以太网及介质访问控制方法
计算机三级《网络技术》基础知识:以太网
计算机三级《网络技术》基础知识:以太网2015计算机三级《网络技术》基础知识:以太网1.以太网的发展1976年7月,Bob在ALOHA网络的基础上,提出总线型局域网的设计思想,并提出冲突检测、载波侦听与随机后退延迟算法,将这种局域网命名为以太网(Ethernet)。
以太网的核心技术是:介质访问控制方法CDMA/CD.这种方法解决了多结点共享公用总线的问题。
早期以太网的传输介质是同轴电缆,后用双绞线,再后用光纤。
2.以太网的帧结构与工作流程(1)以太网数据发送流程冲突:多个站点同时利用总线发送数据,导致数据接收不正确。
总线网没有控制中心,如果一个站点发送数据帧,以广播方式通过总线发送,每一个站点都能收到数据帧,其它站点也可以同时发送,因此冲突不可避免。
CSMA/CD发送流程可简单概括为:先听后发,边听边发,冲突停止,延迟重发。
实现公共传输介质的控制策略,需要解决的问题是:载波侦听,冲突检测,冲突后的处理方法。
(a)载波侦听结点利用总线发送数据时,首先侦听总线是否空闲,以太网规定发送数据采用曼彻斯特编码。
判断总线是否空闲可以判断总线上是否有电平跳变。
不发生跳变总线空闲。
此时如果有结点已准备好发送数据,可以启动发送。
(b)冲突检测方法载波侦听不能完全消除冲突,原因是数字信号是以一定的速率传输的。
例如:结点A发送数据帧时,离他1000m距离的结点在一定的时间延迟后才能收到数据帧,此时间段内如果B也发送数据,造成冲突。
从物理层上看,冲突时多个信号叠加,导致波形不同于任何结点的波形信号。
解决方案:结点A发送数据前,先发送侦听信号,如果侦听信号在最大距离传输时间2倍时,没有冲突信号出现,结点A肯定取得总线的访问权。
冲突信号的延迟时间=2*D/V。
其中:D是结点到最远结点的距离,V表示信号传输速度,信号往返的时间为延迟时间。
进行冲突检测的方法有两种:比较法和编码违例法。
比较法:将发送信号波形与从总线上接收的信号比较,如果不同说明有冲突。
网络基础考试试题及复习资料
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案。
每小题2分,共50分)。
1、快速以太网的介质访问控制方法是(A )。
A.CSMA/CD B.令牌总线C.令牌环D.100VG-AnyLan2、X.25网络是(A)。
A.分组交换网B.专用线路网C.线路交换网D.局域网3、Internet 的基本结构与技术起源于(B )A.DECnetB.ARPANETC.NOVELLD.UNIX4、计算机网络中,所有的计算机都连接到一个中心节点上,一个网络节点需要传输数据,首先传输到中心节点上,然后由中心节点转发到目的节点,这种连接结构被称为( C )A.总线结构B.环型结构C.星型结构D.网状结构5、在OSI的七层参考模型中,工作在第二层上的网间连接设备是( C )A.集线器B.路由器C.交换机D.网关6、物理层上信息传输的基本单位称为( B ) 。
A. 段B. 位C. 帧D. 报文7、100BASE-T4的最大网段长度是:( B )A.25米B. 100米C.185米D. 2000米8、ARP协议实现的功能是:( C )A、域名地址到IP地址的解析B、IP地址到域名地址的解析C、IP地址到物理地址的解析D、物理地址到IP地址的解析9、学校内的一个计算机网络系统,属于( B )A.PANNC.MAND.WAN10、下列那项是局域网的特征(D )A、传输速率低B、信息误码率高C、分布在一个宽广的地理范围之内D、提供给用户一个带宽高的访问环境11、ATM采用信元作为数据传输的基本单位,它的长度为( D )。
A、43字节B、5字节C、48字节D、53字节12、在常用的传输介质中,带宽最小、信号传输衰减最大、抗干扰能力最弱的一类传输介质是(C )A.双绞线B.光纤C.同轴电缆D.无线信道13、在OSI/RM参考模型中,( A )处于模型的最底层。
A、物理层B、网络层C、传输层D、应用层14、使用载波信号的两种不同频率来表示二进制值的两种状态的数据编码方式称为( B )A.移幅键控法B.移频键控法C.移相键控法D.幅度相位调制15、在OSI的七层参考模型中,工作在第三层上的网间连接设备是(B )A.集线器B.路由器C.交换机D.网关16、数据链路层上信息传输的基本单位称为( C ) 。
介质访问控制
拓扑结构: 工作原理: Token Bus 在物理总系线上建立逻辑环。 逻辑环上,令牌是站点可以发送数据的必要条件。 令牌在逻辑环中按地址的递减顺序传送到下一站点。 从物理上看,含DA的令牌帧广播到BUS上,所有站点按DA = 本站地址判断收否。 特点: 无冲突,令牌环的信息帧长度可按需而定。 顺序接收Fairness (公平性),站点等待Token的时间是确知的。 (需限定每个站发送帧的最大值) 因检测冲突需要填充信息位(不允许小于46字节)
介质访问控制(medium access control)简称MAC。 是解决当局域网中共用信道的使用产生竞争时,如何分配信道的使用权问题 局域网的数据链路层分为逻辑链路层LLC和介质访问控制MAC两个子层。 MAC属于局域网数据链路层下的一个子层。局域网中目前广泛采用的两种介质访问控制方法,分别是: 1 争用型介质访问控制,又称随机型的介质访问控制协议,如CSMA/CD方式。 2 确定型介质访问控制,又称有序的访问控制协议,如Token(令牌)方式 CSMA/CD工作原理 在CSMA中,由于信道传播时延的存在,即使通信双方的站点都没有侦听到载波信号,在发送数据时仍可能会发生冲突,因为他们可能会在检测到介质空闲时同时发送数据,致使冲突发生。尽管CSMA可以发现冲突,但它并没有先知的冲突检测和阻止功能,致使冲突发生频繁。 一种CSMA的改进方案是使发送站点在传输过程中仍继续侦听介质,以检测是否存在冲突。如果两个站点都在某一时间检测到信道是空闲的,并且同时开始传送数据,则它们几乎立刻就会检测到有冲突发生。如果发生冲突,信道上可以检测到超过发送站点本身发送的载波信号幅度的电磁波,由此判断出冲突的存在。一旦检测到冲突,发送站点就立即停止发送,并向总线上发一串阻塞信号,用以通知总线上通信的对方站点,快速地终止被破坏的帧,可以节省时间和带宽。这种方案就是本节要介绍的CSMA/CD(Carrier Sense Multiple Access with Collision Detection,载波侦听多路访问/冲突检测协议),已广泛应用于局域网中。 所谓载波侦听(Carrier Sense),意思是网络上各个工作站在发送数据前都要确认总线上有没有数据传输。若有数据传输(称总线为忙),则不发送数据;若无数据传输(称总线为空),立即发送准备好的数据。 所谓多路访问(Multiple Access),意思是网络上所有工作站收发数据共同使用同一条总线,且发送数据是广播式的。 所谓冲突(Collision),意思是若网上有两个或两个以上工作站同时发送数据,在总线上就会产生信号的混合,这样哪个工作站都辨别不出真正的数据是什么。这种情况称为数据冲突,又称为碰撞。 为了减少冲突发生后的影响,工作站在发送数据过程中还要不停地检测自己发送的数据,看有没有在传输过程中与其他工作站的数据发生冲突,这就是冲突检测(Collision Detected)。 1.CSMA/CD冲突检测原理 CSMA/CD是标准以太网、快速以太网和千兆以太网中统一采用的介质争用处理协议(但在万兆以太网中,由于采用的是全双工通信,所以不再采用这一协议)。之所以称之为"载波侦听"("载波"就是承载信号的电磁波),而不是称之为"介质侦听",那是因为如果介质上正在有载波存在,则证明介质处于忙的状态(因为信号或者数据不是直接传输的,而是通过电磁载波进行的);如果没有载波存在,则介质是空闲状态。也就是通过载波的检测,可以得知介质的状态,而不能直接来侦听介质本身得出其空闲状态。 【说明】其实这里侦听的应该是"信道",而不是"介质"本身,因为在一条传输介质中,可能包含有多条信道,用于不同的传输链路。 前面说了,CSMA/CD相对CSMA来说的进步就是具有冲突检测功能,随之问题就来了,CSMA/CD是如何检测冲突呢? CSMA/CD的工作原理可以用以下几句话来概括: 先听后说,边听边说。 一旦冲突,立即停说。 等待时机,然后再说。 这里的"听"即监听、检测之意;"说"即发送数据之意。具体的检测原理描述如下: (1)当一个站点想要发送数据的时候,它检测网络查看是否有其他站点正在传输,即侦听信道是否空闲。 (2)如果信道忙,则等待,直到信道空闲;如果信道空闲,站点就准备好要发送的数据。 (3)在发送数据的同时,站点继续侦听网络,确信没有其他站点在同时传输数据才继续传输数据。因为有可能两个或多个站点都同时检测到网络空闲然后几乎在同一时刻开始传输数据。如果两个或多个站点同时发送数据,就会产生冲突。若无冲突则继续发送,直到发完全部数据。 (4)若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM(阻塞)信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。 CSMA/CD控制方式的优点是:原理比较简单,技术上易实现,网络中各工作站处于平等地位,不需集中控制,不提供优先级控制。但在网络负载增大时,发送时间增长,发送效率急剧下降 令牌访问控制工作原理 令牌访问控制方法可分为令牌环访问控制和令牌总线访问控制两类。目前已较少采用令牌总线访问控制。 下面介绍令牌环访问控制原理。
简述以太网的介质访问控制方式的原理
简述以太网的介质访问控制方式的原理以太网的介质访问控制(缩写为MAC)方式是计算机网络中重要的一项技术,它通过网络中的介质访问控制(MAC)来控制网络节点之间的数据传输,确保网络传输的安全性和稳定性。
它是一种非常可靠、稳定可行的性能分配方案,在计算机网络中被非常合理地使用。
以太网MAC的原理是使用一种称为广播的机制来确定网络中的每一个节点的位置和资源,以确保它们正确地发送和接收消息。
通过广播,网络中的每个节点都可以将它的信息广播到网络的每一个节点中,以便维护一个全局的视图。
如果一个节点想要发送数据到另一个节点,它只需要根据“知名”发送数据,而不用关心数据是被谁接收的,因为它不会干涉网络中其他节点的活动。
为了支持以太网的介质访问控制,首先要建立一种机制来判断哪些节点可以访问介质,以及何时可以访问介质。
控制访问介质的方式有两种:“轮询”和“轮流”机制。
轮询机制是指,每个网络节点可以在一定的时间间隔内访问介质,而轮流机制是指,每个节点依次访问介质,直到所有的节点都访问完介质,再重新开始循环。
在以太网中,将访问介质的权利交给网络层,并在以太网规范中定义了一种名为“CSMA/CD(也称为CSMA/CA)的介质访问控制方式,即“无线局域网接入控制”。
用CSMA/CD控制介质访问的原理是在节点访问介质之前,首先要检查介质的状态,如果介质被占用,则不能访问,如果介质是空闲的,则可以访问介质,开始发送数据。
为了确保CSMA/CD机制的可靠性和有效性,以太网规范在其中规定了一些技术措施,如“隐含轮询”和“节点竞争”技术。
隐含轮询是指,当一个节点想要发送数据到其他节点时,其他节点会根据一定的时间间隔轮流尝试访问介质,如果有节点占用了介质,则其他节点只能等待,如果介质是空闲的,则可以访问介质,开始发送数据。
节点竞争是指,当一个节点想要发送数据时,它只需要向网络中的其他节点发出“竞争信号”,告诉其他节点它想要访问介质,如果有其他节点也想要访问介质,则会发出“协商信号”,告诉其他节点它也想访问介质,由所有节点共同协商,最终决定谁先访问介质。
通信工程基础知识单选题100道及答案解析
通信工程基础知识单选题100道及答案解析1. 以下哪个不是通信系统的基本组成部分?()A. 信源B. 信道C. 信宿D. 电源答案:D解析:通信系统通常由信源、信道和信宿组成,电源不属于通信系统的基本组成部分。
2. 在数字通信中,“0”和“1”等符号被称为()A. 码元B. 字节C. 比特D. 字符答案:A解析:在数字通信中,“0”和“1”等符号被称为码元。
3. 以下哪种通信方式属于全双工通信?()A. 广播B. 对讲机C. 电话D. 电视答案:C解析:电话通信双方可以同时进行说话和倾听,属于全双工通信;广播是单工通信,对讲机通常是半双工通信,电视是单向通信。
4. 通信系统的主要性能指标是()A. 有效性和可靠性B. 速度和精度C. 带宽和功率D. 频率和波长答案:A解析:有效性和可靠性是通信系统的两个主要性能指标。
5. 香农公式给出了()A. 信道容量与带宽的关系B. 信道容量与信噪比的关系C. 带宽与信噪比的关系D. 功率与带宽的关系答案:B解析:香农公式表明了信道容量与带宽和信噪比的关系,重点体现了信道容量与信噪比的关系。
6. 以下哪种复用技术在同一时间内只能传输一路信号?()A. 时分复用B. 频分复用C. 码分复用D. 空分复用答案:A解析:时分复用是将时间分割成若干时隙,在同一时间内只能传输一路信号。
7. 数字信号的带宽取决于()A. 码元速率B. 信息量C. 编码方式D. 传输距离答案:A解析:数字信号的带宽主要取决于码元速率。
8. 在光纤通信中,使用的光源通常是()A. 发光二极管B. 激光二极管C. 白炽灯D. 日光灯答案:B解析:激光二极管具有高亮度、单色性好等优点,常用于光纤通信作为光源。
9. 卫星通信的主要优点是()A. 覆盖范围广B. 通信容量大C. 传输质量高D. 保密性好答案:A解析:卫星通信能够覆盖非常广阔的区域,这是其主要优点。
10. 以下哪种编码方式具有检错和纠错能力?()A. 不归零编码B. 曼彻斯特编码C. 海明码D. 差分曼彻斯特编码答案:C解析:海明码是一种具有检错和纠错能力的编码方式。
简述以太网的介质访问控制方式的工作原理
简述以太网的介质访问控制方式的工作原理以太网的介质访问控制(MAC)方式是一种基于软件和硬件的技术,它可以控制计算机网络中节点对网络介质的访问。
MAC在许多现代局域网中被广泛使用,它是一种控制节点访问网络介质的机制,可以有效地抵抗网络中的干扰,允许网络中的节点在有限的带宽情况下进行特定的任务。
MAC方式的定义基于局域网中的服务范围,它是指网络中节点间通信的一种协议,它允许节点访问网络介质,让每个节点都能够顺利传输数据。
MAC是一种特殊的应用层协议,它由应用层协议定义,直接运作在物理层在介质访问控制的机制上,以实现数据的可靠传输。
MAC方式的工作原理是在网络中的每个节点分配一个唯一的MAC地址,这个地址可以用来标识终端设备的身份,并在网络上传输数据,可以用来表示某一设备的识别标识。
MAC方式允许每个节点在网络中发送数据,首先发送方需要在网络中广播一条源MAC地址信息,通知接收方让接收方准备接受数据,并确定发送方的位置,这个过程就是MAC方式的工作原理。
在发送数据之前,需要确定网络介质是否空闲,即无其他节点正在传输数据。
根据CSMA/CD(载波侦听多路径系统/检测冲突)的协议,使用的方法是源节点从网络介质中接收信号,如果介质发出信号,表示介质中有其他节点正在发送数据,此时源节点需要停止发送数据,等待信道空闲,当信道空闲时,源节点才能发送数据。
源节点发送帧信息时,帧中还会包括一组序列号,此序列号可以用来标识此次发送数据的位置,以便接收方确定收到的数据帧的次序。
此外,每个帧信息中还有一个CRC校验和,可以用来检测数据传输时的错误,如果发现错误,接收方就会发送一个错误报文进行错误确认,然后要求发送方再次发送数据,以确保数据在网络中传输的正确性。
以太网的MAC方式可以有效地抑制网络干扰,保证网络中各节点访问网络介质的有序性,这样就可以实现数据可靠传输,同时还可以保证网络中的节点在有限的带宽情况下完成特定的任务。
4-3介质访问控制方法
局域网组成示意图
局域网协议的特点
(1)协议的简单性 (2)数据链路层分为两上子层 (3)开销位的使用限制较小 (4)数据单元较长
协议的简单性
由于LAN本身比较简单,其所涉及的设备 类型和数量较少,地理范围也较小,而且采 用了广播通信技术,从而简化了流量控制和 路径控制等;另一方面则考虑下述两个要求: (1)由于LAN连接的主要是微机或基于微处理 器的设备,因而要求具有简单且灵活的协议 以便实现。 (2)复杂的网络协议将导致软件开发和维护更 加困难,而对LAN来说,其开发与维护力量通 常较弱,故而要求LAN协议尽量简单。
分布式控制方法
分布式控制方法常用的有: 带有碰撞检测的载波侦听多点访问 (CSMA/CD)法、令牌(也称许可证或通行标 志)(Token Passing)控制法、时隙(Time Slot)控制法和寄存器延迟插入法(Buffer Insertion) 。 从占用传输介质的机会方面来看,访问 控制方法可以分为确定性访问控制方法和随 机访问控制方法。 随机访问控制大多用于总线型局部网络 中,如CSMA/CD技术就属于随机访问控制法。
开销位的使用限制较小
由于WAN中通信线路的造价等原因, 所以希望提高传输信息中的有效成分, 为此必须减少信息帧中的控制和说明信 息,即通过压缩控制信息的方法来减少 开销位,这显然会增加处理机的负担; 反之,LAN中为减轻处理机的负担,往 往增加一些控制信息。
当一个工作站准备发送报文信息时,首先要 等待令牌的到来,当检测到一个经过它的令牌为 空令牌时,即可以“帧”为单位发送信息,并将 令牌置为“忙”(例如将00000000标志附在信息 尾部)向下一站发送。下一站用按位转发的方式 转发经过本站但又不属于由本站接收的信息。由 于环中已无空闲令牌,因此其它希望发送的工作 站必须等待。接收过程为:每一站随时检测经过 本站的信号,当查到信包指定的目的地址与本站 地址相同时,则一面拷贝全部有关信息,一面继 续转发该信息包,环上的帧信息绕环网一周,由 原发送点予以收回。按这种方式工作,发送权一 直在源站点控制之下,只有发送信包的源站点放 弃发送权,把Token(令牌)置“空”后,其他 站点得到令牌才有机会发送自己的信息。
以太网及介质访问控制方法
5-3以太网及介质访问控制方法1、CSNM/CD媒体访问控制方法所谓媒体访问控制,就是控制网上各工作站在什么情况下才可以发送数据,在发送数据过程中,如何发现问题及出现问题后如何处理等管理方法。
CSMA/CD 是英文carrier sense multiple access/collisiondetected的缩写,可把它翻成''载波侦察听多路访问/冲突检测〃,或 ''带有冲突检测的载波侦听多路访问"。
所谓载波侦^(carrier sense), 意思是网络上各个工作站在发送数据前都要总线上有没有数据传输。
若干数据传输(称总线为忙),则不发送数据;若无数据传输(称总线为空),立即发送准备好的数据。
所谓多路访问(multiple access) 意思是网络上所有工作站收发数据共同使用同一条总线,且发送数据是广播式的。
所谓冲突(collision),意思是,若网上有两个或两个以上工作站同时发送数据,在总线上就会产生信号的混合,哪个工作站都同时发送数据,在总线上就会产生信号的混合,哪个工作站都辨别不出真正的数据是什么。
这种情况称数据冲突又称碰撞。
为了减少冲突发生后又的影响。
工作站在发送数据过程中还要不停地检测自己发送的数据,有没有在传输过程中与其它工作站的数据发生冲突,这就是冲突检测(collision detected)。
CSNM/CD媒体访问控制方法的工作原理,可以概括如下:先听后说,边听边说;一旦冲突,立即停说;等待时机,然后再说;听,即监听、检测之意;说,即发送数据之意。
上面几句话在发送数据前,先监听总线是否空闲。
若总线忙,则不发送。
若总线空闲,则把准备好的数据发送到总线上。
在发送数据的过程中,工作站边发送检测总线,是否自己发送的数据有冲突。
若无冲突则继续发送直到发完全部数据;若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。
以太网及介质访问控制方法
5-3 以太网及介质访问控制方法1、CSNM/CD媒体访问控制方法所谓媒体访问控制,就是控制网上各工作站在什么情况下才可以发送数据,在发送数据过程中,如何发现问题及出现问题后如何处理等管理方法。
CSMA/CD是英文carrier sense multiple access/collision detected 的缩写,可把它翻成“载波侦察听多路访问/ 冲突检测”,或“带有冲突检测的载波侦听多路访问”。
所谓载波侦听(carrier sense),意思是网络上各个工作站在发送数据前都要总线上有没有数据传输。
若干数据传输(称总线为忙),则不发送数据;若无数据传输(称总线为空),立即发送准备好的数据。
所谓多路访问(multiple access)意思是网络上所有工作站收发数据共同使用同一条总线,且发送数据是广播式的。
所谓冲突(collision),意思是,若网上有两个或两个以上工作站同时发送数据,在总线上就会产生信号的混合,哪个工作站都同时发送数据,在总线上就会产生信号的混合,哪个工作站都辨别不出真正的数据是什么。
这种情况称数据冲突又称碰撞。
为了减少冲突发生后又的影响。
工作站在发送数据过程中还要不停地检测自己发送的数据,有没有在传输过程中与其它工作站的数据发生冲突,这就是冲突检测(collision detected)。
CSNM/CD媒体访问控制方法的工作原理,可以概括如下:先听后说,边听边说;一旦冲突,立即停说;等待时机,然后再说;听,即监听、检测之意;说,即发送数据之意。
上面几句话在发送数据前,先监听总线是否空闲。
若总线忙,则不发送。
若总线空闲,则把准备好的数据发送到总线上。
在发送数据的过程中,工作站边发送检测总线,是否自己发送的数据有冲突。
若无冲突则继续发送直到发完全部数据;若有冲突,则立即停止发送数据,但是要发送一个加强冲突的JAM信号,以便使网络上所有工作站都知道网上发生了冲突,然后,等待一个预定的随机时间,且在总线为空闲时,再重新发送未发完的数据。
通信专业实务——互联网技术——通信工程师考试习题库(教材)
通信专业实务——互联网技术——通信工程师考试习题库(教材)第一章数据通信基础一、单选题1、对于一个物理网络,数据的最大传输单元是由(协议)决定的。
2、在当前的数据通信网络中,存在以下交换方式(电路方式、分组方式、帧方式、信元方式)。
3、与电路交换方式相比,分组交换方式的优点是(提高了线路的有效利用率)。
4、计算机网络中各节点之间传输方式采用(串行方式)。
5、每秒传输二进制码元的个数称为(数据传信率)。
二、多项选择题1、数据通信有以下特点(人-机或机-机通信、数据传输的准确性和可靠性要求高、传输速率高,要求接续和传输时间响应快、通信持续时间差异大;)。
2、数据通信系统中,利用纠错编码进行差错控制的方式主要有(前向纠错、检错重发、反馈校验、混合纠错;)3、计算机通信网可以划分为两部分,它们是(通信子网、资源子网)。
4、以下属于数据通信网络的网络有(DDN、X.25、ATM、FR(帧中继))。
5、从网络覆盖范围划分,可以有(广域网、城域网、局域网;)。
三、是非判断题1、模拟信号可以转换为数字信号传输,同样数字信号也可以转换为模拟信号传输。
(V)2、数据通信是人-机或机-机之间的通信,必须按照双方约定的协议或规程进行通信。
(V)3、数据传输速率,至每秒传输的数据字节数,单位是比特/秒或是bit/s。
(X)4、为了充分利用资源,可以采用复用技术,将多路信号组合在一条物理信道上进行传输。
(V)5、局域网的传输介质通常有同轴电缆、双绞线、光纤、无线4中。
(V)第二章数据通信网络与协议一、单选题1、被称作分组数据网的枢纽的设备为(分组交换机)。
2、帧中继技术主要用于传递(数据)业务。
3、在帧中继中和X.25协议中类似的是(帧格式)。
4、关于B-ISDN的叙述错误的是(B-ISDN的中文名称为窄带综合业务数字网)。
5、信元是一种固定长度的数据分组。
一个ATM信元长(53个字节,前5个字节称为信头,后面48个字节称为信息域)。
计算机网络基础与Internet应用(第四版)复习要点与练习题
第一章计算机网络:把分布在不同地理位置上的具有独立功能的多台计算机、终端及其附属设备在物理上互连,按照网络协议相互通信,以硬件、软件和数据资源为目标的系统称为计算机网络。
介质访问控制方式:CSMA/CD(载波监听多路访问/冲突检测)星型拓扑结构:优点:①非中心节点出现故障时影响小。
②网络扩展容易③控制和诊断方便④访问协议简单。
缺点:过分依赖中心节点。
星型拓扑结构中,中心节点是整个网络的瓶颈,一旦出现故障会使整个网络瘫痪。
总线型拓扑结构:优点:①硬件的角度看可靠性高(结构简单,无源元件)②易于扩充,增加新的站点容易③使用电缆较少,安装容易④使用的设备相对简单,可靠性高缺点:①故障诊断困难②故障隔离困难环形拓扑结构:优点:①路由选择控制简单②电缆长度短③适用于光纤缺点:①节点故障引起整个网络瘫痪②诊断故障困难时延:指一个数据包从一个网络的一端传送到另一端所需要的时间,主要由发送时延、传播时延、处理等待时延组成。
发送时延:指在发送数据时数据块从节点进入到传输媒体所需要的时间。
发送时延=数据块长度(比特)/信道宽带(比特/秒)传播时延:指电磁波在信道中需要传播一定的距离而花费的时间。
传播时延=信道长度(米)/信号在信道上的传播速率(米/秒)OSI(开放系统互连参考模型):“系统”是指计算机、终端、外部设备、信息传输设备、操作员及相应的集合;“开放”指按照OSI参考模型建立的任意两系统之间的连接或操作。
OSI将整个网络的通信功能划分成七个层次由低到高是:物理层、数据链路层、网络层、运输层、会话层、表示层和应用层。
(优点:①各层之间是独立的②灵活性好③结构上可分割开④易于实现和维护⑤能促进标准化工作)一、物理层(比特):作用是尽可能的屏蔽这些差异,对数据链路层提供统一的服务。
主要关心的是在连接各种计算机的传输媒体上传输数据的比特流。
二、数据链路层(帧):作用通过数据链路层协议在不太可靠的物理链路上实现可靠的数据传输。
简述以太网的介质访问控制方式的原理
简述以太网的介质访问控制方式的原理以太网(Ethernet)是一种多介质访问控制方式(Multi-AccessControlMethod),是目前使用最广泛的局域网技术之一,能够实现多设备之间的相互通信。
它是按照标准IEEE 802.3规定的一种局域网络的网络技术,也可以被称为DIX标准网络或者是CSMA/CD(Carrier Sense Multiple Access with Collision Detection)网络。
它的使用最广泛,几乎可以实现链接任何类型的设备,具有高的稳定性和可靠性。
以太网的基本原理是传输介质访问控制(CSMA),它是基于信道的“先决权原则”,以确保在单一局域网中,多个节点可以有序地共享网络资源。
如果一个发送站在发送数据之前,访问介质,发现道路被占用,就会等待道路被空闲,减少数据的传输冲突;而当有多个发送站在等待的时候,就会使用随机延时算法(Back-Off Algorithm),按照确定的概率,以最终确定发送站发送数据的时间。
当一个节点发送数据之后,其他等待节点便会听取网络上的信号,发现没有冲突,就会发送数据。
如果发生冲突,CSMA/CD方式会发现,同时终止发送,重新选择发送时机,以防止发生进一步冲突。
以太网的发展主要包括三个基本部分:硬件,软件和协议。
硬件的发展是以太网最重要的部分,它包含了使用以太网的物理设备,能将网络节点与以太网连接,比如网卡、网线、路由器等。
软件发展则包括以太网上使用的各种操作系统(比如Unix、Windows、Mac OS)和软件,能够提供操作系统和其他应用程序与以太网设备的连接。
协议发展则包括标准协议(如IEEE 802.3、TCP/IP、FDDI等),用于定义数据传输的格式、数据校验等等。
总之,以太网的介质访问控制方式的原理,是基于道路的“先决权原则”,使用的是传输介质访问控制(CSMA)以及随机延时算法,实现多节点之间的有序通信。
在硬件、软件和协议方面,不断推进以太网技术的发展,使其越来越完善,成为目前使用最多的局域网络技术之一。
介质访问控制 名词解释
介质访问控制(Medium Access Control,MAC)是计算机网络中的一个重要的数据链路层协议,用于控制网络中多个终端设备在共享网络介质(如以太网)时的访问权限。
以下是一些基本的相关概念的词汇解释:
1. 帧:是数据链路层通信中的基本数据单位,包含数据部分和控制信息部分。
2. CSMA/CD:是介质访问控制协议的一种方法,用于减少数据冲突,提高数据传输效率。
3. 令牌桶:是一种流量控制算法,用于限制网络中一段时间内的数据发送速率,防止网络拥塞。
4. 媒体访问控制地址(MAC地址):是一个物理地址,由网卡厂商唯一制定,用于标识网络中各个终端设备的身份。
5. 帧同步:是为了确保接收方能够正常解析数据帧,发送方在发送数据帧前需要先发送一组特定的同步信号,以确保数据的同步。
6. Token Ring:是一种介质访问控制协议,用于控制局域网
中各节点对网络介质的访问权限和流量控制。
7. MAC层协议数据单元(MPDU):是网络中数据链路层的数据传输单元,是由MAC层处理和传输的数据单元,通常包含一定的控制信息和纠错编码,用于控制数据在传输过程中的可靠性。
以上是介质访问控制相关的一些基本概念的解释,希望对您理解介质访问控制协议有所帮助。
【计算机网络】介质访问控制
【计算机⽹络】介质访问控制【背景】今天讲介质访问控制,介质访问控制是针对局域⽹的,因为局域⽹是⼀种⼴播式⽹络。
这就意味着局域⽹中所有联机的计算机都共享⼀个公共信道,所以需要⼀种⽅法能够有效的分配传输介质的使⽤权,使得两对节点之间的通信不会互相⼲扰的情况,这种功能就叫介质访问控制。
频分多路复⽤信道划分介质访问控制时分多路复⽤波分多路复⽤码分多路复⽤介质访问控制ALOHA协议随机访问介质访问控制CSMA协议CSMA/CD协议CSMA/CA协议轮询访问介质访问控制令牌传递协议信道划分介质访问控制信道划分介质访问控制将使⽤介质的每个设备与来⾃同⼀通信信道上的其他设备的通信隔离开来,把时域和频域资源合理地分配给⽹络上的设备。
信道划分的实质就是通过分时、分频、分波,分码等⽅法把原来的⼀条⼴播信道,逻辑上分为⼏条⽤于两个结点之间通信的互不⼲扰的⼦信道,实际上就是把⼴播信道转变为点对点信道。
信道划分介质访问控制分为以下4 种:频分多路复⽤(Frequency division multiplexing FDM)频分多路复⽤是⼀种将多路基带信号调制到不同频上,再叠加形成⼀个复合信号的多路复⽤ 技术。
每个⼦信道分配的带宽可不相同,但它们的总和必须不超过信道的总带宽。
在实际应⽤中,为了防⽌⼦信道之间的⼲扰,相邻信道之间需要加⼊“保护频带”。
频分多路复⽤的优点在于充分利⽤了传输介质的带宽,系统效率较⾼;由于技术⽐较成熟,实现也较容易。
缺点在于⽆法灵活地适应站点数及其通信量的变化。
时分多路复⽤(Time division multiplexing TDM)时分多路复⽤是将⼀条物理信道按时间分成若⼲时间⽚,轮流地分配给多个信号使⽤。
每个时间⽚ 由复⽤的⼀个信号占⽤。
就某个时刻来看,时分多路复⽤信道上传送的仅是某⼀对设备之间的信号;就某段时间⽽⾔,传送的是按时间分割的多路复⽤信号。
但由于计算机数据的突发性,⼀个⽤户对已经分配到的⼦信道的利⽤率⼀般不⾼。
3.2局域网介质访问控制方法
3.2局域网介质访问控制方法1.目前被普遍采用并形成国际标准的介质访问控制方法主要有以下三种:带有冲突检测的载波侦听多路访问方法、令牌总线和令牌环方法。
2.I E E E802标准所描述的局域网参考模型只是对应O S I参考模型数据链路层与物理层。
它将O S I参考模型的数据链路层划分为逻辑链路控制L L C子层与介质访问控制M A C子层。
3.I E E E802.2标准定义的共享介质局域网有三类:采用C S M A/C D 介质访问控制方法的总线型局域网、采用T o k e n B u s介质访问控制方法的总线型局域网与采用T o k e n R i n g介质访问控制方法的环型局域网。
4.E t h e r n e t的核心技术是随机争用型介质访问控制方法,即带有冲突侦测检测的载波侦听多路访问C S M A/C D。
C S M A/C D方法用来解决多结点如何共用传输介质的问题。
在E t h e r n e t中,任何连网的结点都没有可预约的发送时间,它们的发送都是随机的,并且网中不存在集中控制的结点,网中结点都必须平等地争用发送时间,这种介质访问控制属于随机争用型方法。
I E E E802.3标准是在E t h e r n e t规范的基础上制定的。
5.C S M A/C D发送流程可以简单的概括为四点:先听先发,边听边发,冲突停止,随机延迟后重发。
在E t h e r n e t网中,如果一个结点要发送数据,它将以广播方式把数据通过作为公共传输介质的总线发送出去,连接在总线上的其他结点都能收听到发送结点发送的数据信号。
采用C S M A/C D介质访问控制方法的总线局域网中,每个结点利用总线发送数据时,先侦听总线的闲忙状态。
若一个结点发送准备发送数据帧,并且此时总线空闲,就启动发送。
同时存在可能,那就是在相同的时刻,由两个或两个以上的结点发送了数据,那么就会产生冲突,因此结点在发送数据的同时应该进行冲突检测。
简述以太网的介质访问控制方式的原理
简述以太网的介质访问控制方式的原理以太网的介质访问控制方式(MediumAccessControl,MAC)是针对以太网网络的一种协议,主要负责控制以太网中发送和接收数据的方式,并且定义了不同的网络节点的传输顺序。
它的主要作用是确保以太网网络内部的网络节点所发出的数据被正确地处理,以确保网络内部的数据传输准确无误。
以太网的介质访问控制方式采用了传输介质共享方式(Carrier Sense Multiple Access with Collision Detection,CSMA/CD),它是一种无信道分配的协议,通常也被称为“自己感受性的多址控制”(Self-Sensing Multiple Access,SSMA)协议。
在此方式下,网络节点可以自行监测传输介质的状态,而不需要先向中央网络节点申请介质的使用权,也不需要中央网络节点进行任何形式的介质分配。
当网络节点要发送数据时,会通过向传输介质发出“感受信号”来检测传输介质所处的状态,如果介质所处状态为空闲,则可以进行发送;如果介质正在被其他节点使用,则发送方会等待,直到介质空闲再进行发送。
当网络内有多个网络节点同时发送数据时,由于传输介质有限,数据会发生碰撞(collision),此时碰撞的网络节点会停止发送并释放介质,然后重新发起发送,重新进行“感受信号”的检测来决定发送何时。
为了尽量避免发生碰撞,网络节点必须十分小心地选择发送的时机,以使介质空闲能够更长一段时间。
这也就需要网络节点采用“延迟感受法”(Delay Sensing),即网络节点在发出“感受信号”时,先等待一定时间再向传输介质发出“感受信号”,以此来减少碰撞的概率。
此外,在进行发送时,节点还需要采用“乱序发送”(Scrambled Transmission),即网络节点在进行发送时,会随机调整发送的时机,以减少碰撞的概率。
以太网的介质访问控制方式,提供了一种准确无误的网络数据传输方式,以保证网络内部的数据传输准确无误。
介质访问控制方法名词解释
介质访问控制方法名词解释介质访问控制方法(Medium Access Control, MAC)是用于控制在共享传输媒体上的多个节点之间的数据传输的一种技术。
它定义了节点如何在共享介质上发送和接收数据的规则和协议。
以下是一些常见的介质访问控制方法的名词解释:1. 轮询(Polling):在轮询方法中,一个主节点负责控制其他从节点的访问共享介质。
主节点按顺序询问每个从节点是否有数据要发送,如果有,它会分配时间片给该从节点进行数据传输。
这种方法可以确保每个节点都有机会访问介质,但是在节点数量较多时会产生较大的延迟。
2. 随机接入(Random Access):随机接入方法中,每个节点都有平等的机会访问共享介质。
当一个节点想要发送数据时,它会先进行竞争,即发送一个随机的接入请求。
如果多个节点同时发送请求,会发生冲突。
当发生冲突时,节点会等待随机的时间后重新发送请求,通过随机的时间可以减少冲突。
这种方法具有较好的响应时间,但在高负载情况下可能会导致更多的冲突。
3. 信标(Token):信标方法中,网络中存在一个信标(token),节点只有在获得信标时才能发送数据。
当一个节点发送完数据后,它会将信标传递给下一个节点。
这种方法可以确保一个节点在任何时候都只有一个信标,从而避免了冲突。
然而,信标方法可能会导致较长的延迟,特别是在网络中的节点数量较多时。
4. CSMA/CD(Carrier Sense Multiple Access with Collision Detection):CSMA/CD方法是一种在以太网中广泛使用的介质访问控制方法。
在该方法中,节点在发送数据之前会先“听”共享介质是否正在被其他节点占用。
如果介质空闲,节点就可以发送数据;如果介质正在被其他节点使用,则节点会等待一段随机的时间后再次尝试。
当多个节点同时发送数据导致冲突时,它们会通过冲突检测来检测到冲突,并停止发送数据。
CSMA/CD方法能够减少冲突的发生,但在高负载情况下仍然可能会出现冲突,因此会导致一些重传。
网络知识点
计算机网络的定义:凡将地理位置不同,并具有独立功能的多个计算机系统通过通信设备和通信线路连接起来,且以功能完善的网络软件实现网络资源共享的系统,均可称为计算机网络。
使用计算机网络的目的:主要是为了共享资源和进行在线通信。
在计算机网络的研究中,常见的分类方法有以下几种:1.按通信所使用的介质分为有线网络和无线网络。
所谓有线网络,是指采用有形的传输介质如铜缆、光纤等组建的网络;而使用微波、红外线等无线传输介质作为通信线路的网络就属于无线网络。
2.按网络传输技术分为广播式网络和点到点式网络。
所谓广播式网络(broadcast network)是指网络中所有的计算机共享一条通信信道。
广播式的网络在通信时具备两个特点,一是任何一台计算机发出的消息都能够被其他连结到这条总线上的计算机收到;二是任何时间内只允许一个结点使用信道。
而在点到点网络(point-to-point network)中,由一条通信线路连结两台设备,为了能从源端到达目的端,这种网络上的数据可能需要经过一台或多台中间设备。
3.按网络拓扑结构可分为星型网、树型网、环型网、总线网和网状型等。
总线型:一根铜轴电缆连接每个主机,所有主机共享一个传输介质,传输方式是以广播的方式。
如果网络中任意一个节点发生故障,会造成全网断开星型:目前组建局域网中最常见的拓朴。
所有主机通过线缆连接到中心设备(交换机),组网简单,易排错。
一台计算机出现问题,不会影响到整个网络,但是如果中心结点出现故障,整个网络会断开。
环型:所有主机首尾相连,形成一个闭合的环路,称为单环,数据传输是按照方向传输,一个点断开,则全网断开。
也以可以采用双环网状型:网络中所有节点之间相互连接,形成一个互联的网状,组网成本高,但网络的可用性强,容错性高。
4.按地理覆盖范围,将网络划分为广域网(W AN)、城域网(MAN)和局域网(LAN)。
从功能上将计算机网络逻辑划分为:(1)资源子网资源子网负责全网的数据处理业务,并向网络用户提供各种网络资源和网络服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10Mbps以太网称之为标准以太网。
以太网主要有两种传输介质,那就是双绞线和光纤。
所有的以太网都遵循IEEE 802.3标准,下面列出是IEEE 802.3的一些以太网络标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。
·10Base-5 使用粗同轴电缆,最大网段长度为500m,基带传输方法;·10Base-2 使用细同轴电缆,最大网段长度为185m,基带传输方法;·10Base-T 使用双绞线电缆,最大网段长度为100m;· 1Base-5 使用双绞线电缆,最大网段长度为500m,传输速度为1Mbps;·10Broad-36 使用同轴电缆(RG-59/U CATV),最大网段长度为3600m,是一种宽带传输方式;·10Base-F 使用光纤传输介质,传输速率为10Mbps;二、快速以太网随着网络的发展,传统标准的以太网技术已难以满足日益增长的网络数据流量速度需求。
在1993年10月以前,对于要求1 0Mbps以上数据流量的LAN应用,只有光纤分布式数据接口(FD DI)可供选择,但它是一种价格非常昂贵的、基于100Mpbs光缆的LAN。
1993年10月,Grand Junction公司推出了世界上第一台快速以太网集线器Fastch10/100和网络接口卡FastNIC100,快速以太网技术正式得以应用。
随后Intel、SynOptics、3COM、BayNetworks等公司亦相继推出自己的快速以太网装置。
与此同时,IEEE802工程组亦对100Mbps以太网的各种标准,如100BAS E-TX、100BASE-T4、MII、中继器、全双工等标准进行了研究。
1995年3月IEEE宣布了IEEE802.3u 100BASE-T快速以太网标准(Fast Ethernet),就这样开始了快速以太网的时代。
快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。
快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。
100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。
· 100BASE-TX:是一种使用5类数据级无屏蔽双绞线或屏蔽双绞线的快速以太网技术。
它使用两对双绞线,一对用于发送,一对用于接收数据。
在传输中使用4B/5B编码方式,信号频率为125MHz。
符合EIA586的5类布线标准和IBM的SPT 1类布线标准。
使用同10BASE-T相同的RJ-45连接器。
它的最大网段长度为100米。
它支持全双工的数据传输。
· 100BASE-FX:是一种使用光缆的快速以太网技术,可使用单模和多模光纤(62.5和125um)多模光纤连接的最大距离为550米。
单模光纤连接的最大距离为3000米。
在传输中使用4 B/5B编码方式,信号频率为125MHz。
它使用MIC/FDDI连接器、ST连接器或SC连接器。
它的最大网段长度为150m、412m、2000 m或更长至10公里,这与所使用的光纤类型和工作模式有关,它支持全双工的数据传输。
100BASE-FX特别适合于有电气干扰的环境、较大距离连接、或高保密环境等情况下的适用。
· 100BASE-T4:是一种可使用3、4、5类无屏蔽双绞线或屏蔽双绞线的快速以太网技术。
100Base-T4使用4对双绞线,其中的三对用于在33MHz的频率上传输数据,每一对均工作于半双工模式。
第四对用于CSMA/CD冲突检测。
在传输中使用8B/6T编码方式,信号频率为25MHz,符合EIA586结构化布线标准。
它使用与10BASE-T相同的RJ-45连接器,最大网段长度为100米。
三、千兆以太网千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。
千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。
由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。
升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。
为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。
Gigabit Ethernet 支持的网络类型,如下表所示:传输介质距离1000Base-CX Copper STP 25m1000Base-T Copper Cat 5 UTP 100m1000Base-SX Multi-mode Fiber 500m1000Base-LX Single-mode Fiber 3000m千兆以太网技术有两个标准:IEEE802.3z和IEEE802.3ab。
IEEE802.3z制定了光纤和短程铜线连接方案的标准。
IEEE802.3 ab制定了五类双绞线上较长距离连接方案的标准。
1. IEEE802.3zIEEE802.3z工作组负责制定光纤(单模或多模)和同轴电缆的全双工链路标准。
IEEE802.3z定义了基于光纤和短距离铜缆的1000Base-X,采用8B/10B编码技术,信道传输速度为1.25Gbit /s,去耦后实现1000Mbit/s传输速度。
IEEE802.3z具有下列千兆以太网标准:· 1000Base-SX 只支持多模光纤,可以采用直径为62.5um 或50um的多模光纤,工作波长为770-860nm,传输距离为220-5 50m。
· 1000Base-LX 多模光纤:可以采用直径为62.5um或50u m的多模光纤,工作波长范围为1270-1355nm,传输距离为550m。
单模光纤:可以支持直径为9um或10um的单模光纤,工作波长范围为1270-1355nm,传输距离为5km左右。
· 1000Base-CX 采用150欧屏蔽双绞线(STP),传输距离为25m。
2. IEEE802.3abIEEE802.3ab工作组负责制定基于UTP的半双工链路的千兆以太网标准,产生IEEE802.3ab标准及协议。
IEEE802.3ab定义基于5类UTP的1000Base-T标准,其目的是在5类UTP上以10 00Mbit/s速率传输100m。
IEEE802.3ab标准的意义主要有两点:(1) 保护用户在5类UTP布线系统上的投资。
(2) 1000Base-T是100Base-T自然扩展,与10Base-T、100 Base-T完全兼容。
不过,在5类UTP上达到1000Mbit/s的传输速率需要解决5类UTP的串扰和衰减问题,因此,使IEEE802.3 ab工作组的开发任务要比IEEE802.3z复杂些四、万兆以太网万兆以太网规范包含在 IEEE 802.3 标准的补充标准 IE EE 802.3ae 中,它扩展了 IEEE 802.3 协议和 MAC 规范使其支持 10Gb/s 的传输速率。
除此之外,通过 WAN 界面子层(WIS:WAN interface sublayer),10千兆位以太网也能被调整为较低的传输速率,如 9.584640 Gb/s (OC-192),这就允许10千兆位以太网设备与同步光纤网络(SONET) STS -192c 传输格式相兼容。
· 10GBASE-SR 和 10GBASE-SW 主要支持短波(850 nm)多模光纤(MMF),光纤距离为 2m 到 300 m 。
10GBASE-SR 主要支持“暗光纤”(dark fiber),暗光纤是指没有光传播并且不与任何设备连接的光纤。
10GBASE-SW 主要用于连接 SONET 设备,它应用于远程数据通信。
· 10GBASE-LR 和 10GBASE-LW 主要支持长波(1310nm)单模光纤(SMF),光纤距离为 2m 到 10km (约32808英尺)。
10GBASE-LW 主要用来连接 SONET 设备时,10GBASE-LR 则用来支持“暗光纤”(dark fiber)。
· 10GBASE-ER 和 10GBASE-EW 主要支持超长波(1550nm)单模光纤(SMF),光纤距离为 2m 到 40km (约131233英尺)。
10GBASE-EW 主要用来连接 SONET 设备,10GBASE-ER 则用来支持“暗光纤”(dark fiber)。
· 10GBASE-LX4 采用波分复用技术,在单对光缆上以四倍光波长发送信号。
系统运行在 1310nm 的多模或单模暗光纤方式下。
该系统的设计目标是针对于 2m 到 300 m 的多模光纤模式或 2m 到 10km 的单模光纤模式。
△以太网的连接[编辑本段]拓扑结构总线型:所需的电缆较少、价格便宜、管理成本高,不易隔离故障点、采用共享的访问机制,易造成网络拥塞。
早期以太网多使用总线型的拓扑结构,采用同轴缆作为传输介质,连接简单,通常在小规模的网络中不需要专用的网络设备,但由于它存在的固有缺陷,已经逐渐被以集线器和交换机为核心的星型网络所代替。
星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设备的可靠性要求高。
采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。
星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。
此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。