第一章 有理数 考点3 数轴(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数(解析板)
3、数轴
知识点梳理
数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向.
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大.
同步练习
一.选择题(共11小题)
1.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()
①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.
A.①②B.①④C.②③D.③④
【考点】数轴.
【分析】数轴可知b<0<a,|b|>|a|,求出ab<0,a﹣b>0,a+b<0,根据以上结论判断即可.
【解答】解:∵从数轴可知:b<0<a,|b|>|a|,
∴①正确;②错误,
∵a>0,b<0,
∴ab<0,∴③错误;
∵b<0<a,|b|>|a|,
∴a﹣b>0,a+b<0,
∴a﹣b>a+b,∴④正确;
即正确的有①④,
故选:B.
【点评】本题考查了数轴,有理数的乘法、加法、减法等知识点的应用,关键是能根据
数轴得出b<0<a,|b|>|a|.
2.数轴上A、B、C三点所代表的数分别是a、1、c,且|c﹣1|﹣|a﹣1|=|a﹣c|.若下列选项中,有一个表示A、B、C三点在数轴上的位置关系,则此选项为何?()
A.
B.
C.
D.
【考点】数轴;绝对值.
【分析】从选项数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|.看是否成立.【解答】解:∵数轴上A、B、C三点所代表的数分别是a、1、c,设B表示的数为b,∴b=1,
∵|c﹣1|﹣|a﹣1|=|a﹣c|.
∴|c﹣b|﹣|a﹣b|=|a﹣c|.
A、b<a<c,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a=|a﹣c|.正确,
B、c<b<a则有|c﹣b|﹣|a﹣b|=b﹣c﹣a+b=2b﹣c﹣a≠|a﹣c|.故错误,
C、a<c<b,则有|c﹣b|﹣|a﹣b|=b﹣c﹣b+a=a﹣c≠|a﹣c|.故错误.
D、b<c<a,则有|c﹣b|﹣|a﹣b|=c﹣b﹣a+b=c﹣a≠|a﹣c|.故错误.
故选:A.
【点评】本题主要考查了数轴及绝对值.解题的关键是从数轴上找出a、B、c的关系,代入|c﹣1|﹣|a﹣1|=|a﹣c|是否成立.
3.在数轴上表示﹣2的点与表示3的点之间的距离是()
A.5B.﹣5C.1D.﹣1
【考点】数轴.
【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.
【解答】解:3﹣(﹣2)
=2+3
=5.
所以在数轴上表示﹣2的点与表示3的点之间的距离为5.
故选:A.
【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.
4.若数轴上表示﹣1和3的两点分别是点A和点B,则点A和点B之间的距离是()A.﹣4B.﹣2C.2D.4
【考点】数轴.
【分析】根据数轴上两点间的距离等于这两个数的差的绝对值列式计算即可得解.【解答】解:AB=|﹣1﹣3|=4.
故选:D.
【点评】本题考查了数轴,主要利用了两点间的距离的表示,需熟记.
5.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()
A.﹣3B.﹣7C.±3D.﹣3或﹣7
【考点】数轴.
【分析】符合条件的点有两个,一个在﹣5点的左边,一个在﹣5点的右边,且都到﹣5点的距离都等于2,得出算式﹣5﹣2和﹣5+2,求出即可.
【解答】解:数轴上距离表示﹣5的点有2个单位的点表示的数是﹣5﹣2=﹣7或﹣5+2=﹣3.
故选:D.
【点评】本题主要考查了数轴,当要求的点在已知点的左侧时,用减法;当要求的点在已知点的右侧时,用加法.
6.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.
C.D.
【考点】数轴.
【分析】根据a+b+c=0可判断三个数中一定有一个正数和一个负数,讨论:若第三个数为负数,根据绝对值的意义得到两负数表示的点到原点的距离等于正数到原点的距离;
若第三个数为正数,则两正数表示的点到原点的距离等于负数到原点的距离,然后利用此特征对各选项进行判断.
【解答】解:已知a+b+c=0,
A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.
B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.
C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.
D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.
故选:D.
【点评】考查了数轴.用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
7.如图所示的图形为四位同学画的数轴,其中正确的是()
A.
B.
C.
D.
【考点】数轴.
【分析】根据数轴的概念判断所给出的四个数轴哪个正确.
【解答】解:A没有原点,故此选项错误;
B、单位长度不统一,故此选项错误;
C、没有正方向,故此选项错误;
D、符合数轴的概念,故此选项正确.
故选:D.
【点评】本题主要考查了数轴的概念:规定了原点、正方向和单位长度的直线叫数轴.特别注意数轴的三要素缺一不可.
8.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()
A.﹣2πB.3﹣2πC.﹣3﹣2πD.﹣3+2π
【考点】数轴.
【分析】线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,点B在原点的左侧,因此点B所表示的数为﹣(2π﹣3)=3﹣2π,于是得出答案.【解答】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π﹣3,
∵点B在原点的左侧,
∴点B所表示的数为﹣(2π﹣3)=3﹣2π,
故选:B.
【点评】考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.
9.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()
A.6B.5C.3D.2
【考点】数轴.
【分析】首先设出BC,根据2AB=BC=3CD表示出AB、CD,求出线段AD的长度,即可得出答案.
【解答】解:设BC=6x,
∵2AB=BC=3CD,
∴AB=3x,CD=2x,
∴AD=AB+BC+CD=11x,
∵A,D两点所表示的数分别是﹣5和6,
∴11x=11,
解得:x=1,
∴AB=3,CD=2,
∴B,D两点所表示的数分别是﹣2和6,
∴线段BD的中点表示的数是2.
故选:D.
【点评】题目考查了数轴的有关概念,利用数轴上的点、线段相关性质,考察学生对数轴知识的掌握情况,题目难易程度适中,适合学生课后训练.
10.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()
A.在A的左边B.介于A、B之间
C.介于B、C之间D.在C的右边
【考点】数轴;绝对值.
【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、
b、c间的关系即可求出a、b、c的值,由此即可得出结论.
【解答】解:∵|a﹣b|=3,|b﹣c|=5,
∴b=a+3,c=b+5,
∵原点O与A、B的距离分别为4、1,
∴a=±4,b=±1,
∵b=a+3,
∴a=﹣4,b=﹣1,
∵c=b+5,
∴c=4.
∴点O介于B、C点之间.
故选:C.
【点评】本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.
11.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()
A.﹣6B.6C.0D.无法确定
【考点】数轴;相反数.
【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.
【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,
∴点B表示的数为6,
故选:B.
【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.二.填空题(共17小题)
12.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为﹣6.
【考点】数轴.
【分析】先根据已知条件可以确定线段AB的长度,然后根据点B、点C关于点A对称,设设点C所表示的数为x,列出方程即可解决.
【解答】解:设点C所表示的数为x,
∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,
∴AB=4﹣(﹣1),AC=﹣1﹣x,
根据题意AB=AC,
∴4﹣(﹣1)=﹣1﹣x,
解得x=﹣6.
故答案为:﹣6.
【点评】本题主要考查实数与数轴的对应关系和轴对称的性质,熟练掌握对称性质是解本题的关键.
13.如果数轴上的点A对应的数为﹣1,那么与A点相距3个单位长度的点所对应的有理数为﹣4或2.
【考点】数轴.
【分析】考虑在A点左边和右边两种情形解答问题.
【解答】解:在A点左边与A点相距3个单位长度的点所对应的有理数为﹣4;
在A点右边与A点相距3个单位长度的点所对应的有理数为2.
故答案为﹣4或2.
【点评】此题考查数轴上点的位置关系,注意分类讨论.
14.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是﹣1.
【考点】数轴.
【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.
【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,
∴线段AB的中点所表示的数=(﹣4+2)=﹣1.
即点C所表示的数是﹣1.
故答案为:﹣1
【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=2b+2c﹣2a.
【考点】数轴;绝对值.
【分析】去绝对值符号的关键是判断绝对值符号里面的数的符号,根据题意确定了符号,容易去绝对值符号.
【解答】解:根据图形,a﹣b<0,b+c>0,c﹣a>0,所以|a﹣b|+|b+c|+|c﹣a|=b﹣a+b+c+c ﹣a=2b+2c﹣2a.
故答案是:2b+2c﹣2a.
【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
16.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“1或6站台”.
【考点】数轴.
【分析】先根据两点间的距离公式得到AB的长度,再根据AP=2PB求得AP的长度,再用﹣加上该长度即为所求.
【解答】解:AB=﹣(﹣)=,
AP=×=,
P:﹣+==1;
或AP=×2=,
P:﹣+=6.
故P站台用类似电影的方法可称为“1或6站台”.
故答案为:1或6.
【点评】此题考查了数轴,关键是用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
17.在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是2或﹣6.【考点】数轴.
【分析】由于题目没有说明该点的具体位置,故要分情况讨论.
【解答】解:当该点在﹣2的右边时,
由题意可知:该点所表示的数为2,
当该点在﹣2的左边时,
由题意可知:该点所表示的数为﹣6,
故答案为:2或﹣6
【点评】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.
18.如图,数轴上,点A表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A2019表示的数是﹣3029.
【考点】数轴.
【分析】奇数次移动是左移,偶数次移动是右移,第n次移动3n个单位.每左移右移各一次后,点A右移3个单位,故第2018次右移后,点A向右移动3×(2018÷2)个单位,第2019次左移2019×3个单位,故点A2019表示的数是3×(2018÷2)﹣2019×3+1.【解答】解:第n次移动3n个单位,第2019次左移2019×3个单位,每左移右移各一次后,点A右移3个单位,
所以A2019表示的数是3×(2018÷2)﹣2019×3+1=﹣3029.
故答案为:﹣3029.
【点评】本题考查数轴上点的移动规律,确定每次移动方向和距离的规律,以及相邻两次移动的后的实际距离和方向是解答次题的关键.
19.在数轴上,点A表示的数是3+x,点B表示的数是2﹣x,且A,B两点的距离为8,则x= 3.5或﹣4.5.
【考点】数轴.
【分析】分两种情况:①当点A在点B左侧时,②当点A在点B右侧时,分别根据距离为8,列方程求解.
【解答】解:①当点A在点B左侧时,
2﹣x﹣(3+x)=8,
解得:x=﹣4.5;
②当点A在点B右侧时,
3+x﹣(2﹣x)=8,
解得:x=3.5.
故答案为:3.5或﹣4.5
【点评】本题考查了一元一次方程的应用以及数轴的知识,解答本题的关键是读懂题意,注意分情况列方程求解.
20.数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为﹣1或5.【考点】数轴.
【分析】分点B在点A的左边和右边两种情况分别求解可得.
【解答】解:当点B在点A的左边的时候,点B表示的数为2﹣3=﹣1;
当点B在点A的右边的时候,点B表示的数为2+3=5;
所以点B表示的数为﹣1或5,
故答案为:﹣1或5.
【点评】本题主要考查数轴,解题的关键是掌握数轴上两点间的距离及分类讨论思想的运用.
21.数轴上表示﹣3的点与表示7的点之间的距离是10.
【考点】数轴.
【分析】数轴上两点间的距离,即两点对应的数的差的绝对值.
【解答】解:数轴上表示﹣3的点与表示7的点之间的距离是7﹣(﹣3)=10.
故答案为:10.
【点评】此题考查了数轴上两点间的距离的求法.
22.一条数轴上有点A、B、C,其中点A、B表示的数分别是﹣16、9,现以点C为折点,将数轴向右对折,若点A对应的点A′落在点B的右边,并且A′B=3,则C点表示的数是﹣2.
【考点】数轴.
【分析】设出点C所表示的数,根据点A、B所表示的数,可以表示出AC的距离,在根据A′B=3,表示出A′C,由折叠得,AC=A′C,列方程求解即可.
【解答】解:设点C所表示的数为x,则AC=x+16,BC=9﹣x,
∵A′B=3,B点表示的数为9,
∴点A′表示的数为9+3=12,
根据折叠得,AC=A′C
∴x+16=12﹣x,
解得,x=﹣2,
故答案为:﹣2.
【点评】考查数轴表示数的意义,掌握数轴上两点之间的距离公式是解决问题的关键,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为AB=|a﹣b|.
23.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,点A4表示的数,是7,如果点A n与原点的距离不小于20,那么n的最小值是13.
【考点】数轴.
【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,于是可得到A13表示的数为﹣17﹣3=﹣20,A12表示的数为16+3=19,则可判断点A n与原点的距离不小于20时,n的最小值是13.
【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;
第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;
第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;
第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;
第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;
…
则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,
A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,
所以点A n与原点的距离不小于20,那么n的最小值是13.
故答案为7,13.
【点评】本题考查了规律型问题,认真观察、仔细思考,找出点表示的数的变化规律是解决问题的关键.
24.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是﹣4或2.【考点】数轴.
【分析】此题可借助数轴用数形结合的方法求解.由于点与﹣1的距离为3,那么应有两个点,记为A1,A2,分别位于﹣1两侧,且到﹣1的距离为3,这两个点对应的数分别是﹣1﹣3和﹣1+3,在数轴上画出A1,A2点如图所示.
【解答】解:因为点与﹣1的距离为3,
所以这两个点对应的数分别是﹣1﹣3和﹣1+3,
即为﹣4或2.
故答案为﹣4或2.
【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.
25.已知在数轴上,位于原点左边的点A到原点的距离是5,那么点A所表示的数是﹣5.【考点】数轴.
【分析】根据题意求出点A表示的数即可.
【解答】解:根据题意得:A点表示的数为﹣5.
故答案为:﹣5.
【点评】此题考查了数轴,解题是注意:数轴上点A到原点的距离等于5个单位的数有5与﹣5,题中点A位于原点左边这个条件.
26.a、b、c在数轴上的对应点的位置如图所示,下列式子:①a+b>0;②a+b>a+c;③bc >ac;④ab>ac.其中正确的有(填上序号)①②③④
【考点】数轴.
【分析】先确定a,b,c的关系,再运用不等式的性质判定大小.
【解答】解:由数轴上数的位置可得c<0<b<a,
①a+b>0;正确,②a+b>a+c;正确,③bc>ac,正确,④ab>ac正确,
所以4个式子都正确,
故选答案为:①②③④
【点评】本题主要考查了数轴及不等式的性质,解题的关键是运用不等式的性质判定大小.
27.数轴上到原点的距离小于3个单位长度的点中,表示整数的点共有7个.【考点】有理数;数轴.
【分析】利用数形结合的思想,结合数轴观察即可得出正确结果.
【解答】解:画出数轴,如下图
从数轴上可以看到,若|a|<3.5,则﹣3.5<a<3.5,
表示整数点可以有:﹣3,﹣2,﹣1,0,1,2,3共七个
故答案为7.
【点评】本题考查的是绝对值的概念,结合数轴理解绝对值的定义更为简单.
28.在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【考点】数轴.
【分析】此类题注意两种情况:要求的点可以在已知点的左侧或右侧.
【解答】解:若点在﹣1的左面,则点为﹣4;
若点在﹣1的右面,则点为2.
故答案为:2或﹣4.
【点评】注意:要求的点在已知点的左侧时,用减法;要求的点在已知点的右侧时,用加法.
三.解答题(共9小题)
29.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:
(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
【考点】数轴.
【分析】(1)根据路程除以速度等于时间,可得答案;
(2)根据相遇时P,Q的时间相等,可得方程,根据解方程,可得答案;
(3)根据PO与BQ的时间相等,可得方程,根据解方程,可得答案.
【解答】解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.
则10÷2+x÷1=8÷1+(10﹣x)÷2,
解得x=.
故相遇点M所对应的数是.
(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:
①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.
②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.
③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.
④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.
综上所述:t的值为2、6.5、11或17.
【点评】本题考查了数轴,一元一次方程的应用,利用PO与BQ的时间相等得出方程是解题关键,要分类讨论,以防遗漏.
30.在数轴上表示下列各数:0,﹣4.2,,﹣2,+7,,并用“<”号连接.
【考点】数轴.
【分析】先分别把各数化简为0,﹣4.2,,﹣2,7,,再在数轴上找出对应的点,注意在数轴上标数时要用原数,最后比较大小的结果也要用化简的原数.
【解答】解:
这些数分别为0,﹣4.2,,﹣2,7,,在数轴上表示出来如图所示,根据这些点在数轴上的排列顺序,从左至右分别用“<”连接为:
﹣4.2<﹣2<0<<+7.
【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
31.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N 以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).
(1)数轴上点B对应的数是30,点B到点A的距离是40;
(2)经过几秒,原点O是线段MN的中点?
(3)经过几秒,点M,N分别到点B的距离相等?
【考点】数轴.
【分析】(1)根据点A表示的数为﹣10,OB=3OA,可得点B对应的数,点B对应的数减去点A对应的数就是点B到点A的距离;
(2根据题意列方程解答即可;
(3)根据题意分M,N在B点同侧异侧列方程解答即可.
【解答】解:(1)因为点A表示的数为﹣10,OB=3OA,
所以OB=3OA=30,30﹣(﹣10)=40.
故B对应的数是30,点B到点A的距离是40,
故答案为:30,40;
(2)设经过y秒,原点O是线段MN的中点,根据题意得
﹣10+3y+2y=0,解得y=2.
答:经过2秒,原点O是线段MN的中点;
(3)设经过x秒,点M、点N分别到点B的距离相等,根据题意得
3x﹣40=30﹣2x或﹣10+3x=2x,解得x=14或x=10.
答:经过14秒或10秒,点M、点N分别到点B的距离相等.
【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
32.【阅读理解】
点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.
例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】
如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.
(1)数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?
【考点】数轴.
【分析】(1)根据定义发现:奇点表示的数到{M,N}中,前面的点M是到后面的数N 的距离的3倍,从而得出结论;
根据定义发现:奇点表示的数到{N,M}中,前面的点N是到后面的数M的距离的3倍,从而得出结论;
(2)点A到点B的距离为80,由奇点的定义可知:分4种情况列式:①PB=3P A;②P A =3PB;③AB=3P A;④P A=3AB;可以得出结论.
【解答】解:(1)5﹣(﹣3)=8,
8÷(3+1)=2,
5﹣2=3;
﹣3+2=﹣1.
故数3所表示的点是{M,N}的奇点;数﹣1所表示的点是{N,M}的奇点;
(2)30﹣(﹣50)=80,
80÷(3+1)=20,
30﹣20=10,
﹣50+20=﹣30,
﹣50﹣80÷3=﹣76(舍去),
﹣50﹣80×3=﹣290(舍去).
故P点运动到数轴上的﹣30或10位置时,P、A和B中恰有一个点为其余两点的奇点.故答案为:3;﹣1.
【点评】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.
33.【新知理解】
如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.
(1)若AC=3,则AB=3π+3;
(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC=BD;(填“=”或“≠”)
【解决问题】
如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.
(3)若点M、N是线段OC的圆周率点,求MN的长;
(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.
【考点】数轴;一元一次方程的应用.
【分析】(1)根据线段之间的关系代入解答即可;
(2)根据线段的大小比较即可;
(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度;
(4)根据圆周率伴侣线段的定义可求D点所表示的数.
【解答】解:(1)∵AC=3,BC=πAC,
∴BC=3π,
∴AB=AC+BC=3π+3.
故答案为:3π+3;
(2)∵点D、C都是线段AB的圆周率点且不重合,
∴BC=πAC,AD=πBD,
∴设AC=x,BD=y,则BC=πx,AD=πy,
∵AB=AC+BC=AD+BD,
∴x+πx=y+πy,
∴x=y
∴AC=BD
故答案为:=.
(3)由题意可知,C点表示的数是π+1,
M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,
x+πx=π+1,解得x=1,
∴MN=π+1﹣1﹣1=π﹣1;
(4)设点D表示的数为x,
如图1,若CD=πOD,则π+1﹣x=πx,解得x=1;
如图2,若OD=πCD,则x=π(π+1﹣x),解得x=π;
如图3,若OC=πCD,则π+1=π(x﹣π﹣1),解得x=π++2;
如图4,若CD=πOC,则x﹣(π+1)=π(π+1),解得x=π2+2π+1;
综上,D点所表示的数是1、π、π++2、π2+2π+1.
【点评】本题主要考查了数轴和一元一次方程的应用,解题关键是要读懂题目的意思,
根据题目给出的条件,找出合适的等量关系列出方程,再求解.
34.如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(结果保留π)
(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣2π;
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;
(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.第几次滚动后,A点距离原点最近?
第几次滚动后,A点距离原点最远?
【考点】正数和负数;数轴.
【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;
(2)利用圆的半径以及滚动周数即可得出滚动距离;
(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.
【解答】解:(1)把圆片沿数轴向左滚动1周,点A到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣2π;
故答案为:无理,﹣2π;
(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;
故答案为:4π或﹣4π;
(3)∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,
∴第4次滚动后,A点距离原点最近;第3次滚动后,A点距离原点最远.
【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.
35.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、。