【初三】四川省德阳市2018届九年级《数学》上学期半期考试试题新人教版(含答案)

合集下载

最新人教版2018年秋季九年级数学上期中测试题(含答案)(完整资料).doc

最新人教版2018年秋季九年级数学上期中测试题(含答案)(完整资料).doc

此文档下载后即可编辑芜湖希望教育 九年级数学(上册)期中试题满分:150分 时间:120分钟姓名: 得分:一、选择题(3分×10=30分)1.下列方程,是一元二次方程的是( )①3x 2+x=20,②2x 2-3xy+4=0,③x 2-1x =4,④x 2=0,⑤x 2-3x +3=0A .①②B .①②④⑤C .①③④D .①④⑤2.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫⎝⎛0,21 C.(-1,5) D.(3,4) 3.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个4.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( )① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴 交点的横坐标.A.①②③④B.①②③C. ①②D.①5.方程(x-3)2=(x-3)的根为( ) A .3 B .4 C .4或3 D .-4或36.如果代数式x 2+4x+4的值是16,则x 的值一定是( )A .-2B .C .2,-6D .30,-347.若c (c ≠0)为关于x 的一元二次方程x 2+bx+c=0的根,则c+b 的值为( )A .1B .-1C .2D .-28.从正方形铁片上截去2cm 宽的一个长方形,剩余矩形的面积为80cm 2,•则原来正方形的面积为( )A .100cm 2B .121cm 2C .144cm 2D .169cm 29.方程x 2+3x-6=0与x 2-6x+3=0所有根的乘积等于( ) A .-18 B .18 C .-3D .310.三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是( )A .24B .48C .24或D . 二、填空题(3分×10=30分)11.二次函数)()(32+-=xy 的图象的顶点坐标是(1,-2). 12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小.13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 .14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 .15.x 2-10x+________=(x-________)2.16.若关于x 的一元二次方程(m+3)x 2+5x+m 2+2m-3=0有一个根为0,则m=______,•另一根为________.17.方程x 2-3x-10=0的两根之比为_______.18.已知方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,则Rt △ABC•的第三边长为________.19.一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是________.20.某超市从我国西部某城市运进两种糖果,甲种a千克,每千克x元,乙种b千克,每千克y元,如果把这两种糖果混合后销售,保本价是_________元/千克.三、解答题(共90分)21.用适当的方法解下列方程(每小题4分,共16分)(1)(3x-1)2=(x+1)2(2)2x2+x-12=0(3)用配方法解方程:x2-4x+1=0 (4)用换元法解方程:(x2+x)2+(x2+x)=622.(12分)天山旅行社为吸引游客组团去具有喀斯特地貌特征的黄果树风景区旅游,。

【真题】四川省德阳市2018年中考数学试题(含解析)

【真题】四川省德阳市2018年中考数学试题(含解析)

【答案】德阳市2018年初中毕业生学业考试与高中阶段学校招生考试第I卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.如果把收入100元记作+100元,那么支出80元记作十20 元 及+100 元 ^80 元 IX~80 元解析:考察实数的概念,易选02丨下列计算或运算中,正确的是丄06^02^0^及(^2)3^(口一9 IX ^02~62解析:考查幂运算与整式乘法,易选匸选项丄06 ^02 ^04选项 5:考查了立方:(七2)3^-8。

6选项0考查了平方差公式:所以卜一3乂3十…选项从考查了完全平方差公式:3|如图,直线…|6,V是截线且交于点儿若21 = 60。

,22= 100。

,则乙4二^^400 5.50。

^6000.70。

解析:考查三线八角,利用平行转移角,易选2^幺 1=23=60。

,之2二之4=100。

7^4+25=180。

,人 25=80。

(第3题图)4卜列计算或运算中,正确的是^ 8 ―^8 二2^6715-2^= 3745 IX-3^= 7^解析:考查二次根式的加减乘除与化简,易选5选项丄2^^二2^^二々X 士二选项 5:^8-^8^ 3^2-272=72选项 06^15^273 = ^^=3752^3选项从~3^35^把实数1 12X10^3用小数表示为10.0612 5.6120 0.0.00612 612000解析:考查科学计数法,易选匸6^下列说法正确的是儿“明天降雨的概率为50^”,意味着明天一定有半天都在降雨凡了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查〕方式 匕掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件IX —组数据的方差越大,则这组数据的波动也越大解析:考查方差、事件、概率统计,易选01.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读事件,统计结果如下表所示,则在本次调查中,全班学生 平均每天阅读时间的中位数和众数分别是每天阅读时间(小吋〉0.511.52人数819103克 2,1召.1,1.5匕 1,2解析:考查中位数和众数,易选8丨如图是一个几何体的三视图,根据图中数据计算这个几何体 的表面积是丄 16冗 127110^IX 4^解析:考査三视图与圆锥计算.根据左视图可知,底面圆半径为2,为侧面扇形半径为6,因此侧面扇形面积为1/7^1x 2x 24x 6=12;^因此,表面积为:4冗十12冗 二16:,易选丄9丨已知圆内接正三角形的面积为巧,则该圆的内接正六边形的边心距是克2 凡1 匕6 0.4解析:如图.设的边长为由正三角形的面积公式得IX 1’ 1俯视阁(第8题阁)因此底面圆面积为4疋;又因由120。

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3= 5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.18.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C .D .10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B .C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= .14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为.3a b c﹣12……16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).组别单次营运里程“x”(公频数里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= ;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正.支出记作为负.表示出来即可.【解答】解:如果收入100元记作+100元.那么支出80元记作﹣80元.故选:D.【点评】本题考查了正数和负数.能用正数和负数表示题目中的数是解此题的关键.2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4.此选项错误;B、(﹣2a2)3=﹣8a6.此选项错误;C、(a﹣3)(3+a)=a2﹣9.此选项正确;D、(a﹣b)2=a2﹣2ab+b2.此选项错误;故选:C.【点评】本题主要考查整式的混合运算.解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.3.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角.即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理.即可得到∠A的度数.【解答】解法一:如图.∵∠2是△ABC的外角.∴∠A=∠2﹣∠1=100°﹣60°=40°.故选:A.解法二:如图.∵a∥b.∴∠1=∠3=60°.∠2=∠4=100°.∴∠5=180°﹣∠4=80°.∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°.故选:A.【点评】本题主要考查了三角形外角性质以及平行线的性质的运用.解题时注意:三角形的外角等于与它不相邻的两个内角的和.4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=.此选项错误;B、﹣=3﹣2=.此选项正确;C、6÷2=3.此选项错误;D、﹣3=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示.一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂.指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612.故选:C.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n.其中1≤|a|<10.n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大【分析】根据概率的意义.事件发生可能性的大小.可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨.此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式.此选项错误;C、掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是随机事件.此选项错误;D、一组数据的方差越大.则这组数据的波动也越大.此选项正确;故选:D.【点评】本题考查了概率的意义、随机事件.利用概率的意义.事件发生可能性的大小是解题关键.7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.1【分析】根据表格中的数据可知七年级2班有30人.从而可以得到全班学生平均每天阅读时间的中位数和众数.本题得以解决.【解答】解:由表格可得.全班学生平均每天阅读时间的中位数和众数分别是1、1.5.故选:B.【点评】本题考查众数、加权平均数、中位数.解答本题的关键是明确题意.会求一组数据的众数和中位数.8.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体.锥体还是球体.再由俯视图确定具体形状.确定圆锥的母线长和底面半径.从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体.由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6.底面半径为2.故表面积=πrl+πr2=π×2×6+π×22=16π.故选:A.【点评】考查学生对三视图掌握程度和灵活运用能力.关键是由主视图和左视图确定是柱体.锥体还是球体.9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径.进而解答即可.【解答】解:因为圆内接正三角形的面积为.所以圆的半径为.所以该圆的内接正六边形的边心距×sin60°=.故选:B.【点评】本题考查正多边形和圆.解答本题的关键是明确题意.求出相应的图形的边心距.10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM.根据旋转的性质和四边形的性质.证明△ABM≌△C′BM.得到∠2=∠3=30°.利用三角函数和三角形面积公式求出△ABM的面积.再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM.在△ABM和△C′BM中..∴△ABM≌△C′BM.∠2=∠3==30°.在△ABM中.AM=×tan30°=1.S△ABM==.正方形的面积为:=3.阴影部分的面积为:3﹣2×=3﹣.故选:C.【点评】本题考查旋转的性质和正方形的性质.利用旋转的性质和正方形的性质证明两三角形全等是解决本题的关键.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集.根据已知求出1≤2、3<4.求出2<a≤4、9≤b<12.即可得出答案.【解答】解:解不等式2x﹣a≥0.得:x≥.解不等式3x﹣b≤0.得:x≤.∵不等式组的整数解仅有x=2、x=3.则1≤2、3<4.解得:2<a≤4、9≤b<12.则a=3时.b=9、10、11;当a=4时.b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a.b)共有6个.故选:D.【点评】本题考查了解一元一次不等式组.不等式组的整数解.有序实数对的应用.解此题的根据是求出a、b的值.12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1.BE=OB.AF∥OE可得S△OBF =S△AOB=m.S△OBC=m.S△AOC=.由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1.BE=OB.AF∥OE∴S△OBF =S△AOB=m.S△OBC=m.S△AOC=.∴S△AOB :S△AOC:S△BOC=m::m=3:2:1故选:B.【点评】本题主要考查了平行四边形的性质.等高模型等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= 2x(y+1)2 .【分析】原式提取公因式.再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2.故答案为:2x(y+1)2【点评】此题考查了提公因式法与公式法的综合运用.熟练掌握因式分解的方法是解本题的关键.14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程.解之求得x即可知完整的数据.再根据方差公式计算可得.【解答】解:∵数据10.15.10.x.18.20的平均数为15.∴=15.解得:x=17.则这组数据为10.15.10.17.18.20.∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=.故答案为:.【点评】本题主要考查算术平均数、方差.解题的关键是熟练掌握算术平均数的定义与方差的计算公式.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为﹣1 .3a b c﹣12……【分析】根据三个相邻格子的整数的和相等列式求出a、c的值.再根据第9个数是3可得b=2.然后找出格子中的数每3个为一个循环组依次循环.再用2018除以3.根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等.∴a+b+c=b+c+(﹣1).3+(﹣1)+b=﹣1+b+c.∴a=﹣1.c=3.∴数据从左到右依次为3、﹣1、b、3、﹣1、b.∵第9个数与第3个数相同.即b=2.∴每3个数“3、﹣1、2”为一个循环组依次循环.∵2018÷3=672…2.∴第2018个格子中的整数与第2个格子中的数相同.为﹣1.故答案为:﹣1.【点评】此题考查数字的变化规律以及有理数的加法.仔细观察排列规律求出a、b、c的值.从而得到其规律是解题的关键.16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形.根据含有30°的直角三角形的性质可判断①②③.易证四边形PMCN是矩形.可得d12+d22=MN2=CP 2.根据垂线段最短.可得CP的值即可求d12+d22的最小值.即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形.E是AD中点∴AD=CD.∠ADC=60°=∠ACD.CE⊥AB.∠DCE=30°∴CD=BD∴∠B=∠DCB=30°.且∠DCE=30°.CE⊥AB∴∠ECD=∠DCB.BC=2CE.tan∠B=故①③正确.②错误∵∠DCB=30°.∠ACD=60°∴∠ACB=90°若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值.d12+d22的值最小∴根据垂线段最短.则当CP⊥AB时.d12+d22的值最小此时:∠C AB=60°.AC=2.CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【点评】本题考查了解直角三角形.等边三角形的性质和判定.利用垂线段最短求d 12+d22的最小值是本题的关键.17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为 2 .【分析】首先在坐标系中画出已知函数y=的图象.利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时.对应成立的x值恰好有三个.∴a=2.故答案:2.【点评】此题主要考查了利用二次函数的图象解决交点问题.解题的关键是把解方程的问题转换为根据函数图象找交点的问题.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式.然后进行二次根式的乘除运算.再合并即可.在二次根式的混合运算中.如能结合题目特点.灵活运用二次根式的性质.选择恰当的解题途径.往往能事半功倍.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.【分析】(1)根据全等三角形的判定.证得△AEF≌△DCE.再根据全等三角形的性质.证得ED=AF.进而得证;(2)根据全等三角形的判定方法.证明△AEF≌△BHF.进而求得HB=AB=AE=4.再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC.∴∠CEF=90°.∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形.∴∠AEF+∠AFE=90°.∠DEC+∠DCE=90°.∴∠AEF=∠DCE.∠AFE=∠DEC.∵AE=DC.∴△AEF≌△DCE.∴ED=AF.∵AE=DC=AB=2DE.∴AB=2AF.∴F为AB的中点;(2)解:由(1)知AF=FB.且AE∥BH.∴∠FBH=∠FAE=90°.∠AEF=∠FHB.∴△AEF≌△BHF.∴HB=AE.∵ED=2.且AE=2ED.∴AE=4.∴HB=AB=AE=4.∴AH2=AB2+BH2=16+16=32.∴AH=.【点评】本题主要考查矩形的性质.全等三角形的性质和判定.勾股定理的综合应用.解决此类问题的关键是能灵活运用相关的性质找出相等的线段.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= 48 ;②样本中“单次营运里程”不超过15公里的频率为0.73 ;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数.找出抽到一男一女的结果数.然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数.其中恰好抽到一男一女的结果数为6.∴恰好抽到“一男一女”的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n.再从中选出符合事件A或B的结果数目m.然后利用概率公式求事件A或B的概率.也考查了统计图和统计表.要熟练从统计图表中得出解题所需数据.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.【分析】(1)把点B 代入双曲线求出a的值.即可得到双曲线的解析式;把点A 代入双曲线求出m的值.确定A点坐标.再利用待定系数法求出直线的解析式.即可解答;(2)先求出y3的解析式.再解方程组求出点D点E的坐标.即可解答.【解答】解:(1)∵点B(﹣1.﹣4)在双曲线y2=(a≠0)上.∴a=(﹣1)×(﹣4)=4.∴双曲线的解析式为:.∵点A(m.2)在双曲线上.∴2m=4.∴m=2.∴点A的坐标为:(2.2)∵点A(m.2).点B(﹣1.﹣4)在直线y1=kx+b(k≠0)上.∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3.∴y2=2(x+2)﹣2=2x+2.解方程组得:或.∴点D(1.4).点E(﹣2.﹣2).∴由函数图象可得:当y2>y3时.x的取值范围为:x<﹣2或0<x<1.【点评】本题考查了反比例函数与一次函数的交点.解决本题的关键是求出直线和双曲线的解析式.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天.根据题意列出关于x的分式方程.求出分式方程的解得到x的值.经检验即可得到结果;(2)根据题意列出关于m与n的方程.由m与n的范围.确定出正整数m与n的值.即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天.根据题意得:45×+54(+)=1.解得:x=120.经检验x=120是分式方程的解.且符合题意.答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1.整理得:n=120﹣m.∵m<46.n<92.∴120﹣m<92.解得42<m<46.∵m为正整数.∴m=43.44.45.又∵120﹣m为正整数.∴m=45.n=90.答:A、B两个工程公司各施工建设了45天和90天.【点评】此题考查了分式方程的应用.以及二元一次方程的应用.找出题中的等量关系是解本题的关键.23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB.∠ABH=∠CBH.进而判断出∠DHB=∠DBH.即可得出结论;(2))①先判断出OD∥AC.进而判断出OD⊥EF.即可得出结论;②先判断出△CDE≌△BDG.得出GB=CE=1.再判断出△DBG∽△ABD.求出DB2=5.即DB=.DG=2.进而求出AE=AG=4.最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB.∵点H是△ABC的内心.∴∠DAC=∠DAB.∠ABH=∠CBH.∵∠DBC=∠DAC.∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.∵∠DBH=∠DBC+∠CBH.∴∠DHB=∠DBH.∴DH=DB;(2)①连接OD.∵∠DOB=2∠DAB=∠BAC∴OD∥AC.∵AC⊥BC.BC∥EF.∴AC⊥EF.∴OD⊥EF.∵点D在⊙O上.∴EF是⊙O的切线;②过点D作DG⊥AB于G.∵∠EAD=∠DAB.∴DE=DG.∵DC=DB.∠CED=∠DGB=90°.∴△CDE≌△BDG.∴GB=CE=1.在Rt△ADB中.DG⊥AB.∴∠DAB=∠BDG.∵∠DBG=∠ABD.∴△DBG∽△ABD.∴.∴DB2=AB•BG=5×1=5.∴DB=.DG=2.∴ED=2.∵H是内心.∴AE=AG=4.∵DO∥AE.∴△OFD∽△AFE.∴.∴.∴DF=.【点评】此题是圆的综合题.主要考查了三角形内心.圆的有关性质.相似三角形的判定和性质.切线的判定.平行线的性质和判定.求出DB是解本题的关键.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值.从而可得到抛物线的解析式.然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴.垂足为K.首先证明△BAO≌△ACK.从而可得到OA=CK.OB=AK.于是可得到点A、B的坐标.然后依据勾股定理求得AB的长.然后求得点D的坐标.从而可求得三角形平移的距离.最后.依据△ABC扫过区域的面积=S四边形ABDE +S△DEH求解即可;(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.先证明△BPG≌△ABO.从而可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3.1)在二次函数的图象上.∴x2+bx﹣=1.解得:b=﹣.∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴.垂足为K.∵△ABC为等腰直角三角形.∴AB=AC.又∵∠BAC=90°.∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°.∴∠BAO=∠ACK.在△BAO和△ACK中.∠BOA=∠AKC.∠BAO=∠ACK.AB=AC.∴△BAO≌△ACK.∴OA=CK=1.OB=AK=2.∴A(1.0).B(0.2).∴当点B平移到点D时.D(m.2).则2=m2﹣m﹣.解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.∵△APB为等腰直角三角形.∴PB=AB.∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°.∴∠BAO=∠BPG.在△BPG和△ABO中.∠BOA=∠PGB.∠BAO=∠BPG.AB=PB.∴△BPG≌△ABO.∴PG=OB=2.AO=BG=1.∴P(﹣2.1).当x=﹣2时.y≠1.∴点P(﹣2.1)不在抛物线上.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可知:△PAF≌△ABO.∴FP=OA=1.AF=OB=2.∴P(﹣1.﹣1).当x=﹣1时.y=﹣1.∴点P(﹣1.﹣1)在抛物线上.【点评】本题主要考查的是二次函数的综合应用.解答本题主要应用了待定系数法求二次函数的解析式、平移的性质、全等三角形的性质和判定.作辅助线构造全等三角形是解答本题的关键.。

2018年四川德阳市中考数学试卷(含解析)

2018年四川德阳市中考数学试卷(含解析)

2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简 5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π.【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3,解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF , ∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4. 解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c,可得c=3,同理可得a=-1,b=2.格子中的数每3个数字形成一个循环,易得2018÷3=672……2,得第2018个格子的数为-1.【知识点】探究规律16.(2018四川省德阳市,题号16,分值:3)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,为正三角形,给出下列结论,①CB=2CE,②tan∠B=34点P到AC,BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,CB=2CE.②∵∠B=30°,.∴tan∠B=√33③在正△ACD中,CE是△ACD的中线,∠ACD=30°,∴∠ECD=12∴∠ECD=∠DCB.④如图,PM=d1,PN=d2.在Rt△MPN中,d12+d22=MN2,∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使d12+d22最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,d12+d22最小,,在Rt△ACE中,cos∠ACE=CEAC∵AC=2,∠ACE=30°,∴CE=AC·cos30°=√3,则CE2=3,∴d12+d22的最小值为3.所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____. 【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2=3,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可.【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF≌△BHF,可知AE,进而得出AB=BH,再根据AH2=AB2+BH2得出答案.【解题过程】证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分 补全频数分布直方图如上……………………………………………………………………5分 (2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x……………………………………………4分(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x)=1,……………………………………………………………………..2分解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分即n=120-23m ……………………………………………………………………………………..6分 又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D作BC的平行线交AC,AB的延长线分别于点E,F,已知CE=1,圆O的直径为5,①求证:EF为圆O的切线;②求DF的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DF DF+DE=OD AE ,即DF DF+2=524, ∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32,解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分 化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK …………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32, 解得m 1=-3,m 2=-72…………………………………………………………………………….8分 而AB=AC=2+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷

四川省德阳市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)(2018•德阳)实数﹣的相反数是()A.﹣2 B.C.2D.﹣|﹣0.5|考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣的相反数是,故选:B.点评:此题主要考查了相反数,正确把握相反数的概念即可.2.(3分)(2018•德阳)如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°考点:平行线的性质.分析:根据两直线平行,内错角相等可得∠ABC=∠1,再根据三角形的内角和定理列式计算即可得解.解答:解:∵a∥b,∴∠ABC=∠1=46°,∵∠A=38°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣38°﹣46°=96°.故选C.点评:本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.3.(3分)(2018•德阳)下列运算正确的是()A.a2+a=2a4B.a3•a2=a6C.2a6÷a2=2a3D.(a2)4=a8考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a5,错误;C、原式=2a4,错误;D、原式=a8,正确,故选D点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2018•德阳)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2018•德阳)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、10考点:折线统计图;中位数;众数.分析:由折线图可知,射击选手五次射击的成绩为:7、7、8、10、9,再根据众数、中位数的计算方法即可求得.解答:解:∵射击选手五次射击的成绩为:7、7、8、10、9,∴众数为7,中位数为8,故选:A.点评:本题考查了折线图的意义和众数、中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.6.(3分)(2018•德阳)已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含考点:圆与圆的位置关系.分析:先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.(3分)(2018•德阳)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2C.﹣2.5 D.﹣6考点:二次函数的最值.分析:把二次函数的解析式整理成顶点式形式,然后确定出最大值.解答:解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.点评:本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.(3分)(2018•德阳)如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO 绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)考点:坐标与图形变化-旋转;等边三角形的性质.分析:设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.解答:解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,∴点A1的坐标为(,﹣1).故选B.点评:本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.9.(3分)(2018•德阳)下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.4考点:利用频率估计概率;概率的意义.分析:利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.解答:解:①不可能事件发生的概率为0,正确;②一个对象在实验中出现的次数越多,频率就越大,正确;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率,错误,故选C.点评:本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.10.(3分)(2018•德阳)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为()A.B.+1 C.+2 D.+3考点:勾股定理;直角三角形斜边上的中线.分析:根据“直角三角形斜边上的中线等于斜边的一半求得AB=;然后利用勾股定理、三角形的面积求得(AC+BC)的值,则易求该三角形的周长.解答:解:如图,∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,∴AB=2CD=.∴AC2+BC2=5又Rt△ABC的面积为1,∴AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+,即△ABC的周长是3+.故选:D.点评:本题考查了勾股定理,直角三角形斜边上的中线.此题借助于完全平方和公式求得(AC+BC)的长度,减少了繁琐的计算.11.(3分)(2018•德阳)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2D.考点:勾股定理;含30度角的直角三角形.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.12.(3分)(2018•德阳)已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4考点:分式方程的解;一元一次不等式组的整数解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解答:解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D点评:此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(每小题3分,共18分,将答案填在答题卡对应的题号后的横线上)13.(3分)(2018•德阳)下列运算正确的个数有1个.①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.考点:提公因式法与公式法的综合运用;零指数幂;二次根式的加减法.分析:①先提取公因式a,再根据完全平方公式进行二次分解;②根据任何非零数的零指数次幂等于1解答;③合并同类二次根式即可.解答:解:①ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2,故本小题正确;②(﹣2)0=1,故本小题错误;③3﹣=2,故本小题错误;综上所述,运算正确的是①共1个.故答案为:1.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2018•德阳)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.考点:方差;算术平均数.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵3,4,5,x,7,8的平均数是6,∴x=9,∴s2= [(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.点评:本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(3分)(2018•德阳)半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,∴BD=DC,又∵OB=1,∴OD=.故答案是:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.16.(3分)(2018•德阳)如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为65°.考点:翻折变换(折叠问题).分析:首先求得∠AEA′,根据折叠的性质可得∠A′ED=∠AED=∠AEA′,在△A′DE 中利用三角形内角和定理即可求解.解答:解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是:65°.点评:本题考查了折叠的性质,找出图形中相等的角和相等的线段是关键.17.(3分)(2018•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是301.考点:等边三角形的判定与性质;平移的性质.专题:规律型.分析:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有n+1个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.解答:解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案为:301.点评:本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.18.(3分)(2018•德阳)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB 边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H 作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)19.(6分)(2018•德阳)计算:﹣25+()﹣1﹣|﹣8|+2cos60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣32+2﹣4+1=﹣33.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(11分)(2018•德阳)为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组35≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据第一组的人数是50,频率是0.05即可求得总人数,则根据频率公式即可求得a、b的值;(2)根据第一组的频数是36人,频率是0.06据此即可求得调查的总人数,则满意度即可求得;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人,利用列举法即可求解.解答:解:(1)调查的总人数:50÷0.05=1000(人),则a=1000×0.35=350,b==0.2;(2)满意的总人数是:36÷0.06=600(人),则调查的满意率是:=0.6,则此次调查结果为满意;第五组的满意的人数是:600×0.16=96(人),则第五组的满意率是:×100%=96%;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人.,总共有20种情况,则第二组和第四组恰好各有1人被抽中的概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2018•德阳)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.考点:矩形的性质;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.分析:(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D 的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.解答:解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2);(2)如图,设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4,当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.点评:本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(2)难点在于要分情况讨论.22.(11分)(2018•德阳)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨)4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设装运A、B两种农产品各需x、y辆汽车.等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数≥11.解答:解:(1)设装运A、B两种农产品各需x、y辆汽车.则,解得.答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车.则4x+5y+6(40﹣x﹣y)=200,解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案.方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C.方案三:13车装运A,14车装运B,13车装运C.方案四:14车装运A,12车装运B,14车装运C.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键.23.(14分)(2018•德阳)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.考点:切线的判定.专题:证明题.分析:(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt △BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.解答:(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明:∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.24.(14分)(2018•德阳)如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x﹣4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标.(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程,就可求出m,进而求出点P的坐标.(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,然后只需考虑三个临界位置(①向上平移到与直线EM相切的位置,②向下平移到经过点M的位置,③向下平移到经过点E的位置)所对应的c的值,就可以解决问题.解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,∴﹣8a=﹣8.∴a=1.∴y=(x+2)(x﹣4)=x2﹣2x﹣8=(x﹣1)2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).(2)如图,设直线CD的解析式为y=kx+b.∴解得:.∴直线CD的解析式为y=﹣x﹣8.当y=0时,﹣x﹣8=0,则有x=﹣8.∴点E的坐标为(﹣8,0).设点P的坐标为(m,n),则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.∵PM=EF,∴m2﹣m=(m+8).整理得:5m2﹣6m﹣8=0.∴(5m+4)(m﹣2)=0解得:m1=﹣,m2=2.∵点P在对称轴x=1的右边,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P的坐标为(2,﹣8).(3)当m=2时,y=﹣2﹣8=﹣10.∴点M的坐标为(2,﹣10).设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.∴(﹣1)2﹣4×1×c=0.∴c=.②若抛物线y=x2﹣2x﹣8+c经过点M,则有22﹣2×2﹣8+c=﹣10.∴c=﹣2.③若抛物线y=x2﹣2x﹣8+c经过点E,则有(﹣8)2﹣2×(﹣8)﹣8+c=0.∴c=﹣72.综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性.。

人教版2018年秋九年级数学上册期中试卷(含答案解析)

人教版2018年秋九年级数学上册期中试卷(含答案解析)

人教版2018年秋九年级数学上册期中试卷(含答案解析)2018年秋季九年级数学上册期中检测题,共120分,时间限制120分钟。

一、选择题(共30分)1.方程(x+2)^2=4的根是()A。

x1=4,x2=-4B。

x1=0,x2=-4C。

x1=0,x2=2D。

x1=0,x2=42.下列四个图形中,不是中心对称图形的是()A.B.C.D.3.将y=x^2+4x+1化为y=a(x-h)^2+k的形式,h,k的值分别为()A。

2,-3B。

-2,-3C。

2,-5D。

-2,-54.在同一坐标系中一次函数y=ax-b和二次函数y=ax^2+bx的图像可能为()A.B.C.D.5.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是()无图,无法判断)6.用配方法解方程3x^2-6x+1=0,则方程可变形为()A。

(x-3)^2=0B。

3(x-1)^2=0C。

(x-1)^2=0D。

(3x-1)^2=17.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A。

800(1+a%)^2=578B。

800(1-a%)^2=578C。

800(1-2a%)=578D。

800(1-a^2%)=5788.将抛物线y=3x^2向右平移2个单位,再向上平移3个单位,得到抛物线的解析式是()A。

y=3(x+2)^2+3B。

y=3(x+2)^2-3C。

y=3(x-2)^2+3D。

y=3(x-2)^2-39.把一个物体以初速度v(米/秒)竖直向上抛出,在不计空气阻力的情况下,物体的运动路线是一条抛物线,且物体的上升高度h(米)与抛出时间t(秒)之间满足:h=vt-gt^2(其中g是常数,取10米/秒^2)。

某时,XXX在距地面2米的O点,以10米/秒的初速度向上抛出一个小球,抛出2.1秒时,该小球距地面的高度是()A。

四川省德阳市2018届中考数学试卷及参考答案

四川省德阳市2018届中考数学试卷及参考答案

四川省德阳市2018届中考数学试卷一、选择题1. 如果把收入100元记作+100元,那么支出80元记作()A . +20元B . +100元C . +80元D . -80元2. 下列计算或运算中,正确的是()A .B .C .D .3. 如图,直线,,是截线且交于点,若,,则()A .B .C .D .4. 下列计算或运算中,正确的是()A .B .C .D .5. 把实数用小数表示为()A . 0.0612B . 6120C . 0.00612D . 6120006. 下列说法正确的是()A . “明天降雨的概率为50%”,意味着明天一定有半天都在降雨B . 了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C . 掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D . —组数据的方差越大,则这组数据的波动也越大7. 受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读事件,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A . 2,1B . 1,1.5C . 1,2D . 1,18. 如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A . 16πB . 12πC . 10πD . 4π9.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A .B .C .D .10.如图,将边长为的正方形绕点逆时针旋转,那么图中阴影部分的面积为()A .B .C .D .11. 如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A . 个B . 个C . 个D . 个12. 如图,四边形是平行四边形,点为的中点,延长至点,使,连接、、,则在中()A .B .C .D .二、填空题13. 分解因式 ________14. 已知一组数据,,,,,的平均数为,则这组数据的方差为________-.15. 如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第个格子的数为________.16. 如图,点为的AB边上的中点,点E为AD的中点,为正三角形,给出下列结论,① ,②,③,④若,点是上一动点,点到、边的距离分别为,,则的最小值是3.其中正确的结论是________(填写正确结论的番号)17. 已知函数使成立的的值恰好只有个时,的值为________.三、解答题18. 计算:19. 如图点、分别是矩形的边、上一点,若,且,(1)求证:点为的中点;(2)延长与的延长线相交于点,连结,已知,求的值.20. 某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布表(如图).组别单次营运里程“x“(公里)频数第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.如图,在平面直角坐标系中,直线与双曲线交于、两点,已知点,点 .(1)求直线和双曲线的解析式;(2)把直线沿轴负方向平移2个单位后得到直线,直线与双曲线交于、两点,当时,求的取值范围.22. 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程一项地基基础加固处理工程由A,B 两个工程公司承担建设,己知A工程公司单独建设完成此项工程需要180天, 工程公司单独施工45天后,工程公司参与合作,两工程公司又共同施工天后完成了此项工程.(1)求工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,工程公司建设其中一部分用了天完成,工程公司建设另一部分用了天完成,其中,均为正整数,且,,求、两个工程公司各施工建设了多少天?23. 如图,在直角三角形中, ,点是的内心,的延长线和三角形的外接圆相交于点,连结 .(1)求证:;(2)过点作的平行线交、的延长线分别于点、,已知,圆的直径为,①求证:为圆的切线;②求的长.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·哈尔滨) 下列图形中既是轴对称图形又是中心对称图形的是().A .B .C .D .2. (2分)将一元二次方程 -6x-5=0化成 =b的形式,则b等于()A . 4B . -4C . 14D . -143. (2分)(2018·宜昌) 如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A . (2,2)B . (2,﹣2)C . (2,5)D . (﹣2,5)4. (2分)在2006年德国世界杯足球赛中,32支足球队将分成8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是()A . 两胜一负B . 一胜两平C . 一胜一平一负D . 一胜两负5. (2分) (2019九上·博白期中) 二次函数()的图象如图所示,对称轴为,给出下列结论:① ;②当时,;③ ;④ ,其中正确的结论有()A . ①②B . ①③C . ①③④D . ②④6. (2分)如图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A .B . 20C . 18D .7. (2分)如图,点A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A . 2B . 3C . 4D . 58. (2分) (2018九上·武昌期中) 如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P 为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为()A . 3B . 1+C . 1+3D . 1+9. (2分)如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O的半径为r,△PCD 的周长为3r,连接OA,OP,则的值是()A .B .C .D .10. (2分)已知抛物线的部分图象如图所示,若y<0,则x的取值范围是()A . -1<x<4B . -1<x<3C . x<-1或x>4D . x<-1或x>311. (2分)(2019·河南模拟) 在平面直角坐标系中,把一条抛物线先向上平移1个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6.则原抛物线的顶点坐标是()A .B .C .D .12. (2分)如图,⊙O是以原点为圆心,半径为2的圆,点A(6,2),点P是⊙O上一动点,以线段PA为斜边构造直角△PAM,且cos∠MPA=,现已知当点P在⊙O上运动时,保持∠MPA的大小不变,点M随着点P 运动而运动且运动路径也形成一个圆,则该圆的半径是()A .B .C .D . 1二、填空题 (共8题;共9分)13. (1分)已知(a﹣2)x2+(a﹣1)x﹣3=0是关于x的一元二次方程,则a满足的条件是________ .14. (1分) (2017九上·宝坻月考) 抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.15. (1分)(2018·湖北模拟) 如图,线段AB是圆O的直径,弦CD⊥AB于点E,∠CAB=30°,BE=1,则CD 的长为________.16. (1分)已知圆锥的底面半径是3cm,母线长为6cm,则这个圆锥的侧面积为________cm2 .(结果保留π)17. (2分) (2018七下·浦东期中) 在△ABC中, ∠C=60º,BC= 6,AC= 4,AD是高,将△ACD沿着AD翻折,点C 落在点E上,那么BE的长是________;18. (1分)(2016·兰州) 对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:y= x﹣3交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为________.19. (1分)(2018·柘城模拟) 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为________.20. (1分) (2016九上·洪山期中) 若二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是________.三、解答题 (共6题;共58分)21. (10分)解方程:x2﹣1=2(x+1).22. (10分)(2018·孝感) 已知关于的一元二次方程 .(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.23. (10分)如图,在正方形ABCD中,BE⊥BF,BE=BF,EF交BC于点G.(1)求证:∠BAE=∠BCF;(2)若∠ABE=35°,求∠EGC的大小.24. (15分)已知点A(, 3)在抛物线y=﹣x的图象上,设点A关于抛物线对称轴对称的点为B.(1)求点B的坐标;(2)求∠AOB度数.25. (11分) (2015八上·宜昌期中) 如图,△ABC中,AB=AC,∠BAC=90°,(1) CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上,BE的延长线交CA的延长线于M,补全图形,并探究BE和CD的数量关系,并说明理由;(2)若BC上有一动点P,且∠BPQ= ∠ACB,BQ⊥PQ于Q,PQ交AB于F,试探究BQ和PF之间的数量关系,并证明你的结论.26. (2分)(2017·历下模拟) 如图1,抛物线y=ax2+bx+3(a≠0)与x轴交于点A、点B(点A在点B左侧),与y轴交于点C,点D为抛物线的顶点,已知点A、点B的坐标分别为A(﹣1,0)、B(3,0).(1)求抛物线的解析式;(2)在直线BC上方的抛物线上找一点P,使△PBC的面积最大,求P点的坐标;(3)如图2,连接BD、CD,抛物线的对称轴与x轴交于点E,过抛物线上一点M作MN⊥CD,交直线CD于点N,求当∠CMN=∠BDE时点M的坐标.参考答案一、选择题 (共12题;共24分)1-1、2、答案:略3-1、4、答案:略5、答案:略6-1、7、答案:略8、答案:略9-1、10、答案:略11、答案:略12、答案:略二、填空题 (共8题;共9分)13-1、14-1、15、答案:略16-1、17、答案:略18、答案:略19、答案:略20、答案:略三、解答题 (共6题;共58分)21、答案:略22、答案:略23、答案:略24、答案:略25-1、25-2、26、答案:略。

2018年四川省德阳市中考数学试卷(work解析版)

2018年四川省德阳市中考数学试卷(work解析版)

2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B .﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A .2,1B .1,1.5C .1,2D .1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A .16πB .12πC .10πD .4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( ) A .2 B .1 C . D .10.(3分)如图,将边长为的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为( )A .3B .C .3﹣D .3﹣11.(3分)如果关于x 的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【解答】解:解不等式2x ﹣a ≥0,得:x ≥,解不等式3x ﹣b ≤0,得:x ≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a ≤4、9≤b <12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A .6:2:1B .3:2:1C .6:3:2D .4:3:2【解答】解:连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC=3:1,BE=OB ,AF ∥OE∴S △OBF =S △AOB =m ,S △OBC =m ,S △AOC =, ∴S △AOB :S △AOC :S △BOC =m ::m=3:2:1 故选:B .二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy 2+4xy +2x= 2x (y +1)2 .【解答】解:原式=2x (y 2+2y +1)=2x (y +1)2,故答案为:2x (y +1)214.(3分)已知一组数据10,15,10,x ,18,20的平均数为15,则这组数据的方差为 .【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠PAB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△PAF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。

2018年四川省德阳市中考数学试卷含解析(完美打印版)

2018年四川省德阳市中考数学试卷含解析(完美打印版)

2018年四川省德阳市中考数学试卷(含解析)一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角,即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理,即可得到∠A的度数.【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【分析】根据概率的意义,事件发生可能性的大小,可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径,进而解答即可.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM,根据旋转的性质和四边形的性质,证明△ABM≌△C′BM,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM的面积,再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集,根据已知求出1≤2、3<4,求出2<a≤4、9≤b<12,即可得出答案.【解答】解:解不等式2x﹣a≥0,得:x≥,解不等式3x﹣b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1,BE=OB,AF∥OE可得S△OBF =S△AOB=m,S△OBC=m,S△AOC=,由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE∴S△OBF=S△AOB=m,S△OBC=m,S△AOC=,∴S△AOB:S△AOC:S△BOC=m::m=3:2:1故选:B.二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=2x(y+1)2 .【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2,故答案为:2x(y+1)214.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【分析】首先在坐标系中画出已知函数y=的图象,利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【分析】(1)根据全等三角形的判定,证得△AEF≌△DCE,再根据全等三角形的性质,证得ED=AF,进而得证;(2)根据全等三角形的判定方法,证明△AEF≌△BHF,进而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠F AE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数,找出抽到一男一女的结果数,然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【分析】(1)把点B代入双曲线求出a的值,即可得到双曲线的解析式;把点A代入双曲线求出m的值,确定A点坐标,再利用待定系数法求出直线的解析式,即可解答;(2)先求出y3的解析式,再解方程组求出点D点E的坐标,即可解答.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天,根据题意列出关于x的分式方程,求出分式方程的解得到x的值,经检验即可得到结果;(2)根据题意列出关于m与n的方程,由m与n的范围,确定出正整数m与n的值,即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB,∠ABH=∠CBH,进而判断出∠DHB=∠DBH,即可得出结论;(2))①先判断出OD∥AC,进而判断出OD⊥EF,即可得出结论;②先判断出△CDE≌△BDG,得出GB=CE=1,再判断出△DBG∽△ABD,求出DB2=5,即DB=,DG=2,进而求出AE=AG=4,最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值,从而可得到抛物线的解析式,然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴,垂足为K.首先证明△BAO≌△ACK,从而可得到OA=CK,OB=AK,于是可得到点A、B的坐标,然后依据勾股定理求得AB的长,然后求得点D的坐标,从而可求得三角形平移的距离,最后,依据△ABC扫过区域的面积=S四边形ABDE+S△DEH求解即可;(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G,先证明△BPG≌△ABO,从而可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可,当∠P AB=90°,过点P作PF⊥x轴,垂足为F,同理可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE+S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠P AB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△P AF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。

2018年九年级(上)期中数学试题(含答案)- 精品

2018年九年级(上)期中数学试题(含答案)- 精品

2018—2018学年度第一学期期中考试九年级数学试题(三年制)题号一二三总分16 17 18 19 20 21 22 23 24 25得分选择题答题栏题号 1 2 3 4 5 6 7 8 9 10答案一、选择题(本大题满分30分,每小题3分.每小题只有一个符合题意的选项,请你将正确选项的代号填在答题栏内)1.8的立方根是A.2B. ±2C. 4D. ±42.下列图形中,是中心对称图形的是A.B.C.D.3.化简154122⨯+的结果是A.52B.63C.3D.534.估算171+的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.一元二次方程240x x c++=中,0c<,该方程的解的情况是A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.已知:如图所示,正方形ABCD是⊙O的内接四边形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是A.45°B.60°C.75°D.90°九年级数学试题(三年制)第1页(共8页)(第6题图)POBCDACD7. 用配方法解方程x 2-2x -5=0时,原方程应变形为A .(x +1)2=6B .(x +2)2=9C . (x -1)2=6D .(x -2)2=98. 如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是A .3,2B . -3,-2C . 3,-2D . -3,29. 若关于x 的一元二次方程 (k -1)x 2+x -k 2=0的一个根为1,则k 的值为 A .-1 B .0 C .1 D .0或1 10. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O , 则折痕AB 的长为 A .2cmB .3cmC .23cmD .25cm二、填空题(本大题满分15分,每小题3分,请你将答案填写在题目中的横线上)11.函数y =11-+x x 的自变量x 的取值范围为 . 12.如图,已知平行四边形ABCD 的两条对角线交于平面直角坐标系的原点,点A 的坐标为(-2,3),则点C 的坐标为 .13.点A (-2,6)到原点的距离是 .14.如图所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cm .15.已知:如图,点E 、F 是半径为5cm 的⊙O 上两定点,点P 是直径AB 上的一动点,AB ⊥OF ,∠AOE =30°,则点P 在AB 上移动的过程中,PE +PF 的最小值是 cm .九年级数学试题(三年制)第2页(共8页)(第15题图)(第10题图)OAB(第14题图)OABP(第15题图)OABEFP (第12题图)y xABCDO三、解答题 (本大题满分55分, 解答要写出必要的文字说明或推演步骤)16.(本题满分6分)计算:①3 (12+8)②(24-21) +(81+6)17.(本题满分4分)解方程:3x (x -1)=2(x -1)九年级数学试题(三年制)第3页(共8页)18.(本题满分4分)如图,已知点A B ,的坐标分别为(0,0)(4,0),将ABC △绕点A 按逆时针方向旋转90°得到AB C ''△. (1)画出AB C ''△; (2)写出点C '的坐标; (3)求BB '的长.19.(本题满分4分)若关于x 的一元二次方程x 2+2kx +(k 2+2k -5)=0有两个实数根,分别是x 1,x 2 , ①求k 的取值范围.②若有x 1+x 2 =x 1x 2,则k 的值是多少?九年级数学试题(三年制)第4页(共8页)yO x123451234-1-2-3-4-1-2-3A B C65(第18题图)20.(本题满分4分)阅读下列材料:211+=)12)(21(12-+-=2-1,321+=)23)(32(23-+-=3-2,231+=)32)(23(32-+-=2-3,521+=)25)(52(25-+-=5-2.读完以上材料,请你计算下列各题: (1)1031+= .(2)11++n n = .(3)211++321++231++…+201120101+= .21.(本题满分5分)如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上任意一点(不与点A 、B重合),连接CO 并延长CO 交⊙O 于点D ,连接AD . (1)弦AB =________(结果保留根号); (2)当∠D =20°时,求∠BOD 的度数.九年级数学试题(三年制)第5页(共8页)OBDAC(第21题图)22.(本题满分6分)如图,要设计一幅宽为12cm ,长为20cm 的图案,其中有一横一竖的彩条,横竖彩条的宽度相等,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度?23.(本题满分7分)阅读理解:我们把d c b a称作二阶行列式,规定它的运算法则为bc ad dc ba -=.。

2018年四川德阳市中考数学模拟试题含答案详解

2018年四川德阳市中考数学模拟试题含答案详解

德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(满分:120分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列根式中,与是同类二次根式的是()A.B.C.D.2.已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A.1 B.5C.6D.43.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3C.0D.0或34.下列图形中,既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A.1个B.2个C.3个D.4个5.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()第5题A.15°B.40°C.75°D.35°6.下列关于概率知识的说法中,正确的是()A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨B.“抛掷一枚硬币,正面朝上的概率是”表示:每抛掷两次,就有一次正面朝上C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是7.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2013的值为()A.2011 B.2012 C.2013 D.20148.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=59.要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数10.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()第10题A.4cm B.3cm C.2cm D.2cm11.到2014底,我县已建立了比较完善的经济困难学生资助体系.某校2012年发放给每个经济困难学生450元,2014年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625C.450(1+2x)=625 D.625(1+x)2=45012.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()第12题A.①②③B.①③④C.③④⑤D.②③⑤第II卷非选择题(共84分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)13.如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个).第13题14.关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0无实数根,则m的取值范围是.15.化简:=.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.第16题17.观察下面的图形,它们是按一定规律排列的,依照此规律,第个图形共有120个★.第17题三、解答题(本大题共7小题,共69分,解答应写出必要的文字说明,证明过程或演算步骤)18.(4分)计算:.19.(6分)如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?第19题20.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?21.(12分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.第21题22.(12分)如图,已知A(﹣4,2)、B(a,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)求△AOB的面积.第22题23.(13分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)第23题24.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.第24题德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(参考答案)一、1.A解析:A、与被开方数相同,是同类二次根式;B、=2 与被开方数不同,不是同类二次根式;C、=2与被开方数不同,不是同类二次根式;D、与的根指数不同,不是同类二次根式.故选A.2.D解析:∵点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,∴a=5,b=﹣1,∴a+b=4,故选D.3.A解析:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣3.故选A.4.D解析:①不是轴对称图形,是中心对称图形,不符合题意;②即是轴对称图形,又是中心对称图形,符合题意;③是轴对称图形,不是中心对称图形,不符合题意;④既是轴对称图形,又是中心对称图形,符合题意.⑤既是轴对称图形,又是中心对称图形.符合题意;⑥既是轴对称图形,又是中心对称图形.符合题意.共4个既是轴对称图形又是中心对称图形.故选D.5.D解析:∵∠APD=75°,∴∠BPD=105°,由圆周角定理,可知∠A=∠D(同弧所对的圆周角相等),在三角形BDP中,∠B=180°﹣∠BPD﹣∠D=35°,故选D.6.D解析:A、“明天要降雨的概率是90%”表示:明天有90%下雨的可能,故此选项错误;B、抛掷一枚硬币,正面朝上的概率是”表示,每抛掷一次出现正面向上与向下的可能都是,并不是一定是,故此选项错误;C、“彩票中奖的概率是1%”表示:每买100张彩票就可能有一张会中奖,故此选项错误;D、“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是,此选项正确.故选D.7.A 解析:根据题意,得m2﹣m﹣1=0,所以m2﹣m=1,所以m2﹣m+2013=1+2013=2014.故选D.8.A解析:方程移项,得x2+4x=﹣1,配方,得x2+4x+4=3,即(x+2)2=3.故选A.9.C解析:根据题意,得,解得a≥0且a≠.故选C.10.B解析:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.11.A解析:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得450(1+x)2=625.故选A.12.C 解析:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选C.二、13.AC=CD解析:添加的条件是AC=CD,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,∴∠BCA=∠ECD,∵在△ABC和△DCE中,,∴△ABC≌△DCE.14.m<﹣解析:∵关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0的二次项系数a=﹣1,一次项系数b=(2m+1),常数项c=1﹣m2,∴△=(2m+1)2﹣4×(﹣1)(1﹣m2),即△=4m+5,又∵原方程无实根,∴△<0,即4m+5<0,解得m<﹣.15.a﹣b解析:原式=(﹣)÷=•=a ﹣b.16.解析:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++ =.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.17.15解析:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.三、18.解:原式=1+2+3﹣5﹣2=4﹣5.19.解:同时自由转动两个转盘,出现的情况如图,共有9种等可能的结果,两个指针所停区域的数都是奇数的概率为,两个指针所停区域的数都是偶数的概率为,两个指针所停区域的数是一奇一偶的概率为+>,所以这个游戏对他们不公平,玲玲获胜的可能性大.20.解:(1)设售价应涨价x元,则(16+x﹣10)(120﹣10x)=770,解得x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).所以x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720 =﹣10(x﹣3)2+810(0≤x≤12),即定价为16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720 =﹣30(z﹣1)2+750(0≤z≤6),即定价为16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述,专卖店将单价定为每个19元时,可以获得最大利润810元.21.解:(1)△A1OB1如图所示,A1(﹣3,3),B1(﹣2,1).(2)由勾股定理,得OB==,所以弧BB1==π.(3)由勾股定理,得OA==3,S扇形OAA1==π,S扇形OBB1==π,则线段AB所扫过的面积为:π﹣π=π.22.解:(1)∵m=xy=(﹣4)×2=﹣8,∴﹣4a=﹣8,∴a=2,则y=kx+b过A(﹣4,2),B(2,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2.(2)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.(3)由(1),得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6.23.(1)证明:连结OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1),得OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连结AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连结C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。

四川省德阳市2018年中考数学试题(解析)

四川省德阳市2018年中考数学试题(解析)

2018年四川省德阳市中考数学试卷解读一、选择题<共12小题,每小题3分,满分36分)1.<2018•德阳)实数﹣3的相反数是< )A.3B.C.D.﹣2考点:实数的性质。

专题:常规题型。

分析:根据相反数的定义,只有符合不同的两个数叫做互为相反数解答.解答:解:﹣3的相反数是3.故选A.点评:本题考查了互为相反数的定义,熟记概念是解题的关键.2.<2018•德阳)某厂2018年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为< )lNSrI31BEeA.2.35×105B.23.5×105C.0.235×105D.2.35×106考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2350000用科学记数法表示为:2.35×106.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<2018•德阳)使代数式有意义的x的取值范围是< )A.x≥0B.C.x≥0且D.一切实数考点:二次根式有意义的条件;分式有意义的条件。

分析:根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.解答:解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x ≠,故选:C.点评:此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.4.<2018•德阳)某物体的侧面展开图如图所示,那么它的左视图为< )A.B.C.D.考点:几何体的展开图;简单几何体的三视图。

四川省德阳市2018届九年级数学上学期半期考试试题 新人教版

四川省德阳市2018届九年级数学上学期半期考试试题 新人教版

四川省德阳市2018届九年级数学上学期半期考试试题一、选择题(本大题共12小题;每小题3分,共36分.给出的四个选项中,只有一项是符合题目要求的.请把正确结果填在答题卡对应的位置上.)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.2.一元二次方程x2=x的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-13.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.抛物线y=-x 2+2x+3的顶点坐标为()A.(1,3) B.(-1,4)C.(-1,3)D.(1,4)5.如图,A,B,C是⊙O上的三点,∠BOC=70°,则∠A的度数为()A.35°B.45° C.40° D.70°6.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x﹣1)=1035B.x(x﹣1)=1035×2C.x(x+1)=1035 D.2x(x+1)=10357.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则函数中k的取值范围是()A. k≥-2 B.k≤-2 C.k≥2 D.k≤28.⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是()A.4 B.6 C.7 D.89.在△ABC 中,∠A=90°,AB =3cm ,AC =4cm ,若以A 为圆心2.5cm 为半径作⊙O,则BC 与⊙O 的位置关系是( )A .相交B .相离C .相切D .不能确定10.如图,点A ,点B 的坐标分别是(0,1),(a ,b),将线段AB 绕A 旋转180°后得到线段AC ,则点C 的坐标为( )A .(-a ,-b +1)B .(-a ,-b -1)C .(-a ,-b +2)D .(-a ,-b -2)11.如图,四边形ABCD 内接于半圆O ,AB 为直径,AB=4,AD=DC=1,则BC 的长为( ) A. 47 B .15C .32 D .27 12.如图是抛物线y=ax 2+bx+c (a ≠0),其顶点为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论正确的是( )①若抛物线与x 轴的另一个交点为(k ,0),则-2<k <-1; ②c -a=n ;③若x <-m 时,y 随x 的增大而增大,则m=-1;④若x <0时,ax 2+(b+2)x <0.A .①②④B .①③④C .①②D .①②③④10题图 11题图 12题图二、填空题(本大题共6小题;每小题3分,共18分.请把最后结果填在答题卡对应的位置上.)13.如图(见第3页),在Rt △ABC 中,∠ACB=90°,∠A=25°,将△ABC 绕C 点旋转到△A′B′C 的位置,其中A′、B′分别是A 、B 的对应点,且点B 在斜边A′B′上,直角边CA′交AB 于D ,则旋转角等于度.14.若3)2)((2222=-++y x y x ,则22y x += . 15.当2.5≤x ≤5时,二次函数y=-(x -1)2+2的最大值为.16. 如图(见第3页),Rt△ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若AC=10,BC=6,则△MBN 的周长为.17.如图(见第3页),正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为.18.已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .当22120x x -=时,则m 的值为.13题图 16题图 17题图三、解答题(本大题共6小题,共66分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上.)19.(10分)(1)解方程:155)3)(12(-=-+x x x(2)解方程:x x x 4)1)(1(2=-+20.(8分)把两个三角形按如图1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=6,DC=7,把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,如图2,这时AB 与CD 1相交于点O 、与D 1E 1相交于点F ;(1)求∠ACD 1的度数;(2)求线段AD 1的长.21.(8分)如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.22. (8分)如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.23.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?24.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点O在AC上,OA=2,以OA为半径的⊙O 交AB于点D,AC于G,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)求线段DE的长;(3)求线段AD的长.25.(12分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.德阳五中初2015级2017年秋期半期数学参考答案一、 选择题1.B2.C.3.C.4.D5.A.6.A.7.B.8.D9.A 10.C 11.D 12.A二、 填空题13. 50;14. 3; 15.41-; 16. 4; 17. 7; 18. 41 三、解答题19.解:(1)x 1=3,x 2=2.(2) x 1=21+,x 2=21-.20.解:(1)∵把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,∴∠BCE 1=15°,∴∠D 1CB=60°﹣15°=45°,∴∠AC D 1=45°;(2)∵∠AC D 1=∠BC D 1=45°,且AC=CB ,∴AO=BO=AB=3,CD 1⊥AB ,∴CO=AB=3,∴O D 1=7﹣3=4,在Rt △AO D 1中有AO 2+O D 12=A D 12∴A D 1=2243+=5.21.(1)解:∵在⊙O 中,OD ⊥弦AB , ∴=4,设OA 为x ,则OD=OA=x ,∵CD=2,∴OC=x ﹣2在Rt △ACO 中,AC 2+OC 2=AO 2∴42+(x ﹣2)2=x 2,解得x=5,∴OA=5;(2)解:连接BE ,∵OA=OE ,AC=BC ,∴OC∥BE且,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴.22.(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线与y轴交于点C的坐标(0,3),∴y=ax2+bx+3,又∵抛物线与x轴交于点A(﹣1,0)、B(4,0),∴,∴抛物线的解析式为;(2)存在一点P,使△PAB的面积等于△ABC的面积,∵△ABC的底边AB上的高为3,设△PAB的高为h,则|h|=3,又点P在x轴下方,∴点P的纵坐标为﹣3,,∴点P的坐标为,,23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.24.(1)证明:连接OD ,∵EF 垂直平分BD ,∴EB=ED ,∴∠B=∠EDB ,∵OA=OD ,∴∠ODA=∠A ,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD ⊥DE 于D ,∴DE 是⊙O 的切线.(2)解:连接OE ,设DE=BE=x ,CE=8﹣x ,∵OE 2=DE 2+OD 2=EC 2+OC 2,∴42+(8﹣x )2=22+x 2,解得x=4.75,∴DE=4.75.(3)连结BG,DG.∵AG 是直径,∴GD ⊥AB由S △ABG=21AG ·BC=21AB ·GD 可得:4×8=10×GD, ∴GD=3.2∴AD=22222.34-=-GD AG =2.425. 解:(1)∵抛物线y=﹣x 2+bx+c 与x 轴分别交于A (﹣1,0),B (5,0)两点, ∴,解得, ∴抛物线解析式为y=﹣x 2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C (﹣6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x 2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C (﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,可得△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。

2018-2019半期考试数学试卷九年级(上)及参考答案

2018-2019半期考试数学试卷九年级(上)及参考答案

2018-2019学年第一学期期中考试九年级数学试卷满分150分,时间120分钟一、 选择题(每小题4分,共40分)1. 下列方程中是关于x 的一元二次方程的是 ( )A .032=+x x B .y 2-2x +1=0 C . x 2-5x =2 D .x 2-2=(x +1)22如下是一种电子记分牌呈现的数字图形,既是轴对称图形又是中心对称图形的是()3.下面是关于抛物线 y=2x 2-3图象的描述,说法正确的是()A . 开口向下B .经过点(2,3)C .对称轴是直线x=1D .与x 轴有两个交点4.下列方程没有实数根的是()A .x 2-3x+4=0B .x 2=2xC .2x 2+3x-1=0D .x 2+2x+1=05.如图,将ΔABC 绕点A 逆时针旋转一定角度得到ΔADE ,此时点C 恰好在线段DE 上,若∠B=400,∠CAE=600,则∠DAC 的度数为()A .150B .200C .250D .3006.参加足球联赛的每两个队之间都进行两场比赛,共要比赛90场,共有多少个队参加比赛?共有x 个队参加比赛,那么依题意所列方程为()A .x 2=90B .x(x+1)=90C . x(x-1)=90D .x(x-1)=907.二次函数y=ax 2+bx+c 与一次函数y=ax+c ,它们在同一坐标系中的图象大致是()128.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人()A.9 B.12 C.1331 D.109.某果园今年栽种果树200棵,现计划扩大栽种面积,使今后两年的栽种量都比前一年增长一个相同的百分数,这样三年的总栽种量为1400棵,求这个百分数.设这个百分数为x,则可列方程为( )abc>0 ③4ac-b2<0 ④9a+3b+c<0+bx+c+3=0有两个相等实数根其中正确的个数为().5分)是一元二次方程,则k的取值范围是先向下平移2个单位,再向右平移18.(10分)如图,在平面直角坐标系中,已知点B (4,2),BA ⊥x 轴于点A 。

四川省德阳市九年级上学期数学期初考试试卷

四川省德阳市九年级上学期数学期初考试试卷

四川省德阳市九年级上学期数学期初考试试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共10题;共20分)1. (2分)已知xy>0,化简二次根式x 的正确结果为()A .B .C . -D . -2. (2分) (2018九上·孝感期末) 将抛物线向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A .B .C .D .3. (2分) (2019九上·邯郸月考) 如图,一次函数与反比例函数的图像交于A、B两点,点P在以为圆心,1为半径的⊙C上,Q是AP的中点,则OQ的最大值为()A .B .C .D .4. (2分)某射击小组有20人,教练根据他们某次射击的数据绘制如图所示的统计图,则这组数据的众数和中位数分别是()A . 7,7B . 8,7.5C . 7.7.5D . 8,65. (2分) (2020九上·秦淮期末) 已知二次函数y=ax2+bx+c(a<0<b)的图像与x轴只有一个交点,下列结论:①x<0时,y随x增大而增大;②a+b+c<0;③关于x的方程ax2+bx+c+2=0有两个不相等的实数根.其中所有正确结论的序号是()A . ①②B . ②③C . ①③D . ①②③6. (2分)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A . 5B . 6C . 7D . 87. (2分)实数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是()A . -a<a<-1B . -a<-1<aC . a<-1<-aD . a<-a<-18. (2分)抛物线y=x2+x+p(p≠0)与x轴相交,其中一个交点的横坐标是p.那么该抛物线的顶点的坐标是()A . (0,-2)B . (,-)C . (-,)D . (-,-)9. (2分)如图,直线l1解析式为y=x+2,且与坐标轴分别交于A、B两点,与双曲线交于点P(﹣1,1).点M是双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D,当四边形ABCD的面积取最小值时,则点M的坐标为()A . (1,﹣1)B . (2,﹣)C . (3,﹣)D . 不能确定10. (2分)(2019·陕西) 如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为()A . 1B .C . 2D . 4二、认真填一填 (共6题;共6分)11. (1分)(2017·和平模拟) 计算的结果等于________.12. (1分) (2016七下·潮南期中) 如果式子有意义,则x的取值范围是________.13. (1分) (2016九上·蕲春期中) 抛物线y=2x2﹣3x+4与y轴的交点坐标是________.14. (1分) (2019九下·昆明模拟) 如图,中,,,平分交于点,点为的中点,连接,则的周长为________.15. (1分)(2016·齐齐哈尔) 一个侧面积为16 πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为________cm.16. (1分) (2017八下·苏州期中) 如图,边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC 为边作第二个菱形ACEF,使∠FAC=60°,连接AE,再以AE为边作第三个菱形AEGH,使∠HAE=60°,按此规律下去,则第n个菱形的边长为________.三、全面答一答 (共7题;共67分)17. (5分) (2020九上·镇平期末) 先化简(﹣1)÷ ,再求值,其中x是一元二次方程x2﹣3x+2=0的两根.18. (10分)(2018·绥化) 如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.19. (12分)我们在学习“实数”时,画了这样一个图,即“以数轴上的单位长为‘1’的线段作一个正方形,然后以原点O为圆心,正方形的对角线长为半径画弧交x轴于点A”,请根据图形回答下列问题:(1)线段OA的长度是多少?(要求写出求解过程)(2)这个图形的目的是为了说明什么?(3)这种研究和解决问题的方式,体现了()的数学思想方法.A . 数形结合;B . 代入;C . 换元;D . 归纳.20. (5分)如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21. (10分)本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.(1)甲题:关于x的一元二次方程x2+(2k﹣3)x+k2=0有两个不相等的实数根α、β.①求k的取值范围;②若α+β+αβ=6,求(α﹣β)2+3αβ﹣5的值.(2)乙题:如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G①求证:△ABE∽△DEF;②若正方形的边长为4,求BG的长.22. (10分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.连结CF(1)求证:CF∥BD(2)若CD=2,∠ADB=30°,求BE的长.23. (15分) (2018九上·松江期中) 在△ABC中,AB=AC=10,sin∠BAC= ,过点C作CD∥AB,点E在边AC上,AE=CD,联结AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.参考答案一、仔细选一选 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、认真填一填 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、全面答一答 (共7题;共67分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2017·徐州) 下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .2. (1分)下列函数解析式中,一定为二次函数的是()A . y=3x﹣1B . y=ax2+bx+cC . s=2t2﹣2t+1D . y=x2+3. (1分) (2015九上·莱阳期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a,b同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=﹣2时,x的值只能取2;⑤当﹣1<x<5时,y<0.其中正确的有()A . 2个B . 3个C . 4个D . 5个4. (1分)若n()是关于x的方程的根,则m+n的值为()A . -2B . -1C . 1D . 25. (1分)关于二次函数y=−(x−5)2+3的图象与性质,下列结论错误的是()A . 抛物线开口方向向下B . 当x=5时,函数有最大值C . 抛物线可由y=x2经过平移得到D . 当x>5时,y随x的增大而减小6. (1分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是()A . 3或-1B . 3C . 1D . –3或17. (1分)抛物线的顶点在()A . x轴上B . y轴上C . 第三象限D . 第四象限8. (1分)抛物线可以由抛物线平移得到,则下列平移过程正确的是()A . 先向左平移2个单位,再向下平移3个单位B . 先向左平移2个单位,再向上平移3个单位C . 先向右平移2个单位,再向下平移3个单位D . 先向右平移2个单位,再向上平移3个单位9. (1分)①若a+b+c=0,则b2-4ac≥0;②若b>a+c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;③若b=2a+3c,则一元二次方程ax2+bx+c=0有两个不相等的实数根;④若b2-4ac>0,则二次函数y=ax2+bx+c的图象与坐标轴的公共点的个数是2或3.其中正确的是()A . 只有①②③B . 只有①③④C . 只有①④D . 只有②③④.10. (1分)下列各数中,是方程x2﹣(1+)x+=0的解的有()①1+;②1﹣;③1;④﹣A . 0个B . 1个C . 2个D . 3个二、填空题 (共6题;共6分)11. (1分) (2018九上·韶关期末) 一元二次方程x2-4=0的解是________.12. (1分)已知一条抛物线的形状与抛物线y=2x2+3形状相同,与另一条抛物线y=﹣(x+1)2﹣2的顶点坐标相同,这条抛物线的解析式为________.13. (1分) (2017八上·弥勒期末) 观察:① 1×3+1=22② 2×4+1=32③ 3×5+1=42④ 4×6+1=52请你用含一个字母的等式表示你发现的规律:________.14. (1分) (2017九上·香坊期末) 如图,正方形ABCD中,点E在DC边上,DE=4,EC=2,把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则FC的长为________.15. (1分)关于x的一元二次方程(n+1)x|n|+1+(n﹣2)x+3n=0中,则n是________.16. (1分)已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是________.三、计算题 (共2题;共3分)17. (1分)解方程:(1) (x-5)2=16 (直接开平方法)(2) x2+5x=0 (因式分解法)(3) x2-4x+1=0 (配方法)(4) x2+3x-4=0 (公式法)18. (2分) (2019九上·天河期末) 小红准备实验操作:把一根长为20cm的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于13cm2 ,那么这段铁丝剪成两段后的长度分别是多少?(2)要使这两个正方形的面积之和最小,小红该怎么剪?四、解答题 (共7题;共12分)19. (1分)【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.20. (2分) (2016九上·昌江期中) 试证明:不论m为何值,方程2x2﹣(4m﹣1)x﹣m2﹣m=0总有两个不相等的实数根.21. (1分)八年级二班小明和小亮同血学习了“勾股定理”之后,为了测得得如图风筝的高度CE,他们进行了如下操作:(1)测得BD的长度为15米.(注:BD⊥CE)(2)根据手中剩余线的长度计算出风筝线BC的长为25米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.22. (3分)(2019·涡阳模拟) 给定关于x的二次函数y=kx2﹣4kx+3(k≠0),(1)当该二次函数与x轴只有一个公共点时,求k的值;(2)当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;(3)由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否符合题意,并说明理由.23. (1分) (2020九上·长春期末) 某药品经过两次降价,每瓶零售价由56元降为31.5元.已知两次降价的百分比相同,求每次降价的百分率是多少.24. (2分)在同一平面内画出函数y=2x2与y=2x2+1的图象.25. (2分)(2017·深圳模拟) 如图所示,已知抛物线经过点A(-2,0)、B(4,0)、C(0,-8),抛物线y=ax2+bx+c(a≠0)与直线y=x-4交于B , D两点.(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F ,交抛物线于点G .当△QDG为直角三角形时,求点Q的坐标.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、计算题 (共2题;共3分)17-1、17-2、17-3、17-4、18-1、18-2、四、解答题 (共7题;共12分)20-1、21-1、22-1、22-2、22-3、23-1、24-1、25-1、25-2、25-3、。

【初三数学】德阳市九年级数学上期中考试单元测试(含答案解析)

【初三数学】德阳市九年级数学上期中考试单元测试(含答案解析)

新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S△AOP=EP•(y A﹣y O)=××(4﹣0)=3.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质,解题的关键是:根据反比例函数图象上点的坐标特征求出反比例函数解析式.23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.【分析】(1)列举出所有情况,看白色衬衫配米色裙子的总数即可得出答案;(2)列举出青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数占所有情况数的多少即可.解:(1)共有8种情况,白色衬衫米色裙子的情况数有1种,所以他最喜欢的搭配的概率为;(2)青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数有2种,所以他最不喜欢的搭配的概率为,故她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会不相等.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.【分析】(1)只要证明△FAD∽△DAB,可得=,延长即可解决问题;(2)只要证明△CAD≌△EBD,可得AC=BE,再证明△EBD∽△CBA,可得=,由BD=AD,AC=BE,可得AD•BE=DE•AB;证明:(1)∵∠BAC=2∠B,∠DAB=∠DAC,∴∠B=∠DAB,∵DF∥AB,∴∠ADF=∠BAD,∴∠FAD=∠FDA=∠B=∠BAD,∴△FAD∽△DAB,∴=,∴AD2=AF•AB.(2)∵∠B=∠DAB,∴DA=DB,∵∠E=∠C,∠CAD=∠B,∴△CAD≌△EBD,∴AC=BE,∵∠E=∠C,∠B=∠B,∴△EBD∽△CBA,∴=,∵BD=AD,AC=BE,∴AD•BE=DE•AB.【点评】本题考查相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,属于中考常考题型.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.【分析】(1)根据三角形的中位线的性质和平行四边形的判定定理可证明.(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值.(3)四边形PMEN是矩形的话,∠DPC必需为90°,判断一下△DPC是不是直角三角形就行.解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME是PC的中位线,NE是PD的中位线,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,在Rt△PAD和Rt△PBC中,,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PM=PD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)四边形PMEN可能是矩形.若四边形PMEN是矩形,则∠DPC=90°设PA=x,PB=10﹣x,DP=,CP=.DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8.故当AP=2或AP=8时,四边形PMEN是矩形.【点评】本题考查平行四边形的判定,菱形的判定定理,以及矩形的判定定理和性质,知道矩形的四个角都是直角,对边相等等性质.新九年级(上)期中考试数学试题(含答案)一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣26.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=75007.如图,点C是⊙O的劣弧AB上一点,∠AOB=96°,则∠ACB的度数为()A.192°B.120°C.132°D.l508.下列说法正确的是()A.平分弦的直径垂直于弦B.圆是轴对称图形,任何一条直径都是圆的对称轴C.相等的弧所对弦相等D.长度相等弧是等弧9.如图,AB是⊙O的直径,AB=4,E是上一点,将沿BC翻折后E点的对称点F 落在OA中点处,则BC的长为()A.B.2C.D.10.抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为()A.2B.﹣2或﹣4C.﹣2D.﹣4二、填空题(共6小题,每小题3分,共18分11.如果x=2是方程x2﹣c=0的一个根,那么c的值是.12.与点P(3,4)关于原点对称的点的坐标为.13.如果(m﹣1)x2+2x﹣3=0是一元二次方程,则m的取值范围为.14.汽车刹车后行驶的距离s(单位:m)关于行驶时间t(单位:s)的函数解析式是s=﹣6t2+15t,则汽午刹车后到停下来需要秒.15.二次函数y=(x﹣2)2当2﹣a≤x≤4﹣a,最小值为4,则a的值为.16.如图,在平面直角坐标系中,点A(0,3),B是x轴正半轴上一动点,将点A绕点B 顺时针旋转60°得点C,OB延长线上有一点D,满足∠BDC=∠BAC,则线段BD长为.三、解答题(共8小题,共72分)17.(8分)解方程:x2﹣4x﹣4=0.(用配方法解答)18.(8分)如图,在△AOB和△DOC中,AO=BO,CO=DO,∠AOB=∠COD,连接AC、BD,求证:△AOC≌△BOD.19.(8分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.20.(8分)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.21.(8分)如图,⊙O的半径OA⊥弦BC于H,D是⊙O上另一点,AD与BC相交于点E,若DC=DE,OB=,AB=5.(1)求证:∠AOB=2∠ADC.(2)求AE长.22.(10分)名闻遐迩的采花毛尖明前茶,成本每厅400元,某茶场今年春天试营销,每周的销售量y(斤)是销售单价x(元/斤)的一次函数,且满足如下关系:(1)请根据表中的数据求出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利不少于30000元,试确定销售单价x的取值范围.23.(10分)(1)如图1,△AEC中,∠E=90°,将△AEC绕点A顺时针旋转60°得到△ADB,AC与AB对应,AE与AD对应①请证明△ABC为等边三角形;②如图2,BD所在的直线为b,分别过点A、C作直线b的平行线a、c,直线a、b之间的距离为2,直线a、c之间的距离为7,则等边△ABC的边长为.(2)如图3,∠POQ=60°,△ABC为等边三角形,点A为∠POQ内部一点,点B、C分别在射线OQ、OP上,AE⊥OP于E,OE=5,AE=2,求△ABC的边长.24.(12分)如图1,抛物线y=ax2﹣2x﹣3与x轴交于点A、B(3,0),交y轴于点C(1)求a的值.(2)过点B的直线1与(1)中的抛物线有且只有一个公共点,则直线1的解析式为.(3)如图2,已知F(0,﹣7),过点F的直线m:y=kx﹣7与抛物线y=x2﹣2x﹣3交于M、N两点,当S=4时,求k的值.△CMN2018-2019学年湖北省武汉市东湖高新区九年级(上)期中数学试卷参考答案与试题解析一、选择(共10小题,每小题3分,共30分)1.方程x(x+5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【分析】根据题目中的式子,将括号去掉化为一元二次方程的一般形式,从而可以解答本题.【解答】解:∵x(x+5)=0∴x2+5x=0,∴方程x(x+5)=0化成一般形式后,它的常数项是0,故选:C.【点评】本题考查一元二次方程的一般形式,形式ax2+bx+c=0(a≠0)这种形式的方程叫一元二次方程的一般形式.2.抛物线y=﹣5(x+2)2﹣6的对称轴和顶点分别是()A.x=2和(2,﹣6)B.x=2和(﹣2,﹣6)C.x=﹣2和(﹣2,﹣6)D.x=﹣2和(2,﹣6)【分析】根据题目中抛物线的顶点式,可以直接写出它的对称轴和顶点坐标,本题得以解决.【解答】解:∵抛物线y=﹣5(x+2)2﹣6,∴该抛物线的对称轴是直线x=﹣2,顶点坐标为(﹣2,﹣6),故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.下列几何图形中不是中心对称图形的是()A.圆B.平行四边形C.正三角形D.正方形【分析】根据中心对称图形的概念结合圆、平行四边形、正三角形、正方形的特点求解.【解答】解:A、圆是中心对称图形,故本选项错误;B、平行四边形是中心对称图形,故本选项错误;C、正三角形不是中心对称图形,故本选项正确;D、正方形是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.不解方程,判断方程x2﹣4x+9=0的根的情况是()A.无实根B.有两个相等实根C.有两个不相等实根D.以上三种况都有可能【分析】找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断.【解答】解:∵a=1,b=﹣4,c=9,∴△=(﹣4)2﹣4×1×9=32﹣36=﹣4<0,则方程x2﹣4x+9=0无实数根,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A.y=﹣(x+3)2+2B.y=﹣(x﹣3)2+2C.y=﹣(x+3)2﹣2D.y=﹣(x﹣3)2﹣2【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.【解答】解:抛物线y=﹣x2先向上平移2个单位得到抛物线的解析式为:y=﹣x2+2,再向左平移3个单位得到解析式:y=﹣(x+3)2+2;故选:A.【点评】此题考查了抛物线的平移以及抛物线解析式的变化规律,解决本题的关键是熟记“左加右减,上加下减”.6.青山村种的水稻2016年平均每公项产7500kg,2018年平均每公顷产8500kg,求每公顷产量的年平均增长率.设年平均增长率为x,则可列方程为()A.7500(1﹣x)2=8500B.7500(1+x)2=8500C.8500(1﹣x)2=7500D.8500(1+x)2=7500【分析】设年平均增长率为x,根据青山村种的水稻2016年及2018年平均每公项的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:设年平均增长率为x,根据题意得:7500(1+x)2=8500.。

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2018·南山模拟) 如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数y=(k≠0)于点M.若PQ=4MQ,则k的值为()A . ±2B .C . -D . ±2. (2分)如图,反比例函数y=的图象经过直角三角形OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式是()A . y=B . y=-C . y=D . y=3. (2分)用配方法解方程:x2-2x-3=0时,原方程变形为()A . (x+1)2=4B . (x-1)2=4C . (x+2)2=2D . (x-2)2=34. (2分)在反比例函数 y=的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A . k>1B . k>0C . k≥1D . k<15. (2分)关于x的一元二次方程x2-mx-2=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定6. (2分)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则等于()A .B .C .D . 17. (2分) (2018九上·渝中开学考) 已知△ABC∽△DEF,相似比为2,且△ABC的周长为16,则△DEF的周长为()A . 2B . 4C . 8D . 328. (2分)某商店今年10月份的销售额是3万元,12月份的销售额是6.75万元,从10月份到12月份,该店销售额平均每月的增长率是()A . 25%B . 30%C . 40%D . 50%二、填空题 (共6题;共10分)9. (1分)(2018·孝感) 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为________.10. (1分) (2018九上·扬州期中) 请你写出一个有一根为1的一元二次方程:________.11. (1分) (2017·江西模拟) 关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2 ,如果x1+x2﹣x1x2<﹣1,且k为整数,则k的值为________.12. (1分)两个相似多边形,如果它们对应顶点所在的直线________,那么这样的两个图形叫做位似图形.13. (5分)(2017·徐汇模拟) 已知线段a=9,c=4,如果线段b是a、c的比例中项,那么b=________.14. (1分)已知(k≠0)的图象的一部分如图,k=________.三、解答题 (共8题;共62分)15. (5分)解方程(1)x2-6x-5=0; (2)2(x-1)2=3x-3.16. (10分) (2016九上·北京期中) 已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取何值时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.17. (2分) (2017九上·蒙阴期末) 如图,在△ABC中,AB=AC,点D、E分别在BC、AB上,且∠BDE=∠CAD.求证:△ADE∽△ABD.18. (10分) (2018九上·建平期末) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B (3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是________;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是________;________(画出图形)(3)△A2B2C2的面积是________平方单位.19. (5分) (2018九上·东莞期中) 某小区有一块长21米,宽8米的矩形空地,如图所示.社区计划在其中修建两块完全相同的矩形绿地,并且两块绿地之间及四周都留有宽度为x米的人行通道.如果这两块绿地的面积之和为60平方米,人行通道的宽度应是多少米?20. (15分)(2018·秦淮模拟) 某商场在“双十一”促销活动中决定对购买空调的顾客实行现金返利.规定每购买一台空调,商场返利若干元.经调查,销售空调数量y1(单位:台)与返利x(单位:元)之间的函数表达式为.每台空调的利润y2(单位:元)与返利x的函数图像如图所示.(1)求y2与x之间的函数表达式;(2)每台空调返利多少元才能使销售空调的总利润最大?最大总利润是多少?21. (5分) (2016九上·大石桥期中) 小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A,E,C在同一直线上).已知小明的身高EF是1.7m,请你帮小明求出楼高AB.(结果精确到0.1m)22. (10分)(2019·金台模拟) 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共8题;共62分)15-1、16-1、16-2、17-1、18-1、18-2、18-3、19-1、20-1、20-2、21-1、22-1、22-2、。

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷

四川省德阳市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共8分)1. (1分)小明的墙上挂着一个电子表,对面的墙上挂着一面镜子,小明看到镜子中的表的时间如图所示,那么实际的时间是()A . 12∶51B . 15∶21C . 21∶15D . 21∶512. (1分)若关于x的一元二次方程m2x2﹣(2m﹣1)x﹣1=0有两个实数根,则m的取值范围是()A . mB . mC . mD . m 且m≠03. (1分)(2016·扬州) 已知M= a﹣1,N=a2﹣ a(a为任意实数),则M、N的大小关系为()A . M<NB . M=NC . M>ND . 不能确定4. (1分)(2018·奉贤模拟) 下列函数中是二次函数的是()A . y=2(x﹣1)B . y=(x﹣1)2﹣x2C . y=a(x﹣1)2D . y=2x2﹣15. (1分) (2019九上·洛阳月考) 已知抛物线y=ax2+bx+c,经过A(4,9),B(12,9)两点,那么它的对称轴是()A . 直线x=7B . 直线x=8C . 直线x=9D . 无法确定6. (1分)(2020·成华模拟) 如图,是的直径,,若,则圆周角的度数是()A .B .C .D .7. (1分) (2018八下·太原期中) 如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A . 3个B . 4个C . 5个D . 6个8. (1分)如图示是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象经过A(3,0) ,二次函数图象对称轴为x=l,给出四个结论:①b2>4ac ②bc<0 ③2a+b=0 ④a+b+c=0.其中正确的是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共7题;共7分)9. (1分) (2017九上·寿光期末) 若m,n是方程x2+2015x﹣1=0的两个实数根,则m2n+mn2﹣mn的值等于________.10. (1分)若1是关于的方程的一个根,则的值为________.11. (1分) (2019九上·台州期中) 如图所示,在△ABC中,∠C=90°,AC=BC=4cm.若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在B′处,则BB′=________cm.12. (1分)(2019·白云模拟) 把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数________的图象.13. (1分) (2018九上·达孜期末) 如图在中,,,平分,则的度数为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省德阳市2018届九年级数学上学期半期考试试题一、选择题(本大题共12小题;每小题3分,共36分.给出的四个选项中,只有一项是符合题目要求的.请把正确结果填在答题卡对应的位置上.)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.2.一元二次方程x2=x的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-13.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.抛物线y=-x 2+2x+3的顶点坐标为()A.(1,3) B.(-1,4)C.(-1,3)D.(1,4)5.如图,A,B,C是⊙O上的三点,∠BOC=70°,则∠A的度数为()A.35°B.45° C.40° D.70°6.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x﹣1)=1035B.x(x﹣1)=1035×2C.x(x+1)=1035 D.2x(x+1)=10357.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥-2 B.k≤-2 C.k≥2 D.k≤28.⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是()A.4 B.6 C.7 D.89.在△ABC 中,∠A=90°,AB =3cm ,AC =4cm ,若以A 为圆心2.5cm 为半径作⊙O,则BC 与⊙O 的位置关系是( )A .相交B .相离C .相切D .不能确定10.如图,点A ,点B 的坐标分别是(0,1),(a ,b),将线段AB 绕A 旋转180°后得到线段AC ,则点C 的坐标为( )A .(-a ,-b +1)B .(-a ,-b -1)C .(-a ,-b +2)D .(-a ,-b -2)11.如图,四边形ABCD 内接于半圆O ,AB 为直径,AB=4,AD=DC=1,则BC 的长为( ) A. 47 B .15C .32 D .27 12.如图是抛物线y=ax 2+bx+c (a ≠0),其顶点为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论正确的是( )①若抛物线与x 轴的另一个交点为(k ,0),则-2<k <-1; ②c -a=n ;③若x <-m 时,y 随x 的增大而增大,则m=-1;④若x <0时,ax 2+(b+2)x <0.A .①②④B .①③④C .①②D .①②③④10题图 11题图 12题图二、填空题(本大题共6小题;每小题3分,共18分.请把最后结果填在答题卡对应的位置上.)13.如图(见第3页),在Rt △ABC 中,∠ACB=90°,∠A=25°,将△ABC 绕C 点旋转到△A′B′C 的位置,其中A′、B′分别是A 、B 的对应点,且点B 在斜边A′B′上,直角边CA′交AB 于D ,则旋转角等于度.14.若3)2)((2222=-++y x y x ,则22y x += .15.当2.5≤x ≤5时,二次函数y=-(x -1)2+2的最大值为.16. 如图(见第3页),Rt△ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若AC=10,BC=6,则△MBN 的周长为.17.如图(见第3页),正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为.18.已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .当22120x x -=时,则m 的值为.13题图 16题图 17题图三、解答题(本大题共6小题,共66分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上.)19.(10分)(1)解方程:155)3)(12(-=-+x x x(2)解方程:x x x 4)1)(1(2=-+20.(8分)把两个三角形按如图1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=6,DC=7,把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,如图2,这时AB 与CD 1相交于点O 、与D 1E 1相交于点F ;(1)求∠ACD 1的度数;(2)求线段AD 1的长.21.(8分)如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.22. (8分)如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.23.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?24.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点O在AC上,OA=2,以OA为半径的⊙O 交AB于点D,AC于G,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)求线段DE的长;(3)求线段AD的长.25.(12分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.德阳五中初2015级2017年秋期半期数学参考答案一、 选择题1.B2.C.3.C.4.D5.A.6.A.7.B.8.D9.A 10.C 11.D 12.A二、 填空题13. 50;14. 3; 15.41-; 16. 4; 17. 7; 18. 41 三、解答题19.解:(1)x 1=3,x 2=2.(2) x 1=21+,x 2=21-.20.解:(1)∵把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,∴∠BCE 1=15°,∴∠D 1CB=60°﹣15°=45°,∴∠AC D 1=45°;(2)∵∠AC D 1=∠BC D 1=45°,且AC=CB ,∴AO=BO=AB=3,CD 1⊥AB ,∴CO=AB=3,∴O D 1=7﹣3=4,在Rt △AO D 1中有AO 2+O D 12=A D 12∴A D 1=2243+=5.21.(1)解:∵在⊙O 中,OD ⊥弦AB , ∴=4,设OA 为x ,则OD=OA=x ,∵CD=2,∴OC=x ﹣2在Rt △ACO 中,AC 2+OC 2=AO 2∴42+(x ﹣2)2=x 2,解得x=5,∴OA=5;(2)解:连接BE ,∵OA=OE ,AC=BC ,∴OC∥BE且,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴.22.(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线与y轴交于点C的坐标(0,3),∴y=ax2+bx+3,又∵抛物线与x轴交于点A(﹣1,0)、B(4,0),∴,∴抛物线的解析式为;(2)存在一点P,使△PAB的面积等于△ABC的面积,∵△ABC的底边AB上的高为3,设△PA B的高为h,则|h|=3,又点P在x轴下方,∴点P的纵坐标为﹣3,,∴点P的坐标为,,23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.24.(1)证明:连接OD ,∵EF 垂直平分BD ,∴EB=ED ,∴∠B=∠EDB ,∵OA=OD ,∴∠ODA=∠A ,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD ⊥DE 于D ,∴DE 是⊙O 的切线.(2)解:连接OE ,设DE=BE=x ,CE=8﹣x ,∵OE 2=DE 2+OD 2=EC 2+OC 2,∴42+(8﹣x )2=22+x 2,解得x=4.75,∴DE=4.75.(3)连结BG,DG.∵AG 是直径,∴GD ⊥AB由S △ABG=21AG ·BC=21AB ·GD 可得:4×8=10×GD, ∴GD=3.2∴AD=22222.34-=-GD AG =2.425. 解:(1)∵抛物线y=﹣x 2+bx+c 与x 轴分别交于A (﹣1,0),B (5,0)两点, ∴,解得, ∴抛物线解析式为y=﹣x 2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C (﹣6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x 2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C (﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,可得△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。

相关文档
最新文档