人教版数学六年级下册正比例教案模板(推荐3篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学六年级下册正比例教案模板(推荐3篇)
人教版数学六年级下册正比例教案模板【第1篇】
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。
】
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。
(如果没有学生说教师可做适当引导。
)师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。
】
二、揭示课题、探索新知。
1、小黑板出示例5
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1)学生自己解答。
(2)交流解答方法,并说说自己想法。
算式是:12.8÷8×10
=1.6×10
=16(元)。
(先算出每吨水的价钱,再算出10吨水需要多少钱。
)(也可以先求出用水量的倍数关系再求总价。
)
10÷8×12.8
=1.25×12.8
=16(元)
【设计意图:用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。
】
师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。
(板书课题:用比例解决问题)(3)小黑板出示以下问题让学生思考和讨论:
1)题目中相关联的两种量是()和( ) ,说说变化情况。
2)()一定,()和()成()比例关系。
3)用关系式表示是()
(4)集体交流、反馈
板书:水费用水吨数
12.8元 8吨
?元 10吨
水费:用水吨数 = 每吨水的价钱(一定)
师概括:因为水价一定,所以水费和用水的吨数成正比例。
也就
是说,两家的水费和用水的吨数的比值是相等的。
(5)根据正比例的意义列出比例式(方程):
学生独立完成,教师巡视。
反馈学生解题情况。
8
12.8
10
χ
解:设李奶奶家上个月的水费是χ元。
12.8 :8 =χ:10 或 =
8χ=12.8×10 8χ= 12.8×10
χ=128÷8 χ=128÷8
χ= 16 χ= 16
答:李奶奶家上个月的水费是16元。
【设计意图:在教师引导下,学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。
在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。
】(6)将答案代入到比例式中进行检验。
你认为李奶奶用了10吨水交16元钱,这个答案符合实际吗?你是怎么判断的?
生交流,汇报。
2、变式练习。
刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?出现下面的练习:张大妈:我们家上个月用了8吨水,水费是12.8元。
王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?
(1)比较一下改编后的题和例5有什么联系和区别?
(2)学生独立用比例的知识解决这个问题。
指名板演。
(教师巡视)
(3)集体订正,学生说一说你是怎么想的?
3、概括总结
师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用比例解决问题的思考过程是怎样的?
学生讨论交流,汇报。
师总结:
1、分析找出题目中相关联的两种量。
2、判断他们是否是正比例关系。
3、根据正比例的意义列出比例。
4、最后解比例。
5、检验作答。
【设计意图:归纳解题的策略,有助于提高学生解决问题的能力。
】
三、巩固练习,形成技能。
1、解决课前提出的问题。
小明在解决这一问题时,采集到了下
面信息:在下午1时旗杆旁的一棵高2米的小树影长1.5米,旗杆影长9米,你能根据这些信息解决求旗杆高吗
师提醒:同一时间、同一地点的身高和影长成正比例。
学生读题后,先思考以下三个问题。
①题中已知哪两种相关联的量?
②它们成什么比例关系?你是根据什么判断的?
②你能列出等式吗?
生独立完成,并汇报解答过程。
2、教科书P60“做一做”。
生独立解答。
【设计意图:通过练习的巩固,提高学生解决问题的能力。
同时从学生的生活实际入手,引导学生把所学的知识运用与生活实践,从中体会所学知识的生活价值。
】
四、全课总结
通过今天的学习,你有什么收获?
五、布置作业
练习九第3、5题。
人教版数学六年级下册正比例教案模板【第2篇】
一、教学目标
1、知识与技能目标:从实例中认识正比例,并能理解正比例的意义,会判断两种相关联的量是不是成正比例。
2、过程与方法目标:学生经历动手操作、合作探究等学习过程,培
养合作能力以及创新意识。
3、情感态度及价值观目标:在探究正比例意义的过程中,学生进一步体会数学与日常生活的密切联系。
二、教学重点
理解正比例的意义
三、教学难点
正确判断两个量是否成正比例的关系。
四、教学过程
1、情境导入
在上课之初,教师请学生们观察大屏幕回答上面的问题“已知路程和时间,怎么求速度?已知总价和数量,怎么求单价?”预设学生会回答为:路程/时间=速度,总价/数量=单价。
教师简单评价后再次提问,这些数量关系有什么特征,你能用正比例的相关知识解答么?进而引出新课。
新课新授
活动一:探究正比例的意义
首先,教师请学生观察屏幕中的统计表,并思考“根据表中的数据,你有什么发现”,独立思考后四人为一小组进行讨论。
预设小组讨论的结果为:行驶的路程随着时间的变化而变化;行驶的时间越长,行驶的路程越多;时间越短,行驶的路程越少;80÷1=80,160÷2=80......行驶的速度不变。
教师进行讲解后,顺势引导学生写出几组相对应的路程和时间的比,并求出比值。
预设学生会回答为:80/1=80,160/2=80,240/3=80.......教师询问比值80,表示什么?
进而表明。
可以用路程/时间=速度(一定)来表示这几个量之间的关系。
最后得出结论:当路程和相对应的时间的比的比值关系总是一定(也就是速度一定)时,行驶的路程和时间成正比例关系,行驶的路程和时间是成正比例。
使学生初步感知什么是正比例。
活动二:正比例意义的应用
首先,在学生们理解什么是正比例后,教师请学生观察屏幕上的表格,并完成填表。
预设学生会发现总价是随着数量的变化而变化的;写出0.4/1=0.4,0.8/2=0.4,1.2/3=0.4的几组对应的总价和数量的比,并且发现比值是相等的,都是0.4;比值表示的是单价,用式子表示为总价/数量=单价(一定);铅笔的总价和数量成正比例,因为总价和相对应的数量的比的比值总是一定的。
最后得出结论:如果这里我们用字母x和y表示两种相关联的量,用k表示它们的比值,不管x、y是扩大还是缩小,k的值一直不变时,正比例的关系就可以写作:y/x=k(一定)。
我们就会说x、y成正比例。
3、巩固练习
生活中还有哪些成正比例的量,你能举例说一说吗?
4、小结
教师提问:大家分享今天的学习成果?学生回答后教师总结完善。
5、作业
完成课后练习
(本文稿件985字,同学们根据面试时长进行增减)
人教版数学六年级下册正比例教案模板【第3篇】
教材分析:
正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。
本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。
教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。
学情分析:
学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。
在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。
教学目标:
1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学重点:
1、结合丰富的事例,认识正比例,理解正比例的好处。
2、能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学难点:
能根据正比例的好处,决定两个相关联的量是不是成正比例。
教学用具:
课件
教学过程:
一、在情境中感受两种相关联的量之间的变化规律。
(一)情境一
1、一种汽车行驶的速度为90千米/小时。
汽车行驶的时间和路程如下
2、请把下表填写完整。
3、从表中你发现了什么规律?
说说你发现的规律:路程与时间的比值(速度)相同。
(二)情境二
1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。
2、把表填写完整。
3、从表中发现了什么规律?
应付的钱数与质量的比值(也就是单价)相同。
4、说说以上两个例子有什么共同的特点。
小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。
(三)情境三
1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。
请根据你的观察,把数据填在表中。
2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?
说说从数据中发现了什么?
3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值必须都是4。
正方形的面积一边长的比是边长,是一个不确定的值。
(四)归纳正比例的好处
1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。
那么我们说路程和时间成正比例。
2、购买苹果应付的钱数与质量有什么关系?
3、正方形的周长与边长有什么关系?
4、观察思考成正比例的量有什么特征?
一个量变化,另一个量也随着变化,并且这两个量的比值相同。
5、小结
两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。
二、巩固练习
1、想一想
正方形的周长与边长成正比例吗?面积与边长呢?为什么?
师小结:
(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。
请你也试着说一说。
(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。
请生用自己的语言说一说。
2、小明和爸爸的年龄变化状况如下
小明的年龄/岁67891011
爸爸的年龄/岁3233
(1)把表填写完整。
(2)父子的年龄成正比例吗?为什么?
(3)爸爸的年龄=小明的年龄+26。
虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。
与同桌交流,再群众汇报
三、全课总结:
说说你在这节课中学到了什么知识?有什么不明白的地方?
板书设计:
正比例
路程÷时间=速度(必须)
总价÷数量=单价(必须)
正方形的周长÷边长=4(必须)
两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。