人教版高三数学第二学期平面向量多选题单元 易错题难题综合模拟测评检测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高三数学第二学期平面向量多选题单元 易错题难题综合模拟测评检测
试卷
一、平面向量多选题
1.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是
( ) A .21
2
AO AB AB ⋅
=
B .OA OB OA O
C OB OC ⋅=⋅=⋅
C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则
1
1

μ
+
=
D .AH 与
cos cos AB AC AB B
AC C
+
共线
【答案】ACD 【分析】
根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定
cos cos AB AC AB B
AC C
+
与BC 垂直,从而说明D 正确.
【详解】
如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=
()
21
·cos cos ?22
AB
AO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正
确;
··OAOB OAOC =等价于()
·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,
对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中,
若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误; 设BC 的中点为D ,
则()
2111111
33333AG AD AB AC AE AF AE AF λμλ
μ⎛⎫=
=+=+=+ ⎪⎝⎭, ∵E,F,G 三点共线,11133λμ∴
+=,即11
3λμ
+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+
⋅=+ ⎪⎝⎭
()
cos cos cos cos AB BC B AC BC C AB B
AC C
π⋅-⋅=
+
0BC BC =-+=,

cos cos AB AC AB B
AC C
+
与BC 垂直,又AH BC ⊥,∴
cos cos AB AC AB B
AC C
+
与AH
共线,故D 正确. 故选:ACD. 【点睛】
本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.
2.已知a ,b 是平面上夹角为
23
π
的两个单位向量,c 在该平面上,且()()·0a c b c --=,则下列结论中正确的有( )
A .||1a b +=
B .||3a b -=
C .||3<c
D .a b +,c 的夹角是钝角
【答案】ABC
【分析】
在平面上作出OA a =,OB b =,1OA OB ==,23
AOB π
∠=
,作OC c =,则可得出C 点在以AB 为直径的圆上,这样可判断选项C 、D . 由向量加法和减法法则判断选项
A 、
B . 【详解】 对于A :()
2
222+2||+cos
13
a b a b a b a b π
+=
+=⨯⨯=,故A 正确; 对于B :设OA a =,OB b =,1OA OB ==,23
AOB π
∠=
,则2
222+c 3
2os
3AB O OA O A O B B π
-⋅==,即3a b -=,故B 正确; OC c =,由(a ﹣c )·(b ﹣c )=0得BC AC ⊥,点C 在以AB 直径的圆上(可以与,A B 重合).设AB 中点是M ,
c OC =的最大值为13
+
32
2
22
+A b B O MC a M +=
=
+<,故C 正确; a b +与OM 同向,由图,OM 与c 的夹角不可能为钝角.故D 错误. 故选:ABC .
【点睛】
思路点睛:本题考查向量的线性运算,考查向量数量积.解题关键是作出图形,作出
OA a =,OB b =,OC c =,确定C 点轨迹,然后由向量的概念判断.
3.下列命题中真命题的是( )
A .向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R )
B .a ,b 为单位向量,其夹角为θ,若|a b -|>1,则
3
π
<θ≤π
C .A 、B 、C 、
D 是空间不共面的四点,若AB •AC =0,AC •AD =0,AB •AD =0则△BCD 一定是锐角三角形
D .向量AB ,AC ,BC 满足AB AC BC =+,则AC 与BC 同向 【答案】BC 【分析】
对于A :利用共线定理判断 对于B :利用平面向量的数量积判断 对于C :利用数量积的应用判断 对于D :利用向量的四则运算进行判断 【详解】
对于A :由向量共线定理可知,当0b =时,不成立.所以A 错误. 对于B :若|a b -|>1,则平方得2221a a b b -⋅+>,即1
2
a b ⋅<,又
1||2a b a b cos cos θθ⋅=⋅=<,所以3
π
<θ≤π,即B 正确.
对于C :
()()
22
0BC BD AC AB AD AB AC AD AC AB AB AD AB AB ⋅=-⋅-=⋅-⋅-⋅+=>,
0||
BC BD cosB BC BD ⋅=
⋅>,即B 为锐角,同理A ,C 也为锐角,故△BCD 是锐角三角形,所
以C 正确.
对于D :若AB AC BC =+,则AB AC BC CB -==,所以0CB =,所以则AC 与BC 共线,但不一定方向相同,所以D 错误. 故选:BC. 【点睛】
(1)多项选择题是2020年高考新题型,需要要对选项一一验证;
(2)要判断一个命题错误,只需举一个反例就可以;要证明一个命题正确,需要进行证明.
4.已知ABC 是边长为2的等边三角形,D ,E 分别是,AC AB 上的点,且AE EB =,
2AD DC =,BD 与CE 交于点O ,则( )
A .0OC EO +=
B .0AB CE ⋅=
C .3OA OB OC O
D +++=D .ED 在BC 方向上的投影为
7
6
【答案】BD 【分析】
可证明EO CE =,结合平面向量线性运算法则可判断A ;由AB CE ⊥结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 【详解】
因为ABC 是边长为2的等边三角形,AE EB =,
所以E 为AB 的中点,且CE AB ⊥,以E 为原点如图建立直角坐标系,
则()0,0E ,()1,0A -,()10
B ,,(3
C , 由2A
D DC =可得2
22333AD AC ⎛== ⎝⎭,则1233D ⎛- ⎝⎭
, 取BD 的中点G ,连接GE ,易得//GE AD 且1
2
GE AD DC ==, 所以CDO ≌EGO △,EO CO =,则30,
2O ⎛ ⎝⎭
, 对于A ,0OC EO EC +=≠,故A 错误; 对于B ,由AB CE ⊥可得0AB CE ⋅=,故B 正确;
对于C ,31,2OA ⎛=-- ⎝⎭,31,2OB ⎛⎫=- ⎪ ⎪⎝⎭,30,2OC ⎛⎫
= ⎪ ⎪⎝⎭,13,36OD ⎛=- ⎝⎭

所以1
3,3OA OB OC OD ⎛+++=- ⎝⎭
,所以2
3OA OB OC OD +++=,故C 错误; 对于D ,(3BC =-,123,33ED ⎛⎫
=- ⎪ ⎪⎝⎭

所以ED 在BC 方向上的投影为1
2
7326BC ED BC
+⋅==,故D 正确.
故选:BD. 【点睛】
关键点点睛:建立合理的平面直角坐标系是解题关键.
5.在ABC 中,D 、E 分别是AC 、BC 上的点,AE 与BD 交于O ,且
AB BC BC CA CA AB ⋅=⋅=⋅,2AB AC AE +=,2CD DA =,1AB =,则( )
A .0AC BD ⋅=
B .0OA OE ⋅=
C .3OA OB OC ++=
D .ED 在BA 方向上的正射影的数量为
712
【答案】BCD 【分析】
根据AB BC BC CA CA AB ⋅=⋅=⋅以及正弦定理得到sin cos sin cos C B B C ⋅=⋅,从而求出B C =,进一步得到B C A ==,ABC 等边三角形,根据题目条件可以得到E 为BC 的中点和D 为AC 的三等分点,建立坐标系,进一步求出各选项. 【详解】
由AB BC BC CA CA AB ⋅=⋅=⋅得cos cos AB BC B CA BC C ⋅=⋅,
||cos ||cos AB B CA C ⋅=⋅,正弦定理,sin cos sin cos C B B C ⋅=⋅,()0sin B C =-,
B C =,
同理:A C =,所以B C A ==,ABC 等边三角形.
2AB AC AE +=,E 为BC 的中点,2CD DA =,D 为AC 的三等分点.
如图建立坐标系,30,2A ⎛ ⎝⎭,1,02B ⎛⎫- ⎪⎝⎭,1,02C ⎛⎫
⎪⎝⎭,13,63D ⎛⎫ ⎪ ⎪⎝⎭,解得30,4O ⎛ ⎝⎭
, O 为AE 的中点,所以,0OA OE +=正确,故B 正确;
1323,,,2233AC BD ⎛⎫⎛=-= ⎪ ⎪ ⎝⎭⎝⎭
,AC BD ⋅=12331=023236⨯--≠,故A 错误; 3
2OA OB OC OA OE OE ++=+==
,故C 正确; 13,63ED ⎛⎫= ⎪ ⎪⎝⎭,13,22BA ⎛= ⎝⎭
,投影712||ED BA BA ⋅=,故D 正确. 故选:BCD.
【点睛】
如何求向量a 在向量b 上的投影,用向量a 的模乘以两个向量所成的角的余弦值就可以了,当然还可以利用公式
a b b
⋅进行求解.
6.如图,BC ,DE 是半径为1的圆O 的两条不同的直径,2BF FO =,则( )
A .13
BF FC = B .89
FD FE ⋅=-
C .41cos ,5
FD FE -<<-
>≤ D .满足FC FD FE λμ=+的实数λ与μ的和为定值4 【答案】BCD 【分析】
A. 根据2BF FO =易得12
BF FC =判断;B. 由()()
FD FE OD OF OE OF ⋅=-⋅-运算求解判断;,C.建立平面直角坐标系:设,0,
2DOF παα⎡⎤
∠=∈⎢⎥⎣⎦
,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫
--- ⎪⎝⎭
,得到
11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭
,由cos ,FD FE FD FE FD FE ⋅<>=⋅利用三角恒等变换和三角函数的性质判断;D. 将FC FD FE λμ=+,利用线性运算变形为
()()4OF OD OF λμλμ-=--+判断;
【详解】
A. 因为2BF FO =,所以1
2
BF FC =,故错误;
B. ()()
2
FD FE OD OF OE OF OD OE OD OF OF OE OF ⋅=-⋅-=⋅-⋅-⋅+,
()
2
2
18
1099
OE OF OD OE OF =-+++=-++
=-,故正确; C.建立如图所示平面直角坐标系:
设,(0,]2DOF π
αα∠=∈,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫
--- ⎪⎝⎭
, 所以11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫
=-=+-
⎪ ⎪⎝⎭⎝⎭
, 所以
2
2
22
8
9
cos ,11cos sin cos sin 33FD FE FD FE FD FE
αααα-
⋅<>=
=
⋅⎛⎫⎛⎫-+⋅++ ⎪ ⎪⎝⎭⎝⎭

8
4
9
(1,]5
822
cos2819
α-
---⋅,故正确;
D. 由FC FD FE λμ=+,得
()()
()()4OF OD OF OE OF OD OF λμλμλμ-=-+-=--+,所以4λμ+=,故正
确; 故选:BCD 【点睛】
本题主要考查平面向量的线性运算和数量积运算,还考查了运算求解的能力,属于中档题.
7.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足
20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ
B .2133
BP BA BC =
+
C .0PA PC ⋅<
D .2S =
【答案】BCD 【分析】
本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】
解:因为20PA PC +=,2QA QB =,
所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;
因为()
121
333
BP BA AP BA BC BA BA BC =+=+
-=+,故选项B 正确; 因为
11
2223132
APQ ABC
AB h
S S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】
本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.
8.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是
PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥ C .//FG BC D .FG EF ⊥ 【答案】ABD 【分析】
取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】
如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233
PG PH a b a b =
=⨯+=+,
1121111
,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,
1111
3333
FG PG PF a b b a =-=+-=,
11
21133
333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,
∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;
0FG EF ⋅=,D 正确.
故选:ABD.
【点睛】
本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.
9.下列关于平面向量的说法中正确的是( )
A .已知A 、
B 、
C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =
C .若点G 为ΔABC 的重心,则0GA GB GC ++=
D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 【答案】AC 【分析】
根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】
解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;
由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以
||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;
设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而
2GC GM =-,所以0GA GB GC ++=,即C 正确;
()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a 与b 不能共线,即4λ≠-,所以()
(),44,1λ∈-∞--,故D 错误; 故选:AC .
【点睛】
本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.
10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )
A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个
B .满足10OA OB -=B 共有3个
C .存在格点B ,C ,使得OA OB OC =+
D .满足1OA OB ⋅=的格点B 共有4个
【答案】BCD
【分析】 根据向量的定义及运算逐个分析选项,确定结果.
【详解】
解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,
设(,)B m n ,若10OA OB -= 22(1)(2)10m n -+-(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.
当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.
故选:BCD .
【点睛】
本题考查向量的定义,坐标运算,属于中档题.。

相关文档
最新文档