-(a+5)x+8a=0的两个实数根分别为2和b,则ab= . 8. (2015年,内蒙古通辽市,3分)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程. 9.(2016年,呼伦贝尔市、兴安盟,3分)不等式组的解集是.【答案】x>3.【解析】试题分析:由(1)得,x>2;由(2)得,x >3,所以不等式组的解集是x>3.考点:解一元一次不等式组. 10.(2016年,内蒙古通辽市)已知a、b满足方程组,则 = .【答案】3.【解析】试题分析:,①×3+②得:7a=28,即a=4,把a=4代入②得:b=5,则原式=3.故答案为:3.考点:二元一次方程组的解. 11.(2016年,内蒙古通辽市)有背面完全相同的9张卡片,正面分别写有1�9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组有解的概率为.【答案】.考点:概率公式;不等式的解集;含待定字母的不等式(组). 12. (2017年内蒙古通辽市第11题)不等式组的整数解是.【答案】0,1,2 【解析】试题分析:根据不等式组的解法:解不等式一得,x>�1,解不等式二得,x≤2,不等式组的解集为�1<x≤2,不等式组的整数解为0,1,2,故答案为0,1,2.考点:一元一次不等式组的整数解 13.(2017年内蒙古包头市第16题)若关于x、y的二元一次方程组的解是,则的值为.【答案】1.【解析】试题分析:∵关于x、y的二元一次方程组的解是,∴ ,解得a=�1,b=2,∴ =(�1)2=1.故答案为:1.考点:二元一次方程组的解.1. (2014年,内蒙古赤峰市,6分)求不等式组的正整数解. 2.(2014年,内蒙古呼和浩特市,10分)计算(1)(5分)计算:(2)(5分)解方程:【答案】(1);(2)x = 4. 【解析】考点:1.特殊角的三角函数值;2.负整数指数幂;3.二次根式化简;4.绝对值;5.解分式方程. 3.(2014年,内蒙古呼和浩特市,5分)已知实数a 是不等于3的常数,解不等式组,并依据a的取值情况写出其解集.【答案】当a > 3时,不等式组的解集为x≤3;当a < 3时,不等式组的解集为x < a. 【解析】试题分析:解不等式组,再根据a的取值分别求解即可. 4.(2014年,内蒙古呼和浩特市,7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元? 【答案】96,269. 【解析】考点:1.二元一次方程组的应用;2.分类思想的应用. 5.(2015年,内蒙古呼伦贝尔市、兴安盟,6分)解方程:.【答案】x=�3.考点:解分式方程.6. (2015年,内蒙古呼和浩特市,6分)若关于x、y的二元一次方程组的解满足x+y>-,求出满足条件的m的所有正整数值. 【答案】1、2、3. 考点:二元一次方程组、一元一次不等式. 7.(2015年,内蒙古巴彦淖尔,6分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱? 8. (2015年,内蒙古赤峰市)解二元一次方程组:. 9. (2015年,内蒙古通辽市)(1)计算:-tan30° (2)解方程:;(3)解不等式组,并把解集在数轴上表示出来. 10.(2016年,呼伦贝尔市、兴安盟, 6分)解方程:.【答案】x=0.【解析】考点:解分式方程. 11.(2016年,内蒙古呼和浩特市)已知关于x的不等式组有四个整数解,求实数a的取值范围.【答案】�3≤a<�2 【解析】试题分析:分别求出不等式组中两不等式的解集,根据不等式组有四个整数解,即可确定出a的范围.试题解析:解不等式组,解不等式①得:x >�,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴1≤a+4<2,解得:�3≤a<�2.考点:一元一次不等式组的整数解 12. (2017年内蒙古呼和浩特市第21题)已知关于的不等式.(1)当时,求该不等式的解集;(2)取何值时,该不等式有解,并求出解集.【答案】(1)x<2;(2)当m≠�1时,不等式有解,当m>�1时,不等式解集为x<2;当x<�1时,不等式的解集为x>2.(2)不等式去分母得:2m�mx>x�2,考点:不等式的解集.。

专题03 方程(组)和不等式(组)2017年中考数学试题分项版解析汇编

专题03 方程(组)和不等式(组)2017年中考数学试题分项版解析汇编

专题03 方程(组)和不等式(组)2017年中考数学试题分项版解析汇编一、选择题1.(2017四川省南充市)如果a +3=0,那么a 的值是( )A .3B .﹣3C .13 D .13- 2.(2017四川省眉山市)不等式122x ->的解集是( ) A .x <14- B .x <﹣1 C .x >14- D .x >﹣1 3.(2017四川省眉山市)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( )A .﹣2B .2C .3D .﹣34.(2017四川省绵阳市)关于x 的方程022=++n mx x 的两个根是﹣2和1,则m n 的值为( )A .﹣8B .8C .16D .﹣16 5.(2017四川省达州市)某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5cm 3.求该市今年居民用水的价格.设去年居民用水价格为x 元/cm 3,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭B .30155113x x -=⎛⎫- ⎪⎝⎭C . 30155113x x -=⎛⎫+ ⎪⎝⎭D .30155113x x -=⎛⎫- ⎪⎝⎭6.(2017山西省)在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( )A .众数B .平均数C .中位数D .方差7.(2017广东省)如果2是方程230x x k -+=的一个根,则常数k 的值为( )A .1B .2C .﹣1D .﹣2 8.(2017广西四市)一元一次不等式组⎩⎨⎧≤+>+31022x x 的解集在数轴上表示为( ) A . B .C .D .9.(2017广西四市)一艘轮船在静水中的最大航速为35km /h ,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km 所用时间相等.设江水的流速为v km /h ,则可列方程为( )A .359035120-=+v vB .v v +=-359035120C . 359035120+=-v vD .vv -=+359035120 10.(2017浙江省丽水市)若关于x 的一元一次方程x ﹣m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤211.(2017浙江省台州市)滴滴快车是一种便捷的出行工具,计价规则如下表: 计费项目里程费 时长费 远途费 单价 1.8元/公里 0.3元/分钟 0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )A .10分钟B .13分钟C .15分钟D .19分钟12.(2017重庆市B 卷)若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2222a y y +=--有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3二、填空题13.(2017四川省南充市)如果111m =-,那么m = . 14.(2017四川省广安市)不等式组⎪⎩⎪⎨⎧+≤-<--32114)2(3x x x x 的解集为 . 15.(2017四川省眉山市)已知一元二次方程2320x x --=的两个实数根为1x ,2x ,则12(1)(1)x x --的值是 .16.(2017四川省绵阳市)关于x 的分式方程xx x -=+--111112的解是 . 17.(2017山东省枣庄市)已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则a 的取值范围是 .18.(2017山东省枣庄市)已知23x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=⎩的解,则22a b -= . 19.(2017山东省济宁市)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的23,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组是 .20.(2017广西四市)已知⎩⎨⎧==b y a x 是方程组⎩⎨⎧=+=-5202y x y x 的解,则3a ﹣b = . 21.(2017江苏省盐城市)若方程2410x x -+=的两根是1x ,2x ,则()1221x x x ++的值为 .22.(2017江苏省连云港市)已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 .23.(2017河北省)对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = . 24.(2017浙江省台州市)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为 元/千克.25.(2017湖北省襄阳市)分式方程233x x=-的解是 . 26.(2017湖北省襄阳市)不等式组211841x x x x ->+⎧⎨+≥-⎩的解集为 . 三、解答题27.(2017四川省南充市)已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.28.(2017四川省南充市)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?29.(2017四川省广安市)某班级45名同学自发筹集到1700元资金,用于初中毕业时各项活动的经费.通过商议,决定拿出不少于544元但不超过560元的资金用于请专业人士拍照,其余资金用于给每名同学购买一件文化衫或一本制作精美的相册作为纪念品.已知每件文化衫28元,每本相册20元.(1)适用于购买文化衫和相册的总费用为W 元,求总费用W (元)与购买的文化衫件数t (件)的函数关系式.(2)购买文化衫和相册有哪几种方案?为了使拍照的资金更充足,应选择哪种方案,并说明理由.30.(2017四川省眉山市)解方程:11222x x x-+=--. 31.(2017四川省眉山市)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?32.(2017四川省绵阳市)江南农场收割小麦,已知1台大型收割机和3台小型收割机1小时可以收割小麦1.4公顷,2台大型收割机和5台小型收割机1小时可以收割小麦2.5公顷.(1)每台大型收割机和每台小型收割机1小时收割小麦各多少公顷?(2)大型收割机每小时费用为300元,小型收割机每小时费用为200元,两种型号的收割机一共有10台,要求2小时完成8公顷小麦的收割任务,且总费用不超过5400元,有几种方案?请指出费用最低的一种方案,并求出相应的费用.33.(2017四川省达州市)设A =223121a a a a a a -⎛⎫÷- ⎪+++⎝⎭. (1)化简A ;(2)当a =3时,记此时A 的值为f (3);当a =4时,记此时A 的值为f (4);…解关于x 的不等式:()()()27341124x x f f f ---≤+++ ,并将解集在数轴上表示出来.34.(2017四川省达州市)如图,△ABC 内接于⊙O ,CD 平分∠ACB 交⊙O 于D ,过点D 作PQ ∥AB 分别交CA 、CB 延长线于P 、Q ,连接BD .(1)求证:PQ 是⊙O 的切线;(2)求证:BD 2=AC •BQ ;(3)若AC 、BQ 的长是关于x 的方程4x m x +=的两实根,且tan ∠PCD =13,求⊙O 的半径.35.(2017山东省枣庄市)x 取哪些整数值时,不等式5x +2>3(x ﹣1)与13222x x ≤-都成立? 36.(2017山东省济宁市)解方程:211.22x x x=---. 37.(2017广东省)学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理40本,共能整理1240本.求男生、女生志愿者各有多少人?38.(2017广西四市)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a %,求a 的值至少是多少?39.(2017江苏省盐城市)解不等式组:311442x x x x ì-?ïí+<-ïî. 40.(2017江苏省盐城市)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?41.(2017江苏省连云港市)解不等式组()3143216x x x ì-+<ïí--?ïî. 42.(2017河北省)某厂按用户的月需求量x (件)完成一种产品的生产,其中x >0,每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比,经市场调研发现,月需求量x 与月份n (n 为整数,1≤n ≤12),符合关系式x =2n 2﹣2kn +9(k +3)(k 为常数),且得到了表中的数据. 月份n (月)1 2 成本y (万元/件) 11 12需求量x (件/月) 120 100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元;(2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(m +1)个月的利润相差很大,求m .43.(2017浙江省丽水市)解方程:(x ﹣3)(x ﹣1)=3.44.(2017浙江省绍兴市)(1) 计算:()02343218π-+--.(2)解不等式:()4521x x +≤+.45.(2017湖北省襄阳市)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?46.(2017重庆市B 卷)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m %,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m %,但销售均价比去年减少了m %,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m 的值.47.(2017重庆市B 卷)对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.。

2017年中考数学试题分类汇编-03方程(组)和不等式(组)(第2部分)(word原题及解析版)

2017年中考数学试题分类汇编-03方程(组)和不等式(组)(第2部分)(word原题及解析版)

专题内容:方程(组)和不等式(组)(第2部分)一、选择题1.(2017年贵州省毕节地区第7题)关于x 的一元一次不等式23m x-≤﹣2的解集为x≥4,则m 的值为( ) A .14 B .7C .﹣2D .22.(2017年贵州省毕节地区第9题)关于x 的分式方程71x x -+5=211m x --有增根,则m 的值为( ) A .1 B .3 C .4 D .53.(2017年湖北省十堰市第7题)甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( ) A .90606x x =- B .90606x x =+ C .90606x x =- D .90606x x=+ 4.(2017年贵州省黔东南州第6题)已知一元二次方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则+的值为( ) A .2B .﹣1C .D .﹣25.(2017年贵州省黔东南州第7题)分式方程=1﹣的根为( )A .﹣1或3B .﹣1C .3D .1或﹣3 6.(2017年江西省第5题)已知一元二次方程2x 2﹣5x+1=0的两个根为x 1,x 2,下列结论正确的是( ) A .x 1+x 2=﹣B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是正数7. (2017年内蒙古通辽市第8题)若关于x 的一元二次方程02)1(2)1(2=-++++k x k x k 有实数根,则k 的取值范围在数轴上表示正确的是( ) A .B .C .D .8.(2017年山东省东营市第3题)若|x 2﹣4x+4|互为相反数,则x+y 的值为( ) A .3B .4C .6D .99. (2017年山东省泰安市第7题)一元二次方程2660x x --=配方后化为( )A .2(3)15x -=B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=10. (2017年山东省泰安市第9题)不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( )A .1k >B .1k < C.1k ≥ D .1k ≤11. (2017年山东省威海市第5题)不等式组⎪⎩⎪⎨⎧≥->+-+231223312x x x 的解集在数轴上表示正确的是( )A .B .C .D .12. (2017年山东省威海市第7题)若31-是方程022=+-c x x 的一个根,则c 的值为( ) A .2- B .234- C.33- D .31+13.(2017年四川省内江市第10题)不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( )A .4B .5C .6D .7 14. (2017年四川省成都市第9题)已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( )A .-1B . 0 C. 1 D .215. (2017年贵州省六盘水市第6题)不等式963≥+x 的解集在数轴上表示正确的是( ) A . B . C .D .16.(2017年山东省日照市第6题)a 的取值范围是( ) A .a≥﹣1B .a≠2C .a≥﹣1且a≠2D .a >217. (2017年湖南省岳阳市第6题)解分式方程22111x x x -=--,可知方程的解为 A .1x = B .3x = C.12x =D .无解 18.(2017年浙江省杭州市第5题)设x ,y ,c 是实数,( ) A .若x=y ,则x+c=y ﹣c B .若x=y ,则xc=yc C .若x=y ,则x y c c = D .若23x y c c=,则2x=3y 19.(2017年浙江省杭州市第6题)若x+5>0,则( ) A .x+1<0 B .x ﹣1<0 C .5x<﹣1 D .﹣2x <12 二、填空题1. (2017年湖北省荆州市第13题)若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为______________________.2. (2017年内蒙古通辽市第11题)不等式组⎪⎩⎪⎨⎧-≥-->+1312112x x x 的整数解是 .3. (2017年山东省泰安市第21题)分式72x -与2x x-的和为4,则x 的值为 . 4. (2017年山东省泰安市第22题)关于x 的一元二次方程22(21)(1)0x k x k +-+-=无实数根,则k 的取值范围为 . 5. (2017年山东省威海市第14题)方程14143=-+--xx x 的解是 . 6. (2017年山东省潍坊市第16题)已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 .7.(2017年四川省内江市第24题)设α、β是方程(1)(4)5x x +-=-的两实数根,则33βααβ+= .8. (2017年贵州省六盘水市第17题)方程221111xx 的解为x.9. (2017年湖南省岳阳市第13题)不等式组()()303129x x x -≥⎧⎪⎨->+⎪⎩的解集是 .10. (2017年湖南省岳阳市第14题)在C ∆AB 中C 2B =,AB =C b A =,且关于x 的方程240x x b -+=有两个相等的实数根,则C A 边上的中线长为 . 11.(2017年湖南省长沙市第14题)方程组⎩⎨⎧=-=+331y x y x 的解是 .三、解答题 1.(2017年贵州省毕节地区第25题)某同学准备购买笔和本子送给农村希望小学的同学,在市场上了解到某种本子的单价比某种笔的单价少4元,且用30元买这种本子的数量与用50元买这种笔的数量相同.(1)求这种笔和本子的单价;(2)该同学打算用自己的100元压岁钱购买这种笔和本子,计划100元刚好用完,并且笔和本子都买,请列出所有购买方案.2.(2017年湖北省十堰市第21题)已知关于x 的方程x 2+(2k ﹣1)x+k 2﹣1=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)若x 1,x 2满足x 12+x 22=16+x 1x 2,求实数k 的值.3.(2017年贵州省黔东南州第19题)解不等式组,并把解集在数轴上表示出来.4. (2017年湖北省荆州市第19题)(1)解方程组:23328y x x y =-⎧⎨+=⎩(2)先化简,再求值:2111111x x x x +-÷--+,其中x=2. 5. (2017年湖北省宜昌市第17题)解不等式组122(1)43xx x⎧≥-⎪⎨⎪--⎩<6.(2017年江西省第14题)解不等式组:,并把解集在数轴上表示出来.7.(2017年山东省东营市第23题)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 、B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元. (1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?8. (2017年四川省成都市第15题)(1)计算:2012182sin 452-⎛⎫--++ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 9. (2017年湖北省黄冈市第15题)解不等式组: .10. (2017年湖北省黄冈市第17题)已知关于的一元二次方程 ①有两个不相等的实数根. (1)求的取值范围;(2)设方程①的两个实数根分别为,当时,求的值.11.(2017年湖南省长沙市第20题)解不等式组⎩⎨⎧+>---≥)1(31592x x xx ,并把它的解集在数轴上表示出来.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.【2016广东省东莞市二模】不等式组312840x x -⎧⎨-⎩<≥的解集在数轴上表示为( )A. B.C.D.【答案】B考点:1、在数轴上表示不等式的解集;2、解一元一次不等式组2.【2016广东省广州市番禹区】如图,不等式组1010x x +⎧⎨-⎩>≤的解集在数轴上表示正确的是( )A.B.C.D.【答案】B 【解析】 试题分析:分别求出各不等式的解集,即1010x x +⎧⎨-⎩>≥①②, 由①得,x >﹣1, 由②得,x≤1,故不等式组的解集为:﹣1<x≤1. 在数轴上表示为:.考点:1、在数轴上表示不等式的解集;2、解一元一次不等式组3.【2016广东省广州市番禹区】若方程x2﹣3x﹣4=0的两根分别为x1和x2,则1211x x+的值是()A.1 B.2 C.﹣34D.﹣43【答案】C考点:根与系数的关系4.【2016广东省汕头市澄海区一模】不等式组10134xx x+⎧⎪+⎨⎪⎩><的解集是()A.﹣1≤x<3 B.﹣1≤x<1 C.x<3 D.x≥﹣1 【答案】A【解析】试题分析:利用不等式的性质,解不等式10134xx x+⎧⎪+⎨⎪⎩><①②,由①式得x>﹣1;由②式得x<3,所以不等式组的解为﹣1<x<3.故选A.考点:解一元一次不等式组5.【2016广东省汕头市澄海区一模】已知关于x的一元二次方程x2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣7 B.k≥﹣7 C.k≥0 D.k≥1考点:根的判别式6.【2016广东省汕头市金平区一模】若一元二次方程x2+2x+a=0有实数根,则a的取值范围是()A.a≤1 B.a≤4 C.a<1 D.a≥1【答案】A【解析】试题分析:首先得出根的判别式△=b2﹣4ac,由一元二次方程x2+2x+a=0有实数根,可得△=4﹣4a≥0,进一步求得不等式的解集得出a≤1.故选:A.考点:一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式7.【2016广东省广州市华师附中一模】如图,在数轴上所表示的是哪一个不等式的解集()A.12x>﹣1 B.32x+≥﹣3 C.x+1≥﹣1 D.﹣2x>4【答案】C 【解析】试题分析:依题意得:数轴表示的解集是:x≥﹣2;解12x>﹣1得:x>﹣2;解32x+≥﹣3,得x+3≥﹣6,不等式的解集是x≥﹣9;解x+1≥﹣1得:x≥﹣2;解﹣2x>4得x<﹣2.故应选C.考点:在数轴上表示不等式的解集8.【2016广东省广州市华师附中一模】若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007 B.2005 C.﹣2007 D.4010【答案】B【解析】试题分析:根据方程的解的概念及根与系数的关系得α+β=-2、α2+2α=2007,整体代入到α2+3α+β=α2+2α+α+β=2007-2=2005,故选:B.考点:根与系数的关系9.【2016广东省广州市海珠区一模】方程组13x yx y-=⎧⎨+=⎩的解是()A.12xy=⎧⎨=⎩B.13xy=⎧⎨=⎩C.31xy=⎧⎨=⎩D.21xy=⎧⎨=⎩【答案】D考点:二元一次方程组的解10.【2016广东省广州市海珠区一模】已知一元二次方程x2﹣5x+3=0,则该方程根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【答案】A【解析】试题分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.由a=1,b=﹣5,c=3,可得△=b2﹣4ac=(﹣5)2﹣4×1×3=13>0,因此方程有两个不相等的实数根.故选:A.考点:一元二次方程根的判别式11.【2016广东省广州市增城市一模】若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()A.1 B.5 C.﹣5 D.6【答案】B【解析】试题分析:依据一元二次方程根与系数的关系可知,x1+x2=﹣ba,这里a=1,b=﹣5,据此即可求x1+x2=5.故选B.考点:根与系数的关系12.【2016广东省揭阳市普宁市二模】已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米.若设甲车的速度为x千米/时,依题意列方程正确的是()A.304015x x=+B.304015x x=-C.304015x x=-D.304015x x=+【答案】A考点:分式方程13.【2016广东省深圳市模拟】阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元 B.27元 C.28元 D.29元【答案】C【解析】试题分析:根据题意,设电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程得:0.9x﹣21=21×20%解得:x=28所以这种电子产品的标价为28元.故选C.考点:一元一次方程的应用14.【2016广东省深圳市模拟】下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b2【答案】C考点:不等式的基本性质15.【2016广西贵港市三模】不等式3(x﹣2)<7的正整数解有()A.2个B.3个C.4个D.5个【答案】C【解析】试题分析:首先利用不等式的基本性质解不等式,得到不等式的解集x<133,再从不等式的解集中找出适合条件的正整数为1,2,3,4,共4个.故选C.考点:一元一次不等式的整数解16.【2016广西南宁市马山县一模】已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根为()A.2 B.3 C.4 D.8【答案】C【解析】试题分析:利用根与系数的关系(若二次项系数为1,常用以下关系:x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q),设方程的另一根为a,则a+2=6,解得a=4.故选C.考点:根与系数的关系17.【2016广东省深圳市龙岭期中】遂宁市某生态示范园,计划种植一批核桃,原计划总产量达36万千克,为了满足市场需求,现决定改良核桃品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为()A.36369201.5x x+-= B.3636201.5x x-=C.36936201.5x x+-= D.36369201.5x x++=【答案】A考点:分式方程18.【2016广东省深圳市二模】2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A.3x+(29﹣x)=67 B.x+3(29﹣x)=67C.3 x+(30﹣x)=67 D.x+3(30﹣x)=67【答案】A【解析】试题分析:设该队共胜了x场,则平了(30﹣x)场,由题意得3x+(29﹣x)=67.故选A.考点:一元一次方程的实际运用19.【2016广东省梅州市梅江模拟】下列说法不正确的是()A.方程x2=x有一根为0B.方程x2﹣1=0的两根互为相反数C.方程(x﹣1)2﹣1=0的两根互为相反数D.方程x2﹣x+2=0无实数根【答案】C考点:一元二次方程的解法20.【2016广东省东莞市虎门市模拟】如果等腰三角形的两边长分别是方程x2﹣10x+21=0的两根,那么它的周长为()A.17 B.15 C.13 D.13或17【答案】A【解析】试题分析:由等腰三角形的两边长分别是方程x2﹣10x+21=0的两根,解方程x2﹣10x+21=0的两个根分别是x1=3,x2=7,因此可知等腰三角形的腰长为7,底边长为3,所以等腰三角形的周长为:7+7+3=17.故选:A.考点:1、因式分解法解一元二次方程,2、三角形三边关系21.【2016广东省潮州市潮安区一模】关于x的一元二次方程(m﹣2)x2+2x+1=0有实数根,则m的取值范围是()A.m≤3 B.m<3 C.m<3且m≠2 D.m≤3且m≠2【答案】D【解析】试题分析:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义得到m-2≠0且△≥0,即22-4×(m-2)×1≥0,然后解不等式组即可得到m的取值范围m≤3且m≠2.故选:D.考点:一元二次方程的根的判别式22.【2016广东省模拟(一)】用配方法解一元二次方程x2﹣6x=﹣5的过程中,配方正确的是()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=4 D.(x﹣3)2=4【答案】D【解析】试题分析:先把方程两边都加上9,然后把方程左边写成完全平方的形式即可.即x2﹣6x+9=4,(x﹣3)2=4.故选D.考点:解一元二次方程-配方法23.【2016广东省深圳市南山区二模】方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根 B.只有一个实数根C.没有实数根 D.有两个不相等的实数根【答案】A考点:根的判别式24.【2016广东省深圳市南山区二模】关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【答案】C【解析】试题分析:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,所以可得x=12m-.再由方程mx﹣1=2x的解为正实数,可得12m->0,解得m>2.故选C.考点:1、解一元一次不等式;2、一元一次方程的解25.【2016广东省深圳市二模】2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x 场,则可列方程为( )A .3x+(29﹣x )=67B .x+3(29﹣x )=67C .3 x+(30﹣x )=67D .x+3(30﹣x )=67 【答案】A考点:由实际问题抽象出一元一次方程二、填空题1.【2016广东省广州市番禹区】已知关于x 的一元二次方程x 2﹣有两个相等的实数根,则k 的值是 . 【答案】1 【解析】试题分析:根据方程有两个相等的实数根可得出△=24b ac -=0,列出关于k 的方程(2120k --=,求出k=1. 考点:根的判别式2.【2016广东省惠州市惠阳区一模】某种品牌的手机经过四、五月份连续两次降价,每部售价由1000元降到了810元.则平均每月降价的百分率为 . 【答案】10% 【解析】试题分析:根据题意找到等量关系为:原售价×(1﹣降低率)2=降低后的售价,依此列出方程求解即可得:设平均每月降价的百分率为x , 依题意得:1000(1﹣x )2=810, 化简得:(1﹣x )2=0.81, 解得x 1=0.1,x 2=﹣1.9(舍去). 所以平均每月降价的百分率为10%. 考点:一元二次方程的应用3.【2016广东省惠州市惠阳区一模】如果关于x的方程x2﹣2x+k=0(k为常数)有两个不相等的实数根,那么k的取值范围是.【答案】k<1考点:根的判别式4.【2016广东省惠州市惠阳区一模】不等式组32024xx-⎧⎨+⎩><的解集是.【答案】23<x<2【解析】试题分析:由32024xx-⎧⎨+⎩><①②,可分别解两个不等式得到①x>23和②x<2,然后根据大小小大中间找确定不等式组的解集为23<x<2.考点:解一元一次不等式组5.【2016广东省广州市海珠区一模】不等式组1050xx+⎧⎨-⎩><的解集是.【答案】﹣1<x<5 【解析】试题分析:首先解1050xx+⎧⎨-⎩><⎧⎨⎩①②中的每个不等式,即可知:解①得x>﹣1,解②得x<5.则不等式组的解集是﹣1<x<5.考点:一元一次不等式组的解法6.【2016广西贵港市三模】如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是.【答案】m<﹣4【解析】试题分析:根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围m<﹣4.考点:一元二次方程ax2+bx+c=0(a≠0)的根的判别式7.【2016广东省梅州市梅江模拟】若一元二次方程x2﹣3x+1=0的两根为x1和x2,则x1+x2= .【答案】3【解析】试题分析:根据两根之和公式(韦达定理)可由一元二次方程x2﹣3x+1=0的两根为x1和x2,知x1+x2=3.考点:一元二次方程根与系数的关系8.【2016广东省东莞市虎门市模拟】不等式组10241xx x+⎧⎨+-⎩>≥的解集为.【答案】-1<x≤1考点:解一元一次不等式组三、解答题1.【2016广东省东莞市二模】某商店开学前用2000元购进一批学生书包,开学后发现供不应求,商店又购进第二批同样的书包,所购数量比第一批数量多了20个,但每个书包的进货价比第一批提高了20%,结果购进第二批书包用了3600元.(1)求第一批购进书包时每个书包的进货价是多少元?(2)若商店想销售第二批书包的利润至少为15%,则每个书包的售价至少定为多少元?(备注:利润率=-售价进价进价×100%)【答案】(1)50(2)69【解析】试题分析:(1)设第一批购进书包时每个书包的进货价是x元,则第二批的进货价为(1+20%)x元,根据题意,第二批所购数量比第一批数量多了20个,列方程求解即可;考点:1、分式方程的应用;2、一元一次不等式的应用2.【2016广东省广州市番禹区】解方程组281x y x y +=⎧⎨-=⎩. 【答案】32x y =⎧⎨=⎩ 【解析】试题分析:根据加减消元法,由①+②消去未知数y 求x 的值,再把x=3代入②,求未知数y 的值. 试题解析: 281x y x y +=⎧⎨-=⎩①②①+②得3x=9,解得x=3,把x=3代入②,得3﹣y=1,解得y=2,∴原方程组的解是32x y =⎧⎨=⎩. 考点:二元一次方程组3.【2016广东省广州市番禹区】先化简22142x x x ---,然后在不等式5﹣2x >﹣1的非负整数解中选一个使原式有意义的数代入求值.【答案】12x+,12考点:1、分式的化简求值;2、一元一次不等式的整数解4.【2016广东省惠州市惠阳区一模】植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B 种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?【答案】(1)A:200元,B:300元;(2)10棵【解析】试题分析:(1)设B树苗的单价为x元,则A树苗的单价为y元.则由等量关系列出方程组解答即可;(2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式解答即可.试题解析:(1)设B树苗的单价为x元,则A树苗的单价为y元,可得:352100 4103800 y xy x+=⎧⎨+=⎩,解得:300200 xy=⎧⎨=⎩,答:B 树苗的单价为300元,A 树苗的单价为200元;(2)设购买A 种树苗a 棵,则B 种树苗为(30﹣a )棵,可得:200a+300(30﹣a )≤8000,解得:a≥10,答:A 种树苗至少需购进10棵.考点:1、一元一次不等式的应用;2、二元一次方程组的应用5.【2016广东省汕头市澄海区一模】某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其它任务不再做该工程,剩下工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?【答案】(1)80(2)25(2)设甲工程队要工作y 天,由题意得:11304080y ⎛⎫-÷ ⎪⎝⎭≤, 解得:y≥25,答:甲工程队至少要工作25天.考点:1、分式方程的应用;2、一元一次不等式的应用6.【2016广东省汕头市金平区一模】某超市用5 000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的苹果定价为4元,超市在这两次苹果销售中的盈利不低于4 100元,那么余下的苹果最多多少千克?【答案】(1)5元(2)300千克(2)由(1)得,总共购进苹果:5000÷5×3=3000(kg),设余下的苹果为y千克,由题意得,7+4y﹣5000﹣11000≥4 100,解得:y≤300.答:余下的苹果最多为300千克.考点:一元一次不等式和分式方程的应用7.【2016广东省广州市华师附中一模】解方程:x2﹣10x+9=0.【答案】x1=1,x2=9【解析】试题分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.试题解析: x 2﹣10x+9=0,(x ﹣1)(x ﹣9)=0,x ﹣1=0,x ﹣9=0,x 1=1,x 2=9.考点:解一元二次方程-因式分解法8.【2016广东省广州市海珠区一模】解方程:22x x =+. 【答案】x=﹣4考点:解分式方程9.【2016广东省广州市海珠区一模】某学校准备购买A 、B 两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A 、B 两种型号篮球的情况:(1)求A 、B 两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A 种型号的篮球最少能采购多少个?【答案】(1)26,8(2)9【解析】试题分析:(1)设A 型号篮球的价格为x 元、B 型号的篮球的价格为y 元,就有3x+8y=622和5x+4y=402,由这两个方程构成方程组求出其解即可;(2)设最少买A型号篮球m个,则买B型号篮球球(20﹣m)个,根据总费用不超过1000元,建立不等式求出其解即可.答:若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,A种型号的篮球最少能采购9个.考点:1、一元一次不等式的应用,2、二元一次方程组的应用10.【2016广东省广州市增城市一模】解不等式组20260xx-⎧⎨-+⎩>①>②,并把解集在数轴上表示出来.【答案】2<x<3【解析】试题分析:先求出不等式组组中的不等式①、②的解集,它们的交集就是该不等式组的解集;然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将解集在数轴上表示出来.试题解析:由①得x>2由②得x<3∴不等式组的解集为2<x<3把解集在数轴上表示考点:解一元一次不等式组11.【2016广西贵港市三模】(1﹣(2016﹣π)0﹣4cos45°+(﹣3)2(2)解方程组25 321 x yx y+=⎧⎨-=-⎩.【答案】(1)8(2)12 xy=⎧⎨=⎩考点:1、实数的运算,2、解二元一次方程组12.【2015广西桂林市模拟】某校初三(1)班有48名学生,其中男生人数比女生人数的2倍少15人.(1)求该班男生和女生的人数;(2)学校要从该班抽22名学生参加校学雷锋小组,要求男生人数比女生人数至少多4人,且女生人数不少于6人,请列举出所有可供选择方案.【答案】(1)27,21(2)女生6人,男生16人;女生7人,男生15人;女生8人,男生14人;女生9人,男生13人.【解析】试题分析:(1)设该班女生有x人,男生有2x﹣15人,根据男女生人数的关系以及全班共有48人,可得出方程,即可得出结论;(2)设招的女生为m名,则招的男生为22﹣m名,根据“男生人数比女生人数至少多4人,且女生人数不少于6人”,即可得出关于m的一元一次不等式组,解不等式即可得出结论.考点:1、分式方程的应用;2、一元一次不等式组的应用13.【2016广东省深圳市龙岭期中】解不等式组422(3)2135x xx x++⎧⎨++⎩≥>,并求其整数解.【答案】2≤x<6;2,3,4,5【解析】试题分析:先求出每个不等式的解集,再求出不等式组的解集即可.试题解析:422(3) 2135x xx x++⎧⎨++⎩≥>①②∵解不等式①得:x≥2,解不等式②得:x<6,∴不等式组的解集为2≤x<6,∴不等式组的整数解为2,3,4,5.考点:1、解一元一次不等式组;2、一元一次不等式组的整数解14.【2016广东省深圳市二模】解不等式组3(2)64113x xxx--⎧⎪-⎨+⎪⎩≥>.并写出它的整数解.【答案】2≤x<4;2、3考点:解一元一次不等式组15.【2016广东省汕头市潮南区模拟(B卷】解一元一次不等式组:21030xx+⎧⎨-⎩>≤,并写出它所有自然数的解.【答案】132x-<≤;x=0,1,2,3【解析】试题分析:根据解不等式组的方法可以求得不等式组的解集,从而可以求得它所有自然数的解.试题解析:21030xx+⎧⎨-⎩>≤①②解不等式①,得x>12 -,解不等式②,得x≤3,故原不等式组的解集是13 2x-<≤,故它所有自然数的解是:x=0,1,2,3.考点:一元一次不等式组的整数解16.【2016广东省汕头市潮南区模拟(B卷】某商场销售的一款空调机每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价?(利润率=-=利润售价进价进价进价).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【答案】(1)2400元(2)21600元考点:一元一次方程的应用17.【2016广东省梅州市梅江模拟】解分式方程:21133xx x-+=--.【答案】x=2【解析】试题分析:根据解分式方程步骤,因为3﹣x=-(x-3),所以可得方程最简公分母为(x-3),方程两边同乘(x﹣3)将分式方程转化为整式方程求解,要注意检验.试题解析:211 33xx x-+= --方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.考点:分式方程18.【2016广东省梅州市梅江模拟】解方程:x2﹣2x﹣2=0.【答案】x1x2=1考点:配方法解一元二次方程19.【2016广东省梅州市梅江模拟】解不等式组:253(2)123x xx x++⎧⎪-⎨⎪⎩≤<【答案】-1≤x<3【解析】试题分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“大小小大中间找”来求不等式组的解集.试题解析:253(2)123x xx x++⎧⎪-⎨⎪⎩≤<①②由①得2x+5≤3x+6,即x≥-1;由②得3(x-1)<2x,3x-3<2x,即x<3;由以上可得-1≤x<3.考点:一元一次不等式解集20.【2016广东省东莞市虎门市模拟】已知关于x的一元二次方程x2+2kx+k2﹣k=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程一个根吗?若是,求出它的另一个根;若不是,请说明理由.【答案】(1)k>0(2)是,x=-2考点:根的判别式的应用21.【2016广东省模拟(一)】解不等式组:4801132xx x-⎧⎪+⎨-⎪⎩<<.【答案】﹣4<x<2 【解析】考点:解一元一次不等式组22.【2016广东省深圳市南山区二模】解不等式组8311123xx x-⎧⎪⎪⎨⎪--⎪⎩<≤,并求它的整数解.【答案】6,7【解析】试题分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.试题解析:8311123xx x-⎧⎪⎪⎨⎪--⎪⎩<≤①②,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.考点:1、一元一次不等式组的整数解;2、解一元一次不等式组23.【2016广东省深圳市二模】解不等式组3(2)64113x xxx--⎧⎪-⎨+⎪⎩≥>.并写出它的整数解.【答案】2≤x<4;2、3 考点:解一元一次不等式组。

相关文档
最新文档