第一章数据结构概述

合集下载

数据结构复习

数据结构复习

地址计算 以三对角矩阵为例
三对角矩阵中所有非零元素为3*n-2,可用一维数组s[3*n-2]存储.aij与s[k]
LOC(i,j)=LOC(0,0)+[3*i-1+(j-i+1)]*d
=LOC(0,0)+(2i+j)*d
4.3.2 稀疏矩阵
5、设长度为n的链队列用单循环链表表示,若只设头指针,则怎样进行入队和出队操作;若只设尾指针呢?
6、假设循环队列只设rear和quelen来分别指示队尾元素的位置和队中元素的个数,试给出判断此循环队列的队满条件,并写出相应的入队和出队算法,要求出队时需返回队头指针。
第四章 数组
4.1 数组的定义
(2)能否得到出栈序列423和432?并说明为什么不能得到或如何得到。
(3)请分析1、2、3、4的24种排列中,哪些序列可以通过相应的入出栈得到。
2、表达式求值
3、两个栈共享存储空间r[m],写出向第i个栈插入x,删除第i个栈的栈顶元素算法。
4、循环队列的优点是什么?如何判断它的空和满?循环队列的操作算法?
(2)二叉链表法
5.3 遍历二叉树
在二叉树的一些应用中,常常要求在树中查找具有某
种特征的结点,或者对树中全部结点逐一进行某种处
理。这就引入了遍历二叉树的问题,即如何按某条搜
索路径巡访树中的每一个结点,使得每一个结点均被
访问一次,而且仅被访问一次。
DLR——先(根)序遍历,
LDR——中(根)序遍历,
习题:6.2,6.3,6.5,6.6,6.7,6.12,6.13,6.14,6.19,6.21,6.26,6.42,6.43,6.47,
第六章 图

数据结构复习笔记

数据结构复习笔记

第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。

数据结构基础知识

数据结构基础知识

复习提纲第一章数据构造概述根本概念与术语〔P3〕1.数据构造是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科.2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合2.数据元素是数据的根本单位3.数据对象一样性质的数据元素的集合4.数据构造三方面容:数据的逻辑构造.数据的存储构造.数据的操作.〔1〕数据的逻辑构造指数据元素之间固有的逻辑关系.〔2〕数据的存储构造指数据元素及其关系在计算机的表示( 3 ) 数据的操作指在数据逻辑构造上定义的操作算法,如插入,删除等.5.时间复杂度分析--------------------------------------------------------------------------------------------------------------------1、名词解释:数据构造、二元组2、根据数据元素之间关系的不同,数据的逻辑构造可以分为集合、线性构造、树形构造和图状构造四种类型。

3、常见的数据存储构造一般有四种类型,它们分别是___顺序存储构造_____、___链式存储构造_____、___索引存储构造_____和___散列存储构造_____。

4、以下程序段的时间复杂度为___O(N2)_____。

int i,j,*;for(i=0;i<n:i++) n+1for(j=0;j<n;j++) n+1*+=i;------------------------------------------------------------------------------------------------------------------第二章线性表1.顺序表构造由n(n>=0)个具有一样性质的数据元素a1,a2,a3……,an组成的有穷序列//顺序表构造#define MA*SIZE 100typedef int DataType;Typedef struct{DataType items[MA*SIZE];Int length;}Sqlist,*LinkList;2.单链表(1)链表结点构造//链表的节点构造Typedef struct Node{int data;struct Node *ne*t;} Lnode,*Pnode,*LinkList;(2)结点遍历void TraverseList(LinkList t){LinkList p;while(t){p=t;t=t->ne*tfree(p);}}(3)链表操作算法:初始化、插入、输出、删除void InitList(LinkList *h){*h=(LinkList)malloc(sizeof(LNode));if(!h){print("初始化错误〞);return;}(*h)->ne*t=NULL;}void InsertList(LinkList h,int pos,datatype *){ LinkList p=h,q;int i=0;while(p&&i<pos-1){p=p->ne*t;i++;}if(!p||i>pos-1)print("插入位置出错!!〞);InitList(&q);q->ne*t=NULL;q->data=*;}void DeleteList(LinkList h,int pos){LinkList p=h,q;int i=0;while(p&&i<pos-1){p=p->ne*t;i++;}if(!p||i>pos-1){cout<<〞删除位置错误〞;return;}q=p->ne*t;p->ne*t=q->ne*t;free(q);}-----------------------------------------------------------------------------------------------------------------1、线性表中,第一个元素没有直接前驱,最后一个元素没有直接后驱。

数据结构第01章概论.ppt

数据结构第01章概论.ppt
高等学校精品课程
(第2版)
李云清 杨庆红 揭安全
人民邮电出版社
1
第一章 概述
什么是数据结构 数据类型和抽象数据类型
算法和算法分析
退出
第一章 概述
瑞士著名的计算机科学家Nicklaus Wirth在1976 年出版了一本书,书名为《算法+数据结构 = 程序设 计》,它正说明了数据结构在程序设计中的作用。程序 设计的实质即为计算机处理问题编制一组"指令",首先 需要解决两个问题:即算法和数据结构。算法即处理问 题的策略,而数据结构即为问题的数学模型。
退出
1.1.4数据的运算集合
对于一批数据,数据的运算是定义在数据的逻 辑结构之上的,而运算的具体实现就依赖于数据的 存储结构。
数据的运算集合要视情况而定,一般而言,数据的 运算包括插入、删除、检索、输出、排序等。
插入:在一个结构中增加一个新的结点。
删除:在一个结构删除一个结点。
检索:在一个结构中查找满足条件的结点。
98
I 79
F
(a)城市距离图
A
34
12
B
H9
8
C
G
31
21
E 10
D
I 79
F
(b)联通各城市最小生成树
退出
以上所举例子中的数学模型正是数据结构要讨论 的问题。因此,简单地说,数据结构是一门讨论"描述 现实世界实体的数学模型(非数值计算)及其上的操作 在计算机中如何表示和实现"的学科。
退出
综上所述
对于一个数据结构B=(K,R),必须建立从结点 集合到计算机某个存储区域M的一个映象,这个映象 要直接或间接地表达结点之间的关系R。数据在计算 机中的存储方式称为数据的存储结构。

820数据结构考研大纲

820数据结构考研大纲

820数据结构考研大纲导言本文档旨在全面介绍考研数据结构科目的大纲,帮助考生更好地准备考试。

将按照大纲的结构,详细阐述每个知识点的内容和要求。

第一章概述1.1数据结构的定义数据结构是指数据对象中元素之间的关系,是在计算机中组织和存储数据的方式。

1.2数据结构的基本概念数据结构的基本概念包括数据、数据元素、数据项、数据对象、逻辑结构和物理结构等。

1.3数据结构的分类数据结构可以根据不同的特点进行分类,包括线性结构、非线性结构、集合结构、树结构和图结构等。

第二章线性表2.1线性表的定义和特性线性表是一种包含有限个数据元素的序列,具有前驱和后继关系。

2.2线性表的顺序存储结构线性表的顺序存储结构是利用一段连续的存储单元存储线性表的元素。

2.3线性表的链式存储结构线性表的链式存储结构是通过节点之间的链接关系来存储线性表的元素。

2.4线性表的操作线性表的操作包括插入、删除、查找等基本操作,以及合并、拆分等高级操作。

第三章栈和队列3.1栈的定义和特性栈是一种特殊的线性表,只能在表的一端进行插入和删除操作,遵循先进后出的原则。

3.2栈的顺序存储结构栈的顺序存储结构利用数组来实现,通过栈顶指针来指示栈顶元素。

3.3栈的链式存储结构栈的链式存储结构利用链表来实现,通过指针来指示栈顶元素。

3.4栈的应用栈在计算表达式、递归实现、迷宫求解等方面有广泛的应用。

第四章串和数组4.1串的定义和特性串是由零个或多个字符组成的有限序列,是一种特殊的线性表。

4.2串的存储结构串的存储结构包括顺序存储结构和链式存储结构。

4.3串的操作串的操作包括定位操作、模式匹配操作、替换操作等。

4.4数组的定义和特性数组是相同类型数据元素的有序集合,可以通过下标来访问元素。

第五章树和二叉树5.1树的定义和基本概念树是由n(n>=0)个节点组成的有限集合,其中一个节点被称为根节点。

5.2树的存储结构树的存储结构包括双亲表示法、孩子表示法、孩子兄弟表示法等。

数据结构第一章

数据结构第一章

1.3 算法的描述
(2) 空间效率 一个算法在执行过程中所占用的存储空间大小,称为空间效率或空 间复杂度。与时间复杂度类似,空间复杂度是指算法在计算机内执行 时临时占用的存储空间大小。算法的空间复杂度一般以数量级形式给 出。 提高算法空间复杂度的措施有原地工作和压缩存储。
1.3 .4算法的描述语言
1.3 算法的描述
例1.6 求下列4个程序段的语句频度 (a) i++; x=0; (b)for(i=1;i<=n;i++) x=x+1;
(c)for(i=1;i<=n;i++) for (j=1;j<=n;j++) x=x+1;
(d)for(i=1;i<=n;i++) for (j=1;j<=n;j++) for (k=1;k<=n;k++) x=x+1;
记录号 学号 980001 980002 姓名 吴承志 李淑芳 性别 男 女 专 业 计算机科学与技术 信息与计算科学 年级 98级 2001级 98级 9,10 1,2 2000级 6,7,8
1 2 3 4 5
990301
990302
刘 丽
张会友


数学与应用数学
信息与计算科学
99级
99级
98级
99级
数学与应用数学
2000级 2001级
2001级
姓名索引表
9
10
学生信息表
教学计划编排问题 案例2
问题: 如何通过计算机编排教学计划? 算法分析: 一个教学计划包含许多课程,在教学计划包含的许多课程之间,有些必须按规 定的先后次序进行,有些则没有次序要求。即有些课程之间有先修和后续 的关系,有些课程可以任意安排次序。这种各个课程之间的次序关系可用 一个称作图的数据结构来表示

《数据结构》课件

《数据结构》课件

第二章 线性表
1
线性表的顺序存储结构
2
线性表的顺序存储结构使用数组来存储元素,
可以快速随机访问元素。
3
线性表的常见操作
4
线性表支持常见的操作,包括插入、删除、 查找等,可以灵活地操作其中的元素。
线性表的定义和实现
线性表是一种数据结构,它包含一组有序的 元素,可以通过数组和链表来实现。
线性表的链式存储结构
线性表的链式存储结构使用链表来存储元素, 支持动态扩展和插入删除操作。
第三章 栈与队列
栈的定义和实现
栈是一种特殊的线性表,只能在一 端进行插入和删除操作,遵循后进 先出的原则。
队列的定义和实现
队列是一种特殊的线性表,只能在 一端进行插入操作,在另一端进行 删除操作,遵循先进先出的原则。
栈和队列的应用场景和操作
哈希表是一种高效的查找数据结构, 通过哈希函数将关键字映射到数组 中,实现快速查找。
排序算法包括冒泡排序、插入排序 和快速排序等,可以根据数据规模 和性能要求选择合适的算法。
结语
数据结构的学习心得 总结
学习数据结构需要掌握基本概念 和常见操作,通过实践和练习加 深理解和熟练度。
下一步学习计划的安 排
在掌握基本数据结构的基础上, 可以进一步学习高级数据结构和 算法,提升编程技能。
相关学习资源推荐
推荐一些经典的数据结构教材和 在线学习资源,如《算法导论》 和LeetCode等。
栈和队列在计算机科学中有许多应 用,如函数调用、表达式求值和作 业调度等。
第四章 树与二叉树
树的定义和性质
树是由节点和边组成的一种非线性数据结构,每个 节点可以有多个子节点。
二叉树的遍历方式
二叉树的遍历方式包括前序遍历、中序遍历和后序 遍历,可以按不同顺序输出节点的值。

数据结构第一章--绪论(严蔚敏版)

数据结构第一章--绪论(严蔚敏版)

解 T = (D, R ) D={A,B,a,b,c }
R是D上的关系的集合 是 上的关系的集合
A
B
a R={ P1,P2 } P1 ={<A,a>, <A,b>, <A,c>} P2 ={<B,a>, <B,b>, <B,c>}
b
c
写出一个复数的数据结构 例3 写出一个复数的数据结构 Complex= (C , R) 解 一个复数可以表示为 a+bi 一个复数可以表示为 复数 C={a,b}
也可以表示成一个有序对 <a, b>
∴这里存在一种关系 P ={<a,b>} (只有一个有序对 只有一个有序对) 只有一个有序对
而R是C上的关系的集合 R={ P } 是 上的关系的集合
写出一个复数的数据结构 例3 写出一个复数的数据结构 Complex= (C , R) 解 一个复数的数据结构为 Complex= (C , R) 其中, 其中, C={a,b} R={ P } P ={<a,b>}
a b c
解 其数据结构可描述为 d e T = (D, R ) D是数据元素的集合 D={a,b,c,d,e} 是数据元素的集合
R是D上的关系的集合 R={ P } 是 上的关系的集合
P ={<a,b>,<a,c>,<b,d>,<b,e>}
例2
一小组有a,b,c 三个学生,一个导师A 一小组有a,b,c 三个学生,一个导师A 和一个辅导员B 和一个辅导员B,此小组的数据结构如图:
48
ADT 抽象数据类型名 { 数据对象: 数据对象:〈数据对象的定义〉 数据关系: 数据关系:〈数据关系的定义〉 基本操作: 基本操作:〈基本操作的定义〉 } ADT 抽象数据类型名 其中基本操作的定义格式为: 基本操作名(参数表) 基本操作名 初始条件:〈初始条件描述〉 初始条件: 操作结果:〈操作结果描述〉 操作结果

数据结构.ppt

数据结构.ppt

2020/2/15
数据结构
17
2.1 线性表的概念及运算
一、逻辑结构 1.描述: 线性表是由n (n>=0)个数据元素(点)a1,a2,….,ai,….,an
组成的有限序列。其中,数据元素的个数n定义为表长。 当n=0时称为空表,非空的线性表(n>0)记为: (a1,a2,….,ai,…..,an)
2020/2/15
数据结构
11
第一章 概 论
1.4 算法分析
一、算法评价五要素 (1)正确性 (2)执行算法所耗费的时间 (3)执行算法所耗费的空间 (4)可读性 (5)健壮性
2020/2/15
数据结构
12
第一章 概 论
二、算法的时间复杂度
•一个算法所耗费的时间:该算法中每条语句的执行时间之和。 •每条语句的执行时间:该语句的执行次数乘以该语句执行一次 所需时间。 •频度:语句重复执行的次数 •算法的时间耗费T(n)=每条语句的执行的时间
2020/2/15
数据结构
23
一、链表
2.3 线性表的链式存储
1、 链式存储:用一组任意的存储单元存储线性表, 逻辑上 相邻的结点在物理位置上不一定相邻,结点间 的逻辑关系由存储结点时附加的指针字段表示
2、链表:采用链式存储方法的线性表称为链表。
2020/2/15
数据结构
24
2.3.1 单链表
1、单链表的特点:每个结点只有一个链域,指向其直接后继 (尾结点除外)。
依据数据集中可能出现的最坏情况估算出的时间复杂度 称为最坏时间复杂度。
五、平均时间复杂度
在假设数据集的分布是等概率的条件下,估算出的时间 复杂度称为平均时间复杂度。
例:顺序查找

数据结构导论知识点

数据结构导论知识点

数据结构导论知识点第一章概论数据结构:是相互之间存在一种或多种关系的数据元素的集合。

和该集合中数据元素之间的关系组成。

数据结构包括数据的逻辑结构、数据的存储结构和数据的基本运算。

简单地说,数据结构是计算机组织数据和存储数据的方式。

更进一步地说,数据结构是指一组相互之间存在一种或多种特定关系的数据的组织方式和它们在计算机内的存储方式,以及定义在该组数据上的操作。

合理的数据结构可降低程序设计的复杂性,提高程序执行的效率。

1.1 引言计算机解决一个具体问题时,一般需要经过以下几个步骤:①从具体的问题抽象出一个适当的数学模型;②设计一个求解该数学模型的算法;③用某种计算机语言编写实现该算法的程序,调试和运行程序直至最终得到问题的解答。

数据的逻辑结构:数据和数据的组织方式称为数据的逻辑结构。

为了能用计算机加工处理,逻辑结构还必须转换为能被计算机存储的存储结构。

1976年瑞士计算机科学家尼克劳斯·维尔特提出公式:算法+数据结构=程序。

该公式简洁的描述了数据结构和程序之间关系。

1.2 基本概念和术语1.2.1 数据、数据元素和数据项数据:所有被计算机存储、处理的对象。

数据元素:简称元素(又称为结点),数据的基本单位,在程序中作为一个整体而加以考虑和处理。

数据元素是运算的基本单位,通常具有完整确定的实际意义。

数据元素由数据项组成。

数据项:在数据库中数据项又称为字段或域,是数据的不可分割的最小标识单位,组成数据元素。

关系:数据、数据元素和数据项实际上反映了数据组织的三个层次,数据可由若干个数据元素组成,而数据元素又可由若干个数据项组成。

表格(逻辑结构),行=记录=数据元素,列=数据项。

1.2.2 数据的逻辑结构数据的逻辑结构:是指数据元素之间的逻辑关系。

逻辑关系:是指数据元素之间的关联方式或邻接关系。

逻辑结构示意图中的小圆圈称为结点,一个结点代表一个数据元素(记录)。

根据数据元素之间关系的不同特性,通常有集合、线性结构、树形结构和图结构四类基本逻辑结构,反映了四类基本的数据组织形式。

数据结构(第二版)课后习题答案

数据结构(第二版)课后习题答案

数据结构(第二版)课后习题答案第一章:数据结构概述数据结构是计算机科学中非常重要的一个概念,它用于组织和管理计算机内部存储的数据。

数据结构的设计直接影响到程序的运行效率和对真实世界问题的建模能力。

第二版的《数据结构》教材旨在帮助读者更好地理解和应用数据结构。

为了提高学习效果,每章节后都附有一系列习题。

本文将为第二版《数据结构》教材中的部分习题提供详细的答案和解析。

第二章:线性表2.1 顺序表习题1:请问如何判断顺序表是否为空表?答案:当顺序表的长度为0时,即为空表。

解析:顺序表是用一块连续的内存空间存储数据元素的线性结构。

当顺序表中没有元素时,长度为0,即为空表。

习题2:如何求顺序表中第i个元素的值?答案:可以通过访问顺序表的第i-1个位置来获取第i个元素的值。

解析:顺序表中的元素在内存中是连续存储的,通过下标访问元素时,需要将下标减1,因为数组是从0开始编号的。

2.2 链表习题1:请问链表中的结点包含哪些信息?答案:链表的结点一般包含两部分信息:数据域和指针域。

解析:数据域用于存储数据元素的值,指针域用于存储指向下一个结点的指针。

习题2:如何删除链表中的一个结点?答案:删除链表中的一个结点需要将其前一个结点的指针指向其后一个结点,然后释放被删除结点的内存空间。

解析:链表的删除操作相对简单,只需要通过修改指针的指向即可。

但需要注意释放被删除结点的内存空间,防止内存泄漏。

第三章:栈和队列3.1 栈习题1:如何判断栈是否为空?答案:当栈中没有任何元素时,即为空栈。

解析:栈是一种先进后出(Last In First Out,LIFO)的数据结构,栈顶指针指向栈顶元素。

当栈中没有元素时,栈顶指针为空。

习题2:请问入栈和出栈操作的时间复杂度是多少?答案:入栈和出栈操作的时间复杂度均为O(1)。

解析:栈的入栈和出栈操作只涉及栈顶指针的改变,不受栈中元素数量的影响,因此时间复杂度为O(1)。

3.2 队列习题1:请问队列可以用哪些方式实现?答案:队列可以用数组或链表来实现。

数据结构

数据结构

数据结构知识整理(部分)第一章:绪论1.数据:数据是外部信息的载体,他能够被计算机识别、存储和加工处理,是计算机程序加工的原料;2.数据元素:数据元素是数据的基本单位,在计算机中通常被作为一个整体进行考虑和处理;3.一个数据元素可由若干个数据项组成。

数据项是不可分割的、含有独立意义的最小数据单位,数据项有时也称为字段或域;4.数据结构是相互之间存在的一种或多种特定关系的数据元素的集合。

在任何问题中,数据元素之间都不是孤立的,而是存在着一定的关系,这种关系称为结构;5.4种基本数据结构:集合:只有“同属一个集合”的关系;线性结构:存在着一对一的关系;树形结构:存在着一对多的关系;图状结构:存在着多对多的关系;6.数据结构包括数据的逻辑结构和物理结构。

逻辑结构:从具体问题抽象出来的数学模型,与数据在计算机中的具体储存没有关系。

从逻辑上可以把数据结构分为线性结构和非线性结构,其中集合、树、图形结构属于非线性结构;7.数据的物理结构又叫存储结构,是数据在计算机中的表示和存储,包括数据元素的表示和存储以及数据元素之间关系的表示和存储,存储结构必须依赖于计算机。

数据元素之间的关系在计算机中的表示有两种:顺序映像和非顺序映像。

分别对应两和数据的存储结构:顺序存储结构和链式存储结构;顺序存储结构是指把逻辑上相邻的数据元素存储在物理位置相邻的存储单元中;链式存储结构不要求必须相邻。

链式存储结构中的数据元素叫做结点,在结点中附近设地址域来存储与该结点相邻的结点的地址来实现结点之间逻辑关系;8.在软件设计中,抽象数据类型通常包括定义、表示和实现三部分9.算法:是指在有限的时间范围之内为解决某一问题而采取的方法和步骤的准确完整的描述,他是一个有穷的规则序列,这些规则决定了解决某一特定问题的一系列运算;10算法的特征:有穷性,确定性,可行性,输入,输出;算法+数据结构=程序;11.评价一个算法的主要标准:正确性,可读性,健壮性,运行时间,占用空间;健壮性要求算法要全面细致的考虑所有可能出现的边界情况和异常情况;实际上,算法的时间效率和空间效率经常是一对矛盾,相互抵触,我们要根据实际问题进行处理,有时要牺牲空间换取时间,有时要牺牲时间换取空间。

数据结构各章概要

数据结构各章概要

数据结构各章概要第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

************************************************************数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·非线性结构:一对多关系,多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

************************************************************数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·原子类型:由语言提供。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

************************************************************程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

************************************************************算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

数据结构

数据结构

//加工型操作
E is
1 n 1 (n i 1) n 1 i 1
删除 1)在长度为 n 的线性表中删除一个结点的平均移动次数为:
E dl
1
n
(n i ) = (n-1)/2 i
1
n
时间复杂性为 O(n)。
2)假设删除第 i 个元素的概率为 , 则在长度为 n 的线性表中删除一个元素所需移动元素次数的期望值为:
3
第二章 1.线性表的抽象数据类型定义 ADT List{ 数据对象: D={ ai | ai ∈ElemSet, i=1,2,...,n, n≥0 } 数据关系: R1={ <ai-1 ,ai >|ai-1 ,ai∈D, i=2,...,n } 基本操作: InitList( &L ) //初始化操作 DestroyList( &L ) //结构销毁操作 ListEmpty( L )、ListLength( L )、 PriorElem( L, cur_e, &pre_e )、 NextElem( L, cur_e, &next_e )、 GetElem( L, i, &e ) 、 LocateElem( L, e, compare( ) )、 ListTraverse(L, visit( )) ClearList( &L )、 PutElem( &L, i, &e )、 ListInsert( &L, i, e )、 ListDelete(&L, i, &e) }ADT List 2.顺序表适合 链表适合 3.线性表 插入 假设线性表中含有 n 个数据元素,在进行插入操作时,若假定在 n+1 个位置上插入元 素的可能性均等(等概率) ,则平均移动元素的个数为:

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳

第一章数据结构概述基本概念与术语1.数据:数据是用来描述现实世界的文字,字符,图像,声音,以及能够输入到计算机中并能被计算机处理的符号。

2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:一个数据元素可由若干个数据项组成。

数据项是数据的不可分割的最小单位。

)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

(有时候也叫做属性。

)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:a.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。

b.线性结构:结构中的数据元素之间存在“一对一“的关系。

若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

c.树形结构:结构中的数据元素之间存在“一对多“的关系。

若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

d.图状结构:结构中的数据元素存在“多对多”的关系。

若结构为非空集,折每个数据可有多个(或零个)直接后继。

(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。

逻辑结构可以映射为以下两种存储结构:a.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。

b.链式存储结构:借助指针表达数据元素之间的逻辑关系。

不要求逻辑上相邻的数据元素物理位置上也相邻。

5.时间复杂度分析:a.常量阶:算法的时间复杂度与问题规模n无关系T(n)=O(1)b.线性阶:算法的时间复杂度与问题规模n成线性关系T(n)=O(n)c.平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++时间复杂度的大小比较:O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )<O(n!)<O(n n)6.算法与程序:(1)算法的5个特性a、输入:有零个或多个输入b、输出:有一个或多个输出c、有穷性:要求序列中的指令是有限的;每条指令的执行包含有限的工作量;整个指令序列的执行在有限的时间内结束。

数据结构(一)绪论

数据结构(一)绪论

1.3 算法和算法分析 1.3.1 算法:
是对特定问题求解步骤的一种描述,是指令的有限序列,其中 每一条指令表示一个或多个操作。 算法具有以下五个特性: (1)有穷性 一个算法必须总是在执行有穷步之后结束,且每 一步都在有穷时间内完成。 (2)确定性 算法中每一条指令必须有确切的含义。不存在二义 性。 (3)可行性 一个算法是可行的。即算法描述的操作都是可以通 过已经实现的基本运算执行有限次来实现的。 (4)输入 一个算法有零个或多个输入,这些输入取自于某个特 定的对象集合。 (5)输出 一个算法有一个或多个输出,这些输出是同输入有着 某些特定关系的量。
数据元素:
是数据(集合)中的一个“个体” 是数据结构中讨论的基本单位
数据结构主要指逻辑结构和物理结构 数据之间的相互关系称为逻辑结构。通常 分为四类基本结构: 一、集合 结构中的数据元素除了同属于一 种类型外,别无其它关系。 二、线性结构 结构中的数据元素之间存在一 对一的关系。 三、树型结构 结构中的数据元素之间存在一 对多的关系。 四、图状结构或网状结构 结构中的数据元素 之间存在多对多的关系。
求整数n(n>=0)阶乘的算法如下,其时间复杂度, int fact(int n) {if (n<=1) return 1; return n*fact(n-1); }
A ) O(log2 n) B) O(n)
C)
O(n (2分)
作业:
1. 计算时间复杂度 sum=1; for(i=0;sum<n;i++) sum+=i; 2.设给定若干n值,比较两函数n2和50nlog2n的增长 趋势,并确定在什么范围内,函数n2的值大于
例4 for(i=1;i<=n;++i) for(j=1;j<=n;++j) {++x;s+=x;} 语句频度为:n2 其时间复杂度为:O(n2) 即时间复杂度为平方阶。

数据结构(从概念到算法)第一章 绪论

数据结构(从概念到算法)第一章 绪论
态)。
(2)可读性:算法的变量命名、格式符合行业规范,并在关键处给出注释,
以提升算法的可理解性。
(3)健壮性:算法能对不合理的输入给出相应的提示信息,并做出相应处
理。
(4)高执行效率与低存储量开销:涉及算法的时间复杂度和空间复杂度评
判。
算法设计的一般步骤
1.3.1算法定义与性质
算法设计出来后有多种表述方法,一般有如下几种描述工具:第一种是自然语
良好基础,数据结构与算法设计密不可分。算法是对特定问题求解步骤的一种描述。
换言之,算法给出了求解一个问题的思路和策略。
一个算法应该具有以下 5 个特征。
(1)有穷性,即算法的最基本特征,要求算法必须在有限步(或有限时间)
之后执行完成。
(2)确定性,即每条指令或步骤都无二义性,具有明确的含义。
(3)可行性,即算法中的操作都可以通过已经实现的基本运算执行有限次
成的集合,数据对象是数据的一个子集。实例说明如下。
由 4 个整数组成的数据对象: D1={20,- 30,88,45}
由正整数组成的数据对象: D2={1,2,3,…}
数据结构的基本概念
(5)数据结构。数据结构是相互之间存在一种或多种特定关系的数据元素
的集合。数据元素之间的关系称为结构,主要有 4 类基本结构,如下图所示。
址,数据'C'的指针指向数据'D'的结点地址,具体如图所示。
数据结构的基本概念
上图数据元素存储的地址在整体上具有前后次序,但实际对单链表数据元素
所分配的存储空间是随机的。如下图 所示,数据元素'A'在物理存储地址上可能位
于数据元素'B'和'D'存储地址之后。

数据结构重点知识点

数据结构重点知识点

数据结构重点知识点第一章概论1. 数据是信息的载体。

2. 数据元素是数据的基本单位。

3. 一个数据元素可以由若干个数据项组成。

4. 数据结构指的是数据之间的相互关系,即数据的组织形式。

5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。

②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。

数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。

③数据的运算,即对数据施加的操作。

最常用的检索、插入、删除、更新、排序等。

6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。

线性表是一个典型的线性结构。

栈、队列、串等都是线性结构。

②非线性结构:一个结点可能有多个直接前趋和直接后继。

数组、广义表、树和图等数据结构都是非线性结构。

7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

通常借助程序语言的数组描述。

(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。

通常借助于程序语言的指针类型描述。

(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。

索引表由若干索引项组成。

若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。

若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。

索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15
抽象数据类型可用(D,S,P)三元组表示,其中,D是 数据对象,S是D上的关系集,P是对D的基本操作集。 ADT 抽象数据类型名 { 数据对象:〈数据对象的定义〉 数据关系:〈数据关系的定义〉 基本操作:〈基本操作的定义〉 } ADT 抽象数据类型名 数据对象和数据关系的定义用伪码描述,基本操作的定义 格式为: 基本操作名(参数表) 初始条件:〈初始条件描述〉 操作结果:〈操作结果描述〉
25
一般情况下,算法中基本操作重复执行的次数是问题规模n
的某个函数f(n),,算法的时间量度记作:
T(n)=O(f(n))
它表示随着问题规模n的增大,算法执行时间的增长率和
f(n)的增长率相同,称作算法的(渐进)时间复杂度。 多数情况下,原操作是指最深层循环内的语句中的原操作
,它的执行次数和包含它的语句的频度相同。
……..
按作者名
樊映川 华罗庚 栾汝书 ……. 001,… 002,…. 004,…. …….
L S ……
按分类号
002,… 001,003, ……
索引表
4
例2
人机对奕问题

……..
……..
…...
…...
…...
…...
5
例3 多叉路口交通灯管理问题
C D B
AB AC

AD
E A
BA
BC
BD
在任何问题中,数据元素之间都存在着某种关系,这种数 据元素之间的关系称为结构。 数据结构包括逻辑结构、物理结构和施加在数据上的运算。 例如: 3214,6587,9345 ─ a1(3214),a2(6587),a3(9345) 则在数据元素 a1、a2 和 a3 之间存在着“次序”关系 a1,a2、a2,a3 3214,6587,9345 ≠ 6587,3214,9345 a2 a1 a3 a1 a2 a3
本教材使用类C语言描述算法的,类C和标准C语言是有区 别的,同时,算法着重于思想的描述,可能会省略许多细节。 不要把算法看成程序,切忌将算法中的相应函数和数据类 型直接照搬到程序中。
21
1.4.2
算法的设计要求
评价一个好的算法有以下几个标准:
(1) 正确性(Correctness ) :算法应满足具体问题的需求。 (2)可读性(Readability):算法应该好读。以有利于阅读者对 程序的理解。 (3)健壮性(Robustness): 算法应具有容错处理。当输入非法 数据时,算法应对其作出反应,而不是产生莫名其妙的输 出结果。 (4)效率与低存储量需求: 效率指的是算法执行的时间;存储 量需求指算法执行过程中所需要的最大存储空间。一般这 两者与问题的规模有关。
4.编译程序产生的机器代码的质量
5.计算机执行指令的速度 显然使用绝对的时间单位衡量算法的效率是不适合的。撇 开与计算机硬件、软件有关的因素, 一个特定算法的“运行 工作量”的大小,只依赖于问题的规模(通常用整数n表示), 或者说,它是问题规模的函数。
24
算法 = 控制结构 + 原操作 (固有数据类型的操作) 算法的执行时间=原操作的执行次数×原操作的执行时间 算法的执行时间与原操作执行次数成正比。 通常从算法中选取一种对于所研究的问题来说是基本 操作的原操作,以该基本操作在算法中重复执行的次数作 为算法运行时间的时间量度。
一、类C语言语法:P10-P13 二、C语言的简要回顾
19
1.4
算法和算法分析
1.4.1 算法 算法(Algorithm)是解决某一特定问题的具体步骤的描述, 是指令的有限序列。 算法的5个重要特性: (1)有穷性 一个算法必须总是在执行有穷步之后结束, 且每一步都在有穷时间内完成。 (2)确定性 算法中每一条指令必须有确切的含义。不存在 二义性。且算法只有唯一的一条执行路径。
语句的频度是指算法中基本杂度的计算: 程序 例1: {++x;s=0;} for(i=1;i<=n;++i) {++x;s+=x;} 例3: for(j=1;j<=n;++j) for(k=1;k<=n;++k) {++x;s+=x;}
T(n)=O(f(n))
频度 1 n 时间复杂度 O(1) O(n)
12
数据结构的三个方面: 线性结构 数据的逻辑结构 非线性结构 顺序存储 链式存储
线性表 栈
队列
树形结构
图状结构
数据的存储结构
数据的运算:检索、排序、插入、删除、修改等
13
7.数据类型(Data Type):数据的取值范围及其操作的总称。 (是一个值的集合和定义在这个值集上一组操作的总称) 例如C语言中,提供int, char, float, double等基本 数据类 型,数组、结构体、共用体、枚举等构造数据类型,还有 指针、空(void)类型等。用户也可用typedef自定义数据类 型。 typedef struct { int num; char name[20]; float score; }STUDENT; STUDENT stu1, stu2, *p;
16
基本操作有两种参数: 赋值参数:只为操作提供输入值。 引用参数: 以&打头,除可提供输入值外,还将返回操作结 果。 初始条件:描述了操作执行之前数据结构和参数应满足的条件, 若不满足,则操作失败,并返回相应出错信息。 操作结果:说明了操作正常完成之后,数据结构的变化状况和 应返回的结果。若初始条件为空,则省略之。
1. 数据(Data):是对客观事物的符号表示。在计算机科学中是 指所有能输入到计算机中并被计算机程序处理的符号的总 称。 2. 数据元素(Data Element):数据的基本单位。在计算机程序 中通常作为一个整体进行考虑和处理。 一个数据元素可由 若干个数据项组成。数据项是数据的不可分割的最小单位。 数据项
001 002 003 004 …… 高等数学 理论力学 高等数学 线性代数 …… 樊映川 罗远祥 华罗庚 栾汝书 …… S01 L01 S01 S02 ……
8
数据元素
3. 数据对象(Data Object):是性质相同的数据元素的集合。是数 据的一个子集。
4. 数据结构(Data Structure):是相互之间存在一种或多种特定关 系的数据元素的集合。
3
例1 书目自动检索系统
001 002 003 004 …… 高等数学 樊映川 理论力学 罗远祥 书目卡片 高等数学 华罗庚 登录号: 线性代数 栾汝书 …… …… 书名:
线性表
书目文件
S01 L01 S01 S02 ……
按书名
高等数学 理论力学 线性代数 ……
作者名: 分类号: 出版单位: 001,003…… 002,…….. 出版时间: 004,…… 价格:
例2:
n*n
O(n2)
27
例4 计算f=1!+2!+3!+…+n! void factorsum(n) int n; { int i,j; int f,w; f=0; for (i=1,i<=n;i++) { w=1; for(j=1,j<=i;j++) w=w*j; f=f+w; } return; 算法的基本运算为乘法操作。 在算法的执行过程中,对外循 环变量i的每次取值,内循环变 量j循环i次。因为内循环每执 行一次,内循环体语句w=w*j只 作一次乘法操作,即当内循环 变量j循环i次时,内循环体的 语句w=w*j作i次乘法。 整个算法所作的乘法操作总数 是: f(n)=1+2+3+„n=n(n-1)/2 时间复杂为T(n)=O(n2)
数据结构
1
第一章 绪论
1.1 什么是数据结构 1.2 基本概念和术语 1.3 抽象数据类型的表示与实现 1.4 算法和算法分析
2
1.1 什么是数据结构
数值计算
建立数学模型 设计求解的算法
非数值计算
数据对象及其关系的表示 数据的组织 算法的设计
非数值计算应用的发展,促进了数据结构的研究和发展以 及其体系的完善。
9
5. 逻辑结构:是对数据元素之间逻辑关系的描述。 根据数据元素之间的逻辑结构可将数据结构分为 四类:
集合 ——数据元素除了同属于一种类型外,别无其它关系。 线性结构——数据元素之间存在一对一的关系。如线性表、 栈、队列。 树形结构——数据元素之间存在一对多的关系。如树。 图状结构(或网状结构)——数据元素之间存在多对多的 关系,如图。
11
6.存储结构(物理结构):数据在计算机中的表示(或映像)。 包括数据的数据元素的映像和关系的映像。 数据元素之间的关系在计算机中有两种不同的表示方法:顺 序映像和非顺序映像。分别对应两种存储结构: 顺序存储结构:借助元素在存储器中的相对位置来表示 数据元素间的逻辑关系。 链式存储结构:借助指示元素存储地址的指针表示数据 元素间的逻辑关系。 数据的逻辑结构与存储结构密切相关: 算法设计 算法实现 逻辑结构 存储结构
17
ADT 有两个重要特征:
数据抽象:用ADT描述程序处理的实体时,强调的是其本质 的特征、其所能完成的功能以及它和外部用户的接口(即 外界使用它的方法)。 数据封装:将实体的外部特性和其内部实现细节分离,并且 对外部用户隐藏其内部实现细节。
18
1.3
抽象数据类型的表示与实现
抽象数据类型可通过固有数据类型来表示,即利用已 存在的数据类型来说明新的结构,用已经实现的操作来 组合新的操作。
10
数据结构的形式定义为:数据结构是一个二元组: Data-Structure=(D,S) 其中:D是数据元素的有限集,S是D上关系的有限集。 例: 复数的数据结构定义如下: Complex=(C,R)
相关文档
最新文档