潼关县高中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潼关县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
2. 执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( ) A .4
B .5
C .6
D .7
3. 已知集合A ,B ,C 中,A ⊆B ,A ⊆C ,若B={0,1,2,3},C={0,2,4},则A 的子集最多有( ) A .2个 B .4个 C .6个 D .8个
4. 在曲线y=x 2上切线倾斜角为的点是( )
A .(0,0)
B .(2,4)
C .(,

D .(,)
5. 设函数()y f x =对一切实数x 都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同的实根,则这6个实根的和为( )
A.18
B.12
C.9
D.0
【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力. 6. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )
A .2015
B .2016
C .2116
D .2048
7. 已知()(2)(0)x b g x ax a e a x =-->,若存在0(1,)x ∈+∞,使得00()'()0g x g x +=,则b a
的 取值范围是( )
A .(1,)-+∞
B .(1,0)- C. (2,)-+∞ D .(2,0)- 8. 如图,长方形ABCD 中,AB=2,BC=1,半圆的直径为AB .在长方形ABCD 内随机取一点,则该点取自阴影部分的概率是( )
A .
B .1﹣
C .
D .1﹣
9. S n 是等差数列{a n }的前n 项和,若3a 8-2a 7=4,则下列结论正确的是( ) A .S 18=72 B .S 19=76 C .S 20=80
D .S 21=84
10.给出下列两个结论:
①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;
②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;
则判断正确的是( ) A .①对②错
B .①错②对
C .①②都对
D .①②都错
11.给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各
面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )
A .0
B .1
C .2
D .3 12.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)
B .45(8)
C .50(8)
D .55(8)
二、填空题
13.设函数f (x )=

①若a=1,则f (x )的最小值为 ;
②若f (x )恰有2个零点,则实数a 的取值范围是 .
14.设变量x ,y 满足约束条件
,则的最小值为 .
15.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 .
16.已知()2
12811f x x x -=-+,则函数()f x 的解析式为_________.
17.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的
,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次
服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”) 18.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .
三、解答题
19.如图,在四棱柱中,
底面




(Ⅰ)求证:平面

(Ⅱ)求证:; (Ⅲ)若
,判断直线
与平面
是否垂直?并说明理由.
20.已知斜率为2的直线l 被圆x 2+y 2+14y+24=0所截得的弦长为,求直线l 的方程.
21.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
22.(本题满分15分)
已知抛物线C 的方程为2
2(0)y px p =>,点(1,2)R 在抛物线C 上.
(1)求抛物线C 的方程;
(2)过点(1,1)Q 作直线交抛物线C 于不同于R 的两点A ,B ,若直线AR ,BR 分别交直线:22l y x =+于
M ,N 两点,求MN 最小时直线AB 的方程.
【命题意图】本题主要考查抛物线的标准方程及其性质以及直线与抛物线的位置关系等基础知识,意在考查运算求解能力.
23.如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是等腰梯形,AB=CD=AD=1,BC=2,E ,M ,N 分别是所在棱的中点.
(1)证明:平面MNE ⊥平面D 1DE ; (2)证明:MN ∥平面D 1DE .
24.已知等差数列{a n},满足a3=7,a5+a7=26.
(Ⅰ)求数列{a n}的通项a n;
(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和S n.
潼关县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】D
【解析】解:若a>0>b,则,故A错误;
若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;
若a>0>b且a,b互为相反数,则a2>b2,故C错误;
函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;
故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
2.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6

若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
3.【答案】B
【解析】解:因为B={0,1,2,3},C={0,2,4},且A⊆B,A⊆C;
∴A⊆B∩C={0,2}
∴集合A可能为{0,2},即最多有2个元素,
故最多有4个子集.
故选:B.
4.【答案】D
【解析】解:y'=2x,设切点为(a,a2)
∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,
∴a=,
在曲线y=x 2
上切线倾斜角为的点是(,).
故选D .
【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.
5. 【答案】A.
【解析】(3)(3)()(6)f x f x f x f x +=-⇔=-,∴()f x 的图象关于直线3x =对称,
∴6个实根的和为3618⋅=,故选A. 6. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图. 7. 【答案】A
【解析】

点:1、函数零点问题;2、利用导数研究函数的单调性及求函数的最小值.
【方法点晴】本题主要考查函数零点问题、利用导数研究函数的单调性、利用导数研究函数的最值,属于难题.利用导数研究函数()f x 的单调性进一步求函数最值的步骤:①确定函数()f x 的定义域;②对()f x 求导;③令()0f x '>,解不等式得的范围就是递增区间;令()0f x '<,解不等式得的范围就是递减区间;④根据单
调性求函数()f x 的极值及最值(若只有一个极值点则极值即是最值,闭区间上还要注意比较端点处函数值的大小).
8. 【答案】B
【解析】解:由题意,长方形的面积为2×1=2,半圆面积为,所以阴影部分的面积为2﹣,由几何概型
公式可得该点取自阴影部分的概率是;
故选:B .
【点评】本题考查了几何概型公式的运用,关键是明确几何测度,利用面积比求之.
9. 【答案】
【解析】选B.∵3a 8-2a 7=4, ∴3(a 1+7d )-2(a 1+6d )=4,
即a 1+9d =4,S 18=18a 1+18×17d 2=18(a 1+17
2d )不恒为常数.
S 19=19a 1+19×18d
2=19(a 1+9d )=76,
同理S 20,S 21均不恒为常数,故选B. 10.【答案】C
【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.
②根据逆否命题的定义可知②正确. 故选C .
【点评】考查特称命题,全称命题,和逆否命题的概念.
11.【答案】B 【解析】111]
试题分析:由题意得,根据几何体的性质和结构特征可知,多面体是若干个平面多边形所围成的图形是正确的,故选B .
考点:几何体的结构特征. 12.【答案】D
【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20
=45(10).
再利用“除8取余法”可得:45(10)=55(8). 故答案选D .
二、填空题
13.【答案】≤a<1或a≥2.
【解析】解:①当a=1时,f(x)=,
当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,
当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,
当1<x<时,函数单调递减,当x>时,函数单调递增,
故当x=时,f(x)min=f()=﹣1,
②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)
若在x<1时,h(x)=与x轴有一个交点,
所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,
而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,
所以≤a<1,
若函数h(x)=2x﹣a在x<1时,与x轴没有交点,
则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,
当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),
当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,
综上所述a的取值范围是≤a<1,或a≥2.
14.【答案】4.
【解析】解:作出不等式组对应的平面区域,
则的几何意义为区域内的点到原点的斜率,
由图象可知,OC的斜率最小,
由,解得,
即C (4,1),
此时=4, 故的最小值为4, 故答案为:4
【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.
15.【答案】 2 .
【解析】解:∵一组数据2,x ,4,6,10的平均值是5, ∴2+x+4+6+10=5×5, 解得x=3,
∴此组数据的方差 [(2﹣5)2+(3﹣5)2+(4﹣5)2+(6﹣5)2+(10﹣5)2]=8,
∴此组数据的标准差S==2

故答案为:2

【点评】本题考查一组数据的标准差的求法,解题时要认真审题,注意数据的平均数和方差公式的求法.
16.【答案】()2
245f x x x =-+ 【解析】
试题分析:由题意得,令1t x =-,则1x t =+,则()22
2(1)8(1)11245f t t t t t =+-++=-+,所以函数()
f x 的解析式为()2
245f x x x =-+.
考点:函数的解析式. 17.【答案】
, 无.
【解析】【知识点】等比数列
【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,
所以)=300,=350.
由,
所以是一个等比数列,
所以
所以若该患者坚持长期服用此药无明显副作用。

故答案为:, 无.
18.【答案】6.
【解析】解:双曲线的方程为4x2﹣9y2=36,即为:
﹣=1,
可得a=3,
则双曲线的实轴长为2a=6.
故答案为:6.
【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.
三、解答题
19.【答案】
【解析】【知识点】垂直平行
【试题解析】(Ⅰ)证明:因为,平面,平面,
所以平面.
因为,平面,平面,
所以平面.
又因为,
所以平面平面.
又因为平面,
所以平面.
(Ⅱ)证明:因为底面,底面,
所以.
又因为,,
所以平面.
又因为底面,
所以.
(Ⅲ)结论:直线与平面不垂直.
证明:假设平面,
由平面,得.
由棱柱中,底面,
可得,,
又因为,
所以平面,
所以.
又因为,
所以平面,
所以.
这与四边形为矩形,且矛盾,
故直线与平面不垂直.
20.【答案】
【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,
所以,圆心坐标是(0,﹣7),半径长r=5.…
因为直线l被圆所截得的弦长是,
所以,弦心距为,
即圆心到所求直线l的距离为.…
因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.
所以圆心到直线l的距离为,…
因此, 解得b=﹣2,或b=﹣12.… 所以,所求直线l 的方程为y=2x ﹣2,或y=2x ﹣12.
即2x ﹣y ﹣2=0,或2x ﹣y ﹣12=0.… 【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方
与弦长一半的平方的和的灵活运用.
21.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭

试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为1
2k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫
⎪⎝⎭

(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦=
令()0p x '=,得极值点11x =,21
21
x a =-,
①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
. (利用参数分离得正确答案扣2分)
(3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+ 记()()22115
ln 39
y f x f x x x =-=-,()1,x ∈+∞.
因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝
为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =
时,min 59
180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个
22.【答案】(1)2
4y x =;(2)20x y +-=.
【解析】(1)∵点(1,2)R 在抛物线C 上,2
2212p p =⨯⇒=,…………2分
即抛物线C 的方程为2
4y x =;…………5分
23.【答案】
【解析】证明:(1)由等腰梯形ABCD中,
∵AB=CD=AD=1,BC=2,N是AB的中点,∴NE⊥DE,
又NE⊥DD1,且DD1∩DE=D,
∴NE⊥平面D1DE,
又NE⊂平面MNE,
∴平面MNE⊥平面D1DE.…
(2)等腰梯形ABCD中,
∵AB=CD=AD=1,BC=2,N是AB的中点,∴AB∥DE,∴AB∥平面D1DE,又DD1∥BB1,则BB1∥平面D1DE,
又AB∩BB1=B,∴平面ABB1A1∥平面D1DE,
又MN⊂平面ABB1A1,∴MN∥平面D1DE.…
24.【答案】
【解析】解:(Ⅰ)设{a n}的首项为a1,公差为d,
∵a5+a7=26
∴a6=13,,
∴a n=a3+(n﹣3)d=2n+1;
(Ⅱ)由(1)可知,
∴.。

相关文档
最新文档