江苏省无锡市2018中考数学试题及答案
2018年江苏省无锡市中考数学试卷含答案解析
A.4 条 B.5 条 C.6 条 D.7 条 二、填空题(本大题共 8 小题,每小题 2 分,共 16 分。不需写出解答过程,只 需把答案直接填写在答题卡上相应的位置) 11. (2 分)﹣2 的相反数的值等于 .
12. (2 分)今年“五一”节日期间,我市四个旅游景区共接待游客约 303000 多 人次,这个数据用科学记数法可记为 13. (2 分)方程 14. (2 分)方程组 = 的解是 的解是 .
. . . 上,且
15. (2 分)命题“四边相等的四边形是菱形”的逆命题是
16. (2 分)如图,点 A、B、C 都在⊙O 上,OC⊥OB,点 A 在劣弧 OA=AB,则∠ABC= .
17. (2 分)已知△ABC 中,AB=10,AC=2 .
,∠B=30°,则△ABC 的面积等于
2. (3 分)函数 y= A.x≠﹣4
中自变量 x 的取值范围是( ) D.x≤4
B.x≠4C.x≤﹣4
3. (3 分)下列运算正确的是( ) A.a2+a3=a5 B. (a2)3=a5 C.a4﹣a3=a D.a4÷a3=a
4. (3 分)下面每个图形都是由 6 个边长相同的正方形拼成的图形,其中能折 叠成正方体的是( )
22. (6 分)某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的 二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为 A、B、C、D、E 五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统 计图(图都不完整) .
请根据以上信息,解答下列问题: (1)该汽车交易市场去年共交易二手轿车 辆.
2018 年江苏省无锡市中考数学试卷
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分。在每小题所给出的四 个选项中,只有一项是正确的,请用 2B 铅笔把答题卡上相应的选项标号涂黑) 1. (3 分)下列等式正确的是( ) A. ( )2=3 B. =﹣3 C. =3 D. (﹣ )2=﹣3
2018年中考真题-江苏省无锡市2018年中考数学试卷及答案解析(word版)
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣3 2.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:9095100105110售价x(元/件)销量y(件)110100806050则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元 D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan ∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
【真题】2018年江苏省无锡市中考数学试卷含答案解析(word版)
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应销量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( )A .100元B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试题与答案
2018年江苏省无锡市中考数学试题与答案(试卷满分120分,考试时间120分钟)注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名、考点考场号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小題选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需要改动,用橡皮擦干净后,再选涂其他答案。
不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束,将本试卷和答题卡一并交回。
一、选择题:(本大题共10小题,每小题3分 共30分) 1. 下列等式正确的是A.()23=3 B.()332-=- C.333= D.()332-=-2. 函数xxy -=42中自变量x 的取值范围是 A.4-≠x B.4≠x C.4-≤x D.4≤x 3. 下列运算正确的是 A.532a a a =+ B.()532a a = C.a a a =-34 D.a a a =÷344. 下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是A. B. D.5. 下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有A.1个B.2个C.3个D.4个 6. 已知点P (a ,m )、Q (b ,n )都在反比例函数xy 2-=的图像上,且a<0<b,则下列结论一定成立 的是A.m+n<0B.m+n>0C.m<nD.m>n7. 某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应的销售量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为 A.100元 B.95元 C.98元 D.97.5元8. 如图,矩形ABCD 中,G 是BC 中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;BC 与圆O 相切。
2018年无锡中考数学试题+答案
2018无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.2-的值等于()A.2B.-2C.2±D.22.函数y=1-x +3中自变量x 的取值范围是()A.x >1B.x ≥1C.x ≤1D.1≠x 3.方程0321=--xx 的解为()A.2=x B.2-=x C.3=x D.3-=x 4.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A.4,15B.3,15C.4,16D.3,165.下列说法中正确的是()A.两直线被第三条直线所截得的同位角相等B.两直线被第三条直线所截得的同旁内角互补C.两平行线被第三条直线所截得的同位角的平分线互相垂直D.两平行线被第三条直线所截得的同旁内角的平分线互相垂直6.已知圆柱的底面半径为3cm ,母线长为5cm ,则圆柱的侧面积是()A .30cm 2B .30πcm 2C .15cm 2D .15πcm 27.如图,A 、B 、C 是⊙O 上的三点,且∠ABC =70°,则∠AOC 的度数是()A .35°B .140°C .70°D .70°或140°8.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积比等于()A .21B .41C .81D .161(第7题)(第8题)(第9题)9.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于()A .3∶4B .13∶52C .13∶62D .32∶1310.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为()A .6、7B .7、8C .6、7、8D .6、8、9二、填空题(本大题共8小题,每小题2分,共16分.)11.分解因式:2x 2-4x=.12.去年,中央财政安排资金8200000000元,免除城市义务教育学生学杂费,支持进城务工人员随迁子女公平接受义务教育,这个数据用科学记数法可表示为元.13.已知双曲线xk y 1+=经过点(-1,2),那么k 的值等于.14.六边形的外角和等于°.15.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8,E 是CD 的中点,则OE 的长等于.(第15题)(第16题)(第17题)16.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =°.17.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.18.已知点D 与点A (8,0),B (0,6),C (a ,-a )是一平行四边形的四个顶点,则CD 长的最小值为.19.(本题满分8分)计算:(1)()()2920.1-+-;(2)(x +1)2-(x +2)(x -2).20.(本题满分8分)(1)解方程:x 2+3x -2=0;(2)解不等式组:231,12(1).2x x x x -+⎧⎪⎨->+⎪⎩≥21.(本题满分6分)如图,在Rt △ABC 中,∠C =90°,AB =10,sin ∠A =2,求BC 的长和tan ∠B 的值.BAC22.(本题满分8分)小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思。
2018年江苏省无锡市中考数学试卷(带解析)
2018年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.(3)2=3B.(−3)2=﹣3C.33=3D.(﹣3)2=﹣3【解答】解:(3)2=3,A正确;(−3)2=3,B错误;33=27=33,C错误;(﹣3)2=3,D错误;故选:A.2.(3分)函数y=24−中自变量x的取值范围是()A.x≠﹣4B.x≠4C.x≤﹣4D.x≤4【解答】解:由题意得,4﹣x≠0,解得x≠4.故选:B.3.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a 【解答】解:A、a2、a3不是同类项不能合并,故A错误;B、(a2)3=a6)x5•x5=x10,故B错误;C、a4、a3不是同类项不能合并,故C错误;D、a4÷a3=a,故D正确.故选:D.4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.【解答】解:能折叠成正方体的是故选:C.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个【解答】解:如图所示:直线l即为各图形的对称轴.,故选:D.6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=−2的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0B.m+n>0C.m<n D.m>n【解答】解:y=−2的k=﹣2<0,图象位于二四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故D正确;故选:D.7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:售价x(元/件)9095100105110销量y(件)110100806050则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元【解答】解:由表可知,这5天中,A产品平均每件的售价为90×110+95×100+100×80+105×60+110×50110+100+80+60+50=98(元/件),故选:C.8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O 与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0B.1C.2D.3【解答】解:连接DG、AG,作GH⊥AD于H,连接OD,如图,∵G是BC的中点,∴AG=DG,∴GH垂直平分AD,∴点O在HG上,∵AD∥BC,∴HG⊥BC,∴BC与圆O相切;∵OG=OG,∴点O不是HG的中点,∴圆心O不是AC与BD的交点;而四边形AEFD为⊙O的内接矩形,∴AF与DE的交点是圆O的圆心;∴(1)错误,(2)(3)正确.故选:C.9.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH 的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A .等于37B .等于33C .等于34D .随点E 位置的变化而变化【解答】解:∵EF ∥AD ,∴∠AFE=∠FAG ,∴△AEH ∽△ACD ,==34.设EH=3x ,AH=4x ,∴HG=GF=3x ,∴tan ∠AFE=tan ∠FAG==33+4=37.故选:A .10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有()A .4条B .5条C .6条D .7条【解答】解:如图,将各格点分别记为1、2、3、4、5、6、7,画树状图如下:由树状图可知点P由A点运动到B点的不同路径共有5种,故选:B.二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试题含答案
江苏省无锡市2018年中考数学试卷一、选择题<本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)A .3B.﹣3C.±3D.考点:相反数.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是﹣<﹣3)=3.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.A .x>2B.x≥2C.x≤2D.x≠2考点:二次根式有意义的条件.分析:二次根式的被开方数大于等于零.解答:解:依题意,得2﹣x≥0,解得 x≤2.故选:C.点评:考查了二次根式的意义和性质.概念:式子<a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.<3分)<2018•无锡)分式可变形为< )A .B.﹣C.D.﹣考点:分式的基本性质.分析:根据分式的性质,分子分母都乘以﹣1,分式的值不变,可得答案.解答:解:分式的分子分母都乘以﹣1,得﹣,故选;D.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.4.<3分)<2018•无锡)已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设的是< )D,CD与AB的延长线交于点C,∠A=30°,给出下面3个结论:①AD=CD;②BD=BC;③AB=2BC,其中正确结论的个数是< )RTCrpUDGiT线b经过点A<0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B<﹣﹣﹣﹣﹣y=<,﹣加下减的平移规律即可求出直线a的解读式.﹣∴,解得,y=y=<﹣﹣﹣x+6y=ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,需把答案直接填写在答题卡相应的位置)xHAQX74J0X负荷将达到86000000千瓦,这个数据用科学记数法可表示为8.6×107千解答:解:将86000000用科学记数法表示为:8.6×107.故答案为:8.6×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.<2分)<2018•无锡)方程的解是x=2 .考点:解分式方程.专题:计算题.分析:观察可得最简公分母是x<x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x<x+2),得2x=x+2,解得x=2.检验:把x=2代入x<x+2)=8≠0.∴原方程的解为:x=2.故答案为x=2.点评:本题考查了分式方程的解法,注:<1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.<2)解分式方程一定注意要验根.14.<2分)<2018•无锡)已知双曲线y=经过点<﹣2,1),则k的值等于考点:反比例函数图象上点的坐标特征.分析:直接把点<﹣2,1)代入双曲线y=,求出k的值即可.解答:解:∵双曲线y=经过点<﹣2,1),∴1=,解得k=﹣1.故答案为:﹣1.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解读式.AD=6,DE=5,则CD的长等于8 .Zzz6ZB2Ltk考勾股定理;直角三角形斜边上的中线点:分析:由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD 的长度即可.解答:解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.点评:本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.AE=3,则AC的长等于4.dvzfvkwMI1考点:平行四边形的性质;解直角三角形分析:设对角线AC和BD相交于点O,在直角△AOE中,利用三角函数求得OA的长,然后根据平行四边形的对角线互相平分即可求得.解答:解:∵在直角△AOE中,cos∠EAC=,∴OA===2,又∵四边形ABCD是平行四边形,∴AC=2OA=4.故答案是:4.点评:本题考查了三角函数的应用,以及平行四边形的性质:平行四边形的对角线互相平分,正确求得OA的长是关键.AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.rqyn14ZNXI考点:平行四边形的性质;勾股定理;切线的性质.分析:由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.解答:解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,∴S△ABC==,∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为 2.故答案为2.点评:本题考查了平行四边形面积最值的问题的解决方法,找出什么情况下三角形的面积最大是解决本题的关键.、⊙B的半径分别为2和1,P、E、F分别是边CD、⊙A和⊙B上的动点,则PE+PF的最小值是 3 .EmxvxOtOco考点:轴对称-最短路线问题;菱形的性质;相切两圆的性质.分析:利用菱形的性质以及相切两圆的性质得出P与D重合时PE+PF 的最小值,进而求出即可.解答:解:由题意可得出:当P与D重合时,E点在AD上,F在BD 上,此时PE+PF最小,连接BD,∵菱形ABCD中,∠A=60°,∴AB=AD,则△ABD是等边三角形,∴BD=AB=AD=3,∵⊙A、⊙B的半径分别为2和1,∴PE=1,DF=2,∴PE+PF的最小值是3.故答案为:3.应写出文字说明、证明过程或演算步骤)SixE2yXPq5 19.<8分)<2018•无锡)<1)﹣|﹣2|+<﹣2)0;<2)解不等式组:.)评:式组,熟练掌握运算法则是解本题的关键.D、E 分别是AB、AC边上的点,且BD=CE.求证:MD=ME.6ewMyirQFL考点:全等三角形的判定与性质;等腰三角形的性质专题:证明题.分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.解答:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM,∵M是BC的中点,∴BM=CM,在△BDM和△CEM中,,∴△BDM≌△CEM<SAS),∴MD=ME.点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质.且OD∥BC,OD与AC交于点E.kavU42VRUs<1)若∠B=70°,求∠CAD的度数;<2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理分析:<1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;<2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解解:<1)∵AB是半圆O的直径,ADO===55°BC===.BC=.AB=2﹣.究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据y6v3ALoS89<1)请问:这次共有多少名学生参与了问卷调查?<2)算出表中a、b的值.<注:计算中涉及到的“人数”均精确到1)标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.M2ub6vSTnP <1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.<请用“画树状图”或“列表”等方法给出分析过程,并求出结果)0YujCfmUCw<2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸P==由题意得,所以,方程组的解是25.<8分)<2018•无锡)<1)如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C 为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.<这个比值叫做AE与AB的黄金比.)sQsAEJkW5T<2)如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.GMsIasNXkA<注:直尺没有刻度!作图不要求写作法,但要求保留作图痕迹,并对作图中涉及到的点用字母进行标注)。
江苏省无锡市2018年中考数学试题(解析版)
A. 0 B. 1 C. 2 D. 3 【答案】C 【解析】分析:连接 DG、AG,作 GH⊥AD 于 H,连接 OD,如图,先确定 AG=DG,则 GH 垂直 平分 AD,则可判断点 O 在 HG 上,再根据 HG⊥BC 可判定 BC 与圆 O 相切;接着利用 OG=OD 可 判断圆心 O 不是 AC 与 BD 的交点;然后根据四边形 AEFD 为⊙O 的内接矩形可判断 AF 与 DE 的 交点是圆 O 的圆心. 详解:连接 DG、AG,作 GH⊥AD 于 H,连接 OD,如图,
售价 x(元/件) 90
95
100
105
110
销量 y(件) 110
100
80
60
50
则这 5 天中,A 产品平均每件的售价为( ) A. 100 元 B. 95 元 C. 98 元 D. 97.5 元 【答案】C 【解析】分析:根据加权平均数列式计算可得. 详解:由表可知,这 5 天中,A 产品平均每件的售价为
学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学 ¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网... 3. 下列运算正确的是( ) A. a2+a3=a5 B. (a2)3=a5 C. a4﹣a3=a D. a4÷a3=a 【答案】D
A. 等于 B. 等于
C. 等于 D. 随点 E 位置的变化而变化 【答案】A 【解析】分析:根据题意推知 EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角 形的对应边成比例和锐角三角函数的定义解答. 详解:∵EF∥AD, ∴∠AFE=∠FAG, ∴△AEH∽△ACD,
2018年江苏省无锡市中考数学试卷解析版
2018年江苏省无锡市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.(3分)﹣3的绝对值是()A.−13B.﹣3C.13D.3【解答】解:﹣3的绝对值是3.故选:D.2.(3分)9的算术平方根是()A.3B.﹣3C.±3D.9【解答】解:9的算术平方根是3,故选:A.3.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【解答】解:360÷40=9,即这个多边形的边数是9,故选:C.4.(3分)下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3【解答】解:A、3a2﹣a2=2a2,故此选项错误;B、(a2)3=a6,正确;C、a2•a3=a5,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.5.(3分)有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.【解答】解:该几何体的俯视图为故选:A.6.(3分)如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°【解答】解:∵四边形ABCD是正方形,∴∠BAC=45°,∵AE=AB,∴∠BEA=∠ABE=180°−45°2=67.5°.故选:C.7.(3分)若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A.﹣1B.﹣3C.3D.5【解答】解:当3a﹣2b=2时,原式=﹣(3a﹣2b)+1=﹣2+1=﹣1,故选:A.8.(3分)蚊香长度y (厘米)与燃烧时间t (小时)之间的函数表达式为y =105﹣10t .则蚊香燃烧的速度是( ) A .10厘米/小时 B .105厘米/小时C .10.5厘米/小时D .不能确定【解答】解:设时间t 1时蚊香长度为y 1,时间t 2时蚊香长度为y 2 ∴y 1=105﹣10t 1,y 2=105﹣10t 2则:速度=(y 1﹣y 2)÷(t 1﹣t 2)=[(105﹣10t 1)﹣(105﹣10t 2)]÷(t 1﹣t 2)=﹣10∴蚊香燃烧的速度是10厘米/小时 故选:A .9.(3分)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( ) A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <9【解答】解:∵3x +m ≥0, ∴x ≥−m3,∵不等式3x +m ≥0有且仅有两个负整数解, ∴﹣3<−m3≤−2. ∴6≤m <9, 故选:D .10.(3分)如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .154C .3D .114【解答】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A =∠H =90°,∠FEB =90°, ∴∠FEH =90°﹣∠BEA =∠EBA , ∴△FEH ∽△EBA , ∴HF AE=HE AB=EF BE=12,设AE =x , ∵AB =4,AD =2,∴HF =12x ,EH =2,DH =x ,∴△CEF 面积=12×(12x +4)×x +12×4×(2−x)−12×2×12x =14x 2−12x +4=14(x −1)2+154, ∴当x =1时,△CEF 面积的最小值是154.故选:B .二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.(2分)在函数y =√x −1中,自变量x 的取值范围是 x ≥1 . 【解答】解:根据题意得:x ﹣1≥0, 解得:x ≥1. 故答案为:x ≥1.12.(2分)因式分解:x 3﹣4x = x (x +2)(x ﹣2) . 【解答】解:x 3﹣4x =x (x 2﹣4) =x (x +2)(x ﹣2). 故答案为:x (x +2)(x ﹣2).13.(2分)我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为1.1×107 .【解答】解:11 000 000吨,这个数据用科学记数法可记为1.1×107. 故答案为:1.1×107.14.(2分)数据﹣3,﹣1,0,2,4的极差是 7 . 【解答】解:由题意可知,极差为4﹣(﹣3)=7. 故答案为:7.15.(2分)若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 12π . 【解答】解:圆锥的侧面积=2π×3×4÷2=12π. 故答案为:12π.16.(2分)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: 50(1﹣x )(1﹣2x )=36 .【解答】解:设第一次降价的百分率为x ,则第二次降价的百分率为2x , 依题意,得:50(1﹣x )(1﹣2x )=36. 故答案为:50(1﹣x )(1﹣2x )=36.17.(2分)已知点A 、B 都在反比例函数y =6x(x >0)的图象上,其横坐标分别是m 、n (m <n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 1+√72.【解答】解:如图,A (m ,6m),B (n ,6n),则P (m ,6n),∵点P 在线段DE 上,AD ∥CE , ∴△ADP ∽△CEP , ∴AD CE=AP PC,即mn−m=6m −6n 6n, ∴m 2=(n ﹣m )2, 而n >m >0,∴m =n ﹣m ,即n =2m ,把n =2m 代入m (n ﹣2)=2得m (2m ﹣2)=3,整理得2m 2﹣2m ﹣3=0,解得m 1=1+√72,m 2=1−√72(舍去), 即m 的值为1+√72.故答案为1+√72.18.(2分)如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,则a 的值等于 −3√1010 .【解答】解:如图,连接BC ,OD ,设直线y =−13x ﹣1交x 轴于点E (﹣3,0),交y 轴于点F (0,﹣1),∵AC =CD ,AB =OB , ∴OD =2BC =﹣a ,∴点D 的运动轨迹是以O 为圆心﹣a 为半径的圆,当⊙O 与直线y =−13x ﹣1相切时,点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,设切点为G ,连接OG . 在Rt △EOF 中,∵OG ⊥EF ,EF =√12+32=√10,12•OE •OF =12•EF •OG ,∴OG =3√1010, ∴a =−3√1010, 故答案为:−3√1010. 三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)计算:(1)tan60°+(3−√3)−12; (2)(2x ﹣1)2﹣(x +1)(x ﹣1). 【解答】解:(1)tan60°+(3−√3)−12 =√3+3−√3−12=212;(2)(2x ﹣1)2﹣(x +1)(x ﹣1) =4x 2﹣4x +1﹣x 2+1 =3x 2﹣4x +2.20.(8分)解方程(组): (1)1x−2=1−x 2−x−3;(2){2x +3y =44x +4y =42【解答】解:(1)两边都乘以x ﹣2,得:1=x ﹣1﹣3(x ﹣2), 解得:x =2,检验:x =2时,x ﹣2=0, ∴x =2是分式方程的增根, 则原分式方程无解.(2){2x +3y =44①x +4y =42②,②×2﹣①,得:5y =40, 解得y =8,将y =8代入②,得:x +32=42, 解得:x =10,则方程组的解为{x =10y =8.21.(6分)如图,已知五边形ABCDE 是正五边形,连结AC 、AD .证明:∠ACD =∠ADC .【解答】证明:∵正五边形ABCDE 中, ∴AB =AE =BC =ED ,∠B =∠E , 在△ABC 和△AED 中, {AB =AE ∠B =∠E BC =ED, ∴△ABC ≌△AED (SAS ), ∴AC =AD , ∴∠ACD =∠ADC .22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访 3.24次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有9120人.【解答】解:(1)∵被调查的总人数为54÷36%=150(人),则家访4次的人数为150×28%=42(人),补全图形如下:(2)在采集到的数据中,近两周平均每位教师家访1×6+2×30+3×54+4×42+5×18150=3.24(次),故答案为:3.24;(3)近两周家访不少于3次的教师约有12000×54+42+18150=9120(人),故答案为:9120.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是14;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.【解答】解:(1)小丽参加实验A 考查的概率是14,故答案为:14;(2)列表如下:A B C D A AA BA CA DA B AB BB CB DB C AC BC CC DC DADBDCDDD所有等可能的情况有16种,其中小明、小丽都参加实验A 考查的只有1种情况, 所以小明、小丽都参加实验A 考查的概率为116.24.(10分)如图,在Rt △ABC 中,∠C =90°,AD 是△ABC 的角平分线,点O 在边AB 上.过点A 、D 的圆的圆心O 在边AB 上,它与边AB 交于另一点E . (1)试判断BC 与圆O 的位置关系,并说明理由; (2)若AC =6,sin B =35,求AD 的长.【解答】解:(1)BC 与圆O 相切, 理由如下:如图,连接OD∵OA =OD∴∠ODA=∠OAD,∵AD平分∠CAB∴∠CAD=∠DAO∴∠CAD=∠ODA∴DO∥AC∵AC⊥CD∴OD⊥BC,且D在圆O上,∴BC与圆O相切(2)在Rt△ABC中,∵AC=6,sin B=3 5,∴AB=10,BC=8在Rt△BDO中,sin B=35=DOBO=DOAB−DO,∴30=8DO∴DO=154=AO∴BO=AB﹣AO=25 4∴BD=√BO2−DO2=5∴CD=BC﹣BD=3在Rt△ACD中,AD=√AC2+CD2=√9+36=3√525.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?【解答】解:设A商场售出该商品x件.①当A商城的采购量小于400件且完全销售完时,有(100﹣75)x≥9600,解得:x≥384,∴当购进的商品完全销售完时,商城对这种商品的销量至少要384件;②当A商城的采购量小于400件且没有销售完时,有100x﹣399×75≥9600,解得:x≥395.25,∵x为正整数,∴x ≥396.∴当购进的商品少于400件且未全部销售完时,商城对这种商品的销量至少要396件; ③当A 商城的采购量等于400件时,有100x ﹣400×75+65(400﹣x )+400×5≥9600, 解得:x ≥33137, ∵x 为正整数,∴x ≥332,∴当A 商城的采购量等于400件时,商城对这种商品的销量至少要332件;④当A 商城的采购量大于400件时,销售量必须大于332件,才能保证获利达到9600元.答:当A 商场购进这种商品400件且销量至少是332件时,他们的获利能达到9600元.26.(10分)如图,∠AOB =60°,点P 为射线OA 上的一动点.过点P 作PC ⊥OB 于点C .点D 在∠AOB 内,且满足∠APD =∠OPC ,DP +PC =10.(1)当PC =6时,求点D 到OB 的距离;(2)在射线OA 上是否存在一定点M ,使得MD =MC ?若存在,请用直尺(不带刻度)和圆规作出点M (不必写作法,但要保留作图痕迹),并求OM 的长;若不存在,说明理由.【解答】解:(1)作DH ⊥OB 于H ,PE ⊥DH 于E ,如图1,∵DP +PC =10,PC =6,∴PD =4,∵∠AOB =60°,∴∠OPC =∠APD =30°,∴∠DPE =30°,∴DE =12PD =2,易得四边形PCHE为矩形,∴EH=PC=6,∴DH=DE+EH=2+6=8,即点D到OB的距离为8;(2)存在.如图2,延长CP到D′,使PD′=PD,则CD′=PC+PD=10,作CD′的垂直平分线交OA于M,则点M为所作;作MN⊥OB于N,如图2,则MN=12×10=5,在Rt△OMN中,ON=√33MN=5√33,∴OM=2ON=10√3 3.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.【解答】解:(1)如图,作CH ⊥AB 于H .由翻折的性质可知:∠APC =∠QPC ,∵PQ ⊥P A ,∴∠APQ =90°,∴∠APC =∠QPC =135°,∴∠BPC +∠QPB =135°,∵∠QPB =90°,∴∠BPC =45°,∵CH ⊥AB ,∴CH =PH ,在Rt △ABC 中,AB =√AC 2+BC 2=√32+42=5,∵12•AB •CH =12•AC •BC , ∴CH =125,BH =√BC 2−CH 2=95,∴PB =PH +BH =125+95=215.(2)如图2中,连接BQ .由翻折不变性可知:P A=PQ,∠QPC=∠APC,∵四边形BCPQ是平行四边形,∴PQ=BC=P A=n,PQ∥BC,∴∠QPC+∠PCB=180°,∵∠BPC+∠APC=180°,∴∠PCB=∠BPC,∴PB=BC=n,∴AP=PB=n,AB=2n,在Rt△ABC中,则有(2n)2=m2+n2,∴m2=3n2,∵m>0.n>0,∴m=√3n.28.(10分)已知:如图,在平面直角坐标系中,点P(√3m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=√3x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.【解答】解:(1)由题意得:OA =√3m =3√3,将x =3√3代入y =√3x ,可得:y =9,故:点B 的坐标(3√3,9),∴BP =6;(2)过点B 作BC ⊥OA 于点C ,过点P 作PD ⊥OA ,由题意得:∠BOC =60°,∵PD ∥BC ,∴CD :DA =BP :P A =1:2,PD :BC =P A :PB =2:3,∵PD =m ,OD =√3m ,∴BC =32m ,在Rt △OBC 中,OC =√32m ,∴CD =√32m ,AD =√3m ,∴OA =√32m +√32m +√3m =6,解得:m =√3,∴点B (32,3√32),P (3,√3),故抛物线表达式为:y =a (x −32)2+3√32, 将点P 坐标代入上式并解得:a =−2√39, 故抛物线的表达式为:y =−2√39(x −32)2+3√32.2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.(3分)﹣3的绝对值是()A.−13B.﹣3C.13D.32.(3分)9的算术平方根是()A.3B.﹣3C.±3D.93.(3分)若一个多边形的每一个外角都是40°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形4.(3分)下列计算正确的是()A.3a2﹣a2=3B.(a2)3=a6C.a2•a3=a6D.a6÷a2=a3 5.(3分)有6个相同的小正方体搭成的几何体如图所示,则它的俯视图是()A.B.C.D.6.(3分)如图,正方形ABCD中,E是对角线AC上一点,且AE=AB,则∠AEB的度数为()A.45°B.60°C.67.5°D.70°7.(3分)若3a﹣2b=2,则代数式2b﹣3a+1的值等于()A .﹣1B .﹣3C .3D .58.(3分)蚊香长度y (厘米)与燃烧时间t (小时)之间的函数表达式为y =105﹣10t .则蚊香燃烧的速度是( )A .10厘米/小时B .105厘米/小时C .10.5厘米/小时D .不能确定 9.(3分)若关于x 的不等式3x +m ≥0有且仅有两个负整数解,则m 的取值范围是( )A .6≤m ≤9B .6<m <9C .6<m ≤9D .6≤m <910.(3分)如图,矩形ABCD 中,AB =4,AD =2,E 为边AD 上一个动点,连结BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连结CF ,则△CEF 面积的最小值是( )A .4B .154C .3D .114二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.(2分)在函数y =√x −1中,自变量x 的取值范围是 .12.(2分)因式分解:x 3﹣4x = .13.(2分)我国某铁路年输送货物的能力是11 000 000吨,这个数据用科学记数法可记为 .14.(2分)数据﹣3,﹣1,0,2,4的极差是 .15.(2分)若圆锥的底面半径为3,母线长为4,则这个圆锥的侧面积是 .16.(2分)某种药品经过两次降价,由每盒50元调至36元,若第二次降价的百分率是第一次的2倍.设第一次降价的百分率为x ,由题意可列得方程: .17.(2分)已知点A 、B 都在反比例函数y =6x (x >0)的图象上,其横坐标分别是m 、n (m<n ).过点A 分别向x 轴、y 轴作垂线,垂足分别是C 、D ;过点B 分别向x 轴、y 轴作垂线,垂足分别是E 、F ,AC 与BF 交于点P .当点P 在线段DE 上、且m (n ﹣2)=3时,m 的值等于 .18.(2分)如图,点A 的坐标是(a ,0)(a <0),点C 是以OA 为直径的⊙B 上一动点,点A 关于点C 的对称点为P .当点C 在⊙B 上运动时,所有这样的点P 组成的图形与直线y =−13x ﹣1有且只有一个公共点,则a 的值等于 .三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)计算:(1)tan60°+(3−√3)−12;(2)(2x ﹣1)2﹣(x +1)(x ﹣1).20.(8分)解方程(组):(1)1x−2=1−x 2−x −3;(2){2x +3y =44x +4y =4221.(6分)如图,已知五边形ABCDE 是正五边形,连结AC 、AD .证明:∠ACD =∠ADC .22.(6分)某市教育局组织全市中小学教师开展“请千家”活动.活动过程中,教有局随机抽取了近两周家访的教师人数及家访次数,将采集到的全部数据按家访次数分成五类,由甲、乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)请把这幅条形统计图补充完整(画图后请标注相应的数据);(2)在采集到的数据中,近两周平均每位教师家访次;(3)若该市有12000名教师,则近两周家访不少于3次的教师约有人.23.(8分)某校4月份八年级的生物实验考查,有A、B、C、D四个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验.小明、小丽都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率.24.(10分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,点O在边AB 上.过点A、D的圆的圆心O在边AB上,它与边AB交于另一点E.(1)试判断BC与圆O的位置关系,并说明理由;(2)若AC=6,sin B=35,求AD的长.25.(8分)A商场从某厂以75元/件的价格采购一种商品,售价是100元/件.厂家与商场约定:若商场一次性采购达到或超过400件,厂家按每件5元返利给A商场.商场没有售完的,可以以65元/件退还给厂家.设A商场售出该商品x件,问:A商场对这种商品的销量至少要多少时,他们的获利能达到9600元?26.(10分)如图,∠AOB=60°,点P为射线OA上的一动点.过点P作PC⊥OB于点C.点D在∠AOB内,且满足∠APD=∠OPC,DP+PC=10.(1)当PC=6时,求点D到OB的距离;(2)在射线OA上是否存在一定点M,使得MD=MC?若存在,请用直尺(不带刻度)和圆规作出点M(不必写作法,但要保留作图痕迹),并求OM的长;若不存在,说明理由.27.(10分)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.28.(10分)已知:如图,在平面直角坐标系中,点P(√3m,m)(m>0),过点P的直线AB与x轴正半轴交于点A,与直线y=√3x交于点B.(1)当m=3且∠OAB=90°时,求BP的长度;(2)若点A的坐标是(6,0),且AP=2PB,求经过点P且以点B为顶点的抛物线的函数表达式.。
2018年江苏省无锡市中考数学真题及参考答案
无锡市2018年·初中学业水平考试暨普通高中统一招生考试数学试卷注意事项:1.全卷共120分,考试时间120分钟。
2.在作答前,考生务必将自己的姓名、考号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整,笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效:在草稿纸、试卷上答题均无效。
一、选择题:(本大题共10小题,每小题3分共30分) 1.下列等式正确的是( A ) A.()23=3 B.()332-=- C.333= D.()332-=-2.函数xxy -=42中自变量x 的取值范围是(B ) A.4-≠x B.4≠x C.4-≤x D.4≤x3.下列运算正确的是( D )A.532a a a =+ B.()532a a = C.a a a =-34 D.a a a =÷344.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是(C )A. B. C. D.5.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有(D )A.1个B.2个C.3个D.4个6. 已知点P (a,m )、Q (b,n )都在反比例函数xy 2-=的图像上,且a<0<b,则下列结论一定成立的是( D )A. m+n<0B.m+n>0C.m<nD.m>n7. 某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应的销售量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为(C ) A.100元 B.95元 C.98元 D.97.5元8. 如图,矩形ABCD 中,G 是BC 中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;BC 与圆O 相切。
【数学】2018年江苏省无锡市中考数学试卷【带解析】
辆.
(2)把这幅条形统计图补充完整. (画图后请标注相应的数据) (3)在扇形统计图中,D 类二手轿车交易辆数所对应扇形的圆心角为 度. 23. (8 分)某校组织一项公益知识竞赛,比赛规定:每个班级由 2 名男生、2 名女生及 1 名班主任老师组成代表队.但参赛时,每班只能有 3 名队员上场参 赛,班主任老师必须参加,另外 2 名队员分别在 2 名男生和 2 名女生中各随机 抽出 1 名.初三(1)班由甲、乙 2 名男生和丙、丁 2 名女生及 1 名班主任组成 了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概 率. (请用“画树状图”或“列表”或“列举”等方法给出分析过程) 24. (8 分)如图,四边形 ABCD 内接于⊙O,AB=17,CD=10,∠A=90°,cosB= ,求 AD 的长.
. . . 上,且
15. (2 分)命题“四边相等的四边形是菱形”的逆命题是
16. (2 分)如图,点 A、B、C 都在⊙O 上,OC⊥OB,点 A 在劣弧 OA=AB,则∠ABC= .
17. (2 分)已知△ABC 中,AB=10,AC=2 .
ቤተ መጻሕፍቲ ባይዱ
,∠B=30°,则△ABC 的面积等于
8. (3 分)如图,矩形 ABCD 中,G 是 BC 的中点,过 A、D、G 三点的圆 O 与边 AB、CD 分别交于点 E、点 F,给出下列说法:(1)AC 与 BD 的交点是圆 O 的 圆心;(2)AF 与 DE 的交点是圆 O 的圆心;(3)BC 与圆 O 相切,其中正确说 法的个数是( )
A.
B.
C.
D.
5. (3 分)下列图形中的五边形 ABCDE 都是正五边形,则这些图形中的轴对称 图形有( )
2018年江苏省无锡市中考真题数学
2018年江苏省无锡市中考真题数学一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.下列等式正确的是( )2=3=32=-3解析:根据二次根式的性质把各个二次根式化简,判断即可.答案:A.2.函数y=24xx-中自变量x的取值范围是( )A.x≠-4B.x≠4C.x≤-4D.x≤4解析:由题意得,4-x≠0,解得x≠4.答案:B.3.下列运算正确的是( )A.a2+a3=a5B.(a2)3=a5C.a4-a3=aD.a4÷a3=a解析:根据合并同类项法则,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.答案:D.4.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( )A.B.C.D.解析:利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.答案:C.5.下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有( )A.1个B.2个C.3个D.4个解析:直接利用轴对称图形的性质画出对称轴得出答案.答案:D.6.已知点P(a,m),Q(b,n)都在反比例函数y=-2x的图象上,且a<0<b,则下列结论一定正确的是( )A.m+n<0B.m+n>0C.m<nD.m>n解析:根据反比例函数的性质,可得答案.答案:D.7.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( ) A.100元 B.95元 C.98元 D.97.5元解析:由表可知,这5天中,A 产品平均每件的售价为9011095100100801056011050110100806050⨯+⨯+⨯+⨯+⨯++++=98(元/件).答案:C.8.如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A.0B.1C.2D.3解析:连接DG 、AG ,作GH ⊥AD 于H ,连接OD ,如图,先确定AG=DG ,则GH 垂直平分AD ,则可判断点O 在HG 上,再根据HG ⊥BC 可判定BC 与圆O 相切;接着利用OG=OG 可判断圆心O 不是AC 与BD 的交点;然后根据四边形AEFD 为⊙O 的内接矩形可判断AF 与DE 的交点是圆O 的圆心.答案:C.9.如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A.等于37B.等于3C.等于3 4D.随点E位置的变化而变化解析:根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.答案:A.10.如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有( )A.4条B.5条C.6条D.7条解析:如图,将各格点分别记为1、2、3、4、5、6、7,画树状图如下:由树状图可知点P由A点运动到B点的不同路径共有5种.答案:B.二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试卷附答案解析(word版)
2 0 1 8 年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O 的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
2018年江苏省无锡市中考数学试卷含答案解析word版
2 0 1 8 年江省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:售价x(元/件)9095100105110销量y(件)110100806050则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O 与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH 的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
江苏省无锡市中考数学试卷含答案解析(word版)
2018年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑) 1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5 B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个 B.2个 C.3个 D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a <0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销售记录,其售价x (元/件)与对应销量y (件)的全部数据如下表:则这5天中,A 产品平均每件的售价为( )A .100元B .95元C .98元D .97.5元8.(3分)如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;(3)BC 与圆O 相切,其中正确说法的个数是( )A .0B .1C .2D .39.(3分)如图,已知点E 是矩形ABCD 的对角线AC 上的一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( )A .等于B .等于C .等于D .随点E 位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( )A.4条 B.5条 C.6条 D.7条二、填空题(本大题共8小题,每小题2分,共16分。
江苏省无锡市2018中考数学试题及答案WORD版
2018 无锡中考试卷一、选择题: (本大题共 10 小题,每题 3 分 共 30 分)1. 以下等式正确的选项是( A )A.3 2B.3 23 C.333 D.23=332. 函数 y2x 中自变量 x 的取值范围是( B ) A. x4 4 x x 4 x 4 x 4 B. C. D.3. 以下运算正确的选项是( D )A. a2a3a5B.a23a 5 C. a 4 a 3aD. a 4 a 3 a4. 下边每个图形都是由 6 个边长同样的正方形拼成的图形,此中能折叠成正方体的是( C )A.B. C. D.5. 以下图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有(D)A.1 个个个个2 6. 已知点 P ( a ,m )、Q ( b ,n )都在反比率函数 yx的图像上, 且 a<0<b, 则以下结论必定建立的是 ( D )A. m+n<0B.m+n>0C.m<nD.m>n7.某商场为认识产品 A 的销售状况, 在上个月的销售记录中, 随机抽取了 5 天 A 产品的销售记录, 其售价 x (元/ 件)与对应的销售量 y (件)的所有数据以下表:售价 x (元 / 件) 90 95 100 105 110 销量 y (件)110100 806050则这 5 天中, A 产品均匀每件的售价为(C ) A.100 元 元元元8.如图,矩形 ABCD 中, G 是 BC 中点,过 A 、D 、G 三点的圆 O 与边 AB 、CD 分别交于点 E 、点 F ,给出以下说法:( 1) AC 与 BD 的交点是圆 O 的圆心;( 2) AF 与 DE 的交点是圆 O 的圆心; BC 与圆 O 相切。
此中正确的说法的个数是( C )9.如图,已知点 E 是矩形 ABCD 的对角线 AC 上一动点,正方形 EFGH 的极点 G 、 H 都在边 AD 上,若 AB=3,BC=4,则 tan ∠ AFE 的值( A )A.等于3B. 等于3C. 等于3D. 随点 E 地点的变化而变化734【解答】EF ∥ AD ∴∠ AFE=∠ FAG△AEH ∽△ ACD∴ EH3AH4设 EH=3x,AH=4x∴ HG=GF=3x∴ tan ∠ AFE=tan ∠ FAG=GF= 3x3AG 3x 4x710. 如图是一个沿 3 3 正方形格纸的对角线 AB 剪下的图形,一质点 P 由 A 点出发,沿格点线每次向右或向上运动 1 个单位长度,则点 P 由 A 点运动到 B 点的不一样路径共有(B)A.4 条B.5 条 条条【解答】BA1'A1'''A A1 A1'' C∴有 5 条路径,选 B二、填空题(本大题共8 小题,每题 2 分,共 16 分)11 、 -2 的相反数的值等于.【解答】 212 、今年“五一”节日时期,我市四个旅行景区共招待旅客约303 000 多人次,这个数据用科学记数法可记为.【解答】10513 、方程x3 x 的解是. x x 1【解答】 x 3 214 x y 2、2 y 的解是.x 5【解答】x 3 y 115 、命题“四边相等的四边形是菱形”的抗命题是.【解答】菱形的四边相等⌒16 、如图,点 A、 B、 C 都在圆 O上, OC⊥ OB,点 A 在劣弧BC上,且 OA=AB,则∠ ABC=.OBCA【解答】 15°2 7, ∠ B=30°,则△ ABC的面积等于.17. 已知△ ABC中, AB=10,AC=【解答】 10 3或15 318、如图,已知∠ XOY=60°,点 A 在边 OX上, OA=2,过点 A 作角形 ABC,点 P 是△ ABC围成的地区(包含各边)内的一点,过点AC⊥ OY于点 C,以 AC为一边在∠ XOY内作等边三 P 作 PD//OY 交 OX于点 D,作 PE//OX 交 OY于点E ,设 OD=a , OE=b,则 a+2b 的取值范围是.YBCEPO D AX【解答】 过 P 作 PH ⊥ OY 交于点 H ,易证 EH=1EP 1 a ∴ a+2b= 2( 1a22b) 2( EH EO) 2OH2当 P 在 AC 边上时, H 与 C 重合,此时 OH min OC 1, (a 2b)min 2 当 P 在点 B 时, OH max3 5 51, ( a 2b)max22∴ 2≤ (a 2b)≤ 5YBHaCE2PabOaXDA19 、(此题满分 8 分)计算:(1)( 2)23 ( 6)0;( 2) ( x 1)2(x 2 x)【解答】 ( 1)11( 2) 3x 120、(此题满分 8 分)( 1)分解因式: 3x 32 x 1 x 1,① 27 x( 2)解不等式:1(2x 1),②x -1 3【解答】( 1) 3x(x 3)( x 3)( 2) -2< x ≤ 221、(此题满分8 分)如图,平行四边形ABCD中, E、 F 分别是边BC、 AD的中点,求证:∠ABF=∠ CDE【解答】ABCD为平行四边形AD=AB,CE=AF,∠ C=∠A易证△ ABF≌△ CDE( SAS)∠ABF=∠ CDE22、(此题满分6 分)某汽车交易市场为认识二手轿车的交易状况,将本市昨年景交的二手轿车的所有数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E 五类,并依据这些数据由甲、乙令人分别绘制了下边的两幅统计图(图都不完好)请依据以上信息,解答以下问题:( 1)该汽车交易市场昨年共交易二手车3000辆(2)把这幅条形统计图增补完好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年江苏省无锡市中考数学试卷一、选择题:(本大题共10小题,每小题3分 共30分) 1.下列等式正确的是( A ) A.()23=3 B.()332-=- C.333= D.()332-=-2.函数xxy -=42中自变量x 的取值范围是( B ) A.4-≠x B.4≠x C.4-≤x D.4≤x3.下列运算正确的是( D ) A.532a a a =+ B.()532a a = C.a a a =-34 D.a a a =÷344.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是( C )A. B. C. D.5.下列图形中的五边形ABCDE 都是正五边形,则这些图形中的轴对称图形有( D )A.1个B.2个C.3个D.4个6. 已知点P (a ,m )、Q (b ,n )都在反比例函数xy 2-=的图像上,且a<0<b,则下列结论一定成立的是( D )A. m+n<0B.m+n>0C.m<nD.m>n 7. 某商场为了解产品A 的销售情况,在上个月的销售记录中,随机抽取了5天A 产品的销A.100元B.95元C.98元D.97.5元8. 如图,矩形ABCD 中,G 是BC 中点,过A 、D 、G 三点的圆O 与边AB 、CD 分别交于点E 、点F ,给出下列说法:(1)AC 与BD 的交点是圆O 的圆心;(2)AF 与DE 的交点是圆O 的圆心;BC 与圆O 相切。
其中正确的说法的个数是( C ) A.0 B.1 C.2 D.39. 如图,已知点E 是矩形ABCD 的对角线AC 上一动点,正方形EFGH 的顶点G 、H 都在边AD 上,若AB=3,BC=4,则tan ∠AFE 的值( A ) A. 等于73B.等于33C.等于43 D.随点E 位置的变化而变化【解答】EF ∥AD∴∠AFE=∠FAG △AEH ∽△ACD ∴43=AH EH 设EH=3x,AH=4x ∴HG=GF=3x∴tan ∠AFE=tan ∠FAG=AG GF =73433=+x x x10. 如图是一个沿33⨯正方形格纸的对角线AB 剪下的图形,一质点P 由A 点出发,沿格点线每次向右或向上运动1个单位长度,则点P 由A 点运动到B 点的不同路径共有( B ) A.4条 B.5条 C.6条 D.7条【解答】A1'''AA1'∴有5条路径,选B二、填空题(本大题共8小题,每小题2分,共16分) 11、-2的 相反数的值等于 . 【解答】212、今年“五一”节日期间,我市四个旅游景区共接待游客约303 000多人次,这个数据用科学记数法可记为 . 【解答】53.0310⨯13、方程31x xx x -=+的解是 . 【解答】32x =-14、225x y x y -=⎧⎨+=⎩的解是 .【解答】31x y =⎧⎨=⎩ 15、命题“四边相等的四边形是菱形”的逆命题是 . 【解答】 菱形的四边相等16、如图,点A 、B 、C 都在圆O 上,OC ⊥OB ,点A 在劣弧⌒BC 上,且OA=AB ,则∠ABC= .【解答】15°17.已知△ABC中,AB=10,AC=,∠B=30°,则△ABC的面积等于.【解答】18、如图,已知∠XOY=60°,点A在边OX上,OA=2,过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD//OY交OX于点D,作PE//OX交OY于点E,设OD=a,OE=b,则a+2b的取值范围是 .【解答】过P作PH⊥OY交于点H,易证EH=1122EP a=∴a+2b=12()2()22a b EH EO OH+=+=当P在AC边上时,H与C重合,此时min1OH OC==,min(2)2a b+=当P在点B时,max35122OH=+=,max(2)5a b+=∴2(25)a b+≤≤19、(本题满分8分)计算:(1)02)6(3)2(--⨯-; (2))()1(22x x x --+【解答】 (1)11 (2)31x + 20、(本题满分8分)(1)分解因式:x x 2733- (2)解不等式:⎪⎩⎪⎨⎧⋅⋅⋅⋅⋅⋅⋅-≤⋅⋅⋅⋅⋅⋅⋅->+②),12(311-x ①,112x x x【解答】(1)3(3)(3)x x x +-(2)-2<x ≤2 21、(本题满分8分)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点,求证:∠ABF=∠CDE【解答】ABCD 为平行四边形 AD=AB,CE=AF,∠C=∠A易证△ABF ≌△CDE (SAS )∴∠ABF=∠CDE 22、(本题满分6分)某汽车交易市场为了解二手轿车的交易情况,将本市去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A 、B 、C 、D 、E 五类,并根据这些数据由甲、乙令人分别绘制了下面的两幅统计图(图都不完整)请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手车 3000 辆(2)把这幅条形统计图补充完整。
(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为 54 度【解答】23、某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队。
但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名。
初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率。
(请用“画树状图”或“列表”或“列举”等方法给出分析过程) 【解答】 41 方法一:总共的个数是4,符合条件的个数是1∴41=P 方法二:24、(本题满分8分)如图,四边形ABCD 内接于圆心O ,AB=17,CD=10,∠A=90°,cos B=53,求AD 的长。
DB【解答】 DA ⊥AB ∴∠DAB=90° 在圆O 中 ∴∠DCB=90°延长AD 、BC 交于点E ,易证∠B=∠EDC∴53=ED DC ∴350=ED53cos =B∴34tan =B在△EAB 中,EA=3683417=⨯∴DA=EA-ED=350368-=625、(本题满分8分)一水果店是A 酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg 的这种水果,已知水果店每售出1kg 该水果可获利润10元,未售出的部分每1kg 将亏损6元。
以x (单位:kg ,30002000≤≤x )表示A 酒店本月对这种水果的需求量,y (元)表示水果店销售这批水果所获得的利润。
(1)求y 关于x 的函数表达式;(2)问:当A 酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?【解答】解:(1)当26002000≤≤x 时,y=10x-6(2600-x)=16x-15600 当30002600≤<x 时,y=2600×10=26000∴y=⎩⎨⎧≤<≤≤-)30002600(26000)26002000(1560016x x x(3)①当26002000≤≤x 时y=16x-15600≥22000x ≥2350∴2350≤x ≤2600 ②当30002600≤<x 时,y=26000>22000,成立 综上所述:2350≤x ≤3000不少于2200026、(本题满分10分)如图,平面直角坐标系中,已知点B 的坐标为(6,4)(1)请用直尺(不带刻度)和圆规作一条直线AC ,它与x 轴和y 轴的正半轴分别交于点A 和点C ,且使∠ABC=90°,△ABC 与△AOC 的面积相等。
(作图不必写作法,但要保留作图痕迹。
)(2)问:(1)中这样的直线AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线AC ,并写出与之对应的函数表达式。
xyOB【解答】解:(1)过B 作BA ⊥x 轴,过B 作BC ⊥y 轴 (2)不唯一,∵ABC AOC ∆≅∆,设A (a ,0) ∴OA=BA a=()2246+-a a=313∴A (313,0) 设C (0,c ) ∴CO=CB , c=()2264+-c c=213∴C (0,213) 21323:+-=x y l AC 或432+-=x y27、(本题满分10分)如图,矩形ABCD 中,AB=m ,BC=n ,将此矩形绕点B 顺时针方向旋转θ(0°<θ<90°)的到矩形A 1BC 1D 1,点A 1在边CD 上,(1)若m=2,n=1,求在旋转过程中,点D 到点D 1所经过路径的长度;(2)将矩形A 1BC 1D 1继续绕点B 顺时针方向旋转得到矩形A 2BC 2D 2,点D 2在BC 的延长线上,设边A 2B 与CD 交于点E ,若161A E EC =,求nm的值。
2D D【解答】(1)作A 1H ⊥AB ,且得Sin ∠A 1BH=1/2∴∠A1BH=30°,∴∠DBD 1=30° ∴点D 的运动轨迹为ππ65523603000= (2)易证△BCE ∽△BA 2D 2∴222A D CE CB A B =mn ∴CE=2n m 6AC 61∵1=∴=+ECEC E A AC=mn 26 ∴ BH=AC=22n -m =m n 26 22n -m =246m n 224n -m m =46n44226m n -1mn =设t =22mn 1-t=62t解得t=31∴3n m = 28、已知;如图,一次函数1y kx =-的图象经过点A(m )(m>0),与y 轴交于点B ,点C ,在线段AB 上,且BC=2AC ,过点C 作x 轴的垂线,垂足为点D ,若AC=CD ,(1)求这个一次函数的表达式;(2)已知一开口向下,以直线CD 为对称轴的抛物线经过点A ,它的顶点为P ,若过点P 且垂直于AP 的直线与x 轴的交点为Q(5-,0)求这条抛物线的函数表达式。
【解答】作BE ⊥CD,AF ⊥BE ,AM ⊥CD易证△BEC ∽△BFA ∴BC BE BA BF= ∵BC=2AC ,A(m )23= ∴C (k-1)又∵1y kx =-易得251k +∵AC=CD 251k +=2所以得到k=5(3)设2(y a x h =-+ A (,5)h ×(h-5)=(5h =72(7y a x =-+5a+7=5 a=25- 即22(75y x =--+ -1。