高分子科学简史
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类重要的材料,具有广泛的应用领域。
本文将从高分子材料的起源开始,概述其发展历程,并探讨未来的发展趋势。
一、高分子材料的起源1.1 古代高分子材料的应用在古代,人们已经开始使用高分子材料。
例如,古埃及人使用胶质物质制作胶合剂,用于修补陶器和建筑物。
1.2 高分子材料的科学发现高分子材料的科学发现可以追溯到19世纪。
1833年,法国科学家布朗提出了“高聚物”这个概念,并成功合成了天然高分子材料,如橡胶和纤维素。
1.3 高分子材料的工业化应用随着科学技术的发展,高分子材料的工业化应用逐渐增多。
20世纪初,合成高分子材料的工业化生产取得了重大突破,如合成橡胶和塑料的工业化生产。
二、高分子材料的发展历程2.1 高分子材料的分类高分子材料可以分为塑料、橡胶和纤维三大类。
塑料主要用于制造各种制品,橡胶主要用于制造胶制品,纤维主要用于纺织和制造复合材料。
2.2 高分子材料的改性和功能化随着科学技术的不断进步,人们对高分子材料进行了改性和功能化处理,使其具备更多的优良性能,如增强材料的强度、改善材料的耐热性等。
2.3 高分子材料的应用领域扩展高分子材料的应用领域不断扩展,涵盖了汽车工业、电子工业、医疗器械、航空航天等多个领域。
高分子材料的应用推动了相关行业的发展。
三、高分子材料的未来发展趋势3.1 绿色环保的发展方向未来,高分子材料的发展将更加注重环保性能。
人们将致力于研发可降解的高分子材料,减少对环境的污染。
3.2 高性能材料的研究与应用随着科学技术的不断进步,人们对高分子材料的研究将更加深入,开发出更多的高性能材料,满足不同领域的需求。
3.3 多功能材料的发展未来,高分子材料将朝着多功能材料的方向发展。
人们将研发具有多种功能的高分子材料,以满足不同应用领域的需求。
四、结论高分子材料经历了漫长的发展历程,取得了巨大的成就。
未来,高分子材料将继续发展,并朝着绿色环保、高性能和多功能等方向不断进步。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势一、引言高分子材料是一类重要的工程材料,具有广泛的应用领域,如塑料、橡胶、纤维等。
本文将对高分子材料的发展历程以及未来发展趋势进行详细的探讨。
二、高分子材料的发展历程1. 早期发展阶段高分子材料的早期发展可以追溯到19世纪末的天然高分子材料,如橡胶和纤维素。
这些材料具有一定的弹性和韧性,但存在着一些缺陷,如耐候性差、易老化等。
2. 合成高分子材料的突破20世纪初,合成高分子材料的研究取得了重大突破。
1907年,化学家蔡斯勒发现了合成橡胶的方法,这标志着合成高分子材料的时代的开始。
随后,聚合物的合成方法不断改进,如聚乙烯、聚丙烯等材料的合成,为高分子材料的广泛应用奠定了基础。
3. 高分子材料的工业化应用20世纪中叶,高分子材料开始在工业领域得到广泛应用。
塑料制品、橡胶制品、纤维制品等在日常生活中得到了广泛应用。
高分子材料的特点,如轻质、耐腐蚀、绝缘性能好等,使其成为替代传统材料的理想选择。
4. 高分子材料的改性与功能化近年来,高分子材料的改性与功能化成为研究的热点。
通过添加改性剂、填充剂等,可以改善高分子材料的性能,如增加强度、提高耐热性等。
同时,高分子材料的功能化也受到了广泛关注,如具有自愈合能力的材料、具有导电性能的材料等。
三、高分子材料的未来发展趋势1. 绿色环保随着环保意识的提高,高分子材料的绿色环保性将成为未来发展的重要趋势。
研究人员将致力于开发可降解高分子材料,以减少对环境的影响。
同时,通过改进合成方法和降低能源消耗,减少对环境的污染。
2. 高性能未来高分子材料的发展将注重提高其性能。
研究人员将致力于开发具有更高强度、更好耐热性、更低摩擦系数等性能的高分子材料,以满足不同领域的需求。
3. 智能化高分子材料的智能化将成为未来的发展方向。
研究人员将致力于开发具有自愈合能力、自感应能力、自适应能力等智能功能的高分子材料。
这些材料可以在受到外界刺激时实现自我修复或自我调节,具有广泛的应用前景。
高分子学科简介
1920年施陶丁格发表了“论聚合”的论文,他从研究甲醛 和丙二烯的聚合反应出发,认为聚合不同于缔合,分子靠正 常的化学键结合起来。这篇论文的发表,就像在一潭平静的 湖水扔进一块石头,触发了一场严肃而又激烈的学术论战。
美国人Carothers 1896-1937(杜邦公司) 风靡一时的尼龙袜
3)、Ziegler和Natta配位聚合反应
20世纪五十年代中期,等规PE、PP聚合反应成功 (诺贝尔化学奖)
Ziegler 德国人
基础研究 与工业化 的完美结 合
Natta 意大利
4)、Merrifield和功能高分子的发展
能源工业
输电工程 轻便、容易 运输、安装
高分子材料的消耗率
3. 高分子学科的发展简史
人们没有高分子的概念,但木材、棉、麻、丝、漆、橡胶、 皮革和各种树脂等天然高分子材料都已经在人们的生活和 生产中得到了广泛的应用
高分子学说是难产儿,经过50年的争论才诞 生。在其诞生以前,已开始了合成高分子材 料的生产。高分子学说创立以前,不能忘记 的几个人和事。 1)Goodyear和天然橡胶的硫化(1839)
1926年,瑞典化学家斯维德伯格用超高速离心机 成功地测量了血红蛋白的平衡沉降,由此证明了高分子 的分子量的确是从几万到几百万。而在美国,卡罗瑟斯 通过缩合反应得到了分子量在2万以上的聚合物,支持了 大分子学说。 1932年,施陶丁格总结了自己的大分子理论,出版了 《有机高分子化合物——橡胶和纤维素》,成为高分子 科学诞生的标志。
高分子科学发展简史
高分子科学发展简史人类的进化和社会进步的历史,始终与人类对天然高分子材料的加工和利用的进步过程密不可分。
棉、麻、丝、毛的加工纺织,造纸,鞣革和生漆调制等分别是人类对天然高分子进行物理加工和化学加工的早期例证,虽然当时并未提出高分子的概念。
直到19世纪中后期,西方化学工作者才扩大了对天然高分子进行化学改性的范围,以下对高分子科学发展史中的重要事件作一简述:1839年,对天然橡胶进行硫化加工;1868年,赛璐璐(硝化纤维素)问世;1898年,粘胶纤维问世;1907年,酚醛树脂问世;1911年,丁钠橡胶问世。
酚醛树脂和丁钠橡胶分别是高分子科学建立以前人类合成的第一个缩聚物和第一个加聚物。
20世纪初期,虽然当时仍未正式提出高分子的概念,但是已经取得的一些化学研究成果开始酝酿着高分子科学的诞生。
例如当时人们终于研究明白,天然橡胶是由异戊二烯构成;淀粉和纤维素是由葡萄糖构成;蛋白南是由氨基酸构成等等。
这些研究成果对于高分子科学的建立起到了直接催化和促进作用。
20世纪20年代是高分子科学诞生的年代,1920年,德国人H.Staudinger 首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖,他被公认为高分子科学的始祖。
1925年,聚醋酸乙烯酯(PVAc)实现工作化;1928年,聚甲基丙烯酸甲酯(有机玻璃,PMMA)和聚乙烯醇(PVA)问世;1931年,聚氯乙烯(PVC)、氯丁橡胶问世;1934年,美国人W.H.Carothers 成功地合成尼龙-66,并于1938年实现工业化。
稍后他的学生P.J.Flory 提出了聚合反应的等活性理论,并提出聚酯动力学和连锁聚合反应机理,从而获得1974 年度诺贝尔化学奖。
1939年,低密度聚乙烯(LDPE)即高压聚乙烯问世;1940年,丁苯橡胶(SBR)、丁基橡胶问世;1941年,聚对苯二甲酸乙二醇酯(涤纶,PET)问世;1943年,聚四氟乙烯(PTFE)问世;1948年,维尼纶问世;1950年,聚丙烯腈(腈纶,PAN)问世;1955年,顺丁橡胶问世;1953年,德国人K.Ziegler和意大利人G. Natta各自独立地采用络合催化剂成功地合成出高密度聚乙烯(HDPE)即低压聚乙烯以及聚丙烯(PP),并于1955年实现工业化。
《高分子科学的历史》课件
早期的科学家和他们的贡献
拜耳
德国化学家,提出了高分子概念,并研究了天然橡胶的化学改性 。
卡罗瑟斯
美国化学家,发明了聚合物合成方法,并合成了尼龙-66等聚合物 。
皮尔兹
德国化学家,研究了聚合物结构和性能的关系,提出了高分子链的 构象统计理论。
01
高分子科学的发展 历程
动态共价键聚合
动态共价键聚合是一种基于可逆共价键的聚合方法,通过可逆共价键的断裂和重组实现聚合物的合成和 降解。这种方法具有环境友好、可逆性强、结构可控等优点,为高分子材料的研究和应用提供了新的方 向。
高分子材料的性能优化
高性能聚合物
智能高分子材料
高分子复合材料
高性能聚合物是指具有优异力学性能 、耐高温、耐腐蚀等性能的聚合物材 料。近年来,通过分子设计、化学改 性等方法,不断开发出高性能聚合物 ,如聚酰亚胺、聚醚醚酮等,这些聚 合物在航空航天、电子信息等领域具 有广泛的应用前景。
20世纪初的发展
1906年,拜耳(A.Bayer)和哈克(C.W.Hackh)提出了高分子学说,标 志着高分子科学的诞生。
1920年,费歇尔(F.C.Fischer)和斯图姆普(R.M.Stumpf)首次合成了 聚合物,为高分子合成奠定了基础。
1927年,美国杜邦公司成功开发了尼龙-66,引发了合成纤维的革命。
对社会的影响
促进经济发展
高分子材料广泛应用于工 业、医疗、交通等领域, 为社会经济发展提供了重 要支撑。
提高生活质量
高分子材料在日常生活用 品、医疗器械、电子产品 等方面的应用,提高了人 们的生活质量。
推动科技进步
高分子科学的发展促进了 相关领域的科技进步,如 化学、物理、生物医学等 。
Chap1-高分子分子量与分子量分布
2000
重均分子量
Mw
iWi M
i
(10000 10004
10000
4 10004
1) 10000
(3)粘均分子量 用粘度法测定,用得普遍。
[] KMa
M
i Wi
M
i
1/
α:高分子稀溶液特性粘数分子量关系式[η]=K Mηα中的指数,一般在0.5~0.9之间。
2 n
0
N(M )(M
Mn )2dM
N (M )M 2dM
0
0
N
(M
)M
n
2dM
2
0 N (M )MnMdM
(M 2)n
(Mn)2
Mw
i ni Mi2 i ni Mi
i ni Mi2 / i ni Mi /
i ni (M 2 )n
高分子物理内容
高高 高聚 聚 聚聚聚 聚
分分 分合 合 合合合 合
子子 子物 物 物物物 物
的溶 多的 的 的的的 的
链液 组非 结 屈高其 分
结性 分晶 晶 服弹他 析
构质 体态 态 和性性 和
系
断和质 研
裂粘
究
弹
方
高分子结构
性
法
高分子性能
高分子结构与性能的联系
高分子的结构
高分子的性能
高分子的运动
Ci RTC Mi
Mi Ci
RTC ni RT C
niMi
Mn
蒸汽压渗透法
溶液
DT 溶剂
在一恒温密闭的容器内充有某种溶剂的饱和蒸气,这时如将一滴不 挥发溶质的溶液滴和溶剂滴悬在这个饱和蒸气中,由于溶液滴中溶质的蒸 气压较低,就会有溶剂分子从饱和蒸气相中跑出来,而凝聚到溶液滴上, 并放出凝聚热,使溶液滴的温度升高,纯溶剂滴的挥发速度与凝聚速度相 等,温度不发生变化。平衡时,溶液滴与溶剂滴的温差与溶液中溶质的摩 尔份数成正比。从而求出溶质分子量。
高分子科学的发展历程
1948年美国Paul Flory 建立了高分子长链结构的数 学理论,1974年荣获诺贝尔化学奖
主要贡献:
利用等活性假设及直接的统计方法,他计算了高分子 分子量分布,即最可几分布,并利用动力学实验证实 了等活性假设; 引入链转移概念,将聚合物统计理论用于非线性分子, 产生了凝胶理论; Flory-Huggins格子理论; 1948年作出了最重要的贡献,即提出“排除体积” 理论和θ温度概念; 他的著作“Principles of polymer chemistry” (1953)是高分子学科中的Bible。
Heeger、 MacDiarmid(美)、 白川英树(日) 2000 化学奖 导电高分子研究,聚乙炔掺杂后,电导率从 3.2x10-6Ω-1cm-1增加到38Ω-1cm-1,提高了1000万倍(接近铝、铜) 提出孤子概念
Alan J. Heeger
1936
Alan G. MacDiarmid
b. 1927
Hideki Shirakawa
b. 1936
白川英树(Shirakawa)从事聚乙炔聚合机理研究
韩国研修生出现幸运的失误,使白川得到膜状聚乙炔
偶然的机遇,麦克迪尔米德(MacDiarmid)首先注意 到白川的聚乙炔膜。
Hale Waihona Puke 三人在美国合作研究。 黑格(Heeger)为了说明聚乙炔的导电性,提出孤子的
高分子科学 发展历程
由碳纤维和铝合 金制成的赛车底 盘
1839年 美国人 Charles Goodyear 发现天然橡胶与硫磺 共热后明显地改变了 性能,使它从硬度较 低、遇热发粘软化、 遇冷发脆断裂的不实 用的性质,变为富有 弹性、可塑性的材料。
橡胶园
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势一、发展历程高分子材料是指由高分子化合物构成的材料,具有重量轻、强度高、耐磨损、耐腐蚀等优点,广泛应用于各个领域。
下面将介绍高分子材料的发展历程。
1. 早期阶段高分子材料的起源可以追溯到19世纪末20世纪初,当时的研究主要集中在天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和强度,但在加工和耐久性方面存在一些问题。
2. 合成高分子材料的发展20世纪初,合成高分子材料的研究开始兴起。
1907年,化学家Leo Hendrik Baekeland发现了第一个合成塑料——酚醛树脂,这被认为是合成高分子材料的里程碑。
随后,聚氯乙烯、聚丙烯、聚苯乙烯等合成塑料相继问世,推动了高分子材料的发展。
3. 高分子材料的应用扩展随着合成高分子材料的不断发展,高分子材料的应用范围也不断扩大。
在20世纪中叶,高分子材料开始广泛应用于电子、汽车、建筑、医疗等领域。
例如,聚碳酸酯被用于制造光学镜片,聚酰胺用于制造纤维和塑料等。
4. 高分子材料的功能化近年来,高分子材料的研究重点逐渐转向了功能化。
通过在高分子材料中引入特定的功能基团或添加剂,可以赋予材料特殊的性能,如导电性、磁性、光学性等。
这使得高分子材料在电子、光电子、生物医学等领域的应用得到了进一步拓展。
二、未来发展趋势高分子材料在各个领域的应用前景广阔,下面将介绍未来高分子材料的发展趋势。
1. 环保可持续发展随着环保意识的提高,未来高分子材料的发展将更加注重环境友好型和可持续发展。
研究人员将致力于开发可降解的高分子材料,以减少对环境的影响。
同时,通过改进材料的生产过程,降低能源消耗和废弃物产生,实现循环利用。
2. 高性能材料的研究未来,高分子材料的研究将更加注重材料的性能提升。
例如,开发高强度、高韧性的高分子材料,以满足航空航天、汽车等领域对材料强度和耐久性的要求。
同时,研究人员还将关注高分子材料的导电性、光学性等特殊性能,以满足电子、光电子等领域的需求。
高分子科学历史
高分子科学历史1. 高分子学说创立以前高分子的发展1.1 天然橡胶及其硫化工艺英国人把原产于巴西的橡胶树引种到了东南亚,使橡胶树得以推广。
当时的橡胶主要用于制造防雨布、防雨鞋等,但是无法克服夏天发粘、冬天变脆的问题,难于真正推广应用。
1839年美国人Goodyear受当时钢铁工业发展的启示,开始尝试用各种化学品对橡胶进行改性,但是始终不太成功,包括用硫磺。
后来一次偶然性的事故给他带来了成功,他在研究保存橡胶的方法时,不小心把橡胶和硫磺的混合物洒在了热火炉上,他把它刮起来、冷却后发现这东西再没有了粘性、而且还具有弹性、不再溶解,他沿着这条路线走下去,终于发明了橡胶的硫化技术。
但是他本人并没有获得好处,为了获得专利权他打了好几年的官司,身背20多万美元的债务,穷困交加,死于1860年。
他死后,官司胜诉,1898年美国建立了第一家汽车轮胎公司,为了纪念Goodyear该公司就以其名字作为商标,至今仍然是世界上最大的轮胎生产企业,中文一般翻译为“固特异”轮胎。
也正是由于他的贡献,所有橡胶的交联技术统称为“硫化”不管用不用硫磺。
1.2 赛璐珞和赛璐玢瑞士科学家舍拜恩是一个实验迷,他除了在实验室进行实验以外,*还把实验室搬到了自己的厨房。
一次实验时,他不小心将盛有浓硝酸和浓硫酸混酸的烧瓶打破,酸液流到了地上,他顺手拿起夫人的围裙擦掉了酸液,并用水冲洗后,开始在火炉上烘烤,结果围裙在没有很干的情况下突然着了火,这令舍拜恩非常震惊。
他开始设计实验让纤维素和硝酸/硫酸反应,发现是硝酸与纤维素发生了反应,而硫酸只是催化剂,因此他发明了硝酸纤维素。
它极易燃烧,剧烈燃烧可以发生爆炸,而且基本没有烟,逐渐代替了黑火药成为炸药,当时的欧洲很多国家建立了被称为火棉炸药的生产企业,但是硝酸纤维素太容易燃烧了,造成了很多爆炸事故,损失惨重,诺贝尔发明了TNT炸药后,它作为炸药方面的应用被遗弃。
当时美国的贵族们流行打台球,台球最初由象牙制造,价格昂贵,同时来源受到极大限制,有一家公司出资1万美元悬赏寻找制造台球的原料。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势高分子材料是一类以聚合物为基础的材料,具有重要的应用价值和广泛的应用领域。
本文将详细介绍高分子材料的发展历程以及未来的发展趋势。
一、发展历程1. 早期发展阶段(20世纪初-20世纪30年代)在20世纪初,人们开始研究可塑性高分子材料,如塑料。
1907年,白朗宁发明了世界上第一个合成塑料——尼龙。
随后,人们开始研究其他合成塑料材料,如聚乙烯、聚丙烯等。
这一时期的高分子材料主要应用于日常生活用品和包装材料。
2. 高分子材料的快速发展(20世纪40年代-20世纪80年代)在第二次世界大战期间,高分子材料得到了快速发展。
人们开始研究高分子材料的结构和性能,并开发了更多种类的高分子材料,如聚氯乙烯、聚苯乙烯、聚碳酸酯等。
这些材料具有优异的物理和化学性能,被广泛应用于汽车、电子、建筑等领域。
3. 高分子材料的功能化发展(20世纪90年代至今)随着科学技术的进步,人们开始对高分子材料进行功能化改性,使其具有更多的特殊性能和应用功能。
例如,人们通过添加纳米材料、改变分子结构等方法,使高分子材料具有优异的导电性、热稳定性、抗菌性等特殊功能。
此外,人们还研究了生物可降解高分子材料,以应对环境问题和可持续发展的需求。
二、未来发展趋势1. 绿色环保未来,高分子材料的发展趋势将更加注重绿色环保。
人们将致力于研究生物可降解高分子材料,以替代传统的塑料材料。
这些生物可降解材料可以在自然环境中迅速分解,减少对环境的污染。
此外,人们还将研究可回收利用的高分子材料,以实现资源的循环利用。
2. 高性能未来,高分子材料的发展将趋向于高性能化。
人们将继续研究功能化改性的方法,使高分子材料具有更多的特殊性能,如高强度、高导电性、高热稳定性等。
这将推动高分子材料在电子、航空航天、能源等领域的应用。
3. 多功能化未来,高分子材料将趋向于多功能化的发展。
人们将研究制备具有多种特殊功能的高分子材料,以满足不同领域的需求。
高分子化学发展简史
高分子化学发展简史人们在研究高分子化合物的制备及应用过程中,建立了高分子科学,而高分子科学的建立,又推动了高分子化学工业的发展。
高分子化学的发展,体现在以下两个方面:高分子工业:早期的高分子化合物主要是一些天然产物,如纤维素、淀粉、蛋白质、天然橡胶、生漆、桐油漆等,其形态有棉、麻、木、纸张、果实、丝、毛、革、虫胶等。
进入19世纪,人们开始对天然高分子化合物进行改性并试图人工合成。
1839年,Goodyear发明了天然橡胶的硫化,使之用于制作轮胎。
1868年,Hyatt发明了硝化纤维素,1870年进行了工业化生产。
1907年,德国合成出酚醛树脂。
20世纪初,一些聚合物如丁钠橡胶(1911~1913年)、聚醋酸乙酯(1925年工业化)、醇酸树脂(1926年)、脲醛树脂(1929年)等已被合成出来。
20世纪30~40年代,是高分子科学的创立时期。
高分子科学的创立,又推动了高分子工业的发展。
这期间有大量的高分子材料出现,如PVC(1931)、PS(1934)、LDPE(1939)、ABS (1948)等塑料;氯丁胶(1931)、丁基胶(1940)、丁苯胶(1940) 等橡胶;尼龙-66 (1938)、PET(1941)、维纶(1948)等纤维。
20世纪50~60年代是高分子工业的大发展时期,期间新产品不断出现。
如SBS(50年代)、HDPE (1953~55)、PP (1955~57)、BR(1959)、PC(1957)、PPO(1964)、Polysulfone (1965)、PBT(1970)、聚芳酰胺Nomex纤维(1967—1972)、异戊橡胶(1962)、乙丙橡胶(1961)等。
70年代,高分子工业向着高效化、自动化、大型化方向发展,出现了230m3的PVC 悬浮聚合釜、30万吨级的PE、PP工厂等。
同时还发展了高分子共混物(高分子合金),如ABS、MBS、HIPS等,以及高分子复合材料如碳纤维复合材料等。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类具有高分子结构的材料,具有独特的物理性质和化学性质。
随着科学技术的发展,高分子材料在各个领域得到广泛应用,如医药、电子、航空航天等。
本文将从高分子材料的发展历程和未来发展趋势两个方面进行探讨。
一、高分子材料的发展历程1.1 早期发展阶段在20世纪初期,高分子材料的研究主要集中在合成橡胶和塑料方面。
最早的合成高分子材料是由化学家发现的,如合成橡胶和聚乙烯等。
1.2 高分子材料的应用拓展随着科学技术的不断进步,高分子材料的应用领域逐渐扩大,如高分子纤维、高分子涂料、高分子膜等,广泛应用于纺织、建筑、航空等领域。
1.3 高分子材料的研究成果高分子材料的研究成果不断涌现,如聚合物合成技术的改进、高分子材料性能的优化等,为高分子材料的应用提供了坚实的基础。
二、高分子材料的未来发展趋势2.1 绿色环保未来高分子材料的发展趋势将更加注重绿色环保,提倡可降解高分子材料的研究和应用,减少对环境的污染。
2.2 高性能材料未来高分子材料将朝着高性能材料的方向发展,如高强度、高韧性、高温耐受性等,以满足各个领域对材料性能的需求。
2.3 智能化材料未来高分子材料的发展将趋向于智能化材料,如具有自修复功能、自感应功能等,以满足未来科技发展对材料的需求。
三、高分子材料的应用前景3.1 医疗领域高分子材料在医疗领域的应用前景广阔,如生物医用材料、医用高分子膜等,为医疗器械和医疗治疗提供了新的解决方案。
3.2 电子领域高分子材料在电子领域的应用前景也很广泛,如柔性电子材料、有机光电材料等,为电子产品的发展提供了新的可能性。
3.3 航空航天领域高分子材料在航空航天领域的应用前景也十分广泛,如高强度高韧性的高分子复合材料,为航空航天器件的制造提供了新的选择。
四、高分子材料的挑战与机遇4.1 挑战高分子材料在研发过程中面临着一些挑战,如材料的稳定性、可降解性等问题,需要不断进行研究和改进。
高分子化学发展简史
编辑ppt
24
RO组件及其装置
编辑ppt
25
电渗析
电渗析是一种膜分离设备,是利用膜的选择透过性对水 中的物质进行分离而达到除盐等预期目的的一种水处理 设备。电渗析是在外加直流电场的作用下,利用阴离子 交换膜(简称阴膜,它只允许阴离子通过而阻挡阳离子) 和阳离子交换膜(简称阳膜,它只允许阳离子交换膜通 过而阻挡阴离子)的选择透过性,使一部分离子透过离 子交换膜迁移到另一部分水中去,从而使一部分水淡化 而另一部分水浓缩。
● 海水淡化、苦咸水淡化、饮用水降氟:苦限水经过电渗析处 理后可达到饮用水的标准。 ● 饮用纯净水的制取:配合预处理过滤、脱色设备及反渗透、 超滤、消毒设备制取饮用纯净水。 ● 锅炉用软化水、去离子水的制取:与离子交换相比,软化程 度高、效果好,经 电渗析处理后的水的硬度可低于进水的5%。对环境危害小。 ● 食品、制药用水的制取 ● 电子工业用超纯水的制取 ● 液体分离、浓缩、提纯、贵重物质的回收 ● 废水处理:造纸、电镀等工艺废水的处理
编辑ppt
22
丙交酯及共聚物
由丙交酯(LA)及与其它单体,如乙交酯(GA)在催化剂的作用
下聚合而成的高分子共聚物。由于其良好的生物降解性和生物相容性, 可广泛应用与生物医学组织工程,如药物控制释放体系、生物体吸收缝 合材料、骨科固定及组织修复材料等。该材料已被美国FDA批准可用于缓 释药物载体和其他人体植入的装置。我公司研制开发的PLGA,主要应用 于多肽、蛋白质药物的控制释放体系。多肽、蛋白质类药物经PLGA包埋, 制成缓释微球注射剂,可有效拓宽给药途径,提高药物的生物利用率, 减少给药次数和药量,减轻患者的痛苦,最大限度减少药物对全身特别 是肝、肾的毒副作用。
编辑ppt
9
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势引言:高分子材料是一类由大量重复单元组成的大分子化合物,具有广泛的应用领域。
本文将介绍高分子材料的发展历程,并展望其未来的发展趋势。
一、发展历程1. 早期发展阶段高分子材料的研究起源于19世纪末20世纪初,当时主要研究天然高分子材料,如橡胶和纤维素。
这些材料具有良好的柔韧性和可塑性,但缺乏稳定性和耐久性。
2. 合成高分子材料的突破1920年代至1930年代,德国化学家赫尔曼·斯托德尔成功合成了世界上第一个合成高分子材料——聚合物。
这一突破开启了合成高分子材料的新时代。
随后,聚合物的合成方法不断改进,推动了高分子材料的快速发展。
3. 高分子材料的广泛应用20世纪50年代至70年代,高分子材料的应用领域不断扩大。
聚合物被广泛用于塑料制品、纤维材料、涂料、胶粘剂等领域。
同时,高分子材料的性能也得到了极大的提升,如力学性能、耐热性、耐腐蚀性等。
二、未来发展趋势1. 绿色环保未来高分子材料的发展将更加注重环境友好性。
研究人员将致力于开发可降解的高分子材料,以减少对环境的污染。
同时,节能减排和资源循环利用也将成为高分子材料研究的重点。
2. 功能性材料随着科技的进步,高分子材料将朝着功能性方向发展。
例如,研究人员正在开发具有特殊功能的高分子材料,如自修复材料、智能材料和生物医用材料。
这些材料将在医疗、电子、能源等领域发挥重要作用。
3. 纳米技术的应用纳米技术的发展将为高分子材料带来新的突破。
通过纳米级的改变,高分子材料的性能可以得到进一步提升。
例如,纳米复合材料具有优异的力学性能和导电性能,将成为未来高分子材料的重要研究方向。
4. 多功能复合材料未来高分子材料的发展将趋向多功能化。
研究人员将探索不同材料的复合,以获得更好的性能和应用。
例如,高分子基复合材料可以结合金属、陶瓷等材料的优点,具有更高的强度和耐用性。
5. 智能化和自适应性未来高分子材料将朝着智能化和自适应性方向发展。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势引言概述:高分子材料是一类由大量重复单元组成的大分子化合物,具有较高的分子量和多样的物理、化学性质。
自20世纪初以来,高分子材料在各个领域中得到广泛应用,并在科学技术的推动下不断发展。
本文将介绍高分子材料的发展历程以及未来发展的趋势。
一、早期发展阶段1.1 天然高分子材料的发现- 人们早在古代就开始使用天然高分子材料,如皮革、天然橡胶等。
- 1839年,美国化学家查尔斯·戴克斯特尔发现了天然橡胶的弹性,并将其命名为“弹性体”。
1.2 合成高分子材料的诞生- 1907年,美国化学家莱昂纳德·巴斯德成功合成了世界上第一个合成高分子材料——酚醛树脂。
- 1920年代,德国化学家赫尔曼·斯托德尔合成了聚氯乙烯(PVC)。
1.3 高分子材料的应用拓展- 1930年代,高分子材料开始应用于塑料制品、橡胶制品等领域。
- 1940年代,高分子材料在航空、航天等高科技领域得到广泛应用。
二、中期发展阶段2.1 高分子材料的改性与合金化- 1950年代,人们开始将高分子材料进行改性,以改善其性能。
- 1960年代,高分子材料与其他材料进行合金化,形成了高分子合金材料。
2.2 高分子材料的新型结构与功能- 1970年代,人们开始研究高分子材料的新型结构,如共聚物、交联聚合物等。
- 1980年代,高分子材料开始展现出多种新的功能,如导电、光学、生物相容性等。
2.3 高分子材料的环保与可持续发展- 1990年代,人们开始关注高分子材料的环境影响,并提出了环保的研究方向。
- 21世纪初,高分子材料的可持续发展成为研究的热点,如生物可降解材料的研究与应用。
三、近期发展阶段3.1 高分子材料的纳米化与智能化- 近年来,人们将高分子材料进行纳米化处理,以获得更好的性能。
- 同时,高分子材料的智能化也成为研究的重点,如自修复材料、自感应材料等。
3.2 高分子材料的多功能与多场耦合- 近期,高分子材料的多功能化与多场耦合成为研究的热点,如光电、磁电、压电等多种功能的结合。
高分子材料的发展史
高分子材料的发展史高分子材料,作为一种重要的材料类型,其发展历史可以追溯到19世纪末20世纪初。
在当时,人们对于材料的需求日益增加,传统材料已经无法满足人们的需求,于是高分子材料应运而生。
高分子材料是由大量重复单元组成的材料,其分子量较大,具有良好的机械性能、耐磨性能、耐腐蚀性能等特点,因此被广泛应用于各个领域。
20世纪初,人们开始研究合成高分子材料,最早的合成高分子材料是通过聚合反应得到的。
1907年,德国化学家巴赫曼成功合成了世界上第一个合成高分子材料——聚丙烯。
这标志着高分子材料的合成进入了实际阶段。
随后,人们陆续合成了聚乙烯、聚氯乙烯等高分子材料,为高分子材料的发展奠定了基础。
随着合成技术的不断进步,高分子材料的种类也不断增加。
20世纪50年代,人们成功合成了聚酰胺、聚碳酸酯等高性能高分子材料,这些高分子材料具有优异的力学性能和耐高温性能,被广泛应用于航空航天、电子、汽车等领域。
此后,高分子材料的研究和应用进入了快速发展阶段,新型高分子材料不断涌现,为人类社会的发展做出了重要贡献。
随着科技的不断进步,高分子材料的性能和应用领域也在不断拓展。
近年来,人们成功研发出了一系列功能性高分子材料,如形状记忆高分子材料、自修复高分子材料等,这些材料不仅具有传统高分子材料的优良性能,还具有新颖的功能特性,为人们的生活带来了诸多便利。
可以预见,随着科技的不断发展,高分子材料的研究和应用将会迎来更加广阔的发展空间。
未来,高分子材料有望在能源、环保、生物医药等领域发挥更加重要的作用,为人类社会的可持续发展做出更大的贡献。
总的来说,高分子材料的发展历程可以看作是一部科技进步的历史。
从最早的合成到功能性高分子材料的研发,每一个阶段都凝聚着科学家们的智慧和努力。
高分子材料的发展史告诉我们,科技创新是推动社会进步的重要动力,相信在不久的将来,高分子材料将会迎来更加美好的发展前景。
高分子材料的发展历程及未来发展趋势
高分子材料的发展历程及未来发展趋势高分子材料是一类由大量重复结构单元组成的聚合物材料,具有重要的应用价值和广泛的应用领域。
本文将介绍高分子材料的发展历程以及未来的发展趋势。
一、高分子材料的发展历程1. 早期阶段(19世纪末-20世纪初)在19世纪末至20世纪初,人们开始研究天然高分子材料,如橡胶和纤维素。
1884年,美国化学家约瑟夫·普利斯特利发现了硝化纤维素,为合成高分子材料奠定了基础。
2. 合成高分子材料的突破(20世纪20年代-40年代)20世纪20年代至40年代,合成高分子材料取得了重大突破。
1928年,英国化学家亚历山大·弗莱明发现了聚合物材料聚乙烯,开创了合成高分子材料的新时代。
随后,聚合物材料如聚丙烯、聚苯乙烯等相继问世。
3. 高分子材料的广泛应用(20世纪50年代-70年代)20世纪50年代至70年代,高分子材料得到了广泛的应用。
聚合物材料在塑料制品、橡胶制品、纤维材料等领域得到了大规模的应用,推动了工业的发展和生活的改善。
4. 高分子材料的功能性和特殊性发展(20世纪80年代至今)20世纪80年代至今,高分子材料的研究重点逐渐转向功能性和特殊性。
人们开始研究和开发具有特殊功能的高分子材料,如高强度聚合物材料、高温耐性聚合物材料、导电聚合物材料等。
这些材料在航空航天、电子、医疗等领域发挥着重要作用。
二、高分子材料的未来发展趋势1. 绿色环保未来,高分子材料的发展将更加注重绿色环保。
人们将致力于开发可降解的高分子材料,减少对环境的污染。
同时,将推动高分子材料的回收利用,实现资源的循环利用。
2. 高性能高分子材料的未来发展将更加注重高性能。
人们将致力于开发具有更高强度、更好耐热性和更好导电性的高分子材料,以满足不同领域的需求。
3. 功能性未来,高分子材料的发展将更加注重功能性。
人们将致力于开发具有特殊功能的高分子材料,如自修复材料、传感材料等,以满足不同领域的需求。
高分子材料科学的历史
— CH 2 — CH 2 — CH2 — CH 2 — CH 2 — CH 2 —
— CH 2 — CH 2 — CH 2 — CH 2 — CH 2 — CH 2 — CH 2 CH 2 CH 2
1956年,美国人Szwarc发明活性阴离子聚合, 开创了高分子结构设计的先河。 50年后期至60年代,大量高分子工程材料问世。 聚甲醛(1956),聚碳酸酯(1957),聚砜 (1965),聚苯醚(1964),聚酰亚胺(1962)。
1855年,英国人 Parks用硝化纤维 素与樟脑混合制 得赛璐珞
1889年,法国人De Chardonnet(夏尔多内) 发明人造丝。
1907年,酚醛树脂诞生
1920年, 德国人 Staudinger 发表了“论 聚合”的论 文,提出了 高分子的概 念,并预测 了聚氯乙烯 和聚甲基丙 烯酸甲酯等 聚合物的结 构。
高分子材料更多的功能和更优异的性能正 在被发现,未来的高分子工业正大步向未 来迈去„„
1935年,Carothes发 明尼龙66,1938年工 业化。
高分子溶液理论在 30年代建立,并成 功测定了聚合物的 分子量。Flory为此 获得诺贝尔奖。
30年代,一系 列烯烃类加聚物 被合成出来并工 业化,PVC (1927~1937), PVAc(1936), PMMA(1927~ 1931),PS (1934~1937), LDPE(1939)。 自由基聚合发展。
聚 甲 醛 聚碳酸酯 聚 砜 聚 苯 醚
聚酰亚胺
60年代以后,特种高分子和功能高分子得到发展。
功能高分子:分 离材料(离子交 换树脂、分离膜 等)、导电高分 子、感光高分子、 高分子催化剂、 高吸水性树脂、 医用高分子、药 用高分子、高分 子液晶等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高分子科学简史
人类的进化和社会进步的历史,始终与人类对天然高分子材料的加工和利用的进步过程密不可分。
棉、麻、丝、毛的加工纺织,造纸,鞣革和生漆调制等分别是人类对天然高分子进行物理加工和化学加
工的早期例证,虽然当时并未提出高分子的概念。
直到19世纪中后期,西方化学工作者才扩大了对天然高分子进行化学改性的范围,以下对高分子科学发展史中的重要事件作一简述:
1839年,对天然橡胶进行硫化加工;
1868年,赛璐璐(硝化纤维素)问世;
1898年,粘胶纤维问世;
1907年,酚醛树脂问世;
1911年,丁钠橡胶问世。
酚醛树脂和丁钠橡胶分别是高分子科学建立以前人类合成的第一
个缩聚物和第一个加聚物。
20世纪初期,虽然当时仍未正式提出高分子的概念,但是已经取得的一些化学研究成果开始酝酿着高分子科学的诞生。
例如当时人们终于研究明白,天然橡胶是由异戊二烯构成;淀粉和纤维素是由葡萄糖构成;蛋白南是由氨基酸构成等等。
这些研究成果对于高分子科学的建立起到了直接催化和促进作用。
20世纪20年代是高分子科学诞生的年代,1920年,德国人
H.Staudinger首次提出以共价键联结为核心的高分子概念,并获得1953年度诺贝尔化学奖,他被公认为高分子科学的始祖。
1925年,聚醋酸乙烯酯(PVAc)实现工作化;
1928年,聚甲基丙烯酸甲酯(有机玻璃,PMMA)和聚乙烯醇(PVA)问世;
1931年,聚氯乙烯(PVC)、氯丁橡胶问世;
1934年,美国人W.H.Carothers 成功地合成尼龙-66,并于1938年
实现工业化。
稍后他的学生 P.J.Flory 提出了聚合反应的等活性理论,并提出聚酯动力学和连锁聚合反应机理,从而获得1974 年度诺贝尔化学奖。
1939年,低密度聚乙烯(LDPE)即高压聚乙烯问世;
1940年,丁苯橡胶(SBR)、丁基橡胶问世;
1941年,聚对苯二甲酸乙二醇酯(涤纶,PET)问世;
1943年,聚四氟乙烯(PTFE)问世;
1948年,维尼纶问世;
1950年,聚丙烯腈(腈纶,PAN)问世;
1955年,顺丁橡胶问世;
1953年,德国人K.Ziegler和意大利人G. Natta各自独立地采用络合催化剂成功地合成出高密度聚乙烯(HDPE)即低压聚乙烯以及聚丙烯(PP),并于1955年实现工业化。
今天这两种聚合物已经成为产量最大、用途最广的合成高分子材料。
1963年,两人成为诺贝尔化学奖的获得者。
1974年,美国Rockefeller大学著名生物化学家R.B.Merrifield将功能化的聚苯乙烯(PS)用于多肽和蛋白质的合成,大大提高了涉及生命物质合成的效率并缩短了合成时间,开创了功能高分子材料在生命物质合成领域作出的突出贡献,1984年度的诺贝尔化学奖授予了他。
2000年,日本人白川英树、美国人艾伦.黑格和艾伦.马克迪尔米德等有关导电高分子材料——掺杂聚乙炔的研究和应用成果突破了“合成聚合物都是绝缘体”的传统观念,开创了高分子功能化研究和应用的新领域。
为此他们获得了自20世纪诺贝尔奖设立以来高分子科学领域的第五个诺贝尔化学奖。
总而言之,20世纪20~40年代是高分子科学建立和发展的时期;30~50年代是高分子材料工业蓬勃发展的时期;60年代以来则是高分子材料大规模工业化、特种化、高性能化和功能化的时期。
作为新兴材料科学的一个分支,高分子材料目前已经渗透到工业、农业、国防、商业、医药以及人们的衣、食、住、行的各个方面,正如一篇科
普文章所述,“在大街上你曾见过一个绝对不与合成高分子材料打交道的人吗?”答案肯定是NO。
由于历史的原因,1950年以前我国的高分子科学和工业几乎是一片空间。
当时国内没有一所高等学校设立高分子专业,更没有开设任何与高分子科学与工程相关的课程。
当时除上海、天津等地有几家生产“电木”制品(酚醛树脂加木粉热压成型的电器元件等)和油漆的小型作坊以外,国内没有一家现代意义的高分子材料生产厂。
1954~1955年,国内首批高分子理科专业和工科专业分别在北京大学和成都工学院(后者现合并组建为四川大学)相继创立。
时至今日,全国各层次的高等学校中设置高分子科学、材料与工程专业和开设高分子课程的学校在百所以上。
近50年来为国家培养出了大批高分子专业人才,大大地促时了高分子工业的发展。
从20世纪50年代开始,国内一批中小型塑料、合成橡胶、化学纤维和涂料工厂相继投入生产。
20世纪60~80 年代是我国高分子材料工业飞速发展的时期,一大批万吨乃至10万吨以上级别的大型PE、PP、PVC、PS、ABS、SBS 以及其他类别的高分子材料生产和加工和大型企业在全国各地相继建成投产。
其中,上海金山、南京扬子、江苏仪征、山东齐鲁、北京燕山、湖南岳阳以及天津、兰州、吉林等地已经成为我国重要的大型高分子材料生产基地。
今天,我国在高分子科学基础研究、专业技术人才培养以及各种高分子材料的生产。