五年级学生如何学奥数
五年级奥数主要知识点
五年级奥数主要知识点五年级奥数是小学数学竞赛的一个重要阶段,它不仅要求学生掌握基础数学知识,还要求学生具备一定的逻辑思维能力和解决问题的能力。
以下是五年级奥数的主要知识点:一、数论基础- 整数的奇偶性:理解奇数和偶数的概念,掌握奇偶数的基本性质。
- 质数与合数:区分质数和合数,了解它们的定义和特点。
- 最大公约数和最小公倍数:学会求两个或多个数的最大公约数和最小公倍数,理解其在数学中的应用。
二、分数和小数- 分数的加减乘除:掌握分数的四则运算,包括通分、约分等技巧。
- 分数的大小比较:学会比较分数的大小,理解分数的性质。
- 小数的运算:熟练进行小数的加减乘除运算,理解小数点的移动规律。
三、比例和比例关系- 比例的基本性质:理解比例的概念,掌握比例的基本性质。
- 正比例和反比例:区分正比例和反比例,理解它们在实际问题中的应用。
四、几何图形- 平面图形:学习三角形、四边形、圆等基本平面图形的性质和面积计算。
- 立体图形:了解长方体、正方体、圆柱、圆锥等立体图形的体积和表面积计算。
五、排列组合与计数原理- 排列组合:掌握排列和组合的基本概念,学会解决相关的数学问题。
- 计数原理:理解加法原理和乘法原理,学会应用这些原理解决实际问题。
六、逻辑推理- 条件逻辑:学会根据给定条件进行逻辑推理,解决数学问题。
- 数学证明:了解数学证明的基本方法,学会用逻辑推理来证明数学命题。
七、应用题- 行程问题:解决涉及速度、时间和距离的行程问题。
- 工程问题:理解工作效率和工作时间的关系,解决相关的工程问题。
- 经济问题:学习解决涉及价格、成本和利润的经济问题。
八、数学思维和解题技巧- 归纳推理:通过观察和分析,归纳出数学规律和模式。
- 逆向思维:学会从问题的结果出发,逆向推导出解决问题的方法。
- 转化思维:将复杂问题转化为简单问题,或将不同类型问题相互转化。
五年级奥数的学习不仅能够提高学生的数学素养,还能培养他们的逻辑思维和创新能力。
小学各年级各阶段如何学好奥数
【小学各年级各阶段如何学好奥数】小学阶段各年级的奥数学习有其独立的特点,我们想要系统的学习奥数,需要从整体上有一个把握和规划,现在就各个年级的不同特点来规划各年级的奥数学习,结合专家建议,给予指导和参考。
一年级:一年级的孩子刚踏入小学。
不论是学习习惯还是学习方法,都需要全面的培养和正确的引导,这就需要家长对整个六年的小学学习有一个全面的规划。
低年级奥数如何学习一直是困扰家长的问题,如何安排一年级下学期奥数的学习,如何在低年级全面系统地为今后的学习打好基础呢?一年级:兴趣培养阶段小学一年级的学习应以培养兴趣为主,只有在低年级时培养起良好的学习兴趣,养成良好的思维习惯,才能够在以后的学习中取得更快的进步。
这个阶段孩子需要积累的是,简单的运算知识和规律,简单图形的认识和分析能力,找规律,让孩子学会一种尝试的方法,简单的逻辑推理能力。
课堂上既想让他们学到知识又想让他们感到轻松有趣,所以对他们采取不同的教学方式,以故事、诗歌、谜语为载体来开展教学的,对孩子来说是在娱乐中学习,并没有您想象中的那么枯燥、乏味。
下面具体谈谈一年级孩子学奥数的方法建议:1、接触奥数,兴趣第一。
我们接触过不少四五年级希望开始学习华数的学生,令人惊讶的是,这些学生中有相当一部分学生其实在低年级时曾经学过奥数的,但因为当时学习听课效果不好便放弃了,到了高年级,迫于小升初形势又不得不学。
对于这样的学生,学习奥数是有一定阴影的,甚至有些学生抱定了自己不适合学奥数的念头,有一定抵触心理。
所以既然家长决定低年级开始学习奥数,一定要首先注意兴趣上的培养,帮助他们找到数学中引起他们兴趣的事情,比如数字游戏等等。
2、找一位孩子最喜欢的老师。
既然刚刚接触奥数,兴趣是第一位的,那找一位孩子喜欢的老师就是学习的重中之重。
一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。
在课堂上,老师不仅是孩子的师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。
培养小学生学习奥数的经典方法
培养小学生学习奥数的经典方法培养小学生学习奥数的经典常用方法许多家长都希望培养孩子学习奥数,一是增加升学的筹码,二是为了想要开发小孩子的数学的学习能力!欢迎阅读以下是小编精心整理的培养小学生学习奥数的经典常用方法,欢迎大家借鉴与参考,希望对大家有所帮助。
小学奥数培训的可行性方法(一)坚持系统科学的分阶段训练小学阶段是少年儿童智力,特别是逻辑思维发展非常重要的启蒙阶段。
根据小学不同阶段学生的特点和思维规律,系统科学设计教法,能最大限度开发少年儿童智力。
1、低年级培训应以兴趣培养为前提。
低年级的孩子以直观形象思维为主,兴趣容易转移,情绪波动大,对教师认同度高,喜欢口头表扬。
针对低年级学生的思维特点,奥数培训的题型选择应以动手操作的为主,设计的问题能联系实际的具体事例,培训中要学生明白通过探索可以尝试到成功,并能觉得奥数学习真有用。
例如:认识图形与物体,比较物体的大小、多少、长短,数物体,拼图形等让学生认识一些事物的特性或联系,培养一定的空间能力。
这些动手操作的学习内容,学生学习起来兴趣盎然,同时又发展了学生的思维能力、观察能力。
建议有条件的学校能够从—年级开始每周有一节奥数培训课进行思维训练。
如果没条件的学校可以让任课教师,每天数学课后安排一道思维训练题,也能很好地激发学生兴趣。
低年级孩子情感上易引导,喜好红花之类的奖励,教师可注意及时表扬和奖励,就能够吸引孩子,培养兴趣。
低年级的学生往往对思维训练有一种莫名的冲动与喜爱,教师一定要考虑题目的难易适度,让学生易接受。
教学方法上考虑使用现代多媒体技术进行对比讲解,能够让学生明白易懂,且兴趣大增。
另外值得注意的是低年级学生的概念认识不足,老师要适当地进行知识的反复呈现。
2、中年级培训应以习惯培养为基础。
小学中年级的学生开始出现抽象逻辑思维,情绪开始稳定,有一定的自控能力。
建议教师按年级不同进行分级训练,即同一内容可以选择不同难度循环安排教学。
教师可以选择速算和巧算、数字谜及趣味算式、和差倍数应用题、还原问题、逻辑推理等内容对学生进行系统训练。
五年级奥数专题 统筹规划(学生版)
统筹规划学生姓名授课日期教师姓名授课时长知识定位最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间的前提下,努力争取获得在允许范围内的最佳效益.因此,最优化问题成为现代应用数学的一个重要研究对象,它在生产、科学研究以及日常生活中都有广泛的应用.作为数学爱好者,接触一些简单的实际问题,了解一些优化的思想是十分有益的.其实统筹学是一门数学学科,但它在许多的领域都在使用,在生活中有很多事情要去做时,科学的安排好先后顺序,能够提高我们的工作效率。
统筹方法,是生产、建设、工程和企业管理中合理安排工作的一种科学方法,它对于进行合理调度、加快工作进展,提高工作效率,保证工作质量是十分有效的.1. 如何合理的安排时间地点。
2. 如何安排能得到最优化的方案。
3. 最优化方案的条件。
知识梳理常用原则方法总结“节省跑空车的距离”是物资调运问题的一个原则。
“发生对流的调运方案“不可能是最优方案。
线性规划是运用一次方程(组)、一次函数来解决规划问题的数学分支。
规划论研究的问题主要有两类:一类是确定了一项任务,研究怎样精打细算使用最少人力、物力和时间去完成它;另一类是在已有一定数量的人力、物力和财力的条件下,研究怎样合理调配,使它们发挥最大限度的作用,从而完成最多的任务劳力组合最简单的情况就是效率比问题.这里给出多种劳力(或机械)干两种配套活的一般分工原则。
关于排序不等式,例如,有一台机床要加工n个工件,每个工件需要的加工时间不一样,问应该按照什么次序加工,才能使总的等待时间最短.递推思想的应用,从简单的较少的人数入手,通过逐步递推,探索一般规律,从而解决某些数字较大的问题.竞赛考点1. 寻找达到最优化条件的等价条件。
2. 合理安排多条件下的统筹问题。
3. 简单的较少的人数入手,通过逐步递推,探索一般规律例题精讲【试题来源】【题目】一只平底锅上最多只能煎两张饼,用它煎1张饼需要2分钟(正面、反面各1分钟)。
小学生如何学好奥数?
小学生如何学好奥数?
奥数是奥林匹克数学竞赛的简称,学习奥数可以锻炼孩子的思维能力和逻辑推理能力,对孩子的数学学习和未来发展都有一定的帮助。
以下是一些小学生学好奥数的建议:
1.培养兴趣:奥数的学习需要一定的耐心和毅力,因此首先要培养孩子对奥数的兴趣,可以通过一些有趣的数学游戏、数学故事等方式,让孩子感受到数学的乐趣。
2.掌握基础知识:奥数的学习需要建立在扎实的数学基础之上,因此要让孩子掌握好数学的基础知识,如加减乘除、分数、小数、几何等。
3.多做练习:奥数的学习需要不断地练习,只有通过大量的练习,才能真正掌握奥数的解题方法和技巧。
可以让孩子多做一些奥数练习题,提高解题能力。
4.学习方法:奥数的学习需要掌握一定的方法和技巧,可以让孩子学习一些奥数的解题方法和技巧,如分类讨论、归纳法、反证法等。
5.参加奥数培训班:如果孩子对奥数有浓厚的兴趣和天赋,可以考虑让孩子参加奥数培训班,由专业的老师进行指导和培训。
需要注意的是,奥数的学习应该是在孩子自愿和感兴趣的基础上进行的,不要给孩子太大的压力和负担。
同时,家长也要给予孩子足够的支持和鼓励,让孩子在学习奥数的过程中感受到成就感和自信心。
1。
五年级质数与合数奥数教案
五年级质数与合数奥数教案一、教学目标1. 让学生理解质数与合数的概念。
2. 培养学生判断一个数是质数还是合数的能力。
3. 培养学生探索质数与合数性质的兴趣。
二、教学内容1. 质数与合数的定义。
2. 判断一个数是质数还是合数的方法。
3. 质数与合数的性质。
三、教学重点与难点1. 重点:质数与合数的定义,判断一个数是质数还是合数的方法。
2. 难点:质数与合数的性质。
四、教学方法1. 采用问题驱动法,引导学生探索质数与合数的性质。
2. 利用小组合作学习,培养学生的团队协作能力。
3. 运用实例讲解,让学生更好地理解质数与合数的概念。
五、教学过程1. 导入:通过讲述一个关于质数与合数的故事,引发学生对质数与合数的兴趣。
2. 新课:介绍质数与合数的定义,讲解判断一个数是质数还是合数的方法。
3. 练习:布置一些判断质数与合数的题目,让学生独立完成。
4. 探索:引导学生分组讨论,探索质数与合数的性质。
5. 总结:对本节课的内容进行总结,强调质数与合数的重要性质。
6. 作业:布置一些有关质数与合数的练习题,巩固所学知识。
六、教学评估1. 通过课堂提问,了解学生对质数与合数概念的理解程度。
2. 通过练习题的完成情况,评估学生判断质数与合数的能力。
3. 通过小组讨论,观察学生探索质数与合数性质的过程,评估学生的团队协作能力和问题解决能力。
七、教学拓展1. 邀请数学家或相关领域专家进行讲座,分享质数与合数在数学和现实生活中的应用。
2. 组织学生参加质数与合数相关的奥数竞赛,提高学生的学习兴趣和挑战精神。
3. 引导学生进行质数与合数的课题研究,培养学生的独立研究能力。
八、教学资源1. 教材:选用适合五年级学生的数学教材,如《数学》、《数学乐园》等。
2. 教具:准备一些卡片、黑板、多媒体教学设备等,用于展示和讲解质数与合数的概念和性质。
3. 网络资源:利用互联网查找关于质数与合数的资料,如数学故事、趣味数学题等,丰富教学内容。
五年级奥数.计算综合.循环小数与分数分拆(ABC级).学生版
循环小数与分数拆分考试要求(1)掌握循环小数化分数的基本方法与规律;(2)在计算中能灵活运用循环小数化分数的方法进行简便运算。
知识框架【基本概念】纯小数——整数部分是零的小数。
循环小数——从后某一位开始不断地重复出现前一个或一节数字的。
循环小数有以下两类类:混循环小数、纯循环小数。
混循环小数——循环节不是从小数部分第一位开始的循环小数。
纯循环小数——循环节从小数部分第一位开始的循环小数。
【基本方法】(1)纯循环小数化分数:这个分数的分子等于一个循环节所组成的数,分母由9构成,9的个数等于一个循环节中的位数。
(2)混循环小数化分数:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差;分母的头几位数是9,末几位是0,9的个数与一个循环节中的位数相同,0的个数与不循环部分的位数相同。
重难点重点:循环小数化分数的基本方法与规律;难点:灵活运用循环小数化分数的规律进行运算。
例题精讲一、 分数拆分【例1】110=()()11--()1=()()()111++【巩固】在下面的括里填上不同的自然数,使等式成立.()()()()()()111111110=--=++【例2】 如果1112009A B=-,A B ,均为正整数,则B 最大是多少?【巩固】若1112004a b =+,其中a 、b 都是四位数,且a<b ,那么满足上述条件的所有数对(a,b )是哪些?二、 纯循环小数化分数 【例3】 把纯循环小数化分数:(1)6.0 (2)201.3【巩固】把纯循环小数化成分数(1)612.0 (2)321.4三、混循环小数化分数【例4】 把混循环小数化分数。
(1)512.0 (2)335.6【巩固】把混循环小数化成分数。
(1)627.0 (2)24.7四、循环小数的四则运算与周期运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
五年级奥数教案
五年级奥数教案
五年级奥数教案
课程目标:通过奥数训练,培养学生的逻辑思维能力和问题解决能力,提升其数学素质。
教学内容:奥数综合训练
教学重点:培养学生的逻辑思维能力和问题解决能力
教学难点:通过奥数题目,培养学生解决问题的能力
教学步骤:
1.导入
利用一道简单的奥数题目引导学生思考,如:2+2=?
2.激发学生兴趣
展示一些有趣的奥数题目,引起学生的注意和兴趣,激发他们解决问题的欲望。
3.讲解奥数题目的解题技巧
针对不同的奥数题目,讲解相应的解题技巧,并通过示范做题的方法,帮助学生理解和掌握。
4.练习
学生进行奥数题目的练习,教师可以提供一些有挑战性的题
目,让学生尝试解决。
5.讨论解题方法和答案
学生针对解题过程和答案进行讨论,分享各自的思路和解题方法。
6.总结
教师总结本节课的内容和要点,巩固学生的学习成果。
7.拓展
完成更加复杂的奥数题目,挑战学生的解题能力。
8.作业布置
布置一些奥数题目作为作业,鼓励学生通过自主学习解决问题。
教学工具:奥数题目、PPT、黑板、书籍等。
教学评价:通过观察学生在课堂上的解题过程和结果,评价他们的奥数能力,并提供针对性的反馈和建议。
教学延伸:提供更多的奥数题目和训练资料,鼓励学生在课外继续进行奥数的训练和学习。
小学五年级奥数的学习方法
小学五年级奥数的学习方法(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!小学五年级奥数的学习方法五年级的学生是属于小学的高年级阶段,所有有人开始接触奥数了,奥数如果开头开不好后面就很难学,所以需要掌握一些好方法来开好头,本店铺在这里为大家整理了小学五年级奥数数学的学习方法,快来学习学习吧!一、由简单入手分享到五年级是有余力进行额外学习的,但是如果之前没接触过奥数,那么还是从简单入手比较好。
五年级奥数专题 图形规律(学生版)
学科培优数学“图形规律”学生姓名授课日期教师姓名授课时长知识定位找规律是解决数学问题的一种重要的手段,而规律的找寻既需要敏锐的观察力,又需要严密的逻辑推理能力.知识梳理一般地说,在观察图形变化规律时,应抓住一下几点来考虑问题:(1)图形数量的变化;(2)图形形状的变化;(3)图形大小的变化;(4)图形颜色的变化;(5)图形位置的变化;(6)图形繁简的变化.对于较复杂的图形,也可分为几部分来分别考虑,总而言之,只要全面观察,勤于思考就一定能抓住规律,解决问题.关于解决图形规律问题的常用方法:1、从图形数量、位置变化出发观察思考几何图形的规律2、从图形形状、大小变化发现寻找图形的变化规律3、掌握寻找复杂图形变化规律的方法图形规律问题的分类:1、从图形形状、大小、颜色变化发现寻找图形的变化规律2、从图形数量、位置变化出发观察思考几何图形的规律3、复杂图形变化规律竞赛考点挖掘1.从图形形状、大小、颜色变化发现寻找图形的变化规律题目2.从图形数量、位置变化出发观察思考几何图形的规律题目3.复杂图形变化规律题目例题精讲【试题来源】【题目】请找出下面哪个图形与其他图形不一样.【试题来源】【题目】根据左边图形的关系,画出右边图形的另一半.(1)(2)(3)【试题来源】【题目】在下面图形中找出一个与众不同的.【试题来源】【题目】按照下列图形的变化规律,空白处应是什么样的图形?【试题来源】【题目】如图,根据图中已知3个方格表中阴影的规律,在空白的方格表中也填上相应的阴影.【试题来源】【题目】观察图形变化规律,在右边补上一幅,使它成为一个完整系列【试题来源】【题目】观察图中所给出图形的变化规律,然后在空白处填画上所缺的图形.【试题来源】【题目】请观察下图中已有的几个图形,并按规律填出空白处的图形.【试题来源】【题目】下图中的图形是按一定规律排列的,请仔细观察,并在“?”处填上适当的图形.?ihgfedcba【试题来源】【题目】观察下列各组图的变化规律,并在“?”处画出相关的图形. (1)(2)【试题来源】【题目】观察下图中的点群,请回答:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?(3)前10个点群中,所有点的总数是多少?【试题来源】【题目】仔细观察下图中图形的变化规律,并在“?”处填入合适的图形.abc【试题来源】【题目】将“猫”“狗”“兔”“鸡”“猴”“虎”六个动物名称分别写在六个正方体的六个面上,从下面三种不同摆法中,判断这个正方体上哪些动物名名称分别写在相对面上.【试题来源】【题目】图10—1是由9个小人排列的方阵,但有一个小人没有到位,请你从下面图10—2中的6个小人中,选一位小人放到问号的位置,你认为最合适的人选是几号?【试题来源】【题目】四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第十次交换位子后,小兔坐在第几号位子上?习题演练【试题来源】【题目】顺序观察给出图形的变化,按照这种变化规律,在空格中填上应有的图形【试题来源】【题目】根据下列图形的变化规律,接着画下去.【试题来源】【题目】请找出下面哪个图形与其他图形不一样【试题来源】【题目】观察图形变化规律,在右边再补上一幅,使它们成为一个完整的系列.【试题来源】【题目】仔细观察下列图形的变化,请先回答:(1)在方框(4)中应画出怎样的图形?(2)再按(1)、(2)、(3)、……的顺序数下去,第(10)个方框是怎样的图形?。
(完整版)小学五年级奥数知识点分类汇总及解析
小学五年级奥数知识点分类汇总及解析第1讲平均数(一)一、知识要点把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?下面的数量关系必须牢记:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量×平均数二、精讲精练【例题1】有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个.一箱苹果多少个?【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:1箱苹果比1箱桃多126—108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个).1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:1。
一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克.求四人的平均体重是多少千克?3。
甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。
三个小组各植树多少棵?【例题2】一次数学测验,全班平均分是91。
2分,已知女生有21人,平均每人92分;男生平均每人90。
5分。
求这个班男生有多少人?【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91。
五年级奥数专题 火车问题初步(学生版)
学科培优数学“火车问题初步”学生姓名授课日期教师姓名授课时长知识定位在行程问题这个大家族中,除了我们常常研究的相遇与追击外,还有三大类我们必须了解的问题:火车过桥、流水行程和时钟问题.它们虽然也涉及速度、时间、路程这三个基本关系,但在应用中要兼顾考虑一些其它因素,譬如:火车车长、水流速度等等.其中火车过桥、流水行程是我们在以前的学习中已经有所接触的内容,在下面的学习中我们先回忆巩固原有基本概念,而后相应的拓展提高!知识梳理一、解火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.【重点难点解析】1.火车过桥要谨记车身长度2.火车与多人多次相遇与追及【竞赛考点挖掘】1. 火车与多人多次相遇与追及例题精讲【试题来源】【题目】慢车的车身长是142米,车速是每秒17米,快车车身长是173米,车速是每秒22,慢车在前面行驶,快车从后面追上到完全超过慢车需要多少时间?【试题来源】【题目】一列客车长190米,一列货车长240米,两车分别以每秒20米和23米的速度相向行进,在双轨铁路上,两车从车头相遇到车尾相离共需要多少时间.【试题来源】【题目】一列长72米的列车,追上长108米的货车到完全超过用了10秒,如果货车速度为原来的1.4倍,那么列车追上到超过货车就需要15秒。
货车的速度是每秒多少米?【试题来源】【题目】长180米的客车速度是每秒15米,它追上并超过长100米的货车用了28秒,如果两列火车相向而行,从相遇到完全离开需要多少时间?【试题来源】【题目】快车长106米,慢车长74米,两车同向而行,快车追上慢车后,又经过1分钟才超过慢车;如果相向而行,车头相接后经过12秒两车完全离开。
小学五年级奥数完整教案
五年级奥数完整教案奥数第一讲巧算小朋友,你是不是在日常生活和解答数学问题时,经常要进行计算?在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法哦,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
一、计算:9.996+29.98+169.9+3999.5解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。
当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5=10+30+170+4000-(0.004+0.02+0.1+0.5)=4210-0.624=4209.376二、计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02—0.01=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)=0.04×25=1如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01 =1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)=1三、计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
五年级奥数专题 估算、比较大小(学生版)
学科培优 数学 “估算、比较大小” 学生姓名授课日期 教师姓名授课时长 知识定位本讲中的知识点并不难理解,对于比较大小我们在学校的课本上都已经学习过,所以重点在于一些性质的应用,估算在考试中经常出现,所以同学们一定要认真学习这讲,特别是性质和意义! 知识梳理一、分数的大小比较常用方法:(1)通分母:分子小的分数小.(2)通分子:分母小的分数大.(3)比倒数:倒数大的分数小.(4)与1相减比较法:分别与1相减,差大的分数小。
(适用于真分数)(5)重要结论:① 对于两个真分数,如果分子和分母相差相同的数,则分子和分母都大的分数比较大;② 对于两个假分数,如果分子和分母相差相同的数,则分子和分母都小的分数比较大.二、估算:估算中常用到放缩法,求近似值或整数部分等需要进行估算的计算题,估算的关键在于确定已知数据具有恰当精度的近似值.例题精讲【试题来源】【题目】(1)比较以下小数,找到最大的数:1.1211.1211.121.121211.12••••,,,, .(2)比较以下5个数,排列大小:351,0.42,,1.667,73•• .【试题来源】【题目】除式12345678910111213÷31211101987654321计算结果的小数点后前三位数字是多少?【试题来源】【题目】比较下列几组分数的大小,尽可能多的用不同方法找到答案。
(1)如果a=20052006,b=20062007,那么a,b中较大的数是;(2)试比较1111111和111111111的大小;【试题来源】【题目】在111111,,,,,,23499100中选出若干个数使它们的和大于3,最少要选多少个数?【试题来源】【题目】数1111110111219++++的整数部分是几?【题目】8.01×1.24+8.02 ×1.23+8.03×1.22的整数部分是多少?【试题来源】【题目】(1)如果111111110=222222221A,444444443=888888887B,那么A与B中较大的数是哪一个?(2)请把6565226798,,,6575326809这4个数从大到小排列。
五年级奥数学习计划
五年级奥数学习计划第一部分:奥数基础知识的梳理在五年级学习阶段,学生们正是数学基础打牢的时候。
因此,在奥数学习计划的第一部分,我们将重点梳理五年级数学的基础知识,包括各种数学运算、分数、小数、百分数、整数等内容。
通过系统的梳理,帮助学生们更好地掌握基础知识,为进一步的奥数学习打下坚实的基础。
1.1 数学基础知识梳理的内容和方法在数学基础知识梳理的过程中,我们将以五年级数学教材为主要依据,精选出重点、难点内容进行讲解和梳理,包括但不限于加减乘除的运算法则、整数运算、分数的加减乘除、小数和百分数的计算等内容。
同时,我们还将以奥数题库中的典型例题为例,讲解解题方法和技巧,帮助学生们更好地理解并应用教材知识。
1.2 基础知识梳理的学习方法在数学基础知识梳理的学习方法上,我们将采用多种形式,包括课堂讲解、练习测试、思维导图、互动讨论等。
通过多种形式的学习,激发学生们的学习兴趣,培养他们的数学思维能力和解题能力。
第二部分:奥数思维能力的培养在基础知识打牢的基础上,奥数学习计划的第二部分将重点培养学生们的数学思维能力。
奥数与日常数学学习不同的地方在于,它更加注重学生的数学思维和解题能力的培养,因此在这一阶段,我们将重点围绕数学思维的启发和培养展开。
2.1 数学思维能力的培养内容和方法在数学思维能力的培养中,我们将注重培养学生的逻辑思维、空间想象、分析推理、创造解决问题等能力。
通过举一反三、拓展联想、综合运用等方法,引导学生主动思考和解决问题,培养他们的自主学习能力和问题解决能力。
2.2 数学思维能力的培养实践和检测在数学思维能力的培养实践中,我们将通过多种形式的综合题目和案例分析等让学生们在实际问题中进行思考和解决,提高他们的数学思维能力和解题能力。
同时,我们还将定期进行能力测试和评估,并根据测试结果进行针对性的讲解和指导,帮助学生们及时发现和解决问题。
第三部分:奥数竞赛技巧的训练在奥数学习计划的第三部分,我们将重点训练学生们在奥数竞赛中的解题技巧和方法。
奥数4、5、6年级学习计划
四年级奥数知识点暑、秋学习全规划一、四年级奥数知识点学习全规划: 1、更多难度挑战:四年级开始,对于奥数中的一些难度比较大的知识点:抽屉原理、排列组合等都会接触,而这些知识点是每年各类杯赛中的必考点。
所以在暑期和秋季打好基础,会取得事半功倍的效果。
2、更高强度挑战:众多小升初案例告诉我们:在五年级的时候需要将小学全部内容学习完,因此,从四年级开始,系统的进行知识点的学习和巩固是非常有必要的。
学习规划四年级暑期 (七级上)相遇与追及染色覆盖 四边形中的基本图形逻辑推理第一阶段●两个人的行程问题,是所有行程问题的必备的基础知识 ●小学竞赛数学中常见的结合奇偶分析和整体分析的构造方法第二阶段●平面几何初步。
涉及平行四边形、长方形、正方形、梯形以及一般四边形中图形面积的重要性质 四年级秋季 (七级下)环形跑道、流水行船 构造与论证之奇偶分析 图形剪拼与操作体育比赛中的数学问题第一阶段●相遇和追及的延续,属于行程板块的专题内容,掌握在近年杯赛中常与多人相遇追及相结合行程难度较高的问题●奇偶分析是构造与论证中最重要、最常用的分析方法。
暑期在染色覆盖中对奇偶分析有一个初步的了解之后,秋季对此进行全面的展开第二阶段●掌握近年常见的新型考题,利用四边形中的基本图形和基本性质,化静为动,并与动手操作结合起来二、四年级杯赛规划:三、2010-2011小学英语证书考取规划:四年级秋期(七级下)学习内容:五年级奥数知识点暑、秋学习全规划一、五年级奥数知识点学习全规划:1、杯赛挑战:五年级秋季学习的九级(下)和暑期学习的九级(上)相比,在秋季要学习的新知识会进一步增加。
而且五年级会有大量的杯赛等着我们的学员参加,例如:迎春杯,学而思杯,走美杯,希望杯,而备战杯赛的最佳时间是暑期和秋季!从杯赛考点来讲:五年级专题知识占据着重点中学小升初测试及各大杯赛考试50%以上的分值;2、五年级统测:小升初重要成绩考量每年小升初前,都回在五年级进行一次全市统测,考察数学、语文、英语三门成绩。
奥数起跑线五年级
奥数起跑线五年级
奥数,即奥林匹克数学,起源于古希腊,至今已有两千多年的历史。
它是一种旨在选拔优秀数学人才的竞赛活动,通过解决具有挑战性和趣味性的数学问题,培养学生的数学思维能力、逻辑推理能力和创新能力。
在我国,奥数教育已成为一种重要的学业补充和选拔方式,尤其在小学阶段,家长们对孩子的奥数学习投入了大量的心血。
五年级是小学阶段的转折点,学生在这一年要面对更高难度的学科挑战,其中包括奥数。
五年级奥数的学习重点和难点主要包括:四则运算、几何、逻辑推理、数论和应用题等。
为了提高五年级奥数学业成绩,学生需要掌握以下几点:
1.扎实的基本功:四则运算作为奥数的基础,学生要熟练掌握加、减、乘、除等运算规律,并能在较短时间内完成题目。
2.几何知识:学会识别和分析几何图形,了解面积、周长等基本概念,并能运用几何知识解决实际问题。
3.逻辑推理:通过观察、分析和归纳,提高解题的逻辑思维能力。
4.数论知识:掌握整除、质数、合数等基本概念,学会解决有关数论的问题。
5.应用题分析:学会将实际问题转化为数学问题,运用所学知识解决实际问题。
此外,家长在帮助孩子学习奥数的过程中扮演着举足轻重的角色。
他们可以:
1.关注孩子的学习进度,及时了解他们在奥数学习中遇到的困难和问题。
2.鼓励孩子多参加奥数竞赛和活动,以提高他们的数学素养和竞赛经验。
3.陪伴孩子学习奥数,共同探讨解题方法,提高孩子的学习兴趣。
4.注重培养孩子的学习习惯,养成课前预习、课后复习的好习惯。
总之,五年级是孩子奥数学习的关键时期,家长和孩子们要共同努力,不断提高奥数学业成绩。
小学五年级奥数讲义(学生版)30讲全
五年级奥数第1讲数字迷〔一〕第16讲巧算24第2讲数字谜<二>第17讲位置原如此第3讲定义新运算<一>第18讲最大最小第4讲定义新运算<二>第19讲图形的分割与拼接第5讲数的整除性<一>第20讲多边形的面积第6讲数的整除性<二>第21讲用等量代换求面积第7讲奇偶性〔一〕第22 用割补法求面积第8讲奇偶性〔二〕第23讲列方程解应用题第9讲奇偶性〔三〕第24讲行程问题〔一〕第10讲质数与合数第25讲行程问题〔二〕第11讲分解质因数第26讲行程问题〔三〕第12讲最大公约数与最小公倍数〔一〕第27讲逻辑问题〔一〕第13讲最大公约数与最小公倍数〔二〕第28讲逻辑问题〔二〕第14讲余数问题第29讲抽屉原理<一>第15讲孙子问题与逐步约束法第30讲抽屉原理<二>第1讲数字谜〔一〕例1 把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立〔每个运算符号只准使用一次〕:〔5○13○7〕○〔17○9〕=12.例2 将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568. 例3 在443后面添上一个三位数,使得到的六位数能被573整除.例4 六位数33□□44是89的倍数,求这个六位数.例5 在左下方的加法竖式中,不同的字母代表不同的数字,一样的字母代表一样的数字,请你用适当的数字代替字母,使加法竖式成立.FORTYTEN+ TENSIXTY例6 在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字.请你填上适当的数字,使竖式成立.练习11.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数.2.在如下竖式中,不同的字母代表不同的数字,一样的字母代表一样的数字.请你用适当的数字代替字母,使竖式成立:〔1〕 A B <2> A B A B+ B C A - A C AA B C B A A C3.在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9.4.在下面的算式中填上假如干个〔〕,使得等式成立:1÷2÷3÷4÷5÷6÷7÷8÷9=2.8.5.将1~9分别填入下式的□中,使等式成立:□□×□□=□□×□□□=3634.6.六位数391□□□是789的倍数,求这个六位数.7.六位数7□□888是83的倍数,求这个六位数.第2讲数字谜〔二〕这一讲主要讲数字谜的代数解法与小数的除法竖式问题.例1 在下面的算式中,不同的字母代表不同的数字,一样的字母代表相例2 在□内填入适当的数字,使左下方的乘法竖式成立.□□□× 8 1□□□□□□□□□□□例3 左下方的除法竖式中只有一个8,请在□内填入适当的数字,使除法竖式成立.□8 □□□□>□□□□□□□□□□□□□□□□□□□□□□□□例4 在□内填入适当数字,使小数除法竖式成立.例4图例5图例5 一个五位数被一个一位数除得到右上图竖式〔1〕,这个五位数被另一个一位数除得到右上图的竖式〔2〕,求这个五位数.练习21.下面各算式中,一样的字母代表一样的数字,不同的字母代表不同的数字,求出abcd与abcxyz<1>1abcd×3=abcd5 <2>7×abcxyz=6×xyzabc2.用代数方法求解如下竖式:3.在□内填入适当的数字,使如下小数除法竖式成立:□ 8 □ 7 □.□□□□□□□>□□□□□□□.□> □□□.□□> □.□□□□□□□□□□□□□ 8 □□□□□□□□□□□□□□□□ 0 0□□第3讲定义新运算〔一〕例1 对于任意数a,b,定义运算"*〞:a*b=a×b-a-b.求12*4的值.例2 a△b表示a的3倍减去b的1,例如根据以上的规定,求10△6的值23,x>=2,求x的值.例6 对于任意自然数,定义:n!=1×2×…×n.例如 4!=1×2×3×4.那么1!+2!+3!+…+100!的个位数字是几?例7 如果m,n表示两个数,那么规定:m¤n=4n-〔m+n〕÷2. 求3¤〔4¤6〕¤12的值.练习31.对于任意的两个数a和b,规定a*b=3×a-b÷3.求8*9的值.2.a b表示a除以3的余数再乘以b,求134的值.3.a b表示〔a-b〕÷〔a+b〕,试计算:〔53〕〔106〕.4.规定a◎b表示a与b的积与a除以b所得的商的和,求8◎2的值.5.假定m◇n表示m的3倍减去n的2倍,即m◇n=3m-2n.〔2〕x◇〔4◇1〕=7,求x的值.7.对于任意的两个数P, Q,规定 P☆Q=〔P×Q〕÷4.例如:2☆8=〔2×8〕÷4.x☆〔8☆5〕=10,求x的值.8.定义: a△b=ab-3b,a b=4a-b/a.计算:〔4△3〕△〔2b〕.9.: 23=2×3×4,45=4×5×6×7×8,……求〔44〕÷〔33〕的值.第4讲定义新运算〔二〕例1 a※b=〔a+b〕-〔a-b〕,求9※2的值.例2 定义运算:a⊙b=3a+5ab+kb,其中a,b为任意两个数,k为常数.比如:2⊙7=3×2+5×2×7+7k.〔1〕5⊙2=73.问:8⊙5与5⊙8的值相等吗?〔2〕当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,即新运算"⊙〞符合交换律?例3 对两个自然数a和b,它们的最小公倍数与最大公约数的差,定义为a☆b,即a☆b=[a,b]-〔a,b〕.比如,10和14的最小公倍数是70,最大公约数是2,那么10☆14=70-2=68.〔1〕求12☆21的值;〔2〕6☆x=27,求x的值.例4 a表示顺时针旋转90°,b表示顺时针旋转180°,c表示逆时针旋转90°,d表示不转.定义运算"◎〞表示"接着做〞.求:a◎b;b◎c;c◎a.例5 对任意的数a,b,定义:f〔a〕=2a+1, g〔b〕=b×b.〔1〕求f〔5〕-g〔3〕的值;〔2〕求f〔g〔2〕〕+g〔f〔2〕〕的值;〔3〕f〔x+1〕=21,求x的值.练习42.定义两种运算"※〞和"△〞如下:a※b表示a,b两数中较小的数的3倍, a△b表示a,b两数中较大的数的2.5倍. 比如:4※5=4×3=12,4△5=5×2.5=12.5.计算:[<0.6※0.5>+<0.3△0.8>]÷[<1.2※0.7>-<0.64△0.2>].4.设m,n是任意的自然数,A是常数,定义运算m⊙n=〔A×m-n〕÷4,并且2⊙3=0.75.试确定常数A,并计算:〔5⊙7〕×〔2⊙2〕÷〔3⊙2〕.5.用a,b,c表示一个等边三角形围绕它的中心在同一平面内所作的旋转运动:a表示顺时针旋转240°,b表示顺时针旋转120°,c表示不旋转. 运算"∨〞表示"接着做〞.试以a,b,c为运算对象做运算表.6.对任意两个不同的自然数a和b,较大的数除以较小的数,余数记为a b.比如73=1,529=4,420=0.〔1〕计算:19982000,〔519〕19,5〔195〕;〔2〕11x=4,x 小于20,求x 的值.7.对于任意的自然数a,b,定义:f 〔a 〕=a ×a-1,g 〔b 〕=b ÷2+1.〔1〕求f 〔g 〔6〕〕-g 〔f 〔3〕〕的值;〔2〕f 〔g 〔x 〕〕=8,求x 的值.第5讲 数的整除性〔一〕1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷如此称a 能被b 整除或者b 能整除a ,记做b a |,否如此称为a 不能被b 整除或者b 不能整除a ,记做b | a .2、性质〔1〕如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除.〔2〕如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除. 〔3〕如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除.〔4〕如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个. 〔5〕几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除.整除的数的特征1、 被2整除特征:个位上是0,2,4,6,82、 被5整除特征:个位上是5,03、 能被3或9整除的数的特征是:各个数位的数字之和是3或9的倍数4、被4、25整除的数的特征:一个数的末2位能被4、25整除5、被8、125整除的数的特征:一个数的末3位能被8、125整除6、被7整除的数的特征 :假如一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,如此原数能被7整除.如果数字仍然太大不能直接观察出来,就重复此过程.7、能被11整除的数的特征: 把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数<包括0>,那么,原来这个数就一定能被11整除. 例如:判断491678能不能被11整除. —→奇位数字的和9+6+8=23 —→偶位数位的和4+1+7=12 23-12=11 因此,491678能被11整除.这种方法叫"奇偶位差法〞.8、能被13整除的数的特征:把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,如此原数能被13整除.如果数字仍然太大不能直接观察出来,就重复此过程.如:判断1284322能不能被13整除. 128432+2×4=128440 12844+0×4=128441284+4×4=13001300÷13=100 所以,1284322能被13整除.9、被7、11、13整除特征:末三位与末三位之前的数之差〔大数-小数〕能被7、11、13整除,如果数字仍然太大不能直接观察出来,就重复此过程.例如:判断556584能不能被7整除 末三位584 末三位之前的数556,584-556=28 28能被7整除,所以556584能被7整除10、能被17整除的数的特征: 把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍, 如果差是17的倍数,如此原数能被17整除.如果数字仍然太大不能直接观察出来,就重复此过程.11、能被19整除的数的特征:把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍, 如果和是19的倍数,如此原数能被19整除.如果数字仍然太大不能直接观察出来,就重复此过程 例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.例2 由2000个1组成的数111…11能否被41和271这两个质数整除?例3 有四个数:76550,76551,76552,76554.能不能从中找出两个数,使它们的乘积能被12整除? 例4 在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?例5 能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?练习51.4205和2813都是29的倍数,1392和7018是不是29的倍数?2.如果两个数的和是64,这两个数的积可以整除4875,那么这两个数的差是多少?3.173□是个四位数.数学教师说:"我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除.〞问:数学教师先后填入的3个数字之和是多少4、用1—6六个数字组成一个六位数abcdef期中不同的字母代表1-6中不同的数字.要求ab能被2整除,abc能被3整除,abcd能被4整除,abcde是5的倍数,abcdef是6的倍数.这样的六位数有几个?各是多少?5.红光小学五年级二班期末数学考试平均分是90分,总分A95B,这个班有多少名学生?6.能不能将从1到9的各数排成一行,使得任意相邻的两个数之和都能被3整除?第6讲数的整除性〔二〕特殊的数——1001.因为1001=7×11×13,所以但凡1001的整数倍的数都能被7,11和13整除. 例2 判断306371能否被7整除?能否被13整除?例3 10□8971能被13整除,求□中的数.例4说明12位数abbaabbaabba一定是3、7、13的倍数.例5 如果41位数55……5□99……9能被7整除,那么中间方格内的数字是几?︸︸20个 20个判断一个数能否被27或37整除的方法:对于任何一个自然数,从个位开始,每三位为一节将其分成假如干节,然后将每一节上的数连加,如果所得的和能被27〔或37〕整除,那么这个数一定能被27〔或37〕整除;否如此,这个数就不能被27〔或37〕整除.例6 判断如下各数能否被27或37整除:〔1〕2673135;〔2〕8990615496.判断一个数能否被个位是9的数整除的方法:为了表示方便,将个位是9的数记为 k9〔= 10k+9〕,其中k为自然数.对于任意一个自然数,去掉这个数的个位数后,再加上个位数的〔k+1〕倍.连续进展这一变换.如果最终所得的结果等于k9,那么这个数能被k9整除;否如此,这个数就不能被k9整除.例7 〔1〕判断18937能否被29整除;〔2〕判断296416与37289能否被59整除.练习61.如下各数哪些能被7整除?哪些能被13整除?88205, 167128, 250894, 396500, 675696, 796842, 805532, 75778885.2.六位数175□62是13的倍数.□中的数字是几? 3、七位数132A679是7的倍数,求A?4、六位数ababab能否被7和13整除?5、12位数aabbaabbaabb能否被7和13整除?6、33……3□88……8能被13整除,求中间□中的数?20个 20个7.九位数8765□4321能被21整除,求中间□中的数.8.在如下各数中,哪些能被27整除?哪些能被37整除?1861026, 1884924, 2175683, 2560437,11159126,131313555,266117778.9.在如下各数中,哪些能被19整除?哪些能被79整除?55119, 55537, 62899, 71258, 186637,872231,5381717.第7讲奇偶性〔一〕整数按照能不能被2整除,可以分为两类:〔1〕能被2整除的自然数叫偶数,例如0, 2, 4, 6, 8, 10, 12, 14, 16,…〔2〕不能被2整除的自然数叫奇数,例如1,3,5,7,9,11,13,15,17,…整数由小到大排列,奇、偶数是交替出现的.相邻两个整数大小相差1,所以肯定是一奇一偶.因为偶数能被2整除,所以偶数可以表示为2n的形式,其中n为整数;因为奇数不能被2整除,所以奇数可以表示为2n+1的形式,其中n为整数.每一个整数不是奇数就是偶数,这个属性叫做这个数的奇偶性.奇偶数有如下一些重要性质:〔1〕两个奇偶性一样的数的和〔或差〕一定是偶数;两个奇偶性不同的数的和〔或差〕一定是奇数.反过来,两个数的和〔或差〕是偶数,这两个数奇偶性一样;两个数的和〔或差〕是奇数,这两个数肯定是一奇一偶.〔2〕奇数个奇数的和〔或差〕是奇数;偶数个奇数的和〔或差〕是偶数.任意多个偶数的和〔或差〕是偶数.〔3〕两个奇数的乘积是奇数,一个奇数与一个偶数的乘积一定是偶数.〔4〕假如干个数相乘,如果其中有一个因数是偶数,那么积必是偶数;如果所有因数都是奇数,那么积就是奇数.反过来,如果假如干个数的积是偶数,那么因数中至少有一个是偶数;如果假如干个数的积是奇数,那么所有的因数都是奇数.〔5〕在能整除的情况下,偶数除以奇数得偶数;偶数除以偶数可能得偶数,也可能得奇数.奇数肯定不能被偶数整除.〔6〕偶数的平方能被4整除;奇数的平方除以4的余数是1.因为〔2n〕2=4n2=4×n2,所以〔2n〕2能被4整除;因为〔2n+1〕2=4n2+4n+1=4×〔n2+n〕+1,所以〔2n+1〕2除以4余1.〔7〕相邻两个自然数的乘积必是偶数,其和必是奇数.〔8〕如果一个整数有奇数个约数〔包括1和这个数本身〕,那么这个数一定是平方数;如果一个整数有偶数个约数,那么这个数一定不是平方数.整数的奇偶性能解决许多与奇偶性有关的问题.有些问题外表看来似乎与奇偶性一点关系也没有,例如染色问题、覆盖问题、棋类问题等,但只要想方法编上,成为整数问题,便可利用整数的奇偶性加以解决.例1下式的和是奇数还是偶数?1+2+3+4+…+1997+1998.例2 能否在下式的□中填上"+〞或"-〞,使得等式成立?1□2□3□4□5□6□7□8□9=36.例3 任意给出一个五位数,将组成这个五位数的5个数码的顺序任意改变,得到一个新的五位数.那么,这两个五位数的和能不能等于99999?例4 在一次校友聚会上,久别重逢的老同学互相频频握手.请问:握过奇数次手的人数是奇数还是偶数?请说明理由.例5 五〔2〕班局部学生参加镇里举办的数学竞赛,每X试卷有50道试题.评分标准是:答对一道给3分,不答的题,每道给1分,答错一道扣1分.试问:这局部学生得分的总和能不能确定是奇数还是偶数?练习71.能否从四个3、三个5、两个7中选出5个数,使这5个数的和等于22?2.任意交换一个三位数的数字,得一个新的三位数,一位同学将原三位数与新的三位数相加,和是999.这位同学的计算有没有错?3.甲、乙两人做游戏.任意指定七个整数〔允许有一样数〕,甲将这七个整数以任意的顺序填在如下图第一行的方格内,乙将这七个整数以任意的顺序填在图中的第二行方格里,然后计算出所有同一列的两个数的差〔大数减小数〕,再将这七个差相乘.游戏规如此是:假如积是偶数,如此甲胜;假如积是奇数,如此乙胜.请说明谁将获胜.4.某班学生毕业后相约彼此通信,每两人间的通信量相等,即甲给乙写几封信,乙也要给甲写几封信.问:写了奇数封信的毕业生人数是奇数还是偶数?5.A市举办五年级小学生"春晖杯〞数学竞赛,竞赛题30道,记分方法是:底分15分,每答对一道加5分,不答的题,每道加1分,答错一道扣1分.如果有333名学生参赛,那么他们的总得分是奇数还是偶数?6.把如下图中的圆圈任意涂上红色或蓝色.是否有可能使得在同一条直线上的红圈数都是奇数?试讲出理由.7.红星影院有1999个座位,上、下午各放映一场电影.有两所学校各有1999名学生包场看这两场电影,那么一定有这样的座位,上、下午在这个座位上坐的是两所不同学校的学生,为什么?第8讲奇偶性〔二〕例1用0~9这十个数码组成五个两位数,每个数字只用一次,要求它们的和是奇数,那么这五个两位数的和最大是多少?例2 7只杯子全部杯口朝上放在桌子上,每次翻转其中的2只杯子.能否经过假如干次翻转,使得7只杯子全部杯口朝下?例3 有m〔m≥2〕只杯子全部口朝下放在桌子上,每次翻转其中的〔m-1〕只杯子.经过假如干次翻转,能使杯口全部朝上吗?例4 一本论文集编入15篇文章,这些文章排版后的页数分别是1,2,3,…,15页.如果将这些文章按某种次序装订成册,并统一编上页码,那么每篇文章的第一面是奇数页码的最多有几篇?例5 有大、小两个盒子,其中大盒内装1001枚白棋子和1000枚同样大小的黑棋子,小盒内装有足够多的黑棋子.阿花每次从大盒内随意摸出两枚棋子,假如摸出的两枚棋子同色,如此从小盒内取一枚黑棋子放入大盒内;假如摸出的两枚棋子异色,如此把其中白棋子放回大盒内.问:从大盒内摸了1999次棋子后,大盒内还剩几枚棋子?它们都是什么颜色?例6 一串数排成一行:1,1,2,3,5,8,13,21,34,55,…到这串数的第1000个数为止,共有多少个偶数?练习81.在11,111,1111,11111,…这些数中,任何一个数都不会是某一个自然数的平方.这样说对吗?2.一本书由17个故事组成,各个故事的篇幅分别是1,2,3,…,17页.这17个故事有各种编排法,但无论怎样编排,故事正文都从第1页开始,以后每一个故事都从新一页码开始.如果要求安排在奇数页码开始的故事尽量少,那么最少有多少个故事是从奇数页码开始的?3.桌子上放着6只杯子,其中3只杯口朝上,3只杯口朝下.如果每次翻转5只杯子,那么至少翻转多少次,才能使6只杯子都杯口朝上?4.70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边的两个数的和,这一行数的最左边的几个数是这样的:0,1,3,8,21,…问:最右边的一个数是奇数还是偶数?5.学校组织运动会,小明领回自己的运动员后,小玲问他:"今天发放的运动员加起来是奇数还是偶数?〞小明说:"除开我的,把今天发的其它加起来,再减去我的,恰好是100.〞今天发放的运动员加起来,到底是奇数还是偶数?6.在黑板上写出三个整数,然后擦去一个换成所剩两数之和,这样继续操作下去,最后得到88,66,99.问:原来写的三个整数能否是1,3,5?7.将888件礼品分给假如干个小朋友.问:分到奇数件礼品的小朋友是奇数还是偶数?第9讲奇偶性〔三〕例1 在7×7的正方形的方格表中,以左上角与右下角所连对角线为轴对称地放置棋子,要求每个方格中放置不多于1枚棋子,且每行正好放3枚棋子,如此在这条对角线上的格子里至少放有一枚棋子,这是为什么?例2 对于左下表,每次使其中的任意两个数减去或加上同一个数,能否经过假如干次后〔各次减去或加上的数可以不同〕,变为右下表?为什么?例3 如下图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?例4 如下图是由14个大小一样的方格组成的图形.能不能剪裁成7个由相邻两方格组成的长方形?例5 在右图的每个○中填入一个自然数〔可以一样〕,使得任意两个相邻的○中的数字之差〔大数减小数〕恰好等于它们之间所标的数字.能否办到?为什么?例6 下页上图是半X中国象棋盘,棋盘上已放有一只马.众所周知,马是走"日〞字的.请问:这只马能否不重复地走遍这半X棋盘上的每一个点,然后回到出发点?练习91.教室里有5排椅子,每排5X,每X椅子上坐一个学生.一周后,每个学生都必须和他相邻〔前、后、左、右〕的某一同学交换座位.问:能不能换成?为什么?2.房间里有5盏灯,全部关着.每次拉两盏灯的开关,这样做假如干次后,有没有可能使5盏灯全部是亮的?3.左如下图是由40个小正方形组成的图形,能否将它剪裁成20个一样的长方形?4.一个正方形果园里种有48棵果树,加上右下角的一间小屋,整齐地排列成七行七列〔见右上图〕.守园人从小屋出发经过每一棵树,不重复也不遗漏〔不许斜走〕,最后又回到小屋.可以做到吗?5.红光小学五年级一次乒乓球赛,共有男女学生17人报名参加.为节省时间不打循环赛,而采取以下方式:每人只打5场比赛,每两人之间用抽签的方法决定只打一场或不赛.然后根据每人得分决定出前5名.这种比赛方式是否可行?6.如如下图所示,将1~12顺次排成一圈.如果报出一个数a〔在1~12之间〕,那么就从数a的位置顺时针走a个数的位置.例如a=3,就从3的位置顺时针走3个数的位置到达6的位置;a=11,就从11的位置顺时针走11个数的位置到达10的位置.问:a是多少时,可以走到7的位置?第10讲质数与合数自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是1.第二类:只能被两个不同的自然数整除的自然数.因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除.这类自然数叫质数〔或素数〕.例如,2,3,5,7,…第三类:能被两个以上的自然数整除的自然数.这类自然数的特征是大于1,除了能被1和它本身整除外,还能被其它一些自然数整除.这类自然数叫合数.例如,4,6,8,9,15,…上面的分类方法将自然数分为质数、合数和1,1既不是质数也不是合数.例1 1~100这100个自然数中有哪些是质数?例2 判断269,437两个数是合数还是质数.例3 判断数1111112111111是质数还是合数?例4 判定298+1和298+3是质数还是合数?例5 A是质数,〔A+10〕和〔A+14〕也是质数,求质数A.练习101.现有1,3,5,7四个数字.〔1〕用它们可以组成哪些两位数的质数〔数字可以重复使用〕?〔2〕用它们可以组成哪些各位数字不一样的三位质数?2.a,b,c都是质数,a>b>c,且a×b+c=88,求a,b,c.3.A是一个质数,而且A+6,A+8,A+12,A+14都是质数.试求出所有满足要求的质数A.5.试说明:两个以上的连续自然数之和必是合数.6.判断266+388是不是质数.7.把一个一位数的质数a写在另一个两位数的质数b后边,得到一个三位数,这个三位数是a的87倍,求a和b.第11讲分解质因数自然数中任何一个合数都可以表示成假如干个质因数乘积的形式,如果不考虑因数的顺序,那么这个表示形式是唯一的.把合数表示为质因数乘积的形式叫做分解质因数.例如,60=22×3×5, 1998=2×33×37.例1 一个正方体的体积是13824厘米3,它的外表积是多少?例2 学区举行团体操表演,有1430名学生参加,分成人数相等的假如干队,要求每队人数在100至200之间,共有几种分法?例3 1×2×3×…×40能否被90909整除?例4 求72有多少个不同的约数.例5 试求不大于50的所有约数个数为6的自然数.练习111.一个长方体,它的正面和上面的面积之和是209分米2,如果它的长、宽、高都是质数,那么这个长方体的体积是多少立方分米?2.爷孙两人今年的年龄的乘积是693,4年前他们的年龄都是质数.爷孙两人今年的年龄各是多少岁?3.某车间有216个零件,如果平均分成假如干份,分的份数在5至20之间,那么有多少种分法?4.小英参加小学数学竞赛,她说:"我得的成绩和我的岁数以与我得的名次乘起来是3916,总分为是100分.〞能否知道小英的年龄、考试成绩与名次?5.举例回答下面各问题:〔1〕两个质数的和仍是质数吗?〔2〕两个质数的积能是质数吗?〔3〕两个合数的和仍是合数吗?〔4〕两个合数的差〔大数减小数〕仍是合数吗?〔5〕一个质数与一个合数的和是质数还是合数?6.求不大于100的约数最多的自然数.7.同学们去射箭,规定每射一箭得到的环数或者是"0〞〔脱靶〕或者是不超过10的自然数.甲、乙两同学各射5箭,每人得到的总环数之积刚好都是1764,但是甲的总环数比乙少4环.求甲、乙各自的总环数.第12讲最大公约数与最小公倍数〔一〕如果一个自然数a能被自然数b整除,那么称a为b的倍数,b为a的约数.如果一个自然数同时是假如干个自然数的约数,那么称这个自然数是这假如干个自然数的公约数.在所有公约数中最大的一个公约数,称为这假如干个自然数的最大公约数.自然数a1,a2,…,an的最大公约数通常用符号〔a1,a2,…,an〕表示,例如,〔8,12〕=4,〔6,9,15〕=3.如果一个自然数同时是假如干个自然数的倍数,那么称这个自然数是这假如干个自然数的公倍数.在所有公倍数中最小的一个公倍数,称为这假如干个自然数的最小公倍数.自然数a1,a2,…,an的最小公倍数通常用符号[a1,a2,…,an]表示,例如[8,12]=24,[6,9,15]=90.常用的求最大公约数和最小公倍数的方法是分解质因数法和短除法.例1 用60元钱可以买一级茶叶144克,或买二级茶叶180克,或买三级茶叶240克.现将这三种茶叶分别按整克数装袋,要求每袋的价格都相等,那么每袋的价格最低是多少元钱?例2 用自然数a去除498,450,414,得到一样的余数,a最大是多少?例3 现有三个自然数,它们的和是1111,这样的三个自然数的公约数中,最大的可以是多少?例4 在一个30×24的方格纸上画一条对角线〔见下页上图〕,这条对角线除两个端点外,共经过多少个格点〔横线与竖线的交叉点〕?例5 甲、乙、丙三人绕操场竞走,他们走一圈分别需要1分、1分15秒和1分30秒.三人同时从起点出发,最少需多长时间才能再次在起点相会?例6 爷爷对小明说:"我现在的年龄是你的7倍,过几年是你的6倍,再过假如干年就分别是你的5倍、4倍、3倍、2倍.〞你知道爷爷和小明现在的年龄吗?练习121.有三根钢管,分别长200厘米、240厘米、360厘米.现要把这三根钢管截成尽可能长而且相等的小段,一共能截成多少段?2.两个小于150的数的积是2028,它们的最大公约数是13,求这两个数.3.用1~9这九个数码可以组成362880个没有重复数字的九位数,求这些数的最大公约数?4.大雪后的一天,亮亮和爸爸从同一点出发沿同一方向分别步测一个圆形花圃的周长.亮亮每步长54厘米,爸爸每步长72厘米,由于两个人的脚印有重合,所以雪地上只留下60个脚印.问:这个花圃的周长是多少米?5.有一堆桔子,按每4个一堆分少1个,按每5个一堆分也少1个,按每6个一堆分还是少1个.这堆桔子至少有多少个?6.某公共汽车站有三条线路的公共汽车.第一条线路每隔5分钟发车一次,第二、三条线路每隔6分钟和8分钟发车一次.9点时三条线路同时发车,下一次同时发车是什么时间?7.四个连续奇数的最小公倍数是6435,求这四个数.第13讲最大公约数与最小公倍数〔二〕两个自然数的最大公约数与最小公倍数的乘积,等于这两个自然数的乘积.即,〔a,b〕×[a,b]=a×b.例1 两个自然数的最大公约数是6,最小公倍数是72.其中一个自然数是18,求另一个自然数.例2 两个自然数的最大公约数是7,最小公倍数是210.这两个自然数的和是77,求这两个自然数. 例3 a与b,a与c的最大公约数分别是12和15,a,b,c的最小公倍数是120,求a,b,c.要将它们全局部别装入小瓶中,每个小瓶装入液体的重量一样.问:每瓶最多装多少千克?。
五年级奥数大纲
五年级奥数大纲(总16页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除桂林中美实验学校校本奥数教材大纲四年级上册部分第一讲、加减法的巧算本章是在学生熟练掌握四则运算基础上进行学习的,主要内容有:加法的巧算、减法的巧算、加减法混合的巧算。
具体主要介绍了三大块加减法巧算的一些技巧:一、“凑整”法是加减法巧算的主要方法:把能够凑成整十、整百、整千、、、的数相加;把接近整十、整百、整千、、、、的数看作所接近的整数进行简算。
二、根据算式中运算符号的特征运用加法结合律、加法交换律及一些基本运算性质和技巧进行简算。
(基本性质:a-(b-c)=a-b+c a-b+c = a-(b -c)a-(b+c)= a-b-c a-b-c= a-(b+c))三、“基准数加累计差”的方法进行简算。
通过本章的学习,要求学生掌握速算、巧算的一些基本技巧同时能够使计算准确、合理、快速、巧妙;在探索巧算方法与技巧的过程中培养学生的数感,发展和提高学生对问题的分析能力。
第二讲、乘除法的巧算本章是在学习了加减法的巧算基础上来学习乘法、除法、乘除混合的巧算。
加减法中的“凑整”巧算思想也同样可以运用到乘除法的巧算当中。
本章节主要介绍几种常见的乘除法巧算的方法和技巧:一、直接凑整乘和分解因数后凑整乘。
(5×2=10 25×4=100 125×8=1000 625×16=10000);二、运用运算定律巧算:乘法交换律、乘法结合律和乘法分配律及它们的推广;三、利用积、商变化规律对算式进行适当变形简算;四、乘除混合运算中改变运算顺序或运算符号进行简算;五、乘除混合运算中运用运算规则进行简算。
本章的学习要求学生通过运用一些运算定律和运算规则及运算技巧熟练掌握乘法、除法、乘除混合的巧算,提高计算能力。
进一步培养学生数感,提高学生的观察、分析、综合能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级学生如何学奥数
五年级学生如何学奥数
1、多做专题的练习。
2、多做真题。
3、巩固基础知识。
由于还有半年就要转入小升初的复习阶段,所以五年级之前的奥数基础内容一定要掌握好。
之前的奥数内容以应用题、计算为主。
对于基本应用题建议利用方程的方法求解,可以达到事半功倍的效果。
计算问题需要对基本的简算方法了如指掌,因为这些方法也是
以后分数计算和综合混合运算的基础。
学习重点难点解析:
五年级属于小学高年级,孩子进入五年级以后,随着年龄的增长,孩子的计算能力,认知能力,逻辑分析能力都比以前有很大的提高,这个时期是奥数思维形成的关键时期,是学奥数的黄金时段,所以
是否把握住五年级这个黄金时段,关系到以后小升初的成与败。
那
么在整个五年级阶段都有哪些重点知识呢?为了孩子更好的把握五
年级的学习重点,下面就介绍一下五年级的关键知识点。
1、进入数学宝库的分析方法——递推方法。
1条直线最多有0个交点0
2条直线最多有1个交点1
3条直线最多有3个交点1+2=3
4条直线最多有6个交点1+2+3=6
5条直线最多有10个交点1+2+3+4=10
6条直线最多有15个交点1+2+3+4+5=15
……
所以2008条直线有1+2+3+4+5+…+2007=2015028个交点。
那么聪明的你,你能算出2008条直线最多可以把圆分成几部分么?。