人教版七年级数学下册三元一次方程组(提高) 典型例题(考点)讲解+练习(含答案).doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】
三元一次方程组(提高)知识讲解
责编:杜少波
【学习目标】
1.理解三元一次方程(或组)的含义;
2.会解简单的三元一次方程组;
3. 会列三元一次方程组解决有关实际问题.
【要点梳理】
要点一、三元一次方程及三元一次方程组的概念
1.三元一次方程的定义:
含有三个未知数,并且含有未知数的项的次数都是1的整式方程.如x+y-z=1,2a-3b+4c=5等都是三元一次方程.
要点诠释:
(1)三元一次方程的条件:①是整式方程,②含有三个未知数,③含未知数的项的最高次数是1次.
(2) 三元一次方程的一般形式:ax+by+cz+d=0,其中a、b、c不为零.
2.三元一次方程组的定义:
一般地,由几个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组. 要点诠释:
(1) 三个方程中不一定每一个方程中都含有三个未知数,只要三个方程共含有三个未知量即可.
(2)在实际问题中含有三个未知数,当这三个未知数同时满足三个相等关系时,可以建立三元一次方程组求解.
要点二、三元一次方程组的解法
解三元一次方程组的一般步骤
(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;
(2)解这个二元一次方程组,求出两个未知数的值;
(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;
(4)解这个一元一次方程,求出最后一个未知数的值;
(5)将求得的三个未知数的值用“{”合写在一起.
要点诠释:
(1)解三元一次方程组的基本思路是:通过“代入”或“加减”消元,把“三元”化为“二元”.使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.其思想方法是:
(2)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求其较简单的解法.要点三、三元一次方程组的应用
列三元一次方程组解应用题的一般步骤:
1.弄清题意和题目中的数量关系,用字母(如x,y,z)表示题目中的两个(或三个)未知数;
2.找出能够表达应用题全部含义的相等关系;
3.根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;
4.解这个方程组,求出未知数的值;
5.写出答案(包括单位名称).
要点诠释:
(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.
(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.
(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.
【典型例题】
类型一、三元一次方程及三元一次方程组的概念
1.下列方程组不是三元一次方程组的是().
A.
1
22
36
x y
y z
y
+=
⎧
⎪
+=-
⎨
⎪=
⎩
B.
240
1
3
x
y x
xy z
⎧-=
⎪
+=
⎨
⎪-=-
⎩
C.
2
23
1
x
y
x z
=
⎧
⎪
=-
⎨
⎪-=
⎩
D.
1
3
21
y x
x z
y z
-=-
⎧
⎪
+=
⎨
⎪-=
⎩
【思路点拨】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【答案】B
【解析】
解:由题意知,含有三个相同的未知数,每个方程中含未知数的项的次数都是1次,并且一共有三个方程,叫做三元一次方程组.
A、满足三元一次方程组的定义,故A选项错误;
B、x2-4=0,未知量x的次数为2次,∴不是三元一次方程,故B选项正确;
C、满足三元一次方程组的定义,故C选项错误;
D、满足三元一次方程组的定义,故D选项错误;
故选B.
【总结升华】三元一次方程组中的方程不一定都是三元一次方程,并且有时需对方程化简后再根据三元一次方程组的定义进行判断.
类型二、三元一次方程组的解法
2. (2015春•苏州校级期末)若x:y:z=2:7:5,x﹣2y+3z=6,求的值.
【思路点拨】根据x:y:z=2:7:5,设x=2k,y=7k,z=5k,代入x﹣2y+3z=6得出方程,求出方程的解,即可求出x、y、z的值,最后代入求出即可.
【答案与解析】
解:∵x:y:z=2:7:5,
∴设x=2k,y=7k,z=5k,
代入x﹣2y+3z=6得:2k﹣14k+15k=6,
解得:k=2,
∴x=4,y=14,z=10,
∴==0.18.
【总结升华】若某一方程是比例形式,则先引入参数,后消元. 举一反三:
【变式】解方程组:2:3,
:4:5,
2329x y y z x y z =⎧⎪
=⎨⎪-+=⎩
①②③
【答案】
解:由①,得3x =2y ,即2
3x y =
, ④ 由②,得5y =4z ,即5
4z y =,⑤
把④、⑤代入③,得215
22934
y y y -+=.
解得y =12.⑥
把⑥代入④,得x =8,把⑥代入⑤,得z =15.
所以原方程组的解为8,12,15.x y z =⎧⎪
=⎨⎪=⎩
【:三元一次方程组 409145 例3】
3.已知方程组354x y a y z a z x a +=⎧⎪
+=⎨⎪+=⎩
①②③的解使得代数式x-2y+3z 的值等于-10,求a 的值.
【思路点拨】由题意可知,此方程组中的a 是已知数,x 、y 、z 是未知数,先解方程组,求出x ,y ,z(含有a 的代数式),然后把求得的x 、y 、z 代入等式x-2y+3z =-10,可得关于a 的一元一次方程,解这个方程,即可求得a 的值. 【答案与解析】
解法一: ②-①,得z-x =2a ④
③+④,得2z =6a ,z =3a
把z =3a 分别代入②和③,得y =2a ,x =a .
∴ 23x a y a z a =⎧⎪
=⎨⎪=⎩
.
把x =a ,y =2a ,z =3a 代入x-2y+3z =10得 a-2×2a+3×3a =-10. 解得53
a =-
. 解法二:①+②+③,得2(x+y+z)=12a .
即x+y+z=6a ④
④-①,得z =3a ,④-②,得x =a ,④-③,得y =2a .
∴ 23x a y a z a =⎧⎪
=⎨⎪=⎩
,
把x =a ,y =2a ,z =3a 代入x-2y+3z =10得 a-2×2a+3×3a =-10. 解得53
a =-
. 【总结升华】当方程组中三个方程的未知数的系数都相同时,可以运用此题解法2中的技巧解这类方程组.
【:三元一次方程组409145 例4】 举一反三:
【变式】若 303340x y z x y z -+=⎧⎨--=⎩
①
② ,则x :y :z = .
【答案】15:7:6
类型三、三元一次方程组的应用
4.(2016春•洛江区期末)小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息: 营业员A :月销售件数200件,月总收入2400元; 营业员B :月销售件数300件,月总收入2700元;
假设营业员的月基本工资为x 元,销售每件服装奖励y 元. (1)求x 、y 的值;
(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?
(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?
【思路点拨】(1)根据题意可以列出相应的二元一次方程组,从而可以得到x 、y 的值; (2)由题意可以列出相应的不等式,从而可以得到某营业员至少需要卖出服装的件数; (3)由题意可得相应的三元一次方程组,通过变形即可得到问题的答案. 【答案与解析】 解:(1)由题意,得
,
解得
即x 的值为1800,y 的值为3;
(2)设某营业员当月卖服装m 件,由题意得,
1800+3m ≥3100,
解得,
,
∵m 只能为正整数, ∴m 最小为434,
即某营业员当月至少要卖434件;
(3)设一件甲为a元,一件乙为b元,一件丙为c元,则
,
将两等式相加得,4a+4b+4c=720,
则a+b+c=180,
即购买一件甲、一件乙、一件丙共需180元.
【总结升华】本题考查三元一次方程组的应用、二元一次方程组的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的方程组或不等式.
举一反三:
【变式】(2015•黄冈中学自主招生)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需3.15元;若购铅笔4支,练习本8本,圆珠笔2支共需4.2元,那么,购铅笔、练习本、圆珠笔各1件共需()
A.1.2元B.1.05元C.0.95元D.0.9元
【答案】B.
解:设购一支铅笔,一本练习本,一支圆珠笔分别需要x,y,z元,
根据题意得,
②﹣①得x+y+z=1.05(元).
初中奥数题试题一
一、选择题(每题1分,共10分)
1.如果a,b都代表有理数,并且a+b=0,那么 ( )
A.a,b都是0 B.a,b之一是0
C.a,b互为相反数 D.a,b互为倒数
2.下面的说法中正确的是 ( )
A.单项式与单项式的和是单项式
B.单项式与单项式的和是多项式
C.多项式与多项式的和是多项式
D.整式与整式的和是整式
3.下面说法中不正确的是 ( )
A. 有最小的自然数 B.没有最小的正有理数
C.没有最大的负整数 D.没有最大的非负数
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )
A.a,b同号 B.a,b异号 C.a>0 D.b>0
5.大于-π并且不是自然数的整数有 ( )
A.2个 B.3个 C.4个 D.无数个
6.有四种说法:
甲.正数的平方不一定大于它本身;
乙.正数的立方不一定大于它本身;
丙.负数的平方不一定大于它本身;
丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )
A.0个 B.1个 C.2个 D.3个
7.a代表有理数,那么,a和-a的大小关系是 ( )
A.a大于-a B.a小于-a
C.a大于-a或a小于-a D.a不一定大于-a
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式
C.加上同一个代数式 D.都加上1
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )
A.一样多 B.多了 C.少了 D.多少都可能
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )
A.增多 B.减少 C.不变 D.增多、减少都有可能
二、填空题(每题1分,共10分)
1.19891990²-19891989²=______。
2.1-2+3-4+5-6+7-8+…+4999-5000=______。
3.当a=-0.2,b=0.04时,代数式 a²-b的值是______。
4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。
三、解答题
1.甲乙两人每年收入相等,甲每年储蓄全年收入的1
5
,乙每月比甲多开支100元,
三年后负债600元,求每人每年收入多少?
4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。
5.求和:。
6.证明:质数p除以30所得的余数一定不是合数。
初中奥数题试题二
一、选择题
1.数1是 ( )
A.最小整数 B.最小正数 C.最小自然数 D.最小有理数
2.a为有理数,则一定成立的关系式是 ( )
A.7a>a B.7+a>a C.7+a>7 D.|a|≥7
3.3.1416×7.5944+3.1416×(-5.5944)的值是 ( )
A.6.1632 B.6.2832 C.6.5132 D.5.3692
4.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )
A.225 B.0.15 C.0.0001 D.1
二、填空题
1.计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______。
2.求值:(-1991)-|3-|-31||=______。
3.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009。
则n的最小值等于______。
4.不超过(-1.7)²的最大整数是______。
5.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______。
三、解答题
1.已知3x2-x=1,求6x3+7x2-5x+2000的值。
2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件。
试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?
3.如图1-96所示,已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°。
求证:DA⊥AB。
4.求方程|xy|-|2x|+|y|=4的整数解。
5.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)
6. 对k,m的哪些值,方程组至少有一组解?
初中奥数题试题三
一、选择题
1.下面给出的四对单项式中,是同类项的一对是 ( )
A. x²y与-3x²z
B.3.22m²n3与 n3m²
C.0.2a²b与0.2ab²
D.11abc与 ab
2.(x-1)-(1-x)+(x+1)等于 ( )
A.3x-3 B.x-1 C.3x-1 D.x-3
3.两个10次多项式的和是 ( )
A.20次多项式 B.10次多项式
C.100次多项式 D.不高于10次的多项式
4.若a+1<0,则在下列每组四个数中,按从小到大的顺序排列的一组是 ( ) A.a,-1,1,-a B.-a,-1,1,a
C.-1,-a,a,1 D.-1,a,1,-a
5.a=-123.4-(-123.5),b=123.4-123.5,c=123.4-(-123.5),则 ( )
A.c>b>a B.c>a>b C.a>b>c D.b>c>a
6.若a<0,b>0,且|a|<|b|,那么下列式子中结果是正数的是 ( ) A.(a-b)(ab+a) B.(a+b)(a-b)
C.(a+b)(ab+a) D.(ab-b)(a+b)
7.从2a+5b减去4a-4b的一半,应当得到( )
A.4a-b B.b-a C.a-9b D.7b
8.a,b,c,m都是有理数,并且a+2b+3c=m,a+b+2c=m,那么b与c ( ) A.互为相反数 B.互为倒数 C.互为负倒数 D.相等
9.张梅写出了五个有理数,前三个有理数的平均值为15,后两个有理数的平均值是10,那么张梅写出的五个有理数的平均值是 ( )
A.5
B.8
C.12
D.13
二、填空题(每题1分,共10分)
1.2+(-3)+(-4)+5+6+(-7)+(-8)+9+10+(-11)+(-12)+13+14+15=______。
2.若P=a²+3ab+b²,Q=a²-3ab+b²,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______。
3.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______。
4.一种小麦磨成面粉后,重量要减少15%,为了得到4250公斤面粉,至少需要______公斤的小麦。
三、解答题
3. 液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量。
4. 6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围。
5. 甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离。