三个数字组合成不能全奇的全部三个数

合集下载

生命数字的奥秘

生命数字的奥秘

生命数字的奥秘展开全文生命数字的奥秘毕达格拉斯将数字分为1~9种能量,每一个数字都肩负着它的使命和重任,当这些数字出现在我们的生日里时,它透露出属于你个人的生命信息。

我们的名字可以随意改变,但唯独生日无法重新改写,生日数字就如同人的基因密码,记录传递着身、心、灵多方位的先天与后天特质。

透过数字去看万物的真相,能帮助我们了解自身的真实需要:你是什么样的人?你有什么样的性格?你做事的方式是什么?你需要克服什么弱点?你的天赋是什么?你的缺陷是什么?生日数字都能一目了然。

同时也可以帮助我们理解身边的人:他为什么这样,她怎么会那样……我们不能要求和控制别人,毕竟,每个人的生命旅程大不相同,所以,我们所能做到理解别人的唯一的办法,就是——了解他人。

我们对于数字必须先有一个基本的认识:数字没有好坏之分,任何一个数字都不完美,都有着突出的正负两面性。

奇与偶,有界与无界,善与恶,左与右,一与众,雄与雌,直与曲,正方与长方,亮与暗,动与静——毕达格拉斯最早提出了整个宇宙的十个对立概念。

世界本身就是由相互矛盾的事物组合而成,数字也同样在遵循这一法则。

熟悉每个数字的含义非常重要,作为初学者,最好能将每个数字的基本意义印在脑海里。

占数学的计算方式非常多,但了解1~9的基本数字含义,是进行各种运算的基础。

其中另有大数字11、22、33具有双重含义(复合数字),也叫卓越数,它们?要参照自己包含的两个数字的含义,也可单独解读。

0是一个特殊数,似有似无,但它独立含义也很深远。

如何快速计算属于你的数字(1)当你看到一个人的生日,想从年月日快速了解这个人的大致特点,有三方面的因素来做参考:1.?生日数生日数代表天性溜带来的人格特质与行为表现,透露着你的性格、思考方式。

可以说,仅从生日数就可以判断出你给别人的外在印象。

生日数能量贯穿我们的整个人生,尤其在成年阶段,是最能体现你特色的个人标签。

计算方式这是出生年月日中最简单的一个数字,你是几号生?不用去看年份和月份,只看出生日期,举个例子:1984年2月5日,5就是生日数。

数海探奇(精)

数海探奇(精)

数海探奇数字海洋是一个绚丽多彩的万花筒。

它浩瀚无垠,深不知底,广不见岸。

其中蕴藏着无穷奥秘。

在这个海洋里,几千年来,人类一直在不停地探索、研究,虽然已经揭开它的部分面纱,但是背后隐藏的奥妙,还深邃莫测。

当数字中蕴含的某些奇妙特性被揭示出来,当运算中发现了某种奇异现象,惊诧赞叹之感便油然而生。

那些规律性的运算现象,那些象形性的数字排列,更激发了人们研究探索的热情。

人们已经发现各种各样非常奇特的数:音乐数、奇异数、魔术数……还发现运算中出现的数字山、数字塔、数字黑洞、数字旋涡……走进数海便如同进入魔宫,那五彩缤纷绚丽多姿的数字奇景,令人目不暇接,留连忘返。

数字奇观,是人类在数海遨游中发现的奇特风景,它仅仅是数学海洋这个奇妙世界的一小部分。

毫无疑问那些隐藏在数海深处的秘密,还有待于后来者进一步地探索、发现。

然而,仅这些已发现的数字奇景,也足以令人惊诧叫绝。

1.对称数文学作品有“回文诗”,如“山连海来海连山”,不论你顺读,还是倒过来读,它都完全一样。

有趣的是,数学王国中,也有类似于“回文”的对称数!先看下面的算式:11×11=121111×111=123211111×1111=1234321……由此推论下去,12345678987654321这个十七位数,是由哪两数相乘得到的,也便不言而喻了!瞧,这些数的排列多么像一列士兵,由低到高,再由高到低,整齐有序。

还有一些数,如:9461649,虽高低交错,却也左右对称。

假如以中间的一个数为对称轴,数字的排列方式,简直就是个对称图形了!因此,这类数被称作“对称数”。

对称数排列有序,整齐美观,形象动人。

那么,怎样能够得到对称数呢?经研究,除了上述11、111、1111……自乘的积是对称数外,把某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,也可得到对称数。

如:47515851便是对称数。

再如:7234对称数也出现了:1136311。

计数原理与概率学生

计数原理与概率学生

计数原理与概率排列组合1. 定义、公式排列与排列数组合与组合数定义1.排列:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2.排列数:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数。

1.组合:从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合。

2.组合数:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数。

公式。

排列数公式组合数公式性质(1)(2)备注排列组合常见问题及解法一、分析题意明确是分类问题还是分步问题,是排列还是组合问题5. 用0,1,2,3,4,5这六个数字组成无重复数字的五位数,分别求出下列各类数的个数:(1)奇数;(2)5的倍数;(3)比20300大的数;(4)不含数字0,且1,2不相邻的数。

{二、特殊元素,优先处理;特殊位置,优先考虑6. 五个人站成一排,求在下列条件下的不同排法种数:(1)甲必须在排头;(2)甲必须在排头,并且乙在排尾;(3)甲、乙必须在两端;(4)甲不在排头,并且乙不在排尾;(5)甲、乙不在两端;(6)甲在乙前;(7)甲在乙前,并且乙在丙前;三、捆绑与插空7. 8人排成一队(1)甲乙必须相邻(2)甲乙不相邻(3)甲乙必须相邻且与丙不相邻(4)甲乙必须相邻,丙丁必须相邻(5)甲乙不相邻,丙丁不相邻四、间接法8. 四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有多少种五、隔板法9. 10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法(六、定序问题七、10. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法如果要求甲乙丙按从左到右依次排列呢…七、排列组合综合应用11. (1)某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有______种.(用数字作答)(2)有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有__________种(用数字作答).(1)根据题意,先安排第一棒,再安排最后一棒,由于甲既可以传第一棒,又可以传最后一棒,因此应分类讨论,然后再逐类排出。

排列组合例题

排列组合例题

排列组合例题【例1】9名同学站成两排照相,前排4人,后排5人,共有多少种站法?分析如果问题是9名同学站成一排照相,则是9个元素的全排列的问题,有A99种方案。

而问题中9个人要分成两排,可以看成9个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.解:由全排列公式,共有A99==9×8×7×6×5×4×3×2×1=362880种不同的排法.【例2】5个人并排站成一排,其中甲必须站在中间有多少种不同的站法?分析由于甲必须站在中间,那么问题实质上就是剩下的四个人去站其余四个位置的问题,是一个全排列问题,且n=4.解:由全排列公式,共有A44=24种不同的站法.【例3】5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?A.240 B.320 C.450 D.480正确答案【B】解析:采用捆绑法,把3个女生视为一个元素,与5个男生进行排列,共有A66=6x5x4x3x2种,然后3个女生内部再进行排列,有A33=6种,两次是分步完成的,应采用乘法,所以排法共有:A66 ×A33 =320(种)。

【例4】6名同学坐成一排,其中甲,乙必须坐在一起的不同坐法是________种.(答案:240)A44×A51×2=240【例5】从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A)280种(B)240种(C)180种(D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C41=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A53=10种不同的选法,所以不同的选派方案共有C41×A53=240种,所以选B。

数学选修2-3第一章计数原理习题集(附答案解析)

数学选修2-3第一章计数原理习题集(附答案解析)

第 1 页 共15 页 选修2-3 第一章章节习题集1.1 分类加法计数原理与分步乘法计数原理 一、课时过关·能力提升1.某校举办了一次教师演讲比赛,参赛的语文老师有20人,数学老师有8人,英语老师有4人,从中评选出一个冠军,则可能的结果种数为( ) A.12B.28C.32D.640解析:由分类加法计数原理得,冠军可能的结果种数为4+8+20=32. 答案:C2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( ) A .60B .48C .36D .24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B . 答案:B3.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为( )A.8B.15C.35D.53 解析:每封电子邮件都有3种不同的发送方法,共有35种不同的发送方法. 答案:C4.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A ,B 的值,则可表示出的不同直线的条数为( ) A.19B.20C.21D.22解析:当A 或B 中有一个为零时,则可表示出2条不同的直线;当AB ≠0时,A 有5种选法,B 有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线. 答案:D5.五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有( ) A.60种B.40种C.20种D.10种解析:设五名护士分别为A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共10 种情况,假设A,B 两人拿到自己的外衣,则C,D,E 三人不能拿到自己的外衣,则只有C 取D,D 取E,E 取C,或C 取E,D 取C,E 取D 两种情况.故根据分步乘法计数原理,应有10×10×2=202=20种情况. 答案:C6.将4位老师分配到3个学校去任教,共有分配方案( ) A .81种B .12种C .7种D .256种解析:每位老师都有3种分配方案,分四步完成,故共有3×3×3×3=81种. 答案:A7.从6名志愿者中选4人分别从事翻译、人分别从事翻译、导游、导游、导游、导购、导购、导购、保洁四项不同的工作保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( ) A .280种 B .240种 C .180种D .96种解析:由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240种,故选B 答案:B8.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3 542大的四位数的个数是( ) A .360B .240C .120D .60解析:因为3 542是能排出的四位数中千位为3的最大的数,所以比3 542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3 542大的四位数. 答案:C9.圆周上有2n 个等分点(n 大于2),任取3点可得一个三角形,恰为直角三角形的个数为 .解析:先在圆周上找一点,因为有2n 个等分点,所以应有n 条直径,不经过该点的直径应有(n-1)条,这(n-1)条直径都可以与该点形成直角三角形,一个点可以形成(n-1)个直角三角形,而这样的点有2n 个,所以一共有2n (n-1)个符合题意的直角三角形. 答案:2n (n-1)10.如图所示,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 .解析:由题图可知,从A 到B 有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,由分类加法计数原理得,单位时间内传递的最大信息量为3+4+6+6=19. 答案:1911.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被传给甲,则共有种不同的传递方法.解析:分两类:第一类,若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,第二类,甲先传给丙,也有3种不同的传法.共有6种不同的传递方法. 答案:612.如图,一只蚂蚁沿着长方体的棱,从顶点A 爬到相对顶点C 1,求其中经过3条棱的路线共有多少条?解:从总体上看有三类方法:分别经过AB,AD,AA1从局部上看每一类又需分两步完成,故第一类:经过AB,有m1=1×2=2条;第二类:经过AD,有m2=1×2=2条;第三类:经过AA1,有m3=1×2=2条.根据分类加法计数原理,从顶点A到顶点C1经过3条棱的路线共有N=2+2+2=6条.13.用n种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.当n=6时,该板报有多少种书写方案?解:第一步选英语角用的彩色粉笔,有6种不同的选法;第二步选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法.共有6×5×4×5=600种不同的书写方案.14.用0,1,0,1,……,9这十个数字,可以组成多少个满足下列条件的数?(1)三位整数;(2)无重复数字的三位整数;(3)小于500的无重复数字的三位整数;(4)小于100的无重复数字的自然数.解:由于0不能放到首位,可以单独考虑.(1)百位上有9种选择,十位和个位各有10种选法由分步乘法计数原理知,适合题意的三位数的个数是9×10×10=900.(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是9×9×8=648.(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是4×9×8=288.(4)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,适合题意的两位数的个数是9×9=81.由分类加法计数原理知,适合题意的自然数的个数是10+81=91.1.2 排列与组合1.2.1 排列一、课时过关·能力提升1.从集合{3,5,7,9,11}中任取两个元素,①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆=1中的a,b,可以得到多少个焦点在x轴上的椭圆方程?④作为双曲线=1中的a,b,可以得到多少个焦点在x轴上的双曲线方程?上面四个问题属于排列问题的是( )A.①②③④B.②④C.②③D.①④解析:∵加法满足交换律,∴①不是排列问题;∵除法不满足交换律,如,∴②是排列问题;若方程=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小一定;在双曲线=1中不管a>b还是a<b,方程均表示焦点在x轴上的双曲线,且是不同的双曲线.故③不是排列问题,④是排列问题.答案:B2.某年级一天有6节课,需要安排6门课程,则该年级一天的课程表的排法有( )A.66种B.36种C.种D.12种解析:本题相当于对6个元素进行全排列,故有种排法.答案:C3.设m∈N*,则乘积m(m+1)(m+2)2)……(m+20)可表示为 ( )A. B. C. D.解析:由排列数公式,=(m+20)(m+19)(m+18)…(m+1)m.答案:D4.某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,则不同的坐法有( )A.12种B.16种C.24种D.32种解析:将三个人插入五个空位中间的四个空当中,有=24种坐法.答案:C5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A.8B.24C.48D.120解析:个位数字有种排法,十位、百位、千位有种排法,从而共=48个不同的四位偶数答案:C6.要排一个有5个独唱节目和3个舞蹈节目的节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法种数是( )A. B. C. D.解析:第一步先排5个独唱节目共种;第二步排舞蹈,不相邻则用插空法,且保证不放到开头,从剩下5个空中选3个插空共有种,故一共有种.答案:C7.5名男生与2名女生排成一排照相,若男生甲必须站在中间,2名女生必须相邻,则符合条件的排法共有( )A.48种B.192种C.240种D.288种解析:(用排除法)将2名女生看作1人,与4名男生一起排队,有种排法,而女生可互换位置,所以共有种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有种,这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为=192.答案:B8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 ( )A.120个B.80个C.40个D.20个解析:由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有个;第二类,十位数字取6,有个;第三类,十位数字取5,有个;第四类,十位数字取4,有个.所以一共有=40个.答案:C9.张先生和王先生两对夫妇各带1名小孩一起到动物园游玩,购票后排队依次入园为安全起见,首尾一定要排两位爸爸,另外,两名小孩一定要排在一起,则这6人的入园排法共有 .解析:分三步完成:第1步,将两位爸爸排在两端,有种排法;第2步,将两名小孩看作一人与两位妈妈任意排在中间的三个位置,有种排法;第3步,两个小孩之间还有种排法.因此,这6人的入园排法共有=24种.答案:24种10.某校在高二年级开设选修课,其中数学选修班开了4个,选课结束后,有四名选修英语的同学甲、乙、丙、丁要求改修数学,为照顾各班平衡,数学选修班每班只接收1名改修数学的同学.那么甲不在(1)班,乙不在(2)班的分配方法有 .解析:先分甲,第一类,当甲在(2)班时,分配乙、丙、丁有种方法.第二类,当甲不在(2)班时,则甲有种分法,再分乙有种分法,分配丙、丁有种分法.因此,总共有=14种分法.答案:14种11.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有=1 440个.(2)先把偶数排在奇数位上有种排法,再排奇数有种排法共有=576个.(3)1和2排列有种方法,在1和2之间放一个奇数有种方法,把1,2和相应奇数看成整体再和其余4个数进行排列有种排法,故共有=720个.12.一条铁路线上原有n个车站,为适应客运需要,新增加了m个车站(m>1),客运车票增加了62种,则原有多少个车站?现在有多少个车站?解:∵原有n个车站,∴原有客运车票种.又现有(n+m)个车站,∴现有客运车票种.由题设知:=62,∴(n+m)(n+m-1)-n(n-1)=62,∴2mn+m2-m=62,∴n=(m-1)>0,∴(m-1),∴62>m(m-1),即m2-m-62<0.又∵m>1,∴1<m<,∴1<m≤8.当m=2时,n=15.当m=3,4,5,6,7,8时,n均不为整数.∴n=15,m=2.∴原有车站15个,现有车站17个.1.2.2 组合一、课时过关·能力提升1.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( )A.45种B.56种C.90种D.120种解析:用排除法,不同的选法种数为=45.答案:A2.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为 ( )A.210B.126C.70D.35解析:从7种中取出3种有=35种取法,比如选出a,b,c种,再都改变位置有b,c,a和c,a,b两种,故不同的改变方法有2×35=70种.答案:C3.有15盏灯,要求关掉6盏,且相邻的灯不能全关掉,两端的灯不能关掉,则不同的关灯方法有( )A.28种B.84种C.180种D.360种解析:将9盏灯排成一排,关掉的6盏灯插入9盏亮灯的中间8个空隙中的6个空隙中,有=28种方法.答案:A4.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.答案:A5.中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案种数为( )A. B.C. D.解析:首先每个学校配送一台,这个没有顺序和情况之分,剩下40台;将剩下的40台像排队一样排列好,则这40台校车之间有39个空,对这39个空进行插空,比如说用9面小旗隔开,就可以隔成10部分.所以是在39个空中选9个空进行插空.故不同的方案种数为.答案:D6.已知一组曲线y=ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为 ( )A.9B.10C.12D.14解析:y'=ax2+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成2条曲线,有组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成3条曲线,有组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成2条曲线,有组.故共有=14组相互平行的切线.答案:D7.5个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A盒,则不同的放法种数是 ( )A.120B.72C.60D.36解析:将甲球放入A盒后分两类,一类是除甲球外,A盒还放其他球,共=24种放法,另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有=36种放法.故总的放法有24+36=60种.答案:C8.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 .(用数字作答)解析:第一步安排周六有种方法,第二步安排周日有种方法,故不同的安排方案共有=140种.答案:140种9.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 .(用数字作答)解析:分两种情况:第一类:个位、十位和百位上各有一个偶数,有=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有=234个,共有90+234=324个.答案:324个10.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同品种的菜.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜(结果用数值表示)解析:在5种不同的荤菜中选出2种的选择方式的种数是=10.若选择方式至少为200种,设素菜为x种, 则有≥200,即≥20,化简得x(x-1)≥40,解得x≥7.所以,至少应准备7种素菜.答案:711.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,不同的取法种数为 .解析:满足要求的点的取法可分为三类:第一类,在四棱锥的每个侧面上除点P外任取3点,有4种取法;第二类,在两个对角面上除点P外任取3点,有2种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4种取法.因此,满足题意的不同取法共有4+2+4=56种.答案:5612.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.解:与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有=1个信息 由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.13.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=1911.3 二项式定理1.3.1 二项式定理一、课时过关·能力提升1.的展开式中倒数第3项的系数是( )A.·2B.·26C.·25D.·22解析:的展开式中倒数第3项为二项展开式中的第6项,而T6=·(2x)2··22·x-8.该项的系数为·22.答案:D2.的展开式中的常数项为-220,则a的值为 ( )A.1B.-1C.2D.-2解析:T k+1=·a k.∵T k+1为常数项,∴-k=0,∴k=3.∴·a3=-220,∴a=-1.答案:B3.对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值是( )A.3B.6C.9D.21解析:由已知x3=[2+(x-2)]3=·23+·22·(x-2)+·2·2·((x-2)2+(x-2)3.所以a2=·2=6.答案:B4.的展开式中含x3项的二项式系数为( )A.-10B.10C.-5D.5解析:T k+1=·x 5-k=(-1)k·x5-2k,令5-2k=3,则k=1故x3项的二项式系数为=5答案:D5.若(1+)5=a+b(a,b为有理数),则a+b等于 ( )A.45B.55C.70D.80解析:由二项式定理,得(1+)5=1+·()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,故a+b=70.答案:C6.(1-)6(1+)4的展开式中x的系数是( )A.-4B.-3C.3D.4解析:方法一:(1-)6的展开式的通项为(-)m,(1+)4的展开式的通项为)n,其中m=0,1,2,…,6;n=0,1,2,3,4.令=1,得m+n=2,于是(1-)6(1+)4的展开式中x的系数等于·(-1)0··(-1)1··(-1)2·=-3.方法二:(1-)6(1+)4=[(1-)(1+)]4(1-)2=(1-x)4(1-2+x).于是(1-)6(1+)4的展开式中x的系数为·1+·(-1)1·1=-3.答案:B7.若x>0,设的展开式中的第3项为M,第4项为N,则M+N的最小值为 .解析:由T3=x,T4=,则M+N=≥2.当且仅当,即x=时,等号成立答案:8.二项式的展开式中,常数项的值为 .答案:0,1,2,……,n)的部分图象如图,则a= .9.已知(ax+1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0(x∈N*),点A i(i,a i)(i=0,1,2,解析:由展开式得T k+1=(ax)n-k=a n-k·x n-k,由题图可知a1=3,a2=4,即a=3,且a2=4,化简得na=3,且=4,解得a=.答案:10.求证:32n+3-24n+37能被64整除.证明:32n+3-24n+37=3×9n+1-24n+37=3(8+1)n+1-24n+37=3(·8n+1+·8n+…+·8+1)-24n+37=3×64(·8n-1 +·8n-2+…+)+24-24n+40=64×3(·8n-1+·8n-2+…+)+64.显然上式是64的倍数,故原式可被64整除11.(1)求(1+x)2(1-x)5的展开式中x3的系数;(2)已知展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如果有,请求出来.解:(1)(1+x)2的通项为T r+1=·x r,(1-x)5的通项为T k+1=(-1)k·x k,其中r∈{0,1,2},k∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.故x3的系数为-=5.(2)展开式的通项为T k+1=(x)n-k·=·2k·(k=0,1,2,…,n),由题意,得20+2+22=129所以1+2n+2n(n-1)=129,则n2=64,即n=8.故T k+1=·2k·(k=0,1,2,…,8),若展开式存在常数项,则=0,解之,得k=∉Z,所以展开式中没有常数项若展开式中存在一次项,则=1,即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T7=26x=1 792x.1.3.2 “杨辉三角”与二项式系数的性质一、课时过关·能力提升1.如果的展开式中各项系数之和为128,则展开式中含的项是( )A. B.C. D.解析:由的展开式中各项系数之和为128可得2n =128,n=7.其通项T k+1=(3x )7-k =(-1)k ·37-k,令7-=-3,解得k=6,此时T 7=.答案:C 2.的展开式中第8项是常数项,则展开式中系数最大的项是( )A.第8项B.第9项C.第8项、第9项D.第11项、第12项 解析:展开式中的第8项为)n-7为常数,即=0,解得n=21.故展开式中系数最大的项为第11项、第12项.答案:D 3.若(x+3y )n展开式的系数和等于(7a+b )10展开式中的二项式系数之和,则n 的值为( ) A.5B.8C.10D.15解析:(7a+b )10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n =210,解得n=5.答案:A4.已知+2+22+…+2n =729,则的值等于( )A.64B.32C.63D.31解析:由已知(1+2)n =3n=729,解得n=6.则=32.答案:B5.(1+x )n(3-x )的展开式中各项系数的和为1 024,则n 的值为( ) A .8B .9C .10D .11解析:由题意知(1+1)n (3-1)=1 024,即2n+1=1 024,故n=9. 答案:B6.若(1-2x )2 015=a 0+a 1x+…+a 2 015x2 015(x ∈R ),则+…+的值为( ) A.2 B.0C.-1D.-2 解析:令x=0,则a 0=1,令x=,则a 0++…+=0,故+…+=-1.答案:C7.(x+1)9按x 的升幂排列二项式系数最大的项是( ) A .第4项和第5项 B .第5项 C .第5项和第6项 D .第6项解析:展开式中共有10项,由二项式系数的性质可知,展开式的中间两项的二项式系数最大,即第5项和第6项的二项式系数最大. 答案:C8.在(a-b )10的二项展开式中,系数最小的项是 .解析:在(a-b )10的二项展开式中,奇数项的系数为正,偶数项的系数为负,且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式系数最大,所以系数最小的项为T 6=a 5(-b )5=-252a 5b 5.答案:-252a 5b 59.设(x-1)21=a 0+a 1x+a 2x 2+…+a 21x 21,则a 10+a 11= . 解析:∵(x-1)21的展开式的通项为T k+1=x 21-k (-1)k ,∴a 10+a 11=(-1)11+(-1)10=-=-=0.答案:0 10.若(2x+)4=a 0+a 1x+…+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为 .解析:令x=1,得a 0+a 1+a 2+a 3+a 4=(2+)4,令x=-1,得a 0-a 1+a 2-a 3+a 4=(-2+)4,(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)·)·((a 0-a 1+a 2-a 3+a 4)=(2+)4(-2+)4=1. 答案:111.若(2x-3y )10=a 0x 10+a 1x 9y+a 2x 8y 2+…+a 10y 10,求:(1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.解:(1)各项系数之和即为a 0+a 1+a 2+…+a 10,可用“赋值法”求解.令x=y=1,得a 0+a 1+a 2+…+a 10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a 0+a 2+a 4+…+a 10,偶数项系数的和为a 1+a 3+a 5+…+a 9. 由(1)知a 0+a 1+a 2+…+a 10=1,①令x=1,y=-1,得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得,2(a 0+a 2+…+a 10)=1+510,则奇数项系数的和为;①-②得,2(a 1+a 3+…+a 9))=11-5510,则偶数项系数的和为12.已知(+3x 2)n 展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解:令x=1得展开式各项系数和为(1+3)n =4n展开式二项式系数和为+…+=2n ,由题意有4n -2n=992.即(2n )2-2n -992=0,(2n -32)(2n+31)=0,解得n=5.(1)因为n=5,所以展开式共6项,其中二项式系数最大的项为第3项、第4项,它们是T 3=)3·(3x 2)2=90x 6, T 4=)2(3x 2)3=270.(2)设展开式中第k+1项的系数最大.由T k+1=)5-k ·(3x 2)k =3k,得⇒⇒≤k≤.因为k∈Z,所以k=4,所以展开式中第5项系数最大.T5=34=405.13.杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)在第2斜列中,前5个数依次为1,3,6,10,15;第3斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般的有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数字公式表示上述结论,并给予证明.解:(1)=1 140(2)+…+,证明如下:左边=+…++…+=…==右边.。

生命数字全书

生命数字全书

生命数字全书前言人生法则指出人生之路眺望未来,回首前尘,与当下相比,皆微不足道。

向内追求,奇迹自现。

~梭罗人不论各行各业,天生就懂得追求意义、方向和目的。

这种追求人生意义的驱力对心理成长非常重要,就象人不能不吃饭一样。

虽然许多人并未自觉到生命确实存在某一个特定意义,但生命借着梦境、直觉和内心深处的渴望,传递了这个讯息。

内心的驱力和潜力证明了命运在召唤我们。

这些驱力形成了我们的事业和人际关系,影响了人生品质与方向。

除非我们体认到生命背后的意义,否则人生就象缺角的拼图,隐约感觉人生似乎有某种意义,却不知究竟是什么。

我们工作、休息、吃饭、睡觉、赚钱、花钱、享乐、受苦,却搞不懂所为何来。

数年来,笔者撰写数本书,皆阐扬以和平战斗法追求人生——以勇气、爱、智慧来面对内心战斗,本书使这一系列有关人生意义的作品呈现完整面貌,协助读者澄清并充实人生意义——本书也是一张地图,揭示人生之山的途径,指出直达颠峰的捷径。

本书拓展自我认知及对他人的认知,也增进心理医师、内科医师、物理治疗师、自我健身者、社工、教师、教练等人之效率。

自1985年起,笔者与世界各地数千名人士一同运用、测试及改进这套方法,这套方法的好处是简单而且证明有效,各方热烈的反应兴起我撰写本书之动机。

性格分析方法多半依循心理传统和精神传统。

自我分析能引发自我改变的冲动,本书则提供自我改变的方法。

诚如地上万物皆依重力法则而动,宇宙也有法则,本书即是提供生命的法则,使我们更健康、人际关系更圆满、工作更顺心、人生更快乐。

这些法则不仅是规定、建议、或道德规章,而是呈现出更高等的秩序(例如我们可以宣称重力不合理或不道德,但重力法则依然为真)。

生命法则通过历史验证,因为它首尾一致,既深且远,笔者称之为精神法则或宇宙法则,运用时即可窥见其强大力量。

精神法则不需仰赖任何信仰(不管你相不相信重力,重力依然在运作),因此不论精神法则是否为上帝所创,或仅仅反映宇宙之机制,皆无损于它改变人生的能力。

小学奥数:组合之排除法.专项练习及答案解析

小学奥数:组合之排除法.专项练习及答案解析

1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到m m m n n m P C P =⋅.因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅L L m mn nm m P n n n n m C P m m m ()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元知识要点教学目标7-5-3.组合之排除法素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.对于某些有特殊要求的计数,当限制条件较多时,可以先计算所有可能的情况,再从中排除掉那些不符合要求的情况.【例 1】 在100~1995的所有自然数中,百位数与个位数不相同的自然数有多少个?【考点】组合之排除法 【难度】2星 【题型】解答【解析】 先考虑100~1995这1896个数中,百位与个位相同的数有多少个,在三位数中,百位与个位可以是1~9,十位可以是0~9,由乘法原理,有91090⨯=个,四位数中,千位是1,百位和个位可以是0~9,十位可以是0~9,由乘法原理,1010100⨯=个,但是要从中去掉1999,在100~1995中,百位与个位相同的数共有9099189+=个,所以,百位数与个位数不相同的自然数有:189********-=个.【答案】1707【例 2】 1到1999的自然数中,有多少个与5678相加时,至少发生一次进位?【考点】组合之排除法 【难度】3星 【题型】解答【解析】 从问题的反面考虑:1到1999的自然数中,有多少个与5678相加时,不发生进位?这样的数,个位数字有2种可能(即0,1),十位数字有3种可能(即0,1,2),百位数字有4种可能(即0,1,2,3),千位数字有2种可能(即0,1).根据乘法原理,共有234248⨯⨯⨯=个.注意上面的计算中包括了0(=0000)这个数,因此,1到1999的自然数中与5678相加时,不发生进位的数有48147-=个所以,1到1999的自然数中与5678相加时,至少发生一次进位的有1999471952-=个.【答案】1952【巩固】 所有三位数中,与456相加产生进位的数有多少个?【考点】组合之排除法 【难度】3星 【题型】解答【解析】 与456相加产生进位在个位、十位、百位都有可能,所以采用从所有三位数中减去与456相加不产生进位的数的方法更来得方便,所有的三位数一共有99999900-=个,其中与456相加不产生进位的数,它的百位可能取1、2、3、4、5共5种可能,十位数可以取0、1、2、3、4共5种可能,个位数可以取0、1、2、3共4种可能,根据乘法原理,一共有554100⨯⨯=个数,所以与456相加产生进位的数一共有900100800-=个数.【答案】800【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少发生一次进位?【考点】组合之排除法 【难度】3星 【题型】解答【解析】 千位数小于等于1,百位数小于等于1,十位数小于等于3,个位数小于等于3,应该有2244163⨯⨯⨯-=种可以不进位,那么其他2004631941-=个数都至少产生一次进位.【答案】1941【例 3】 在三位数中,至少出现一个6的偶数有多少个?例题精讲【考点】组合之排除法【难度】3星【题型】解答【解析】至少出现一个“6”,意思就是这个三位偶数中,可以有一个6,两个6或三个6.我们可以把这三种情况下满足条件的三位数的个数分别求出来,再加起来;也可以从所有的三位偶数中减去不满足条件的,即减去不含6的三位偶数.三位偶数共有450个,我们先来计算不含6的偶数的个数,不含6的偶数,个位可以是0,2,4,8,十位上可以是除6以外的其余9个数字,百位可以是除6,0以外的8个数字,因此不含6的三位偶数共有498288⨯⨯=个,则至少出现一个6的三位偶数有-⨯⨯=个.450498162【答案】162【例 4】能被3整除且至少有一个数字是6的四位数有个。

排列组合例题

排列组合例题
排列组合例题
【例 1】 9 名同学站成两排照相,前排 4 人,后排 5 人,共有多少种站法? 分析 如果问题是 9 名同学站成一排照相,则是 9 个元素的全排列的问题,有 A99 种方
案。而问题中 9 个人要分成两排,可以看成 9 个人排成一排后,左边 4 个人站在前排,右 边 5 个人站在后排,所以实质上,还是 9 个人站 9 个位置的全排列问题. 解:由全排列公式,共有 A99==9×8×7×6×5×4×3×2×1=362880 种不同的排法.
2 个点,就可以画出一条线段;在 10 个点中取 3 个点,就可以画出一个三角形;在 10 个 点中取 4 个点,就可以画出一个四边形,三个问题都是组合问题.
解:由组合数公式. ①C102=45 个直线段 ②C103=120 个三角形 ③C104=210 个四边形
【例 12】 用 0,1,2,3,4 这 5 个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30
从右图中 11 个交点中任取 3 个点,可画出多少个三角形?
解:组合总数为 C113=165, 其中三点共线不能构成的三角形有 6C33=6,四点共线不能构成的三角形有 2C43=8,
∴165-(6+8)=151 个
【例 25】
1 名老师和 4 名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的

排法
种.
解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置
上任选一个位置,有 3 种,而其余学生的排法有 A44=24 种,所以共有 3×24=72 种不 同的排法.
【例 26】
乒乓球队的 10 名队员中有 3 名主力队员,派 5 名队员参加比赛,3 名主力队员要

(常考题)人教版高中数学选修三第一单元《计数原理》测试卷(含答案解析)(4)

(常考题)人教版高中数学选修三第一单元《计数原理》测试卷(含答案解析)(4)

一、选择题1.若1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,则展开式中含2x 项的系数是 A .462- B .462 C .792D .792-2.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,由四个全等的直角三角形和一个正方形构成.现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有( )A .180B .192C .420D .4803.从0,2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为( ) A .24B .27C .30D .364.()52112x x ⎛⎫-- ⎪⎝⎭展开式的常数项为() A .112B .48C .-112D .-485.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .356.已知自然数k ,则(18)(19)(20)(99)k k k k ----…等于( ) A .1899kk C --B .8299k C -C .1899kk A -- D .8299k A -7.在二项式3nx x ⎫⎪⎭的展开式中,各项系数之和为A ,二项式系数之和为B ,若72A B +=,则n =( )A .3B .4C .5D .68.设40cos2t xdx π=⎰,若20182012(1)x a a x a x t-=++20182018a x ++,则1232018a a a a +++=( )A .-1B .0C .1D .2569.若,m n 均为非负整数,在做m n +的加法时各位均不进位(例如,134********+=),则称(),m n 为“简单的”有序对,而m n +称为有序数对(),m n 的值,那么值为2964的“简单的”有序对的个数是( )A .525B .1050C .432D .86410.()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是( ) A .-5B .7C .-11D .1311.以长方体1111ABCD A B C D -的任意三个顶点为顶点作三角形,从中随机取出2个三角形,则这2个三角形不共面的情兄有( )种A .1480B .1468C .1516D .1492 12.899091100⨯⨯⨯⨯可表示为( )A .10100AB .11100AC .12100AD .13100A第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.方程10x y z ++=的正整数解的个数__________.14.4名志愿者被随机分配到、、A B C 三个不同的岗位服务,每个岗位至少有一名志愿者,则甲、乙两名志愿者没有分配到同一个岗位服务的概率为______.15.关于x 的方程222424x x C C =的解为_________. 16.计算:01220181232019C C C C ++++=______.17.在()()()238111x x x ++++++的展开式中,含2x 项的系数是_______________.18.有4位同学参加学校组织的政治、地理、化学、生物4门活动课,要求每位同学各选一门报名(互不干扰),则地理学科恰有2人报名的方案有______.19.已知()()()()()23n2012111...+1...*n n x x x x a a x a x a x n N +++++++=++++∈,且012126n a a a a +++⋯+=,那么nx x 的展开式中的常数项为______.20.设0(cos sin )a x x dx π=-⎰,则二项式6(的展开式中含2x 项的系数为______.三、解答题21.在二项式()32nx -的展开式中.(1)若前3项的二项式系数和等于67,求二项式系数最大的项; (2)若第3项的二项式系数等于第18项的二项式系数,求奇次项系数和.22.已知n 的二项展开式的各二项式系数的和与各项系数的和均为256. (1)求展开式中有理项的个数; (2)求展开式中系数最大的项.23.已知()*nx n ⎛∈ ⎝N 展开式的前三项的二项式系数之和为16. (1)求n 的值:(2)复数z 满足325nz i z i -=++(i 为虚数单位),求z . 24.已知10件不同的产品中有4件是次品,现对它们进行测试,直至找出所有的次品为止.(1)若恰在第5次测试后就找出了所有次品,则这样的不同测试方法数是多少? (2)若恰在第2次测试才测试到第1件次品,第7次才找到最后一件次品,则这样的不同测试方法数是多少?25.已知二项式1nx ⎫⎪⎭的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.26.在二项式n 的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项; (3)求展开式中各项的系数和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【解析】∵1nx x ⎛⎫- ⎪⎝⎭的展开式中只有第7项的二项式系数最大,∴n 为偶数,展开式共有13项,则12n =.121x x ⎛⎫- ⎪⎝⎭的展开式的通项公式为()1212211C r r r r T x -+=-,令1222r -=,得5r =. ∴展开式中含2x 项的系数是()12551C 792-=-,故选D . 【名师点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项,可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.2.C解析:C 【分析】就使用颜色的种类分类计数可得不同的涂色方案的总数. 【详解】相邻的区域不能用同一种颜色,则涂5块区域至少需要3种颜色.若5块区域只用3种颜色涂色,则颜色的选法有35C ,相对的两个直角三角形必同色,此时共有不同的涂色方案数为335360C A =(种).若5块区域只用4种颜色涂色,则颜色的选法有45C ,相对的两个直角三角形必同色,余下两个直角三角形不同色,此时共有不同的涂色方案数为414524240C C A =(种).若5块区域只用5种颜色涂色,则每块区域涂色均不同,此时共有不同的涂色方案数为55120A =(种).综上,共有不同的涂色方案数为420(种). 故选:C. 【点睛】本题考查排列组合的应用,注意根据题设要求合理分类分步,此类问题属于中档题.3.C解析:C 【分析】分两种情况讨论:选0或2,4,分别求出组成无重复数字的三位奇数的个数,再求和即可. 【详解】第一类,从0,2,4中选一个数字,若选0,则0只能排在十位,故有236A =个奇数,第二类,从0,2,4中选一个数字,若不选0,先把奇数排个位,再排其它,故有2112322224C C C A =个奇数,综上可得,从0,2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为62430+=个, 故选C . 【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.4.D解析:D 【分析】把51(2)x -按照二项式定理展开,可得()52112x x ⎛⎫-- ⎪⎝⎭的展开式的常数项.【详解】 由于()()52205142332455555111111121()2()4()8()1632x x C C C C C x x x x x x ⎛⎫⎛⎫---⋅-⋅+⋅-⋅+⋅- ⎪⎭= ⎪⎝⎝⎭故展开式的常数项为3583248C -+=-,故选D .【点睛】本题考查二项式定理的应用,考查了二项式展开式,属于基础题.5.A解析:A 【分析】令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,把二项式化为66(1)(1)x x x +--,再利用二项展开式的通项,即可求解. 【详解】由题意,令1x =,可得66017...(11)(1)2(01)a a a a a ++++-=⨯-==,解得1a =,所以二项式为666(1)(1)(1)(1)x x x x x =++---所以展开式中3x 的系数为332266(1)(1)20155C C -+-=-+=-,故选A .【点睛】本题主要考查了二项式定理的应用,其中解答熟练应用赋值法求得二项展开式的系数,以及二项展开式的通项是解答的关键,着重考查了推理与运算能力,属于基础题.6.D解析:D 【解析】分析:直接利用排列数计算公式即可得到答案.详解:()()()()()()829999!181920...9917!kk k k k k A k ------==-.故选:D.点睛:合理利用排列数计算公式是解题的关键.7.A解析:A 【解析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得B ,最后根据72B +=解出.n详解:因为各项系数之和为(13)4n n +=,二项式系数之和为2n , 因为72A B +=,所以4272283n n n n +=∴=∴=, 选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如2(),()(,)n n ax b ax bx c a b R +++∈的式子求其展开式的各项系数之和,常用赋值法, 只需令1x =即可;对形如()(,)nax by a b +∈R 的式子求其展开式各项系数之和,只需令1x y ==即可.8.B解析:B 【解析】分析:先求定积分,再求()()()()12320181,010f f a a a a f f +++=-,详解:440111cos22|02222t xdx sin x sin πππ===-=⎰,故设()(f x =1-2x 2018),所以()()11,01f f ==,()()1232018100a a a a f f +++=-=,故选B点睛:求复合函数的定积分要注意系数能够还原,二项式定理求系数和的问题,采用赋值法.9.B解析:B 【分析】由题意知本题是一个分步计数原理,第一位取法两种为0,1,2,第二位有10种取法,从0,1,2,3,4,5,6,7,8,9 ,第三位有7种取法,从0,1,2,3,4,5,6取一个数字,第四为有5种,从0,1,2,3,4取一个数字,根据分步计数原理得到结果. 【详解】由题意知本题是一个分步计数原理, 第一位取法3种为0,1, 2,第二位有10种为0,1,2,3,4,5,6,7,8,9 , 第三位有7种为0,1,2,3,4,5,6,第四为有5种为0,1,2, 3,4根据分步计数原理知共有3×10×7×5=1050个 故选:B. 【点睛】解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手. (1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”; (2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等; (3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决; (4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.10.C解析:C 【解析】611x ⎛⎫- ⎪⎝⎭的展开式的通项公式是61,rr C x ⎛⎫- ⎪⎝⎭ 其中含1x 的项是1161,C x ⎛⎫- ⎪⎝⎭ 常数项为0611,C x ⎛⎫-= ⎪⎝⎭ 故()61211x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项是116121112111.x C x ⎡⎤⎛⎫⨯-+⨯=-+=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦故选C.11.B解析:B 【分析】根据平行六面体的几何特征,可以求出以平行六面体1111ABCD A B C D -的任意三个顶点为顶点作三角形的总个数,及从中随机取出2个三角形的情况总数,再求出这两个三角形共面的情况数,即可得到这两个三角形不共面的情况数,即可得到答案. 【详解】因为平行六面体1111ABCD A B C D -的8个顶点任意三个均不共线, 故从8个顶点中任取三个均可构成一个三角形共有38=56C 个三角形,从中任选两个,共有2561540C =种情况,因为平行六面体有六个面,六个对角面, 从8个顶点中4点共面共有12种情况, 每个面的四个顶点共确定6个不同的三角形,故任取出2个三角形,则这2个三角形不共面共有1540-12×6=1468种, 故选:B. 【点睛】本题考查了棱柱的结构特征,考查了组合数的计算,在解题过程中注意共面和不共面的情况,做到不重不漏,属于中档题.12.C解析:C【分析】由排列数的定义即可得出结果.【详解】12 100=10099(100121)1009989⨯⨯⨯-+=⨯⨯⨯A故选:C【点睛】本题考查了排列数的定义,考查了理解辨析能力和逻辑推理能力,属于一般题目.二、填空题13.【分析】本题转化为把10个球放在三个不同的盒子里有多少种方法利用隔板法即可求得答案【详解】问题中的看作是三个盒子问题则转化为把个球放在三个不同的盒子里有多少种方法将个球排一排后中间插入两块隔板将它们解析:36【分析】本题转化为把10个球放在三个不同的盒子里,有多少种方法,利用隔板法,即可求得答案.【详解】问题中的x y z、、看作是三个盒子,问题则转化为把10个球放在三个不同的盒子里,有多少种方法.将10个球排一排后,中间插入两块隔板将它们分成三堆球,使每一堆至少一个球.隔板不能相邻,也不能放在两端,只能放在中间的9个空内.∴共有2936C=种.故答案为:36【点睛】本题解题关键是掌握将正整数解的问题转化为组合数问题,考查了分析能力和转化能力,属于中档题.14.【分析】要保证每个岗位至少一人人所以首先将四个人分成三组在将三组全排列求出总事件数然后再将甲乙分到不同两组得出甲乙不在同一岗位的基本事件数总而得出概率【详解】因为每个岗位至少有一人所以要将四个人分成解析:5 6【分析】要保证每个岗位至少一人人,所以首先将四个人分成三组,在将三组全排列求出总事件数,然后再将甲乙分到不同两组,得出甲乙不在同一岗位的基本事件数,总而得出概率.因为每个岗位至少有一人,所以要将四个人分成三组,则只能是211、、所以总事件数为: 2113421322=36C C C A A ⋅⋅⋅, 甲乙不在同一岗位的基本事件数:()11232223+=30C C C A ⋅⋅ 所以甲、乙两名志愿者没有分配到同一个岗位服务的概率305=366P =, 故答案为:56. 【点睛】本题考查等可能性事件的概率,利用排列组合公式求出基本事件的总数和满足某个事件的基本事件个数是解答本题的关键.15.0或2或4【分析】因为所以:或解方程可得【详解】解:因为所以:或解得:(舍)故答案为:0或2或4【点睛】本题考查了组合及组合数公式属于基础题解析:0或2或4 【分析】因为222424x xC C =,所以:22x x =或2224x x +=,解方程可得. 【详解】解:因为222424x x C C =, 所以:22x x =或2224x x +=,解得:0x =,2x =,4x =,6x =-(舍) 故答案为:0或2或4 【点睛】本题考查了组合及组合数公式.属于基础题.16.【分析】将变为然后利用组合数性质即可计算出所求代数式的值【详解】故答案为:【点睛】本题考查组合数的计算利用组合数的性质进行计算是解题的关键考查计算能力属于中等题 解析:2039190【分析】将01C 变为02C ,然后利用组合数性质111k k k n n n C C C ++++=即可计算出所求代数式的值.【详解】()111,,1k k k n n n C C C n N k N k n ++*++=∈∈≤+, 012201801220181220182018123201922320193320192020C C C C C C C C C C C C ∴++++=++++=+++=2039190=.故答案为:2039190.本题考查组合数的计算,利用组合数的性质进行计算是解题的关键,考查计算能力,属于中等题.17.84【分析】通过求出各项二项展开式中项的系数利用组合数的性质求出系数和即可得结果【详解】的展开式中含项的系数为:故答案是:84【点睛】该题考查的是有关二项式对应项的系数和的问题涉及到的知识点有指定项解析:84 【分析】通过求出各项二项展开式中2x 项的系数,利用组合数的性质求出系数和即可得结果. 【详解】()()()238111x x x ++++++的展开式中,含2x 项的系数为:2222222322222223456783345678C C C C C C C C C C C C C C ++++++=++++++399878432C ⨯⨯===⨯, 故答案是:84. 【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.18.【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案即可求解得到答案【详解】由题意先在4位同学中选2人选地理学科共种选法再将剩下的2人在政治化学生物3门活动课任选一门报名共3×3=9种选法故地 解析:54【分析】由排列组合及分步原理得到地理学科恰有2人报名的方案,即可求解,得到答案. 【详解】由题意,先在4位同学中选2人选地理学科,共246C =种选法,再将剩下的2人在政治、化学、生物3门活动课任选一门报名,共3×3=9种选法, 故地理学科恰有2人报名的方案有6×9=54种选法, 故答案为54. 【点睛】本题主要考查了排列、组合,以及分步计数原理的应用,其中解答中认真审题,合理利用排列、组合,以及分步计数原理求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.19.-20【分析】由题意令x =1可得n =6再利用二项展开式的通项公式求得展开式中的常数项【详解】∵已知且∴令可得∴那么的展开式的通项公式为令求得可得展开式中的常数项为故答案为﹣20【点睛】本题主要考查二解析:-20【分析】由题意令x =1,可得n =6,再利用二项展开式的通项公式,求得展开式中的常数项. 【详解】∵已知()()()()()232*0121111nnn x x x x a a x a x a x n N++++++⋯++=+++⋯+∈,且012126n a a a a +++⋯+=,∴令1x =,可得()210122122222212612n n n n a a a a +-+++⋯+=++⋯+==-=-,∴6n =,那么6n =的展开式的通项公式为()3161r rr r T C x -+=⋅-⋅, 令30r -=,求得3r =,可得展开式中的常数项为3620C -=-,故答案为﹣20. 【点睛】本题主要考查二项式定理的应用,赋值法,求展开式的系数和,项的系数,准确计算是关键,属于基础题.20.192【分析】根据微积分基本定理首先求出的值然后再根据二项式的通项公式求出的值问题得以解决【详解】的通项公式为令故含项的系数为故答案为【点睛】本题主要考查定积分二项式定理的应用二项式展开式的通项公式解析:192 【分析】根据微积分基本定理首先求出a 的值,然后再根据二项式的通项公式求出r 的值,问题得以解决. 【详解】()()sin cos 1120a cosx sinx dx x x ππ=-=+=--=-⎰66⎛⎛∴-= ⎝⎝的通项公式为63162r r rr T C x --+=令32r -=,1r = 故含2x 项的系数为61162192C -=故答案为192 【点睛】本题主要考查定积分、二项式定理的应用,二项式展开式的通项公式,属于基础题.三、解答题21.(1)5610777536T x =-,677185024T x =;(2)19152+.【分析】(1)由题意得01267n n n C C C ++=,化简为21320n n +-=,解得n 的值,可以写出结果;(2)由题意得217n n C C =,解得n =19,在()1932x -的展开式中,分别令1x =和1x =-,得到2个式子,相减可得要求式子的值. 【详解】(1)在二项式()32nx -的展开式中,前3项的二项式系数和为01267n n n C C C ++=,化简为21320n n +-=,解得11n =或12n =-(舍),二项式为()1132x -,展开式共有12项,∴则展开式中二项式系数最大的项为第6和第7项,()55656113210777536T C x x =-=-和()6656711327185024T C x x =-=.(2)当第3项的二项式系数等于第18项的二项式系数,得217n n C C =,计算得19n =,二项式为()1932x -.在()192319012319..32.a a x a x a x x a x =+++++-中, 令1x =,则0123191...a a a a a =+++++,①令1x =-,则190123195...a a a a a =-+-+-,②①+②得()1902418152...a a a a +=++++,奇次项系数和为19152+.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,展开式的奇次项系数和,属于中档题. 22.(1)3;(2)70x 或1220412x - 【分析】(1)根据二项式系数和的性质,以及二项式系数和为256,可得2256n =,解出8n =,再由通项公式163418k kk k Ta C x-+=,0,1,2,,8k =,分析即得;(2)根据各项系数的和均为256,可得()81256a +=,解出3a =-或1a =,再由通项公式分情况进行计算即得. 先通过二项展开式的各二项式系数的和与各项系数的和均为256求出n . 【详解】(1)n的二项展开式的各二项式系数的和为2n,各项系数的和为()1n a +,由已知得2256n =,故8.n =此时n展开式的通项为:163418k k k k T a C x -+=,0,1,2,,8k =,当0,4,8k =时,该项为有理项,故有理项的个数为3. (2)由()81256a +=,得3a =-或 1.a = 当1a =时,展开式通项为163418k kk TC x-+=,0,1,2,,8k =,故二项式系数最大时系数最大,即第5项系数最大,即系数最大的项为45870T C x x ==;当3a =-时,163418(3)k kk k TC x-+=-,0,1,2,,8k =,展开式系数最大的项是奇数项,其中41T x =,523252T x =,55670T x =,12720412T x-=,296561T x -=,故展开式中系数最大的项为第7项,即系数最大的项为12720412T x-=.综上,展开式中系数最大的项为70x 或1220412x -. 【点睛】本题考查二项式系数的性质,以及通项公式的应用,要注意二项式系数与各项的系数的区别,考查分析计算能力,属于中档题. 23.(1)5;(2)34z i =+. 【分析】(1)利用前三项的二项式系数和建立方程进行求解即可.(2)根据模长公式与复数相等的性质,利用待定系数法建立方程进行求解. 【详解】(1)由题意知01216n n n C C C ++=,即(1)1162n n n -++=, 得2300n n +-=得5n =或6n =-(舍), 故5n =.(2)设z x yi =+,x ,y R ∈, 原方程化为||23z i z i -=++,23i x yi i =-++,2(4)0x y i -+-=,20x -=且40y -=, 得3x =,4y =,即34z i =+. 【点睛】本题主要考查二项式定理以及复数的计算,利用待定系数法以及建立方程是解决本题的关键,难度不大.24.(1)576种;(2)17280种. 【分析】(1)由已知得第5次测试的产品恰为最后一件次品,另3件在前4次中出现,且前4次有一件正品出现,根据排列组合知识可得不同的测试方法总数;(2)由已知分3步进行分析:先排第1次测试,只能取正品,再从4件次品中选2件排在第2次和第7次的位置上测试,最后排余下4件的测试位置,再每一步中运用排列组合知识,再由分步乘法原理可得测试方法总数. 【详解】(1)根据题意,若恰在第5次测试后就找出了所有次品, 即第5次测试的产品恰为最后一件次品,另3件在前4次中出现,则前4次有一件正品出现,所以共有()11344634576A C C A ⋅=种不同的测试方法; (2)根据题意,分3步进行分析:先排第1次测试,只能取正品,有6种不同的测试方法,再从4件次品中选2件排在第2次和第7次的位置上测试,有2412A =种测试方法,最后排余下4件的测试位置,有2454240C A =种测试方法. 所以共有61224017280⨯⨯=种不同的测试方法. 【点睛】本题考查分类、分步计数原理,综合考查排列组合知识,属于中档题. 25.(1)8;(2)28. 【分析】⑴观察1nx ⎫⎪⎭可知,展开式中各项系数的和为256,即112...256nn n n n C C C C ++++=,解出得到n 的值⑵利用二次展开式中的第1r +项,即通项公式11rn rr r nT C x -+⎛⎫= ⎪⎝⎭,将第一问的n 代入,并整理,令x 的次数为0,解出r ,得到答案 【详解】(1)由题意,得112...256nn n n n C C C C ++++=,即2n =256,解得n =8.(2)该二项展开式中的第1r +项为T r +1=8483881rr rr r CC x x --⎛⎫⋅=⋅ ⎪⎝⎭,令843r-=0,得r =2,此时,常数项为238T C ==28.【点睛】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题.26.(1)237x -;(2)358;(3)1256.【解析】试题分析:(1)根据展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,结合前三项系数的绝对值成等差数列,求得8n =,从而求得展开式的第四项;(2)在展开式中,令x 的幂指数等于零,求得r 的值,代入通项公式可得常数项;(3)在二项式n 的展开式中,令1x =,可得各项系数和. 试题展开式的通项为23112rn r r r n T C x -+⎛⎫=- ⎪⎝⎭,r=0,1,2,…,n由已知:02012111,,222n n nC C C ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成等差数列,∴ 12112124n n C C ⨯=+,∴ n=8 ,8231812rr r r T C x -+⎛⎫=- ⎪⎝⎭. (1)令3r =,32233348172T C x x ⎛⎫=-=- ⎪⎝⎭, (2)令820y -=,得4r = ,5358T ∴=, (3)令x=1,各项系数和为1256. 【方法点晴】本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式1C r n r rr n T a b -+=;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.。

世界上最神奇的数字

世界上最神奇的数字

世界上最神奇的数字;阅看似平凡的数字,为什么说他最神奇呢?我们把它从1乘到6看看142857 X 1 = 142857142857 X 2 = 285714142857 X 3 = 428571142857 X 4 = 571428142857 X 5 = 714285142857 X 6 = 857142同样的数字,只是调换了位置,反复的出现。

那么把它乘与7是多少呢?我们会惊奇的发现是999999而142 + 857 = 99914 + 28 + 57 = 99最后,我们用142857乘与142857答案是:20408122449前五位+上后五位的得数是多少呢?20408 + 122449 = 142857========================================================关于其中神奇的解答“142857”它发现于埃及金字塔内,它是一组神奇数字,它证明一星期有7天,它自我累加一次,就由它的6个数字,依顺序轮值一次,到了第7天,它们就放假,由999999去代班,数字越加越大,每超过一星期轮回,每个数字需要分身一次,你不需要计算机,只要知道它的分身方法,就可以知道继续累加的答案,它还有更神奇的地方等待你去发掘!也许,它就是宇宙的密码┅┅142857×1=142857(原数字)142857×2=285714(轮值)142857×3=428571(轮值)142857×4=571428(轮值)142857×5=714285(轮值)142857×6=857142(轮值)142857×7=999999(放假由9代班)142857×8=1142856(7分身,即分为头一个数字1与尾数6,数列内少了7)142857×9=1285713(4分身)142857×10=1428570(1分身)142857×11=1571427(8分身)142857×12=1714284(5分身)142857×13=1857141(2分身)142857×14=1999998(9也需要分身变大)继续算下去……以上各数的单数和都是“9”。

2020届高考数学(理)一轮必刷题 专题56 排列与组合(解析版)

2020届高考数学(理)一轮必刷题 专题56 排列与组合(解析版)

考点56 排列与组合1.郑州绿博园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中小李和小王不在一起,不同的安排方案共有()A.168种B.156种C.172种D.180种【答案】B【解析】分类:(1)小李和小王分别去甲、乙2个展区,共有=12种情况,(2)小王,小李一人去甲或乙,共=96种情况,(3)小王,小李均没有去甲或乙,共=48种情况,总共N=12+96+48=156种情况,故选B.2.若无重复数字的三位数满足条件:①个位数字与十位数字之和为奇数,②所有数位上的数字和为偶数,则这样的三位数的个数是()A.540 B.480C.360 D.200【答案】D【解析】由个位数字与十位数字之和为奇数知个位数字、十位数字1奇1偶,有C15C15A22=50(种)排法;所有数位上的数字和为偶数,则百位数字是奇数,有C14=4(种)满足题意的选法,故满足题意的三位数共有50×4=200(个).3.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有()A.240B.480C.720D.960【答案】B【解析】(1,2)或(6,7)为空时,第三个空位有4种选择;(2,3)或(3,4)或(4,5)或(5,6)为空时,第三个空位有3种选择;因此空位共有2×4+4×3=20种情况相邻,所以不同坐法有20=480种,故选B.4.身高从矮到高的甲、乙、丙、丁、戊5人排成高矮相间的一个队形,则甲丁不相邻的不同的排法共有() A.12 B.14C.16 D.18【答案】B【解析】从矮到高的甲、乙、丙、丁、戊5人的身高可记为1,2,3,4,5.要求1,4不相邻.分四类:①先排4,5时,则1只有1种排法,2,3在剩余的两个位上,这样有A22A22=4(种)排法;②先排3,5时,则4只有1种排法,2,1在剩余的两个位上,这样有A22A22=4种排法;③先排1,2时,则4只有1种排法,3,5在剩余的两个位上,这样有A22A22=4(种)排法;④先排1,3时,则这样的数只有两个,即21534,43512,只有两种排法.综上共有4+4+4+2=14(种)排法,故选B.5.某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的种数为()A.15B.30C.35D.42【答案】B【解析】由间接法得可能情况数为-·=35-5=30.6.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种【答案】C【解析】不同的分配方案可分为以下两种情况:①甲、乙两人在一个路口,其余三人分配在另外的两个路口,其不同的分配方案有C23A33=18(种);②甲、乙所在路口分配三人,另外两个路口各分配一个人,其不同的分配方案有C13A33=18(种).由分类加法计数原理可知不同的分配方案共有18+18=36(种).7.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案共有() A.30种 B.90种 C.180种 D.270种【答案】B【解析】由每班至少1名,最多2名,知分配名额为1,2,2,所以分配方案有··=90(种).8.甲、乙、丙三人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是()A.258B.306C.336D.296【答案】C【解析】若7级台阶上每一级至多站1人,有种不同的站法;若1级台阶站2人,另一级站1人,共有种不同的站法.所以共有不同的站法种数是+=336.故选C.9.某中学高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现从中任选3人,要求这三人不能全是同一个班的学生,且在三班至多选1人,则不同选法的种数为()A.484 B.472C.252 D.232【答案】B【解析】若三班有1人入选,则另两人从三班以外的12人中选取,共有C14C212=264(种)选法.若三班没有人入选,则要从三班以外的12人中选3人,又这3人不能全来自同一个班,故有C312-3C34=208(种)选法.故总共有264+208=472(种)不同的选法.10.把7个字符a,a,a,b,b,α,β排成一排,要求三个“a”两两不相邻,且两个“b”也不相邻,则这样的排法共有() A.144种 B.96种C.30种D.12种【答案】B【解析】先排列b,b,α,β,若α,β不相邻,有种排法,若α,β相邻,有种,共有6+6=12种排法,从所形成的5个空档中选3个插入a,a,a,共有12×=120种排法,若b,b相邻时,从所形成的4个空档中选3个插入a,a,a,共有6×=24种排法,所以三个“a”两两不相邻,且两个“b”也不相邻,这样的排法共有120-24=96种,故选B.11.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种【答案】C【解析】第一步:先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步:从5个球里选出两个球放在刚才的盒子里,有种选法;第三步:把剩下的3个球全排列,有种排法,由分步乘法计数原理得不同方法共有4=240种,故选C.12.某城市关系要好的A, B, C, D四个家庭各有两个小孩共8人,分别乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种B.24种C.36种D.48种【答案】B【解析】若A户家庭的孪生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有·22=12种不同的方法,若A户家庭的孪生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有·22=12种不同的方法.所以共有12+12=24种方法.故选B.13.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种【答案】B【解析】先放标号1,2的卡片,有种放法,再将标号3,4,5,6的卡片平均分成两组再放置,有·种放法,故共有·=18种不同的放法.14.A,B,C,D,E,F六人围坐在一张圆桌周围开会,A是会议的中心发言人,必须坐最北面的椅子,B,C二人必须坐相邻的两把椅子,其余三人坐剩余的三把椅子,则不同的座次有()A.60种B.48种C.30种D.24种【答案】B【解析】由题意知,不同的座次有=48(种),故选B.15.将除颜色外完全相同的一个白球、一个黄球、两个红球分给三名小朋友,且每名小朋友至少分得一个球的分法种数为()A.15B.21C.18D.24【答案】B【解析】分四类,第一类:两个红球分给其中一个人,有种分法;第二类:白球和黄球分给一个人,有种分法;第三类:白球和一个红球分给一个人,有种分法;第四类:黄球和一个红球分给一个人,有种方法,总共有++2=21种分法,故选B.16.用四种不同的颜色为正六边形(如图)中的六块区域涂色,要求有公共边的区域涂不同颜色,一共有种不同的涂色方法.【答案】732【解析】如图,记六个区域的涂色数为a6,若A,F涂色相同,则相当于5个区域涂色,记5个区域涂色数为a5,同理只有4个区域时涂色数记为a4,易知a4=++=84, a6=4×35-a5=4×35-=4×35-4×34+84=732.17.从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为.(用数字作答)【答案】5 040【解析】分两类,一类是甲、乙都参加,另一类是从甲、乙中选一人,方法数为N=+=1 440+3 600=5 040.填5 040. 18.从2名语文老师、2名数学老师、4名英语老师中选派5人组成一个支教小组,则语文老师、数学老师、英语老师都至少有1名的选派方法种数为.(用数字作答)【答案】44【解析】由题意可知分四类,第一类,2名语文老师,2名数学老师,1名英语老师,有=4种选派方法;第二类,1名语文老师,2名数学老师,2名英语老师,有=12种选派方法;第三类,2名语文老师,1名数学老师,2名英语老师,有=12种选派方法;第四类,1名语文老师,1名数学老师,3名英语老师,有=16种选派方法;则一共有4+12+12+16=44种选派方法.19.设x1,x2,x3,x4∈{-1,0,2},那么满足2≤|x1|+|x2|+|x3|+|x4|≤4的所有有序数组(x1,x2,x3,x4)的组数为. 【答案】45【解析】分类讨论:①|x1|+|x2|+|x3|+|x4|=2,则这四个数为2,0,0,0或-1,-1,0,0,有+=4+6=10(组);②|x1|+|x2|+|x3|+|x4|=3,则这四个数为2,-1,0,0或-1,-1,-1,0,有+=12+4=16(组);③|x1|+|x2|+|x3|+|x4|=4,则这四个数为2,2,0,0或-1,-1,2,0或-1,-1,-1,-1,有++=6+6×2+1=19(组);综上可得,所有有序数组(x1,x2,x3,x4)的组数为10+16+19=45.20.用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)【答案】1 080【解析】分两种情况:第一种:四位数都不是偶数的个数为:A45=120(个),第二种:四位数中有一位为偶数的个数为C14C14A35=960(个),则共有1 080个.21.设a,b,c∈{1,2,3,4,5,6},若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三角形有________个.【答案】27【解析】由题意知以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,(1)先考虑等边三角形情况则a=b=c=1,2,3,4,5,6,此时有6个.(2)再考虑等腰三角形情况,若a,b是腰,则a=b,当a=b=1时,c<a+b=2,则c=1,与等边三角形情况重复;当a=b=2时,c<4,则c=1,3(c=2的情况等边三角形已经讨论了),此时有2个;当a=b=3时,c<6,则c=1,2,4,5,此时有4个;当a=b=4时,c<8,则c=1,2,3,5,6,此时有5个;当a=b=5时,c<10,有c=1,2,3,4,6,此时有5个;当a=b=6时,c<12,有c=1,2,3,4,5,此时有5个;由分类加法计数原理知有2+4+5+5+5+6=27(个).。

体彩排列3方法技巧

体彩排列3方法技巧

体彩排列3方法技巧一,什么叫对码?所谓对码就是指差为5的数字组合。

具体来说,在排三及三D 中,指的是如下五组数据:05,16,27,38,49。

二,对码有什么特征。

对码总的说来,有如下特征。

1,平衡性。

因为它们之间的差为5。

不论组合如何,它们在内部是平衡的。

2,趋奇性。

因为它们是一偶一奇的组合,其相加的结果是一个奇数。

即:05=5,16=7,27=9,38=1,49=33,伴生性。

因为它们是奇偶组合。

所以,它们常常伴生在一起。

4,非对称性。

从开奖号的结果来看,一注票,往往含有2—3个对码的组合在内。

三,对码的意义对码的意义何在,总的说来,就是利用对码的四性,从已知的开奖号,求证下期开奖号的条件。

虽然下期开奖号是随机的。

但实践证明,对码四性,有助于从随机中找到相对稳定的条件。

这就是对码意义的全部所在。

利用对码求胆的方法一,对码求胆原则之一:将已知的上期开奖号化成对码。

与剩下的对码组成一个四六分解式。

利用对码的趋奇性,化成全奇形式,再利用对码的平衡性,找到下期的胆码。

举例如下:上期开出:896。

第一步:将:896化成对码:384916第二步:将已有的对码与剩下的对码(0527)组成一个非对称四六分解式:384916-----0527第三步:利用对码的趋奇性,化成全奇形式。

即:对码各自相加,变化成:137-------59第四步,利用对码的平衡性,找到左右两边的相等部分。

13=59=4,证明它们之间是平衡的。

(这里的:13表示1+3,下同,59=14,取个位,下同。

)第五步:利用对码的非线性对称。

找到胆码:在:137——59中,因为:13-=59,只剩下:7。

而7=16。

由此得出,下期的胆,在:716这三个数字中。

注意:为什么:07,25,34,89也等于:7,你为什么选择:7=16?取:716呢?回答:我取的是:一个对码之和等于7好,这样,我们就可以将胆的种类固定如下:138。

349,05,716,927二,对码求胆原则之二。

高教版数学教案——组合

高教版数学教案——组合

组 合一、教学目的:理解组合的意义,掌握组合数的计算公式和性质,并能用它解决一些简单的问题. 二、知识要点:1.一般地,从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.一般地,从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m n C 表示.3.组合数公式:(1)(2)(1)!m m n nm m P n n n n m C P m ---+==,其中+∈N n m ,,且m≤n.组合数公式还可以写成:!!()!mn n C m n m =-.4.组合数的两个性质:m n m n n C C -=;11m m m n n nC C C -+=+. 三、典型例题:例1:100件产品中有合格品90件,次品10件,现从中抽取4件检查.⑴ 都不是次品的取法有多少种? ⑵ 至少有1件次品的取法有多少种? ⑶ 不都是次品的取法有多少种?解: ⑴ 2555190490=C ; ⑵ 13660354101903102902103901104904100=+++=-C C C C C C C C C ; ⑶ 39210154901103902102903101904104100=+++=-C C C C C C C C C . 例2:从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有4516C C ;3奇2偶有2536C C ;5奇1偶有56C 所以一共有4516C C +2536C C +23656=C .例3:现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法? 解:我们可以分为三类:① 让两项工作都能担任的青年从事英语翻译工作,有2324C C ;② 让两项工作都能担任的青年从事德语翻译工作,有1334C C ;③ 让两项工作都能担任的青年不从事任何工作,有2334C C . 所以一共有2324C C +1334C C +2334C C =42种方法.例4:甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C解法二:分为两类:一类为甲不值周一,也不值周六,有2414C C ;另一类为甲不值周一,但值周六,有2324C C .所以一共有2414C C +2324C C =42种方法.例5:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?解:第一步从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C 种方法;第二步将5个“不同元素(书)”分给5个人有55A 种方法.根据分步计数原理,一共有26C 55A =1800种方法.变题1:6本不同的书全部送给5人,有多少种不同的送书方法?变题2: 5本不.同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 变题3: 5本相.同的书全部送给6人,每人至多1本,有多少种不同的送书方法? 答案:1.1562556=; 2.72056=A ; 3.656=C . 例6:身高互不相同的7名运动员站成一排,甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?解:(插空法)现将其余4个同学进行全排列一共有44A 种方法,再将甲、乙、丙三名同学插入5个空位置中(但无需要进行排列)有35C 种方法.根据分步计数原理,一共有44A 35C =240种方法.例7:⑴ 四个不同的小球放入四个不同的盒中,一共有多少种不同的放法?⑵ 四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种? 解: ⑴根据分步计数原理:一共有25644=种方法.⑵(捆绑法)第一步从四个不同的小球中任取两个“捆绑”在一起看成一个元素有24C 种方法,第二步从四个不同的盒取其中的三个将球放入有34A 种方法.所以一共有24C 34A =144种方法. 四、归纳小结:如果两个组合中的元素完全相同,那么不管元素的顺序如何,它们是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合.五、基础知识训练: (一)选择题:1.(99高职-7)在下列问题中:(1)从1,2,3三个数字中任取两个,可以组成多少个和?(2)从1,2,3三个数字中任取两个,可以组成多少个没有重复数字的两位数? (3)将3个乒乓球投入5个容器,每个容器只能容纳一个乒乓球,问有多少种投法? (4)将3张编号的电影票给三个同学,每人一张,有多少种分法? 属于组合问题的是( )A.(1)B.(2)C.(3)D.(4) 2.从10名同学中选出3名代表,所有可能的不同选法种数是( ) A.120 B.240 C.720 D.30 3.(2000-13)凸10边形共有对角线( )A.90条B.70条C.45条D.35条 4.某班有50名学生,其中有一名正班长,一名副班长,现选派5人参加一个游览活动,其中至少有一名班长(正、副均可)参加,共有几种不同的选法,其中错误的一个是( )A.n=12C ·448C +22C ·348C B. n=550C -548C C. n=12C ·449C D.n=12C ·449C -348C5.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数有( )A.27C ·25CB. 427C ·25CC. 227C ·25CD. A 27C ·25C(二)填空题:6.96979898C C = . 7.平面内有12个点,其中任意3点不在同一直线上,以每3点为顶点画三角形,一共可画三角形的个数是 .8.从1,2,3,4,5,6,7,8,9这9个数中取出2个数,使它们的和是偶数,共有 种选法.9.有13个队参加篮球赛,比赛时先分成二组,第一组7个队,第二组6个队,各组都进行单循环赛(即每队都要与本组其它各队比赛一场),然后由各组的前两名共4个队进行单循环赛决定冠、亚军,共需要比赛的场数是 . 10.4个男同学进行乒乓球双打比赛,有 种配组方法.(三)解答题:11.某赈灾区医疗队由4名外科医生和8名内科医生组成,现需从中选派5名医生去执行一项任务.(1)若某内科医生必须参加,而某外科医生因故不能参加,有多少种选派方法? (2)若选派的5名医生中至少有1名内科和外科医生参加,有多少中选派方法?解: (1)依题意,只须从剩余的10名医生中选出4名医生与内定的一名内科医生组成医疗队.故共有410C =210种选派方法.(2)方法一:5名医生全由内科医生组成,有58C 种方法,故符合题意的方法为512C 58C -=936种; 方法二:我们将内科、外科医生分别当作一组有序实数对的前后两实数,则按题意组队方式可有:(1,4),(2,3),(3,2),(4,1)四种,故共有18C ·44C +28C ·34C +38C ·24C +48C ·14C =736种. 12.马路上有编号为1,2,3,…,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数为2036=C 种方法.13.九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况:① 若取出6,则有)(217171228C C C A +种方法;②若不取6,则有2717A C 种方法.根据分类计数原理,一共有)(217171228C C C A ++2717A C =602种方法.14.在产品检验时,常从产品中抽出一部分进行检查,现从10件产品中任意抽3件.(1) 一共有多少种不同的抽法?(2) 如果10件产品中有3件次品,抽出的3件中恰好有1件是次品的抽法有多少种? (3) 如果10件产品中有3件次品,抽出的3件中至少有1件是次品的抽法有多少种?六、综合能力提高:15.6本不同的书,按下列要求各有多少种不同的选法:⑴ 分给甲、乙、丙三人,每人两本; ⑵ 分为三份,每份两本;⑶ 分为三份,一份一本,一份两本,一份三本;⑷ 分给甲、乙、丙三人,一人一本,一人两本,一人三本; ⑸ 分给甲、乙、丙三人,每人至少一本.解:⑴ 根据分步计数原理得到:90222426=C C C 种.⑵ 分给甲、乙、丙三人,每人两本有222426C C C 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x 种方法;第二步再将这三份分给甲、乙、丙三名同学有33A 种方法.根据分步计数原理可得:33222426xCC C C =,所以1533222426==A C C C x .因此分为三份,每份两本一共有15种方法.注:本题是分组中的“均匀分组....”问题. ⑶ 这是“不均匀分组”问题,一共有60332516=C C C 种方法.⑷ 在⑶的基础上在进行全排列,所以一共有36033332516=A C C C 种方法.⑸ 可以分为三类情况:①“2、2、2型”即⑴中的分配情况,有90222426=C C C 种方法; ②“1、2、3型”即⑷中的分配情况,有36033332516=A C C C 种方法;③“1、1、4型”,有903346=A C 种方法.所以一共有90+360+90=540种方法.。

趣味数学

趣味数学

数学是地球上最古老的科学之一。

早在人类文化的启蒙时期,就有了数学的萌芽。

在我们现实生活中大部分地方都蕴藏着数学的奥秘,很多人拜倒在“数学”的石榴裙下,可见数学确实是有很大魅力的。

就我个人而言,我是最喜欢数学的,因为数学不像其他学科那么刻板。

相反,它非常灵活,而且还有些趣味性。

我喜欢把复杂的数学题目解答出来的成就感。

前些日子,看到了一个“数字黑洞”的游戏,我非常感兴趣,在这里介绍给大家。

一、123黑洞(西西弗斯串)给定一个任意自然数串,数出这个数串中的偶数个数,奇数个数以及这个数串中所包含的所有位数的总数。

例如:0123456789偶:数出该数数字中的偶数个数,在本例中为0,2,4,6,8,总共有5 个。

奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5 个。

总:数出该数数字的总个数,本例中为10 个。

新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。

重复:将新数5510按以上算法重复运算,可得到新数:134。

重复:将新数134按以上算法重复运算,可得到新数:123。

由此得到结论:对数串0123456789,按上述要求,最后得出123,以后再继续的话,不会是别的数了。

我们可以验证:对任意一个数串,经有限次重复后,得到的都会是123。

换言之,任何数串的最终结果都无法逃逸123黑洞。

二、6174黑洞(卡普雷卡尔常数)三位数黑洞495只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。

那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字,人称:卡普雷卡尔黑洞。

举例:输入352,排列得最大数位532,最小数为235,相减得297;再排列得972和279,相减得693;接着排列得963和369,相减得594;最后排列得到954和459,相减得495。

四位数黑洞6174把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成6174。

高中数学 1.4 第2课时 排列、组合的综合应用课件 北师大版选修23

高中数学 1.4 第2课时 排列、组合的综合应用课件 北师大版选修23
第十四页,共46页。
从 52 张扑克牌(除大王、小王)中任取 5 张,计算: (1)有 4 张数值相同,另外 1 张不同,有多少种取法? (2)有 3 张数值相同,另外 2 张数值也相同,有多少种取 法? (3)5 张数值顺序连续,花色可以不同,有多少种取法?
第十五页,共46页。
【解】 (1)扑克牌中共有 13 种数值(1~13),有 4 张数 值相同,则有 13 种可能,第 5 张则在余下的 48 张中选取.
所以符合条件的方法有 13·C418=624 种. (2)3 张数值相同,有 C113·C34种;另外 2 张数值也相同,则 有 C112·C42种,所以共有 C113·C34·C112·C24=3 744 种.
第十六页,共46页。
(3)5 张数值连续,只有下述 9 种可能: 1,2,3,4,5; 2,3,4,5,6; 3,4,5,6,7; … 9,10,11,12,13. 任何一种数值都有 4 种花色供选择,所以 5 种数值的花 色选配方法有 4×4×4×4×4=45 种. 所以符合条件的取法共有 9×45=9 216 种.
第二页,共46页。
2.在解决排列与组合应用题时,如何看待题设中的元素 与位置?
【提示】 在排列、组合问题中,元素与位置没有严格 的界定标准,哪些事物看成元素或位置,随着解题者思维方 式的变化而变化,要视具体情况而定,有时元素选位置,问 题解决起来简捷,有时位置选元素效果会更好.
第三页,共46页。
在解答排列组合综合问题时,要注意准确地应用两个基 本原理,要注意准确区分是排列问题还是 组合(z问ǔh题é),要注 意在利用直接法解题的同时,也要根据问题的实际恰当地利 用 间接(jiàn ji解ē)法题.
第二十页,共46页。

新高考数学题型全归纳之排列组合 专题04 数字问题(解析版)

新高考数学题型全归纳之排列组合 专题04 数字问题(解析版)

专题4 数字问题例1.由0,1,2,3,4,5这6个数字可以组成五位没有重复数字的奇数个数为( ) A .288 B .360 C .480 D .600【解析】根据题意,末位数字可以为1、3、5,有13A 种取法,首位数字不能为0,有14A 种取法,再选3个数字,排在中间,有34A 种排法,则五位奇数共有113344288A A A =, 故选:A .例2.罗马数字是欧洲在阿拉伯数字传入之前使用的一种数码,它的产生标志着一种古代文明的进步.罗马数字的表示法如下:其中“Ⅰ”需要1根火柴,“Ⅴ”与“X”需要2根火柴,若为0,则用空位表示. (如123表示为,405表示为)如果把6根火柴以适当的方式全部放入下面的表格中,那么可以表示的不同的三位数的个数为( )A .87B .95C .100D .103【解析】用6根火柴表示数字,所有搭配情况如下:1根火柴和5根火柴:1根火柴可表示的数为1;5根火柴可表示的数为8,和0一起,能表示的数共有4个(108,180,801,810).2根火柴和4根火柴:2根火柴可表示的数为2、5;4根火柴可表示的数为7,和0一起,能表示的数有1248C ⨯= 个.3根火柴和3根火柴:3根火柴可表示的数为3、4、6、9,和0一起,能表示的数分为2类:除0外的两个数字相同,可表示的数有1248C ⨯=个;除0外的两个数字不同,则有24424C ⨯=个,所以共有82432+= 个.1根火柴、1根火柴和4根火柴:即有1、1、7组成的数,共有3个(117,171,711).1根火柴、2根火柴和3根火柴:即由1,2或5中的一个,3、4、6、9中的一个数字组成的三位数,共有113243243248C C A =⨯⨯⨯= 个.2根火柴、2根火柴、2根火柴:即由2或5组成的三位数,分为两类:三个数字都相同,共有2个(222,555);三个数字中的两个数字相同,则有1236C ⨯=个,共有268+= 个. 综上可知,可组成的三位数共有48323488103+++++= 个. 故选:D.例3.用0、1、2、3、4、5这六个数字,组成数字不重复且大于3000,小于5421的四位数有( )个 A .175 B .174 C .180 D .185【解析】分以下三种情况讨论:①首位数字为3或4,则后面三个数位上的数随便选择,此时,符合条件的数的个数为352120A =; ②首位数字为5,百位数字不是4,则百位数字可以在0、1、2、3中随便选择一个,后面两个数位上的数没有限制,此时,符合条件的数的个数为124448C A =;③首位数字为5,百位数字为4,则符合条件的数有5401、5402、5403、5410、5412、5413、5420,共7个.综上所述,大于3000,小于5421的四位数的个数为120487175++=. 故选:A.例4.将数字1、1、2、2、3、3、4、4排成四行两列,要求每行的数字互不相同,每列的数字也互不相同,则不同的排列方法共有( ) A .216 B .72 C .266 D .274【解析】由于每行的数字互不相同,每列的数字也互不相同,则第一行数字是1、2、3、4的全排列,共44A 种,现考虑第一行数字的排列为()1,2,3,4,则第二行数字的排列可以是:()2,1,4,3、()2,3,4,1、()2,4,1,3、()3,1,4,2、()3,4,1,2、()3,4,2,1、()4,1,2,3、()4,3,1,2、()4,3,2,1,共9种.由分步乘法计数原理可知,不同的排列方法共有449924216A =⨯=种. 故选:A.例5.从集合{A ,B ,C ,D ,E ,F }和{1,2,3,4,5,6,7,8,9}中各任取2个元素排成一排(字母和数字均不能重复).则每排中字母C 和数字4,7至少出现两个的不同排法种数为( ) A .85 B .95 C .2040 D .2280【解析】根据题意,分2步进行分析:①,先在两个集合中选出4个元素,要求字母C 和数字4,7至少出现两个,若字母C 和数字4,7都出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,有5种选法,若字母C 和数字4出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若字母C 和数字7出现,需要在字母A ,B ,D ,E ,F 中选出1个字母,在1、2、3、5、6、8、9中选出1个数字,有5×7=35种选法,若数字4、7出现,需要在字母A ,B ,D ,E ,F 中选出2个字母,有C 52=10种选法, 则有5+35+35+10=85种选法,②,将选出的4个元素全排列,有A 44=24种情况, 则一共有85×24=2040种不同排法; 故选:C .例6.由0,1,2,3,4,5,6,7,8,9组成没有重复数字的五位数,且是奇数,其中恰有两个数字是偶数,则这样的五位数的个数为( ). A .7200 B .6480 C .4320 D .5040【解析】第一类,偶数数字取0先从1,3,5,7,9中取3个奇数,从2,4,6,8中取1个偶数, 有315440C C =中取法,然后将个位数排一个奇数,十位、百位、千位 选一个出来排0,剩下3个数字全排列,即有11333354A A A =种排法 所以本类满足条件的五位数有4054=2160⨯个第二类,偶数数字不取0,先从1,3,5,7,9中取3个奇数,从2,4,6,8中取2个偶数, 有325460C C =中取法,然后将个位数排一个奇数,剩下4个数字全排列, 即有143472A A =种排法所以本类满足条件的五位数有6072=4320⨯个 综上:这样的五位数个数为2160+4320=6480 故选:B例7.将6个数2,0,1,9,20,19将任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数是( ) A .546 B .498 C .516 D .534【解析】解:将2,0,1,9,20,19的首位不为0的排列的全体记为A ,记为A 为A 的元素全数,则555600A A =⨯=, 将A 中的2的后一项是0,且1的后一项是9的排列的全体记为B ,A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ,A 中1的后一项是9,但2的后一项不是0的排列的全体记为D ,则454454,,4B A B C A B D A =+=+=⨯,可得24,96,72B C D ===,由B 中排列产生的每一个8位数,恰对应B 中的224⨯=个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换),类似地,由C 或D 中排列产生的每个8 位数,恰对应C 或D 中的2个排列,因此满足条件的8位数的个数为:42B C D A B CD +−++342B C D A +=−−600184836498=−−−=,故选:B例8.2016里约奥运会期间,小赵常看的6个电视频道中有2个频道在转播奥运比赛,若小赵这时打开电视,随机打开其中一个频道,若在转播奥运比赛,则停止换台,否则就进行换台,那么,小赵所看到的第三个电视台恰好在转播奥运比赛的不同情况有( ) A .6种 B .24种 C .36种 D .42种【解析】解:第一步从4个没转播的频道选出2个共有24A 种,再把2个报道的频道选1个有12A 种,根据分步计数原理小赵所看到的第三个电视台恰好在转播奥运比赛的不同情况有214224A A =种. 故选:B .例9.2019年10月1日,中华人民共和国成立70周年,举国同庆.将2,0,1,9,10这5个数字按照任意次序排成一行,拼成一个6位数,则产生的不同的6位数的个数为( ) A .72 B .84 C .96 D .120【解析】先选择一个非0数排在首位,剩余数全排列,共有144496C A ⋅=种, 其中1和0排在一起形成10和原来的10有重复,考虑1和0相邻时,且1在0的左边,和剩余数字共有4!=24种排法, 其中一半是重复的,故此时有12种重复. 故共有961284−=种. 故选:B.例10.由0,1,2,3,5组成的无重复数字的五位偶数共有( ) A .36个B .42个C .48个D .120个【解析】分两类:一、若五位数的个位数是0,则有1432124n =⨯⨯⨯=种情形;二、若五位数的个位数是2,由于0不排首位,因此只有1,3,5有3种情形,中间的三个位置有3216⨯⨯=种情形,依据分步计数原理可得23618n =⨯=种情形.由分类计数原理可得所有无重复五位偶数的个数为12241842n n n =+=+=,应选答案B . 例11.用数字2、3、4、5、6组成没有重复数字的五位数,其中偶数的个数为( ) A .120 B .72 C .60 D .48【解析】由于五位数为偶数,则个位数必为偶数,可在2、4、6种任选一个数,有13C 种选择,其它数位任意排列,由分步乘法计数原理可知,所求偶数的个数为143432472C A =⨯=. 故选:B.例12.在0、1、2、3、4、5这6个数字组成的没有重复数字的六位数中,能被2整除的数的个数为( ) A .216 B .288 C .312 D .360【解析】由能够被2整除,可知该六位数为偶数,根据末位情况,分两种情况讨论: 当末位数字为0时,其余五个数为任意全排列,即有55A 种;当末位数字为2或4时,最高位从剩余四个非零数字安排,其余四个数位全排列,则有114244C C A , 综上可知,共有5114524454321244321120192312A C C A +=⨯⨯⨯⨯+⨯⨯⨯⨯⨯=+=个.故选:C.例13.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有( ) A .512个 B .192个 C .240个 D .108个【解析】试题分析:由于能被5整除的数,其个位必为0或5,由此分两类:第一类:个位为0的,有个;第二类:个位为5的,再分两小类:第1小类:不含0的,有个,第2小类:含0的,有个,从而第二类共有48个;故在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的个数有60+48=108个,故选D .例14.用数字0,1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数的个数为( ) A .1260 B .1320 C .1200 D .1140【解析】当没有偶数时,这样的四位数的个数为45120A = 当含有一个偶数时这个偶数为0时,这样的四位数的个数为1335180A A =当这个偶数为2,4,6,8其中一个时,这样的四位数的个数为113445960C A A =即满足题意的四位数的个数为1201809601260++= 故选:A例15.一个三位自然数abc 的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当a b >且c b >时称为“凹数”;若,,{0,2,3,4,5}a b c ∈,且a ,b ,c 互不相同,则“凹数”的个数为( ). A .20 B .36 C .24 D .30【解析】根据题意,分2步进行分析:(1)在0,2,3,4,5五个数中任取3个数,来组成“凹数”,有3510C =种取法, (2)将取出的3个数中最小的数放在十位,其余2个数放在百位,个位,有222A =种情况, 则“凹数”的个数为10220⨯=个. 故选:A例16.从1,3,5,7,9中任取2个不同的数字,从0,2,4,6中任取2个不同的数字,组成没有重复数字的四位数,则所组成的四位数是奇数的概率为___________.(用最简分数作答) 【解析】若选出的4个数中有0,则组成的四位无重复的数字共有21135333540C C C A =个,其中奇数有2112253222240C C C C A =个;若选出的4个数中无0,则组成的无重复数字的四位数有224534720C C A =个,其中奇数有22135323360C C C A =个,所以,组成的四位数为奇数的概率为240+36060010==540+720126021P =.故答案为:1021. 例17.对于数列{}n x ,若123n x x x x ≤≤≤⋅⋅⋅≤,则称数列{}n x 为“广义递增数列”,若123n x x x x ≥≥≥≥,则称数列{}n x 为“广义递减数列”,否则称数列{}n x 为“摆动数列”.已知数列{}n a 共4项,且{}()1,2,3,41,2,3,4i a i ==,则数列{}n a 是摆动数列的概率为______.【解析】根据题意可知,{}()1,2,3,41,2,3,4i a i ==,则四位数字组成的数列有以下四类: (1)由单个数字组成:共有4个数列;(2)由2个数字组成:则共有246C =种数字搭配,每种数字搭配又分为两种情况:由1个数字和3个相同数字组成4个数的数列(如1222,2111等),则有1248C ⨯=个数列;分别由2个相同数字组成的4个数的数列(如1122等)共有6个数列,因而此种情况共有()248684C +=种;(3)由3个数字组成:共有344C =种数字搭配(如1123等),相同数字有3种可能,则共有4312144⨯⨯=个数列;(4)由4个数字组成:共有44432124A =⨯⨯⨯=个数列. 因而组成数列的个数为48414424256+++=个数列. 其中,符合“广义递增数列”或“广义递减数列”的个数分别为:(1)由单个数字组成:4个数列均符合“广义递增数列”或“广义递减数列”,因而有4个数列;(2)由2个数字组成:满足“广义递增数列”或“广义递减数列”的个数为()2422236C ⨯++= 个;(3)由3个数字组成:1143224C C ⨯=个;(4)由4个数字组成:则有2个数列符合“广义递增数列”或“广义递减数列”, 综上可知,符合“广义递增数列”或“广义递减数列”的个数为66个. 所以“摆动数列”的个数为25666190−=个, 因而数列{}n a 是摆动数列的概率为19095256128=, 故答案为:95128. 例18.将6个数2、0、1、9、20、19按任意次序排成一行,拼成一个8位数(首位不为0),则产生的不同的8位数的个数为______ . 【解析】2、0、1、9、20、19的首位不为0的排列的全体记为A . 易知|A |=5×5!=600(这里及以下,||X 表示有限集X 的元素个数). 将A 中2的后一项是0,且1的后一项是9的排列的全体记为B ; A 中2的后一项是0,但1的后一项不是9的排列的全体记为C ; A 中1的后一项是9,但2的后一项不是0的排列的全体记为D .易知|B |=4!,|B |+|C |=5!,|B |+|D |=4×4!,即||24B =,||96C =,||72D =.由B 中排列产生的每个8位数,恰对应B 中的2×2=4个排列(这样的排列中,20可与“2,0”互换,19可与“1,9”互换)类似地,由C 或D 中排列产生的每个8位数,恰对应C 或D 中的2个排列因此满足条件的8位数的个数为|||||||\()|42B C D A B C D +⋃⋃++ 3||||||||422B C D A =−−−600184836498=−−−=.例19.由数字0,1,2,3,4,5可以组成_________个是3的倍数,但不是5的倍数的四位数. 【解析】一个数是3的倍数需满足各位数之和是3的倍数,一个数是5的倍数需满足个位是0或者5,从数字0,1,2,3,4,5中选四个数字出来,其中满足四个数字是3的倍数的有:0123,0135,0234,0345,1245当选择的数字是0123时,能够组成33318A =个数,其中个位数是0的有6个,所以满足题意的有18612−=个当选择的数字是0135时,能够组成33318A =个数,其中个位数是0或5的有6410+=个,所以满足题意的有18108−=个当选择的数字是0234时,能够组成33318A =个数,其中个位数是0的有6个,所以满足题意的有18612−=个当选择的数字是0345时,能够组成33318A =个数,其中个位数是0或5的有6410+=个,所以满足题意的有18108−=个当选择的数字是1245时,能够组成4424A =个数,其中个位数是5的有6个,所以满足题意的有24618−=个综上:共有1281281858++++=个 故答案为:58例20.从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成_____个没有重复数字的四位偶数. 【解析】当用0时,0只能在个位,十位,百位三个位置之一.当个位为0时,从2,4,6中再取1个数字(3种方法),从1,3,5中任取2个数字(即排除1个,有3种不同的方法),将这取得的3个数字在十百千位任意排列,共有3!=6中不同的排列方式,根据分步乘法计数原理,有3×3×6=54种方法;当十位或百位为0时(2种不同方法),从2,4,6中再取1个数字放置在个位(3种方法),然后从1,3,5中任取2个数字(即排除1个,有3种不同的方法),在其余两位上任意排列,共有2!=2中不同的排列方式,根据分步乘法计数原理,有2×3×3×2=36种方法;当没有用0时,从2,4,6中任取1个数字放置在个位(有3中不同的方法);在从其余的2个非零偶数字中任取一个数字(2种不同方法),从1,3,5中任取2个数字(有3种不同方法),将这3个数字在除个位之外的十百千3个位置上任意排列(有3!=6种不同的方法),由分步乘法计数原理方法数为3×2×3×6=108种.根据分类加法计数原理,一共有没有重复数字的四位偶数54+36+108=198个,故答案为:198.例21.用1,2,3,4,5组成一个没有重复数字的五位数,三个奇数中仅有两个相邻的五位数有________.【解析】用1,2,3,4,5组成一个没有重复数字的五位数,共有55120A=个;三个奇数中仅有两个相邻;其对立面是三个奇数都相邻或者都不相邻;当三个奇数都相邻时,把这三个奇数看成一个整体与2和4全排列共有333336A A⨯=个;三个奇数都不相邻时,把这三个奇数分别插入2和4形成的三个空内共有232312A A⨯=个;故符合条件的有120123672−−=;故答案为:72.例22.由0,1,2,…,9十个数字组成的无重复数字的三位数共______个【解析】因为百位不能为0,所以百位共有9种情况,再在剩下的9个数中,任选2个安排在十位与个位,有2972A=种情况,根据分步计数原理可得,符合要求的三位数有972648⨯=个.故答案为:648.例23.现有0、1、2、3、4、5、6、7、8、9共十个数字.(1)可以组成多少个无重复数字的三位数?(2)组成无重复数字的三位数中,315是从小到大排列的第几个数?(3)可以组成多少个无重复数字的四位偶数?(4)选出一个偶数和三个奇数,组成无重复数字的四位数,这样的四位数共有多少个?(5)如果一个数各个数位上的数字从左到右按由大到小的顺序排列,则称此正整数为“渐减数”, 那么由这十个数字组成的所有“渐减数”共有多少个?【解析】(1)由题意,无重复的三位数共有1299972648A A =⨯=个;(2)当百位为1时,共有299872A =⨯=个数;当百位为2时,共有299872A =⨯=个数;当百位为3时,共有118412A A +=个数,所以315是第727212156++=个数;(3)无重复的四位偶数,所以个位必须为0,2,4,6,8,千位上不能为0,当个位上为0时,共有39504A =个数;当个位上是2,4,6,8中的一个时,共有1218841792A A A =个数,所以无重复的四位偶数共有50417922296+=个数;(4)当选出的偶数为0时,共有1335180A A =个数,当选出的偶数不为0时,共有134454960C C A =个数,所以这样的四位数共有9601801140+=个数;(5)当挑出两个数时,渐减数共有210C 个,当挑出三个数时,渐减数共有310C 个,⋅⋅⋅,当挑出十个数时,渐减数共有1010C 个,所以这样的数共有23101001101010101021013C C C C C ++⋅⋅⋅+=−−=个.例24.用0,1,2,3,4这五个数字,可以组成没有重复数字的:(1)三位偶数有多少个?(2)能被3整除的三位数有多少个?(3)可以组成多少个比210大的三位数?【解析】(1)个位是0时,有2412A=个;个位是2时,有339⨯=个;个位是4时,有339⨯=个.故共有30个三位偶数.(2)能被3整除的三位数的数字组成共有:0,1,2;0,2,4;1,2,3;2,3,4四种情况.共有:12123322223320C A C A A A⨯+⨯++=个.(3)当百位是2时,共有112328A A⨯+=个;当百位是3时,共有2412A=个;当百位是4时,共有2412A=个;故共有32个.。

[宝典]九宫格数独

[宝典]九宫格数独

九宫格数独数独概述数独顾名思义——每个数字只能出现一次。

数独是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数字谜题。

数独盘面是个九宫,每一宫又分为九个小格。

在这八十一格中给出一定的已知数字和解题条件,利用逻辑和推理,在其他的空格上填入1-9的数字。

使1-9每个数字在每一行、每一列和每一宫中都只出现一次(如下图中已经填写完整的那样,不能重复,独立存在)。

这种游戏全面考验做题者观察能力和推理能力,虽然玩法简单,但数字排列方式却千变万化,所以不少教育者认为数独是训练头脑的绝佳方式。

数独的历史数独前身为“九宫格”,最早起源于中国。

数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。

儒家典籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。

而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。

1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(Latin Square)的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。

19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(Dell Puzzle Mαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(Number Place),在这个时候,9×9的81格数字游戏才开始成型。

1984年4月,在日本游戏杂志《字谜通讯Nikoil》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是惟一的”,并将这个游戏命名为“数独”(sudoku)。

一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。

123组合

123组合

第三节 组 合考纲解读理解组合的意义,掌握组合数公式,并能用它们解决一些简单的应用问题.命题趋势探究预测2015年高考,有关组合的试题主要以选择题和填空题的形式出现,大多数试题难度与教材相当,主要涉及单纯组合题、分选问题、选排问题、分组问题和分配问题.知识点精讲1.单纯组合问题2.分选问题和选排问题①分选问题,几个集合按要求各选出若干元素并成一组的方法数.②选排问题,分选后的元素按要求再进行排列的排列数.3.分组问题和分配问题①分组问题,把一个集合中的元素按要求分成若干组的方法数;②分配问题,把一个集合中的元素按要求分到几个去处的方法数.题型归纳及思路提示题型169 单纯组合应用问题思路提示把所给问题归结为从n 个不同元素中取m 个元素,可用分类相加、分布相乘,也可用总数减去对立数.例12.21 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选;(5)既要有队长,又要有女生当选.分析 注意理解组合与排列问题的不同——取出的元素有无顺序.解析 (1)1名女生,4名男生,故共有3504815=C C (种).(2)只需从剩余的11人中选择3人即可,故有165311=C (种).(3)解法一:(直接法)至少有一名队长含有两类:只有一名队长和两名队长,故共有8253112241112=+C C C C (种).解法二:(间接法)采用排除法825511513=-C C (种). (4)至多两名女生含有3类情形:有两名女生、只有一名女生、没有女生,故选法为:9665848153825=++C C C C C 种.(5)解法一:(直接法)分两类:①女队长当选,故有412C 种;②男队长当选,故至少需要另外4名女生中的一名,故44173427243714C C C C C C C +++种.综上可知,选法有412C +44173427243714C C C C C C C +++=790种.解法二:分两类:①女队长当选,故有412C 种;②男队长当选,故至少需要另外4名女生中的一名.若另外的4人都是男生,则有47C 种方法,故男队长当选,且至少有一名女生(且为非女队长)的方法有()474111C C -⋅种,故共有412C +()47411C C -=790种. 变式1 某单位要邀请10位教师中的6人参加一个研讨会,10人中甲、乙不能都去,共有( )种邀请方法.A.84B.98C.112D.140变式2 在四面体的顶点和各棱中共10个点中选4个点不共面,共有( )种不同取法.A.150B.147C.141D.142变式3 若A x ∈1,就称A 为有伴关系的集合,集合⎭⎬⎫⎩⎨⎧-=4,3,2,1,21,31,1M ,则M 的非空子集中,具有有伴关系的集合有( )个.A.15B.16C.82D.52例12.22 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴上5个点和y 轴上3个点连成15条线段,这些线段在第一象限交点最多有( )个.A.30B.35C.20D.15解析 如图12-21所示,在x 轴正半轴上5个点中取两点B A ,,在y 轴正半轴上3个点中取两点D C ,,确定四边形ABCD ,其对角线P BC AD =⋂是第一象限的点,能确定多少个四边形,就可以确定多少个符合第一象限的点,这些点互不重合(这是可以做到的),得这样的点最多有302325=C C 个,故选A.评注 解决与几何有关的组合问题,必须注意几何问题本身的限制条件,解题时可借助图形来帮助.变式1 AOB ∠的边OA 上有4321,,,A A A A 四个点,OB 边上有4321,,,B B B B ,5B 五个点,共9个点,连接线断j i B A ()51,41≤≤≤≤j i ,若其中两条线段不相交,则称之为和睦线对,则共有和睦线( )对.A.30B.60C.120D.160变式2 在坐标平面上有一个质点从原点出发,沿x 轴跳动,每次向正方向或负方向跳动一个单位,若经5次跳动质点落在()0,3处,则质点共有______种跳法;若经过m 次跳动质点落在()0,n 处,0,1,≥≥≥n m n m 且n m +为偶数,则质点共有______种跳法.题型170 分选问题和选排问题思路提示两个集合B A ,,()()21,n B card n A card ==.A 选1m ,B 选2m ,共有2211m n m n C C 种方法,选排为选出再排列. 例12.23 6女4男选出4人.(1)女选2,男选2有多少种选法?再安排4个不同工作,有多少方法?(2)至少有一女有多少种选法?(3)至多3男有多少选法?(4)男女都有,有多少种选法?(5)选男甲不选女A,B ,有多少种选法?解析 (1)女选2,男选2有902624=C C 种选法,再安排4个不同工作有2160442624=A C C 种方法.(2)加法:20946143624263416=+++C C C C C C C ;减法:20944410=-C C .(3)减法:20944410=-C C .(4)加法:194143624263416=++C C C C C C ;减法:1944446410=--C C C .(5)从10-3=7人中选3人,3537=C .评注 涉及“至多”、“至少”的问题通常用排除法;变式1 有7名翻译,4人会英语,4人会日语,从中选2名英语翻译和2名日语翻译,共有多少种选法?变式2 9名水手,6人会左舵位,6人会右舵位.现选3名右舵手和3名左舵手分坐于6个舵位,共有多少种安排方法?变式3 甲组5男3女,乙组6男2女,两组各选2人,则选出的4人中恰有1女,共有( )种取法.A.150B.180C.300D.345例12.24 (2012浙江理6)若从9,3,2,1,⋯这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )种.A.60B.63C.65D.66解析 由数字特征可知,9,7,5,3,1共5个奇数,8,6,4,2共四个偶数,取出四个不同的数,和为偶数有以下几类:四个均为奇数,有545=C 种取法;两个奇数,两个偶数,有602524=C C 种取法;四个均为偶数,有144=C 种取法.共有66种不同的取法,故选D.变式1 从7,6,5,4,3,2,1这七个数字中任取两个奇数和两个偶数,组成无重复数字的四位数,其中有( )个奇数.A.432B.288C.216D.108变式2 由数字6,5,4,3,2,1,0组成的没有重复数字的四位数中,个、十、百3位数字之和为偶数的有______个(用数字回答).变式3 从10~1这10个数字中任取4个数,其中第二个大的数字是7的取法有( )种.A.18B.20C.45D.84例12.25 (2012陕西理8)两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,所有可能出现的情形各人输赢局次的不同视为不同情形,则共有( )种.A.10B.15C.20D.30解析 根据题意可分3类:当比赛3场结束时,有332C =2种不同的情形;当比赛4场结束时,有6213=C 种;当比赛5场结束时,有12224=C 种不同情形.故共有201262=++种不同的情形.故选C.变式1 5名乒乓球运动员,有2名老队员和3名新队员,从中选出3人排成3,2,1号参加团体比赛,则其中至少一名老队员,且2,1号至少一名新队员,有______种排法(用数字作答). 变式2 已知集合{}{}{}4,3,1,2,1,5===C B A ,从3个集合中各取一个元素构成空间直角坐标系的一个点的坐标()z y x ,,,则共可确定( )个点的坐标.A.33B.34C.35D.36变式3 用4张分别标有4,3,2,1的红色卡片和4张分别标有4,3,2,1的蓝色卡片,从这8张卡片中取出4张卡片排成一行,如果取出来的4张卡片的数字之和为10,则共有______种排法(用数字作答).题型171 平均分组和分配问题思路提示分组定义:把一个非空有限集A 按要求分成若干个互相没有公共元素的非空子集的并集.①分组三原则:一组一组的分出来(与顺序无关);②有若干组为含单一元素的集合,不去管他们,分出其他组即可;③由若干(m 个)元素不为1的组,且元素个数相同,把①②的结果除以m m A .分配定义:把一个非空有限集A 的元素按要求分到若干个去处,每个去处分配元素至少为1个.分配问题共四个类型:逐方向分配即可,共有分配数:m mnn n n n m n n m n m C C C C N ⋯=---321211(额配法) . ②不定方向分配问题:各分配方向名额不确定.先把A 按要求分成若干组(分组问题),再把每组打包成一个元素,在m 个分配方向上排列(组排法).③信箱问题.3封不同信任意投入4信箱,共有34种投法.④相同元素的分配问题(不定方程组的个数)——隔板问题. ⎪⎩⎪⎨⎧≤∈∈⋯=+⋯++nm N n m N x x x n x x x m m ,,,,,,**2121,共有11--m n C 组不同的解.例12.26 按以下要求分配6本不同的书,各有几种方法?(1)平均分配给甲、乙、丙3人,每人2本;(2)平均分成3份,每份2本;(3)分成3份,一份1本,一份2本,一份3本;(4)甲、乙、丙3人,一人得1本,一人得2本,一人得3本;(5)分成3份,一份4本,另两份各1本;(6)甲、乙、丙3人,一人得4本,另外两个人每人得1本;(7)分给甲、乙、丙3人,每人至少一本.解析 (1)解法一:(分步计数原理)因为要分给甲、乙、丙3人,可分三步完成,先从6本书中选择2本分给甲,其方法有26C 种;再从余下的4本中选2本分给乙,其方法有24C 种,最后的两本分给丙,方法有22C 种.有分步计数原理,故所求的分配方法有26C 24C 22C =90种. 解法二:(定序问题全排消序法)把分配给甲、乙、丙的3堆书看成无序排列(分到每个人的两本书是无序的)即定序问题,故考虑使用定序问题全排消序法求解,共有22222266A A A A 种分法.解法三:(先(平均)分组后分配)把6本书平均分成3份,每份2本的方法有33222426A C C C 种,再分配3个人的方法有33A 种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档