数学七年级上人教新课标3.2解一元一次方程同步训练C

合集下载

【含答案与解析】新人教数学7年级上同步训练:(3.2 解一元一次方程(1))

【含答案与解析】新人教数学7年级上同步训练:(3.2 解一元一次方程(1))

3.2 解一元一次方程(1)5分钟训练 (预习类训练,可用于课前)1.初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是()A.164B.178C.168D.174思路解析:设这个班有x人,根据题意得3x+24=4x-26,解得x=50,所以邮票的张数为3×50+24=174.答案:D2.将下列方程的某些项进行移项,并合并,使方程左边只含未知数,方程的右边只含已知数.(1)4x-6=8x+9; (2) 12(4-5x)=3x+6.思路解析:移项之前,先要分清不移的项和要移的项,只有要移的项在方程的一边与不移的项是加减的形式时,才能移项.方程两边的未移项不变号,要移的项在移项时要变号. 解:(1)由4x-6=8x+9移项得4x-8x=9+6,即-4x=15.(2)两边都乘以2,得4-5x=6x+12.移项得-5x-6x=12-4,即-11x=8.10分钟训练 (强化类训练,可用于课中)1.A、B两地相距50 km,一辆货车以40 km/h的速度从A地开出,一辆客车以32 km/h的速度从B地开出同向而行,则图2-2-1中线段图表示的相等关系是_________________________.图3-2-1思路解析:当货车追上客车时,货车的行程就等于客车的行程+50.答案:货车的行程=客车的行程+502.判断下面的移项对不对,如果不对,应怎样改正?(1)从7+x=13得到x=13+7;(2)从5x=4x+8得到5x-4x=8;(3)从3x-2=x+1得到3x+x=2+1;(4)从8x=7x-2得到8x-7x=2.思路解析:判断移项是否正确,关键看移项后的符号是否改变,一定要牢记“移项变号”.注意:没有移动的项,符号不要改变;另外等号同一边的项互相调换位置,这些项的符号不改变,所以利用的是加法交换律.答案:(1)不对,正确的应为:x=13-7;(2)对;(3)不对.正确的应为:3x-x=2+1;(4)不对.正确的应为:8x-7x=-2.3.解方程:(1)3x=15;(2)4x=2; (3)34x=-12;(4)-0.5x=-3.思路解析:根据等式的性质2.把等号左边未知的系数化为1,即可得到方程的解.答案:(1)x=5,(2)x=12,(3)x=-23,(4)x=64.解方程:(1)6x+2=5x-7;(2)2t-5=8t+15;(3)13-2y=12;(4)4-53m=-m.思路解析:解方程的思路是将已知方程通过一系列变形化为最简方程mx=n的形式,也就是说把mx=n作为已知方程变形的目标.因此,要把已知方程转化为最简化,就要把含有未知数的项都移到等号的一边,常数项移到等号的另一端.解:(1)移项合并,得x=-9.(2)移项合并,得t=-103.(3)移项,得-2y=12-13=16.左、右两边同除-2,得y=-112.(4)移项合并,是52m=-4.左、右两边同乘52,得m=-105.目前,包括长江、黄河等七大流域在内,全国水土流失总面积达到367万平方千米,其中长江与黄河流域的水土流失总面积占全国的32.4%,而长江流域的水土流失面积比黄河流域的水土流失面积还要多29万平方千米,则长江流域的水土流失面积是多少?(结果保留整数) 思路解析:这是个实际问题,通过设未知数、列出方程,可将其转化为一个数学问题.题中有这样一个关系:“长江与黄河流域的水土流失总面积占全国的32.4%解:设长江流域水土流失面积为x万平方千米(在实际生活中你有环保意识吗?)根据题意得x+(x-29)=367×32.4%,解得x=74.答:长江流域的水土流失面积是74万平方千米.快乐时光戴帽子有个孩子刚学了几个字,就想给父亲写信.可“父亲”的“父”字怎么写,他却记不得了.于是他只好打开字典一页一页地翻,心想总能找到那个“父”字。

七年级数学上册 第三章一元一次方程同步练习题(无答案) 人教新课标版

七年级数学上册 第三章一元一次方程同步练习题(无答案) 人教新课标版

第三章一元一次方程3.1.1一元一次方程(第1课时)1.判断下面所列的是不是方程:(1)25+2x=1;(2)2y-5=y+1;(3)2x-2x-3=0;(4)x-8;(5)x3x1--=2;(6)7+8=8+7.2.根据题意,用小学里学过的方法,列出式子:(1)扎西有零花钱10元,卓玛的零花钱是扎西的3倍少2元,求:扎西和卓玛一共有多少零花钱?(2)扎西和卓玛一共有22元零花钱,卓玛的零花钱是扎西的3倍少2元,求扎西有多少零花钱?3.判断正误:对的画“√”,错的画“×”.(1)方程x+2=0的解是2;()(2)方程2x-5=1的解是3;()(3)方程2x-1=x+1的解是1;()(4)方程2x-1=x+1的解是2. ()4.填空:(猜一猜,算一算)(1)方程x+3=0的解是x=;(2)方程4x=24的解是x=;(3)方程x+3=2x的解是x=.3.1.2等式的性质(第1课时)1.填空:(1)含有未知数的叫做方程;(2)使方程中等号左右两边相等的未知数的值,叫做;(3)只含有一个,的次数都是1,这样的方程叫做一元一次方程.2.判断下面所列的是不是方程,如果是方程,是不是一元一次方程:(1)1700+150x;(2)1700+150x=2450;(3)2+3=5;(4)2x2+3x=5.3.选择题:方程3x-7=5的解是()(A)x=2 (B)x=3(C)x=4 (D)x=54.填空:(1)等式的性质1可以表示成:如果a=b,那么a+c=;如果a=b,那么a-c=.(2)等式的性质2可以表示成:如果a=b,那么ac=;如果a=b(c≠0),那么ac=.5.利用等式的性质解下列方程:(1)x-5=6;(2)0.3x=45;(3)5x+4=0.6.利用等式的性质求方程2-14x=3的解,并检验.3.2解一元一次方程(一)(第1课时)1.完成下面的解题过程:用等式的性质求方程-3x+2=8的解,并检验.解:两边减2,得.化简,得.两边同除-3,得.化简,得x=.检验:把x=代入方程的左边,得左边===左边=右边所以x=是方程的解.2.填空:(1)根据等式的性质2,方程3x=6两边除以3,得x=;(2)根据等式的性质2,方程-3x=6两边除以-3,得x=;(3)根据等式的性质2,方程13x=6两边除以13,得x=;(4)根据等式的性质2,方程-13x=6两边除以-13,得x=;3.完成下面的解题过程:(1)解方程4x=12;解:系数化为1,得x=÷,即x=.(2)解方程-6x=-36;解:系数化为1,得x=÷,即x=.(3)解方程-23x=2;解:系数化为1,得x=÷,即x=.(4)解方程56x=0;解:系数化为1,得x=÷,即x=.4.完成下面的解题过程:解方程-3x+0.5x=10.解:合并同类项,得.系数化为1,得.5.解下列方程:(1)x2+3x2=7;(2)7x-4.5x=2.5×3-5.6.填框图:3.2解一元一次方程(一)(第2课时)1.填空:(1)方程3y=2的解是y=;(2)方程-x=5的解是x=;(3)方程-8t=-72的解是t=;(4)方程7x=0的解是x=;(5)方程34x=-12的解是x=;(6)方程-13x=3的解是x=.2.完成下面的解题过程:解方程3x-4x=-25-20.解:合并同类项,得.系数化为1,得.3.填空:等式的性质1:.4.填空:(1)根据等式的性质1,方程x-7=5的两边加7,得x=5+;(2)根据等式的性质1,方程7x=6x-4的两边减6x,得7x-=-4.5.完成下面的解题过程:解方程6x-7=4x-5.解:移项,得.合并同类项,得.系数化为1,得.6.将上题的解题过程填入框图:7.解方程:12x-6=34x.8.填空:(1)x+7=13移项得;(2)x-7=13移项得;(3)5+x=-7移项得;(4)-5+x=-7移项得;(5)4x=3x-2移项得;(6)4x=2+3x移项得;(7)-2x=-3x+2移项得;(8)-2x=-2-3x移项得;(9)4x+3=0移项得;(10)0=4x+3移项得.3.3解一元一次方程(二)(第1课时)1.填空:(1) x+6=1移项得;(2) -3x=-4x+2移项得;(3) 5x-4=4x-7移项得;(4) 5x+2=7x-8移项得.2.完成下面的解题过程:解方程2x+5=25-8x.解:移项,得.合并同类项,得.系数化为1,得.3.解方程x2+6=x.4.填空:(1)式子(x-2)+(4x-1)去括号,得;(2)式子(x-2)-(4x-1)去括号,得;(3)式子(x-2)+3(4x-1)去括号,得;(4)式子(x-2)-3(4x-1)去括号,得.5.完成下面的解题过程:解方程4x+3(2x-3)=12-(x+4).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程6(12x-4)+2x=7-(13x-1).3.3解一元一次方程(二)(第2课时)1.完成下列解题过程:解方程5x-4(2x+5)=7(x-5)+4(2x+1).解:去括号,得.移项,得.合并同类项,得.系数化为1,得.2.填空:(1)6与3的最小公倍数是;(2)2与3的最小公倍数是;(3)6与4的最小公倍数是;(4)6与8的最小公倍数是.3.完成下面的解题过程:解方程7x54=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得. 系数化为1,得.4.解方程3x2-=x43-.5.完成下面的解题过程:解方程-7x54-=38.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.6.解方程3x2-=-x43-.7.填空:(1)x16-=14去分母,得;(2) -x16-=14去分母,得;(3)x6=2x18+去分母,得;(4)x6=-2x18+去分母,得.3.3解一元一次方程(二)(第3课时)1. 填空:(1)x12-=x13+去分母,得;(2)x12-=x14+去分母,得;(3)x12-=-x14+去分母,得;(4)x16-=x14+去分母,得.2. 完成下面的解题过程:解方程x12-=-x14+.解:去分母(方程两边同乘)得.去括号,得.移项,得.合并同类项,得.系数化为1,得.3.填空:(1)2,10,5的最小公倍数是;(2)4,2,3的最小公倍数是;(3)2,4,5的最小公倍数是;(4)3,6,4的最小公倍数是.4.填空:(1)x13-=2-x16+去分母,得;(2)x13-+x=x16+去分母,得;(3)x13-+x=2-x16+去分母,得. 5.填空: (1)5x 14-=3x 12+-2x3-去分母,得 ; (2)2x 16+-x 14+=2-1x 3-去分母,得 ; (3) 3x 22+-1=2x 14--2x 15+去分母,得 . 6.完成下面的解题过程: 解方程 3x 12+-2=3x 210--2x 35+.解:去分母(方程两边同乘 )得: . 去括号,得 . 移项,得 . 合并同类项,得 . 系数化为1,得 . 解一元一次方程复习(第1课时) 1.填空:(以下空你最好直接填,实在想不起来,你可以在教材中找,这些内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填) (1)含有未知数的 叫做方程. (2)只含有一个未知数,未知数的次数都是1,这样的方程叫做 . (3)使方程中等号左右两边相等的未知数的值,叫做 . (4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍 ;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍 . (5)把等式一边的某项变号后移到另一边,叫做 . (6)解一元一次方程的一般步骤是: 、 、 、 、 . 2.不解方程,判断x =-2是下面哪个一元一次方程的解:(1)2(x +8)=3(x -1); (2)5x +(2-4x)=0. 3.完成下面的解题过程: 解方程12x 3-=x -3x 12+,并检验. 解:去分母,得.去括号,得 .移项,得 . 合并同类项,得 ;系数化为1,得 . 检验:将x = 代入方程的左边,得左边= = . 将x = 代入方程的右边,得 右边= = . 左边=右边,所以x = 是方程的解. 4.把上题的解方程过程填入框图:3.4实际问题与一元一次方程(第1课时) 1.完成下面的解题过程: 卓玛种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高15厘米,几周后树苗长高到100厘米? 解:设x 周后树苗长高到100厘米.根据题意,得 . 解方程,得 . 答: 周后树苗长高到100厘米. 2.列一元一次方程解应用题:汽车上共有1500千克苹果,卸下600千克,还有30箱,每箱苹果重多少?3.根据题意,列出方程:(1)某数的3倍加上5等于它的4倍减3,求某数.设某数为x,根据题意,得,.(2)某数减去14等于它的13,求某数.设某数为x,根据题意,得,.(3)用一根长24厘米的铁丝围成一个正方形,正方形的边长是多少?设正方形的边长为x厘米,根据题意,得,.(4)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?设经过x个月这台计算机的使用时间达到规定的检修时间2450小时,根据题意,得,.(5)用12元钱买了3个笔记本,找回1.2元,每个笔记本多少钱?设每个笔记本x 元,根据题意,得,.3.4实际问题与一元一次方程(第2课时)1.根据题意,列出方程:(1)某数的5倍比它的2倍多6,求某数.设某数为x,根据题意,得.(2)某数的34比它的67少1,求某数.设某数为x,根据题意,得. (3)扎西家今年底的存款将达到21000元,是去年底的2倍少3000元,求扎西家去年底的存款数.设扎西家去年底的存款为x 元,根据题意,得. (4)某商店对电脑购买者提供分期付款服务,顾客可以先付3000元,以后每月付1500元.单增叔叔想用分期付款的形式购买价值19500元的电脑,他需要多少个月才能付清全部贷款?设他需x个月才能付清全部贷款,根据题意,得. 2.完成下面的解题过程:洗衣机厂今年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量比为1﹕2﹕7,Ⅰ型洗衣机计划生产多少台?解:设Ⅰ型洗衣机计划生产x台,则Ⅱ型洗衣机计划生产台,Ⅲ型洗衣机计划生产台.根据题意,得.解方程,得.答:Ⅰ型洗衣机计划生台.3.填空:某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度.这个工厂去年上半年每月平均用电多少度?(1)设上半年每月平均用电x度,则下半年每月平均用电度;上半年共用电度,下半年共用电度.(2)根据全年用电15万度,列出方程:.3.4实际问题与一元一次方程(第3课时)1.根据题意,列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题.其中一个问题翻译过来是:“啊哈,它的全部,它的17,其和等于19.”你能求出问题中的“它”吗?设问题中的“它”为x,根据题意,列方程得.(2)地球上的海洋面积为陆地面积的 2.4倍,地球的表面积为5.1亿平方公里,求地球上的陆地面积.设地球上陆地面积为x平方公里,根据题意,列方程得.(3)某中学初一年级,一班人数是全年级人数的16,二班人数50人,两个班级人数的和是98人.求该校初一年级的人数.设该校初一年级的人数为x,根据题意,列方程得.2.完成下面的解题过程:某长方形足球场的周长为310米,长和宽之差为25米,这个足球场的长与宽分别是多少米?(1)解:设这个足球场的长为x米,则宽为米.根据题意,列方程得.解方程得.这个足球场的宽==(米)答:这个足球场的长为米,宽为米.(2)解:设这个足球场的宽为x米,则长为米.根据题意,列方程得.解方程得.这个足球场的长==(米)答:这个足球场的宽为米,长为米.3.甲种铅笔每枝0.3元,乙种铅笔每枝0.6元,用9元钱买了两种铅笔共20枝,两种铅笔各买了多少枝?(1)请你静下心来,仔仔细细把这道题默读几遍,弄清题目告诉了我们什么,要求的是什么.(2)如果设甲种铅笔买了x枝,那么乙种铅笔买了枝,买甲种铅笔用了元,买乙种铅笔用了元.(3)把这道题完整解一遍:解:设甲种铅笔买了x枝,则乙种铅笔买了枝.根据题意,列方程得.解方程得.乙种铅笔买的枝数==.答:甲种铅笔买了枝,乙种铅笔买了枝. 3.4实际问题与一元一次方程(第4课时)1.根据题意,列出方程:(1)卓玛是4月出生的,卓玛的年龄的2倍加上8,正好是卓玛出生那一月的总天数,求卓玛有多少岁.设卓玛有x岁,根据题意,列方程得.(2)蜘蛛有8条腿,蜻蜓有6条腿.现有一些蜘蛛和蜻蜓,它们共有120条腿,并且蜻蜓的只数是蜘蛛的2倍.蜘蛛、蜻蜓各有多少只?设蜘蛛有x只,则蜻蜓有只.根据题意,列方程得.(3)某校图书室用172元钱买了两种书,共10本,一种书每本的价格为18元,另一种书每本的价格为10元.每种书各买了多少本?设价格为18元的书买了x本,则价格为10元的书买了本.根据题意,列方程得.2.完成下面的解题过程:一家人分一些苹果,每人3个剩3个,每人4个差2个.全家有几口人?共有多少个苹果?(1)解:设全家有x口人.可以用两个式子来表示苹果总数,由此可得方程.解方程得.共有苹果个数== .答:全家有口人,共有个苹果.(2)思考题:(供学有余力的同学做)解:设共有x个苹果.可以用两个式子来表示全家的人口数,由此可得方程.解方程得.全家人口数== .答:共有个苹果,全家有口人.3.4实际问题与一元一次方程(第5课时)1.根据题意,列出方程:一个学生带钱到文具店买笔记本,若买3本就剩下1元,若买4本则差2元.笔记本每本多少元?这个学生共带了多少钱?(1)如果设笔记本每本x元,则这个学生所带的钱数可以用两个式子来表示,由此可列出方程.(2)思考题:如果设这个学生带了x元,则笔记本每本的钱数也可以用两个式子来表示,由此可列出方程.2.完成下面的思考和解题过程:卓玛骑自行车从A村到B村,用了0.5小时;扎西走路从A村到B村,用了1.5小时.已知卓玛的速度比扎西的速度每小时快10千米,求扎西走路的速度.(1)设扎西走路的速度为每小时x千米,根据题意,在下面的图中填空:B村A(2) 解:设扎西走路的速度为每小时x千米,则卓玛骑自行车的速度为每小时千米.根据卓玛骑自行车的路程与扎西走路的路程相等,列方程得.解方程得.答:扎西走路的速度为每小时千米.3.根据题意,列出方程:(1)墙上钉着用一根彩绳围成的梯形的装饰物,如下图实线所示.德吉将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如右图虚线所示.德吉所钉长方形的长为多少厘米?设德吉所钉长方形的长为x,根据梯形周长与长方形周长相等,列方程得s.(2)思考题:如下图,汽车匀速行驶,从A县城开到C县城用了3小时;从A县城开到B县城用了2小时.已知B县城距C县城60千米,A县城到B县城有多远?设A县城到B县城有x千米,则A县城到C县城有千米.根据:汽车从A县城开到C县城的速度=汽车从A县城开到B县城的速度列方程得.3.4实际问题与一元一次方程(第6课时)1.根据题意,列出方程:(1)如图,用长为10米,宽为8米的长方形铁丝围成一个正方形,此时正方形的边长是多少米?设此时正方形的边长是x 米,根据长方形与正方形的周长相等,列方程得.(2)思考题:将一个底面直径是10厘米、高为36厘米的“瘦长”形圆柱锻压成底面直径为20厘米的“矮胖”形圆柱,高变成了多少?设高变成了x厘米,根据锻压前后的体积相等,列方程得.(提示:圆柱体积=底面积×高)2.完成下面的思考和解题过程:甲组有10人,乙组有14人.现在另增调12人加入到甲组或乙组,要使甲组人数是乙组人数的12,甲组和乙组各应增调多少人?6 610101010C县城B县城A县城8米10米(1)请你用摆学具的方法解出这道题.(2)设甲组应增调x人,则乙组应增调12,列方程得.(4)通过上面的思考,将本题完整地解一遍.解:设甲组应增调x人,则乙组应增调人.根据题意,得.解方程得.乙组应增调的人数== .答:甲组应增调人,乙组应增调人.3.4实际问题与一元一次方程(第7课时)1.填空:我们已经学习的三个基本相等关系是:(1)总量=的和;(2)表示的两个不同式子相等;(3)一个量=另一个量的或几分之几.2.根据题意,列出方程:小巴桑今年6岁,他的波啦72岁.几年后,小巴桑的年龄是他波啦的14?设x年后,小巴桑的年龄是他波啦年龄的14.根据题意,得.3.探究题:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?(为了帮助学生理解题意,教师可以在学生探究前,边读题边演示螺钉和螺母)(1)请你默读题目,一直读到可以不看题目说出题目的意思.(2)不看题目,同桌之间互相说一说这道题目的意思.(3)如果设分配x名工人生产螺钉,则有名工人生产螺母,这个车间每天生产螺钉个,每天生产螺母个.(4)一个螺钉要配两个螺母,为了使这个车间每天的产品刚好配套,应使生产的螺母数量恰好是螺钉数量的,根据这一相等关系,列方程得.(5)这道题完整的解答过程是:解:设分配x名工人生产螺钉,则有名工人生产螺母.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺母的人数==.答:应分配名工人生产螺钉,名工人生产螺母.4.按下面的设法解探究题:解:设分配x名工人生产螺母,则有名工人生产螺钉.根据螺母数量与螺钉数量关系,列方程得.解方程得.生产螺钉的人数==.答:应分配名工人生产螺母,名工人生产螺钉.作业:某中学发起“献爱心希望工程”捐款活动.该校共有师生2200人,教师每人捐100元,学生每人捐5元,结果学生捐款数只有教师的一半.这个中学师生各有多少人?该校师生共捐了多少钱?选做题:P108习题3.3.4实际问题与一元一次方程(第8课时) 1.利用“路程=速度×时间”列整式: (1)扎西骑自行车,每分钟骑500米,x 分钟骑了 米; (2)扎西骑自行车,每分钟骑500米,先骑了3分钟,后又骑了x 分钟,他一共骑了 米; (3)扎西骑自行车,每分钟骑500米,边巴骑摩托车,每分钟骑1000米,x 分钟两人一共骑了 米.4.完成下面的思考和解题过程: 扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,3分钟后边巴骑摩托车也从家里出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1) 反复仔细读这道题,你发现本题与例1的区别在什么地方?(2) 如果设边巴出发x 分钟后他们在路上相遇,根据题意,填图.骑了 分钟 骑了 分钟相遇扎西家边巴家 (3)从上图,你发现了什么相等关系,根据这一相等关系,你列出的方程是 . (4)根据上面的审题和分析,请你完成下面的解题过程: 解:设边巴出发x 分钟后他们在路上相遇. 根据题意,列方程得 . 解方程得 . 答:边巴出发 分钟后他们在路上相遇. 3.4实际问题与一元一次方程(第9课时) 1.扎西家与边巴家相距6000米,扎西要尽快把一件重要的东西交给边巴,扎西先骑自行车从家里出发,扎西骑了1500米后边巴骑摩托车也从家出发.扎西每分钟骑500米,边巴每分钟骑1000米.边巴出发几分钟后他们在路上相遇?(1)设边巴出发x 分钟后他们在路上相遇,根据题意填图.骑了分钟骑了分钟 相遇 家边巴家(2)根据扎西的路程+边巴的路程=全程,你列出的方程是. 2.完成下面的思考和解题过程: 一天早上,扎西以每分钟80米的速度从家里出发上学去,5分钟后,扎西的巴啦发现扎西忘了带藏语书,于是巴啦以每分钟180米的速度去追扎西.巴啦追上扎西用了多长时间?(3) 设巴啦追上扎西用了x 分钟,根据题意填下图.家追上处(2) 解:设巴啦追上扎西用了x 分钟.根据题意,列方程得 . 解方程得 .答:巴啦追上扎西用了 分钟. 3.思考题:如果扎西家离学校只有700米,巴啦能否在路上追上扎西?为什么?3.4实际问题与一元一次方程(第10课时) 1.填空: (1)加工60个零件,甲单独做20小时完成,甲每小时加工零件 个;(2)加工60个零件,甲单独做20小时完成,甲4小时加工零件 个; (3)加工60个零件,甲单独做20小时完成,甲x 小时加工零件 个;(4)一件工作,甲单独做20小时完成,甲每小时完成工作的 ;(用分数表示)(5) 一件工作,甲单独做20小时完成,甲4小时完成工作的;(6) 一件工作,甲单独做20小时完成,甲x小时完成工作的.2.完成下面的思考和解题过程:一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙一起做.剩下的部分需要几小时完成?(1)甲的工作效率=,乙的工作效率=.(2)如果设剩下的部分需要x小时完成,那么乙做了小时,甲共做了小时.(3)根据题意填图:甲工作 小时乙工作 小时(4)根据甲的工作量+乙的工作量=1列出方程.(5)解:设剩下的部分需要x小时完成.根据题意,列方程得.解方程得.答:剩下的部分需要小时完成.3.4实际问题与一元一次方程(第11课时)1.百分数与小数互化:(1)73%= (2)70%=(3)73.6%= (4)0.58=(5)0.5= (6)0.582=2.列整式填空:(1)全校学生人数为x,女生占全校学生数的52%,则女生人数是,男生人数是,女生人数比男生人数多;(2)电视机原价每台x元,现打“八折”销售,降价后每台卖元,降价后每台售价比原价少了元.3.根据题意,列出方程:(1)某校有女生480人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(2)某校有男生520人,女生占全校学生48%.全校学生有多少人?设全校学生有x 人,根据题意,列方程得.(3)雪域商场为了促销决定对电视机打“八折”销售,降价后每台电视机售价比原价少了300元.打折后电视机售价多少元?设打折后电视机售价x元,根据题意,列方程得.3.4实际问题与一元一次方程(第12课时)1.填空:(1)某厂去年的产值是100万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(2)某厂去年的产值是200万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元;(3)某厂去年的产值是x万元,今年比去年的产值增长20%,则今年比去年的产值提高万元,今年的产值是万元.2.选择题:某公司去年的产值是400万元,今年的产值是500万元,则今年比去年增长().(A)20% (B)25% (C)80% (D)125%3.辨析题:已知今年的产值比去年增长10%,扎西认为:今年比去年提高的产值=今年的产值×10%;卓玛不同意,她认为:今年比去年提高的产值=去年的产值×10%.你同意谁的观点,为什么?4.根据题意,列出方程:(1)某公司今年的产值是500万元,今年比去年增长25%.这个公司去年的产值是多少万元?设这个公司去年的产值是x万元,根据题意,列方程得.(2)把青稞磨成糌粑,重量要减轻6%.要得到8千克糌粑,需要青稞多少千克?(提示:青稞重量-减轻重量=糌粑重量)设需要青稞x千克,根据题意,列方程得.(3)一家商店将某种服装按成本价提高40%后标价,每件标价为175元.这种服装每件成本价是多少元?设这种服装每件的成本价是x元,根据题意,列方程得.5.思考题:一家商店将某种服装按成本价提高40%后标价,又以8折(也就是按标价的80%)卖出,结果每件仍获得利润15元,这种服装每件的成本价是多少元?(提示:每件服装的利润=每件服装的售价-每件服装的成本价)如果设每件服装的成本价为x 元,那么每件服装的标价为;每件服装的实际售价为;每件服装的利润为;由此,列出方程.解方程得.因此每件服装的成本价是元.第三章一元一次方程复习(第1、2、3课时)1.填空:(以下内容是需要你认真理解并记住的;先用铅笔填,订正时用其它笔填)(1)含有的等式叫做方程.(2)只含有未知数,未知数的次数都是,这样的方程叫做一元一次方程.(3)使方程中等号左右两边的未知数的值,叫做方程的解.(4)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍;等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍.(5)把等式一边的某项后移到另一边,叫做移项.(6)解一元一次方程的一般步骤是:去分母、、、、.(7)列方程解应用题的步骤是:审题、、、、.(8)三个基本的相等关系是:总量=各部分量的,表示的两个不同式子相等,一个量=另一个量的几倍或.(9)路程=×时间,工作量=×工作时间,增长的量=×原来的量.2.选择题:不解方程,指出下列方程中解为x=5的是().(A)12x3x1532-+=-(B)12x3x1532-+=-(C)12x3x1532-+=+(D)3x112x523+-=+3.填空:(1)方程x+ax-1=0的解为x=14,则a=.(2)当x=时,2x+3的值与5x+6的值相等.4.完成下面的解题过程:解方程x22x3146+--=.解:去分母,得.去括号,得.移项,得.合并同类项,得;系数化为1,得.5.根据题意,列出方程:(1)一个数的17与3的差等于最大的一位数,求这个数.设这个数为x,根据题意,列方程得.(2)第一块实验田的面积比第二块实验田的3倍还多100平方米,这两块实验田共2900平方米,第一块实验田是多少平方米?设第一块实验田的面积是x平方米,根据题意,列方程得.(3)用一根长为10米的铁丝围成一个长方形,使得该长方形的长比宽多1.4米,长方形的长为多少米?设长方形的长为x 米,根据题意,列方程得.(4)儿子今年13岁,父亲今年40岁,几年前父亲的年龄是儿子的4倍?设x年前父亲的年龄是儿子的4倍,根据题意,列方程得. (5)教室里的课桌每行8张就多3张,每行9张就差3张,教室里有几行课桌?设教室里有x张课桌,根据题意,列方程得. (6)香巴拉果汁店中的A种果汁比B种果汁贵1元,扎桑和同学要了3杯B种果汁、2杯A种果汁,一共花了16元.B种果汁的单价是多少元?设B种果汁的单价是x元,根据题意,列方程得. (7)某文件需要打印,尼玛独立做需要6小时完成,米玛独立做需要8小时完成.如果他们俩共同做,需几小时完成?设需要x小时完成,根据题意,列方程得. (8)冲吉到鞋店花了188元买了一双皮鞋,这双皮鞋是按标价打8折后售出的,这双鞋的标价是多少元?设这双鞋的标价是x 元,根据题意,列方程得.(9)平措存了一个一年期的储蓄,年利率为3%,(也就是一年增长3%)一年后能取5150元,他开始存了多少元?设他开始存入x 元,根据题意,列方程得.(10)一件商品按成本价提高20%后标价,又以9折销售,售价为270元,这种商品的成本价是多少元?设这种商品的成本价是x元,根据题意,列方程得.6.有一列数,按一定规律排列成1,3,5,7,9,…,其中某三个相邻数的和是177,这三个各是多少?7.探究题:扎西的手机,每月按这样的标准交费:每月月租费30元,每分钟通话费0.3元;卓玛的手机,每月按这样的标准交费:没有月租费,每分钟通话费0.4元.(1)你认为扎西合算还是卓玛合算,说说你的理由.(2)在一个月内,扎西通话200分钟,这个月扎西需交话费元,卓玛也通话200分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(3)在一个月内,扎西通话350分钟,这个月扎西需交话费元,卓玛也通话350分钟,这个月卓玛需交话费元,请你比较这个月谁的话费交得少.(4)在一个月内通话多少分钟,这个月扎西和卓玛需交的话费一样多?解:设在一个月内通话x分钟,根据这个月扎西和卓玛需交的话费一样多,列方程得.解方程得.答:在一个月内通话分钟,这个月扎西和卓玛需交的话费一样多.(5)通过上面的讨论和探究,关于扎西合算还是卓玛合算,你得出了什么结论?与其他同学交流你的结论.。

人教版数学七年级上学期: 解一元一次方程(二)同步练习

人教版数学七年级上学期: 解一元一次方程(二)同步练习

3.3 解一元一次方程 水平检测试题一、精心选一选(每小题5分,共30分)1.解方程时,移项法则的依据是( ).(A )加法交换律 (B )加法结合律 (C )等式性质1 (D )等式性质22. 解方程2(3)5(1)3(1)x x x +--=-,去括号正确的是( ).(A )265533x x x +-+=- (B )23533x x x +-+=-(C )265533x x x +--=- (D )23531x x x +-+=-3.解方程371123x x -+-=的步骤中,去分母一项正确的是( ). (A )3(37)226x x --+= (B )37(1)1x x --+=(C )3(37)2(1)1x x ---= (D )3(37)2(1)6x x --+=4.若312x +的值比223x -的值小1,则x 的值为( ). (A )135 (B )-135 (C )513 (D )-5135.解方程14(1)2()2x x x --=+步骤下: ①去括号,得4421x x x --=+②移项,得4214x x x +-=+③合并同类项,得35x =④系数化为1,得53x =检验知:53x =不是原方程的根,说明解题的四个步骤有错,其中做错的一步是( ).(A )① (B )② (C )③ (D )④6. 某项工作由甲单独做3小时完成,由乙独做4小时完成,乙独做了1小时后,甲乙合做完成剩下的工作,这项工作共用( )小时完成.(A )79 (B )67 (C )167 (D )157二、耐心填一填(每小题5分,共30分) 7.当x =_____时,28x +的值等于-14的倒数. 8.已知236(3)0x y -++=,则32x y +的值是________.9.当x =_____时,式子1(12)3x -与式子2(31)7x +的值相等. 10. 在公式y=kx+b 中,b=-3,x=2,y=3,则k=_______.11.一列火车匀速驶入长300米的隧道,从它开始进入到完全通过历时25秒钟,隧道顶部一盏固定灯在火车上垂直照射的时间为10秒钟,则火车的长为________.12. 一艘轮船航行在A 、B 两码头之间,已知水流速度是3千米/小时,轮船顺水航行需要5小时,逆水航行需要7小时,则A 、B 两码头之间的航程是_________千米.三、用心想一想(40分)13.(10分)解下列方程:(1)5(2)3(27)x x -=-;(2)123123x x +--=; 14.(8分)已知关于x 的方程132233x m m x x x -+=+=-与 的解互为倒数,求m 的值. 15. (12分)有一个只允许单向通过的窄道口,通常,每分钟可通过9人,一天,王老师到达通道口时,发现由于拥挤,每分钟只能3人通过道口,此时, 自己前面还有36人等待通过(假定先到先过,王老师过道口的时间忽略不计),通过道口后, 还需7分钟到学校.(1)此时,若绕道而行,要15分钟到达学校,以节省时间考虑, 王老师应选择绕道去学校还是选择通过拥挤的道口去学校?(2)若在王老师等人的维持下,几分钟后,秩序恢复正常(维护秩序期间, 每分钟仍有3 人通过道口),结果王老师比拥挤的情况提前了6分钟通过道口, 向维持秩序的时间是多少?16.(10分)我校初中一年级120名同学,在植树节那天要栽50棵树, 其中有30 棵小树,20棵大树,两位同学一起可以完成一棵小树的栽植,3位同学一起可以完成一棵大树的栽植,结果当天顺利地完成了全部任务.阅读上面的材料,编制适当的题目,利用数学知识求解.参考答案:一、题号1 2 3 4 5 6 答案C AD B B C二、7.-6;8.0;9.132; 10. k=3; 11. 200;12.105;三、13.(1)11x =;(2)79x =; 14. 解: 2323x x +=-,得x=1,与1互为倒数的仍为1. 即1123m m -=+,得m=-35. 15. 解:(1)王老师过道口去学校要3673+(分钟), 而绕道只需15分钟,因19>15, 故从节省时间考虑他应该绕道去学校.(2)设维持秩序时间为x 分,则维持时间内过道口有3x 人,则王老师维持好时间内地道 口有(36-3x)人,由题意,得36363639x x -=++, 解得x=3.因此,维持秩序时间是3分钟.16.略.备选题:某园林的门票规定如下:40人以下每人10元,40人以上享受团体优惠,其中40~80人九折优惠,80人以上八折优惠,初一甲、乙两班共101人去该园林春游,且甲班人数多于乙班人数,但小于总数的32,若两班都以班为单位购票,则共付948元.①若两班联合起来作为一个团体购票,则可省多少钱?②两班各有多少学生?解:①省140元②甲班62人,乙班39人.3.3解一元一次方程(二)——去括号与去分母一、选择题1.化简(x -1)-(1-x)+(x +1)的结果等于( )A .3x -3B .x -1C .3x -1D .x -32.当m =1时,-2m 2-[-4m 2+(-m)2]等于( )A .-7B .3C .1D .23.下列四组变形中,属于去括号的是( )A .5x +4=0,则5x =-4B .3x =2,则x =6C .3x -(2-4x)=5,则3x +4x -2=5D .5x =2+1,则5x =34.将方程(3+m -1)x =6-(2m +3)中,x =2时,m 的值是( )A .m =-14 B .m =14 C .m =-4 D .m =45.当x >3时,化简3423x x ---为( )A .x -5B .x -1C .7x -1D .5-7x6.解方程:4(x -1)-x =2(x +12),步骤如下:(1)去括号,得4x -4-x =2x +1 (2)移项,得4x -x +2x =1+4(3)合并,得3x =5 (4)系数化1,得x =53经检验知x =53不是原方程的解,证明解题的四个步骤中有错,其中做错的一步是 ( )A .(1)B (2)C .(3)D .(4)7.不改变式子a -(2b -3c)的值,把它括号前面的符号变成相反的符号应为 ( )A .a +(-2b +3c)B .a +(-2b)-3cC .a +(2b +3c)D .a +[-(2b +3c) ]二、填空题1.已知关于x 的多项式ax -bx 合并后结果为0,则a 与b 的关系是________。

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

人教版七年级数学上册《3-2 第1课时 合并同类项解一元一次方程》作业同步练习题及参考答案

3.2 解一元一次方程(一)——合并同类项与移项第 1 课时合并同类项解一元一次方程1.方程�+x+2x=210 的解为( )2A.x=20B.x=40C.x=60D.x=802.解下列一元一次方程时,合并同类项正确的是( )A.已知x+7x-6x=2-5,则-2x=-3B.已知0.5x+0.9x+0.1=0.4+0.9x,则1.5x=1.3C.已知25x+4x=6-3,则29x=3D.已知5x+9x=4x+7,则18x=73.方程-3x-3x=5-1 的解为( )2 2A.x=-3B.x=-13C.x=3 D.x=134.如果x=m 是方程1x-m=1 的解,那么m 的值是( )2A.0B.2C.-2D.-65.某人有三种邮票共180 枚,它们的数量比为1∶2∶3,则这三种邮票的数量分别为.6.如果5x-6x=-9+11,那么1-x= .7.小明在做作业时,不小心把方程中的一个常数弄脏了看不清楚,被弄脏的方程为2y-1y=1-■,怎么办?2 2小明想了想,便翻看了书后的答案,此方程的解为y=-5,于是,他很快知道了这个常数,则这个常数3是.8.解下列方程:(1)8y-7y-12y=-5;(2)2.5z-7.5z+6z=32.9.(2018 安徽中考)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽.问:城中家几何?大意为:今有100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3 家共取一头,恰好取完.问:城中有多少户人家?请解答上述问题.10.解下列方程:(1)11x-2x=9; (2)-4+16=�.211.甲、乙、丙三辆卡车所运货物的吨数比为6∶7∶4.5,已知甲车比乙车少运货物12 t,则三辆卡车共运货物多少吨?12.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3∶5,一个足球表面一共有32 块皮,黑色皮块和白色皮块各有多少?★13.海宝在研究一元一次方程应用时,被这样一个问题难住了:神厨小福贵对另一个厨师说:“我做的面包不是100 个,我现在的面包加上和我现在的面包数目相等的面包,再加上现在面包数目一半的面包,再加上现在面包数目一半的一半的面包,另外再加上一个面包, 就恰好是100 个面包了.请你算算我做了多少个面包?”请你帮忙算一下小福贵做了多少个面包?★14.太阳下山晚霞红,我把鸭子赶回笼.一半在外闹哄哄,一半的一半进笼中,剩下十五围着我,请问共有多少只鸭子?你能列出方程来解决这个问题吗?3★15.已知 1 + 1 + 1 +…+ 1 =1-1 + 1 − 1 + 1 − 1+…+ 1 − 1 =1- 1 , 则 方 程 � + � + � + 1×2 2×3 3×499×100 2 2 3 3 4 99 100 100 1×2 2×3 3×4�+…+ � =2 017 的解是多少?4×5 2 017×2 018答案与解析夯基达标1.C2.C 选项 A 中,合并同类项,得 2x=-3;选项 B 中,0.1 与 0.5x+0.9x 不是同类项,不能合并;0.4 与 0.9x 不是同类项,不能合并;选项 D 中,5x+9x 与 4x 不在方程的同一边,不能直接合并,所以选项 A,B,D 错误,故选 C .3.B4.C5.30 枚、60 枚、90 枚 设三种邮票的数量分别为 x ,2x ,3x ,则x+2x+3x=180,(1+2+3)x=180,6x=180,x=30(枚),2x=60(枚),3x=90(枚). 6.3解方程 5x-6x=-9+11,得-x=2.所以 1-x=1+2=3.7.38.解 (1)合并同类项,得-11y=-5,系数化为 1,得 5y=11. (2)合并同类项,得 z=32.9. 解 设城中有 x 户人家,依题意得 x+�=100,解得 x=75. 答:城中有 75 户人家.培优促能10. 解 (1)合并同类项,得 9x=9,系数化为 1,得 x=1.2 4 x=99, × (2)合并同类项,得�=12, 系数化为 1,得 y=24. 11. 解 设甲、乙、丙三辆卡车所运货物的吨数分别为 6x ,7x ,4.5x ,则 7x-6x=12,解得 x=12.6x+7x+4.5x=17.5x=17.5×12=210(t).答:三辆卡车共运货物 210 t .12. 解 设黑色皮有 3x 块,白色皮有 5x 块. 根据“足球表面一共有 32 块皮”, 可得 3x+5x=32,解得 x=4.所以 3x=3×4=12,5x=5×4=20.答:黑色皮有 12 块,白色皮有 20 块.13. 解 设现在面包数为 x ,根据题意,得 1 1 x+x+2x+4x=100-1,合并同类项,得11系数化为 1,得 x=36.答:小福贵做了 36 个面包.14. 解 设共有 x 只鸭子,根据题意, 1 得 x+ 11x+15=x ,2 2 2解得 x=60.答:共有 60 只鸭子.创新应用 15. 解 原方程可变为 + 1 + 1 + 1 +…+ 12 017,2×3 3×4 4×5 2 017×2 0181- 1 + 1 − 1 + 1 − 1 + 1 − 1+…+ 1 − 1x=2 017, 2 2 3 3 4 4 5 2 017 2 018- 12 018 x=2 017,x=2 018.1 1×2 1。

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习(含答案)

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习(含答案)

人教版2020年七年级数学上册3.2《解一元一次方程(二)》同步练习1.方程(2x+1)-3(x-5)=0,去括号正确的是( )A.2x+1-x+5=0B.2x+1-3x+5=0C.2x+1-3x-15=0D.2x+1-3x+15=02.解方程4(x-1)-x=2步骤如下:①去括号,得4x-4-x=2x+1;②移项,得4x+x-2x=4+1;③合并同类项,得3x=5;④化系数为1,得x=.其中错误的一步是( )A.①B.②C.③D.④3.若关于x的方程3x+2b+1=x-(3b+2)的解是1,则b= .4.解方程:(1)4-3(x-3)=x+10; (2)3(2x+5)=2(4x+3)-3.5.解方程=1,去分母正确的是( )A.1-(x-1)=1B.2-3(x-1)=6C.2-3(x-1)=1D.3-2(x-1)=66.解方程:(1)-1=; (2)x-=1.6.解方程=0.1时,把分母化为整数,得( )A.=10B.=0.1C.=0.1D.=107.解方程4.5(x+0.7)=9x,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.58.方程-=-的解是x=( )A. B.- C. D.-9.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分钟的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多长时间可以追上学生队伍?10.已知关于x的方程2ax=(a+1)x+6,求当a为何整数时,方程的解是正整数.11.若2(a+3)的值与4互为相反数,则a的值为( )A.-1B.-C.-5D.12.下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x+3x=1+4B.由7(x-1)=2(x+3),得7x-1=2x+3C.由0.5x-0.7=5-1.3x,得5x-7=5-13xD.由=2,得2x-2-x-2=1213.在解方程+x=时,方程两边同时乘以6,去分母后,正确的是( )A.2x-1+6x=3(3x+1)B.2(x-1)+6x=3(3x+1)C.2(x-1)+x=3(3x+1)D.(x-1)+x=3(x+1)14.若多项式4x-5与的值相等,则x的值是( )A.1B.C.D.215.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是( )A.25B.50C.75D.10016.小明解方程-3,去分母时,方程右边的-3忘记乘6,因而求出的解为x=2,问原方程正确的解为( )A.x=5B.x=7C.x=-13D.x=-117.当x= 时,2x-3与的值互为倒数.18.解方程:(1)5x+2=3(x+2); (2)=5.19.我们来定义一种运算:=ad-bc.例如=2×5-3×4=-2;再如=3x-2.按照这种定义,当时,x的值是多少?20.朱老师驾车从江都出发,上高速公路途经江阴大桥到上海下高速,其间用了4.5小时;返回时平均速度提高了10千米/时,比去时少用了半小时回到江都.(1)根据题意,甲、乙两名同学分别列出尚不完整的方程如下:甲:4.5x=(4.5-0.5)乙:=10根据甲、乙两名同学所列的方程,可知x表示 ;y表示 ;甲所列方程中的方框内该填 ;乙所列方程中的第一个方框内该填 ,第二个方框内该填 .(2)求江都与上海两地间的高速公路路程.(写出完整的解答过程)21.如图,已知箭头的方向是水流的方向,一艘游艇从江心岛的右侧A点逆流航行3小时到达B点后,又继续顺流航行2小时15分钟到达C点,总共行驶了198 km,已知游艇在静水中的速度是38 km/h.(1)求水流的速度;(2)由于AC段在建桥,游艇用同样的速度沿原路返回共需要多长时间?22.小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1 m,4.7 m.请你算出小明1月份的跳远成绩以及每个月增加的距离.23.已知某一铁桥长1 000米,今有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间是40秒.求火车的速度和长度.参考答案1.(D )2.(B )3.-1 .4.解:(1)4-3(x-3)=x+10去括号,得4-3x+9=x+10,移项,得-3x-x=10-9-4合并同类项,得-4x=-3两边同除以-4,得x=.(2)3(2x+5)=2(4x+3)-3去括号,得6x+15=8x+6-3移项,得6x-8x=6-3-15合并同类项,得-2x=-12两边同除以-2,得x=6.5.(B )6.解:(1)去分母,得3(x-1)-12=2(2x+1),去括号,得3x-3-12=4x+2,移项、合并同类项,得-x=17,两边同除以-1,得x=-17.(2)去分母,得30x-7(17-20x)=21,去括号,得30x-119+140x=21,移项、合并同类项,得170x=140,两边同除以170,得x=.7.(B )8.(D )9.(D )10.解:设通讯员需x小时可以追上学生队伍.由题意,得5×+5x=14x,解方程,得x=.答:通讯员需小时可以追上学生队伍.11.解:2ax=(a+1)x+6,去括号,得2ax=ax+x+6,移项、合并同类项,得(a-1)x=6,两边同除以(a-1),得x=.因为方程的解是正整数,所以是正整数,即(a-1)是6的因数,所以a-1的值为1,2,3,6,所以a的值是2,3,4,7.12.(C )13.(D )14.(B )15.(B )16.(C )17.(C )18.3.19.解:(1)去括号得5x+2=3x+6,移项、合并同类项得2x=4,解得x=2.(2)去分母得2x-3(30-x)=60,去括号得2x-90+3x=60,移项、合并同类项得5x=150,解得x=30.20.解:根据运算的规则,,可化为2-2x=(x-1)-(-4)×,化简可得-2x=3,即x=-.21.解:(1)去时的平均速度 从江都到上海的高速公路路程 (x+10) 4.5-0.5 4.5(2)甲的方法:设去时的平均速度为x千米/时,则返回时的平均速度为(x+10)千米/时,则4.5x=(4.5-0.5)(x+10),解得x=80.4.5x=4.5×80=360.答:江都与上海两地间的高速公路路程是360千米.或乙的方法:设江都与上海两地间的高速公路路程是y千米,则=10.解得y=360.答:江都与上海两地间的高速公路路程是360千米.22.解:(1)设水流速度为x km/h,则游艇的顺流航行速度为(x+38) km/h,游艇的逆流航行速度为(38-x) km/h.据题意,可得3(38-x)+(38+x)=198.解得x=2.所以水流的速度为2 km/h.(2)由(1)可知,游艇的顺流航行速度为40 km/h,逆流航行速度为36 km/h.所以AB段的路程为3×36=108(km),BC段的路程为×40=90(km).故原路返回所需时间为=2.5+2.7=5.2(h).答:游艇用同样的速度原路返回共需要5小时12分钟.23.解:设小明1月份的跳远成绩为x m,则4.7-4.1=3(4.1-x),解得x=3.9.则每个月增加距离是4.1-3.9=0.2(m).答:小明1月份的跳远成绩是3.9 m,每个月增加的距离是0.2 m.24.解:设火车的长度是x米,根据题意,得. 解得x=200.所以火车的速度是=20(米/秒).答:火车的速度是20米/秒,长度是200米.。

人教版数学七年级上册33《解一元一次方程(二)》同步练习(有答案)

人教版数学七年级上册33《解一元一次方程(二)》同步练习(有答案)

《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.甲商场商品进货单供货单位乙单位 品名与规格P4200 商品代码 DN-63D7 商品归属 电脑专柜进价(商品的进货价格)元 标价(商品的预售价格) 5850元折扣8折 利润(实际销售后的利润)210元 售后服务 终生保修,三年内免收任何费用,三年后收取材料费,五日快修,周转机备用,回访. 三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y (3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+(5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2021年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2021年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y 去括号,得95-=y 所以,59-=y (2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得32-移到右边再乘以43,去掉小括号得 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯ 10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800 且教师出门又快于学生所以,建造的4道门符合规定.。

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

人教版数学七年级上册3.2《用移项法解一元一次方程》训练(有答案)

课时2用移项法解一元一次方程基础训练知识点1(解一元一次方程----移项)1.下列变形中属于移项的是()A.由5x-2x=2,得3x=2B.由6x-3=x+4,得6x-3=4+xC.由8-x=x-5,得﹣x-x=﹣5-8D.由x+9=3x-1,得3x-1=x+92.把方程4x+4=6-3x进行移项,下列变形正确的是()A.4x-3x=6-4B.4x+3x=6-4C.4x-3x=4-6D.4x+3x=4-63.解方程x-4=x,移项,得__________,合并同类项,得________,系数化为1,得________.4.当x=________时,代数式3x-5与1+2x的值相等.5.解下列方程:(1)5x+2=4x-3;(2)7x-3=4x+6;(3)4y=y+16;(4)x-2=x+5.知识点2(列一元一次方程解决实际问题)6.两个水池共存水40吨.现甲池注进水4吨,乙池放出水8吨,甲池中水的吨数与乙池中水的吨数相等,两个水池原来各有水多少吨?7.[2019黑龙江哈尔滨道外区期末]一个长方形的周长为26厘米.若这个长方形的长减少1厘米,宽增加2厘米,就可成为一个正方形,求这个长方形的长和宽.8.[2019广东东莞期末]2019~2019学年度七年级(1)班课外活动小组计划做一批“中国结”.如果每人做6个,那么比计划多了7个;如果每人做5个,那么比计划少了13个.求该小组计划做多少个“中国结”?参考答案1.C【解析】选项A,属于合并同类项,不属于移项;选项B,等式右边运用了加法交换律,不属于移项;选项C,将等式左边的8变号移到等式右边,等式右边的x变号移到等式左边,属于移项;选项D,等式两边交换了位置,不属于移项.故选C.2.B【解析】选项A,-3x移项后没有变号,所以A错误;选项C,4和-3x移项后都没变号,6没移项却改变了符号,所以C错误;选项D,4移项后没变号,6没移项却改变了符号,所以D错误.故选B.3.x-x=4 x=4x=124.6【解析】根据题意,得3x-5=1+2x,移项,得3x-2x=1+5,合并同类项,得x=6.5.【解析】(1)移项,得5x-4x=-3-2,合并同类项,得x=-5.(2)移项,得7x-4x=6+3,合并同类项,得3x=9,系数化为1,得x=3.(3)移项,得4y-y=16,合并同类项,等-y=16,系数化为1,得y=-6.(4)移项,得x-x=2+5,合并同类项,得x=7.6.【解析】设甲池原有水x吨,则乙池原有水(40-x)吨.根据题意,得x+4=40-x-8,解这个方程.得x=14,所以40-x=26..答:甲池原有水14吨,乙池原有水26吨.7.【解析】设这个长方形的长是x厘米,则宽是(13-x)厘米.根据题意,得x-1=13-x+2,解得x=8,所以13-x=5.答:这个长方形的长为8厘米、宽为5厘米.8.【解析】设小组成员共有x名,则计划做(6x-7)或(5x+13)个“中国结”. 根据题意,得6x-7=5x+13,解得x=20,所以6x-7=113.答:计划做113个“中国结”.课时2用移项法解一元一次方程提升训练1.[2019江西高安中学课时作业]下列方程中,解是负整数的共有()①﹣x=;②x=﹣14;③3x+4=4x+4;④4x-5=﹣5x-8.A.1个B.2个C.3个D.4个2.[2019四川雅安中学课时作业]若﹣2x2m+1y6与x3m-1y10+4n是同类项,则m,n的值分别为()A.2,﹣1B.﹣2,1C.﹣1,2D.﹣2,﹣13.[2019吉林五中课时作业]某同学在解方程5x-1=□x+3时,把□处的数字看错了,解得x=﹣2,则该同学把□看成了()A.4B.7C.﹣7D.﹣144.[2019安徽合肥四十八中课时作业]已知关于x的方程4x-m=3m+12的解是x=2m,则m的值是________.5.[2019江苏南京市中华中学课时作业]解下列方程:(1)x-8x=3-x;(2)0.5x-0.7=6.5-1.3x.6.[2019河北衡水六中课时作业]若关于x的方程2x-a=0的解比方程4x+5=3x +6的解大1,求a的值.7.[2019河北省实验中学课时作业]已知+m=my-m,(1)当m=4时,求y的值;(2)当y=4时,求m的值.8.[2019陕西师大附中课时作业]一个两位数,个位上的数字是十位上的数字的3倍,如果把个位上的数字与十位上的数字对调,那么得到的新数比原数大54,求原来的两位数.参考答案1.A【解析】①系数化为1,得x=﹣;②系数化为1,得x=-4;③移项,得3x-4x=4-4,合并同类项,得-x=0,系数化为1,得x=0;④移项,得4x+5x=-8+5,合并同类项,得9x=-3,系数化为1,得x=-.所以解为负整数的只有②.故选A.2.A【解析】因为-2x2m+1y6与x3m-1y10+4n同类项,所以2m+1=3m-l,6=10+4n,解得m=2,n=﹣1.故选A.3.B【解析】□用a表示,把x=-2代入方程5x-1=ax+3中,得-10-1=-2a +3,解得a=7,所以该同学把□看成了7.故选B.归纳总结方程的解就是使方程中等号左右两边相等的未知数的值,若题目给出方程的解,则将这个数代入到原方程中就可以得到一个含所求字母的方程.4.3【解析】把x=2m代人方程4x-m=3m+12,得8m—m=3m+12,所以7m=3m+12,移项,得7m-3m=12.合并同类项,得4m=12,系数化为1,得m=3.5.【解析】(1)移项,得x+x-8x=3,合并同类项,得﹣3x=3,系数化为1,得x=-1.(2)移项,得0.5x+1.3x=6.5+0.7,合并同类项,得 1.8x=7.2,系数化为1,得x=4.6.【解析】方程2x-a=0的解是x=,方程4x+5=3x+6的解是x=1.由题意,得=1+1,解得a=4.7.【解析】(1)把m=4代人+m=my-m,得+4=4y-4,该方程是关于y的一元一次方程,移项,得-4y=-4-4,合并同类项,得-y=﹣8,系数化为1,得y=.(2)把y=4代入+m=my-m,得2+m=4m-m,该方程是关于m的一元一次方程移项,得2=4m-m-m,合并同类项,得2=2m,系数化为1,得m=l.8.【解析】设这个两位数的十位上的数字是x,则个位上的数字是3x. 根据题意,得10×3x+x=10x+3x+54,移项、合并同类项,得18x=54,系数化为1,得x=3,10×3+3×3=39.答:原来的两位数是39.。

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

人教版七年级数学上册第3章2 第2课时 用移项的方法解一元一次方程 同步练习题及答案

第2课时 用移项的方法解一元一次方程 教材知能精练知识点:移项1. 方程3x+6=2x -8移项后,正确的是( )A .3x+2x=6-8B .3x -2x=-8+6C .3x -2x=-6-8D .3x -2x=8-62. 下列解方程中,移项正确的是( )A .由5+x =18得x =18+5B .由5x +31=3x 得5x -3x =31 C .由21x +3=-23x -4得21x +23x =-4-3 D .由3x -4=6x 得3x +6x =43. 在解方程2314-=+x x 时,下列移项正确的是( )A .2134-=+x xB .1234--=-x xC .1234-=-x xD .1234--=+x x4. 已知当b =1,c =-2时,代数式ab +bc =10-ca ,则a 的值是( )A .12B .6C .-6D .-125.某人有连续4天的休假,这4天各天的日期之和是86,则休假第一天的日期是( ).A.20日B.21日C.22日D.23日6. 4-23x =25x +2变形为-23x -25x =2-4,这种变形叫__________,其根据是__________. 7. 方程2x-0.3=1.2+3x 移项得 .8.当=x _____时,代数式24+x 与93-x 的值互为相反数.9.已知y 1=2x+3,y 2=215-x ,如果y 1=2y 2,则x=_______.10.若2(1)0x y y -++=,则22x y +=___.11. 解方程:4227-=+-x x12. 张老师给学生分练习本,若每人分4本,则余8本,若每人分5本,则缺2本, 求有多少名学生和多少本练习本.学科能力迁移13.【易错题】解下面的方程时,既要移含未知数的项,又要移常数项的是( ).A.372x x =-B.3521x x -=+C.3321x x --=D.1511x +=14.【新情境题】小明在做解方程作业时,不小心将方程中一个常数污染了看不清楚,被污染的方程是:11222y y -=+■.怎么办呢?小明想了想,便翻看了书后的答案,此方程的解是53y =,于是很快补上了这个常数,并迅速完成了作业.同学们,你能补出这个常数吗?它应是( ).A1 B.2 C.3 D.415.【变式题】若132x y =-,224x y =+,当y =_______时,12x x =.16.【多解法题】若32x -=,则x 的值为_____.课标能力提升17. 【探究题】设“●■▲”分别表示三种不同的物体(如图3-2-5),前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为( )A.5B.4C.3D.218. 【开放题】已知2)53(1--m 有最大值,则方程2345+=-x m 的解是( )A.79B.97C.79-D.97- 19.【综合题】若2x n+1与3x 2n-1是同类项,则n=______.20.【解决问题型题目】2004年4月我国铁路第5次大提速.假设K120次空调快速列车的平均速度提速后比提速前提高了44千米/时,提速前的列车时刻表如下表所示:请你根据题目提供的信息填写提速后的列车时刻表,并写出计算过程.品味中考典题21.有一个两位数,它的十位数字比个位数字大2,并且这个两位数大于40且小于52,则这个两位数是( )A .41B .42C .43D .44 B22.某商店一套西服的进价为300元,按标价的80%销售可获利100元,若设该服装的标价为x 元,则可列出的方程为 .迷途知返___________________________________________________________________________________________________________________________________________________________________________课外精彩空间数学冤案人类很早就掌握了一元二次方程的解法,但是对一元三次方程的研究,则是进展缓慢.古代中国、希腊和印度等地的数学家,都曾努力研究过一元三次方程,但是他们所发明的几种解法,都仅仅能够解决特殊形式的三次方程,对一般形式的三次方程就不适用了.在十六世纪的欧洲,随着数学的发展,一元三次方程也有了固定的求解方法.在很多数学文献上,把三次方程的求根公式称为“卡尔丹诺公式”,这显然是为了纪念世界上第一位发表一元三次方程求根公式的意大利数学家卡尔丹诺.那么,一元三次方程的通式解,是不是卡尔丹诺首先发现的呢?历史事实并不是这样.数学史上最早发现一元三次方程通式解的人,是十六世纪意大利的另一位数学家尼柯洛·冯塔纳(Niccolo Fontana). 冯塔纳出身贫寒,少年丧父,家中也没有条件供他念书,但是他通过艰苦的努力,终于自学成才,成为十六世纪意大利最有成就的学者之一.由于冯塔纳患有“口吃”症,所以当时的人们昵称他为“塔尔塔里亚”(Tartaglia),也就是意大利语中“结巴”的意思.后来的很多数学书中,都直接用“塔尔塔里亚”来称呼冯塔纳.经过多年的探索和研究,冯塔纳利用十分巧妙的方法,找到了一元三次方程一般形式的求根方法.这个成就,使他在几次公开的数学较量中大获全胜,从此名扬欧洲.但是冯塔纳不愿意将他的这个重要发现公之于世.当时的另一位意大利数学家兼医生卡尔丹诺,对冯塔纳的发现非常感兴趣.他几次诚恳地登门请教,希望获得冯塔纳的求根公式.可是冯塔纳始终守口如瓶,滴水不漏.虽然卡尔丹诺屡次受挫,但他极为执着,软磨硬泡地向冯塔纳“挖秘诀”.后来,冯塔纳终于用一种隐晦得如同咒语般的语言,把三次方程的解法“透露”给了卡尔丹诺.冯塔纳认为卡尔丹诺很难破解他的“咒语”,可是卡尔丹诺的悟性太棒了,他通过解三次方程的对比实践,很快就彻底破译了冯塔纳的秘密.卡尔丹诺把冯塔纳的三次方程求根公式,写进了自己的学术著作《大法》中,但并未提到冯塔纳的名字.随着《大法》在欧洲的出版发行,人们才了解到三次方程的一般求解方法.由于第一个发表三次方程求根公式的人确实是卡尔丹诺,因此后人就把这种求解方法称为“卡尔丹诺公式”.卡尔丹诺剽窃他人的学术成果,并且据为已有,这一行为在人类数学史上留下了不甚光彩的一页.这个结果,对于付出艰辛劳动的冯塔纳当然是不公平的.但是,冯塔纳坚持不公开他的研究成果,也不能算是正确的做法,起码对于人类科学发展而言,是一种不负责任的态度.3.2解一元一次方程(二)1. C ;2. C ;3. B ;4. A ;5. A ;6. 移项,等式基本性质(1);7. 2x-3x=1.2+0.3;8. 1;9. 21;10. 2;11. 32=x ; 12.有学生10人,有练习本48本.13. B ;14. B ;15. 6;16. 5或1;17. A ;18. A ;19. 2;20. 解:设列车提速后行驶时间为x 小时,根据题意,得264442644x x +=,解得 2.4x =.故到站时刻为4︰24,历时2.4小时.21. B ;22. 80%300100x -=.。

部编数学七年级上册必刷基础练【3.23.3解一元一次方程】(解析版)含答案

部编数学七年级上册必刷基础练【3.23.3解一元一次方程】(解析版)含答案

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)基础第3章《一元一次方程》3.2-3.3 解一元一次方程知识点1:利用合并同类项与移项解一元一次方程1.(2021七上·长兴月考)方程261x x -=-的解是( ).A .5B .52-C .5±D .53【答案】A【完整解答】解:261x x -=-,移项得,261x x -=-,合并同类项得,5x =,故答案为:A.【思路引导】根据解一元一次方程的解题步骤“移项、合并同类项”求出方程的解,即可得出答案.2.(2021七上·梁山期中)方程537x x -=+移项后正确的是( )A .375x x +=+B .357x x +=-+C .375x x -=-D .375x x -=+【答案】D【完整解答】解:移项,得:375x x -=+.故答案为:D .【思路引导】根据移项的计算方法和注意事项求解即可。

3.(2021七上·灵山期末)解一元一次方程 4125x x +=- 时,移项后,得到的式子正确的是( )A .4251x x -=--B .4251x x +=--C .4251x x -=-+D .4251x x +=-【答案】A【完整解答】解: 4125x x +=-移项得: 4251x x -=--故答案为:B 、C 、D 均错误;选项A 正确,故答案为:A.【思路引导】根据移项要变号可判断求解.4.(2021七上·廉江期末)方程434x x =-的解是x = .【答案】-4【完整解答】解:移项,4x-3x=-4,合并同类项得,x=-4.故答案是:-4.【思路引导】先移项、合并同类项,再系数化为1即可。

5.(2020七上·高明期末)当 x = 时, 28x + 的值为4.【答案】-2【完整解答】根据题意得: 2x+8= 4,移项合并得: 2x = -4,解得: x=-2故答案为:-2【思路引导】根据题意建立方程,求出方程的解即可.6.(2020七上·无棣期末)下面的框图表示了琳琳同学解方程421x x +=-的流程:你认为琳琳同学在解这个方程的过程中从第 步开始出现问题,正确完成这一步的依据是 .【答案】一;等式的基本性质1【完整解答】解:我认为琳琳同学在解这个方程的过程中从第一步开始出现问题,符合题意完成这一步的依据是等式的基本性质1.故答案为:一;等式的基本性质1.【思路引导】利用一元一次方程的解法和等式的性质求解即可。

人教版七年级数学上册同步备课3.2.1一元一次方程的解法(一)合并同类项(分层作业)【原卷版+解析】

人教版七年级数学上册同步备课3.2.1一元一次方程的解法(一)合并同类项(分层作业)【原卷版+解析】

3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =82.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =84.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=135.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-236.下列各方程合并同类项不正确的是( ) A.由3x-2x=4合并同类项,得x=4 B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x -+=合并同类项,得352x -= 7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x 天才能挖好,则列出的方程为( )A .150x +90x =1200B .150+90x =1200C .150x +90=1200D .150x -90x =12008.解方程8x -3x =10,合并同类项得__________,解得x =_____;若3a -1与1-2a 互为相反数,则a =_____.9.某数的5倍比这个数的8倍少12,则这个数是_________.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 .11.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;12.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有_______个.13.某班学生共40人,外出参加植树活动,根据任务不同,要分成三个小组且使甲、乙、丙三个小组人数之比为1︰2︰5,则甲组有________人.14.一个长方体的长、宽、高之比为5:4:3,长比高长4cm ,那么这个长方体的体积是 ;15.在日历中圈出一竖列上相邻的3个数,使它们的和为42,则所圈数中最小的是 .16.解下列方程:(1)4x +6x =2+6; (2)23y -y =10-5; (3)2.4x -3x -1.4x =5.2-8;17.同一个箱子,如果装橙子可以装 18 个,如果装梨可以装 16个,现有橙子、梨共 400个而且装梨的箱子的个数是装橙子的箱子的 2 倍请问装橙子和装梨的箱子各有多少个?18.某校为开展乒乓球运动,花钱购买了一些乒兵球运动器材,其中购买球网、球拍和乒兵球的总费用是1320 元,购买这三样器材的费用之比是3:6:2那么购买球网的费用是多少元?19.某种药含有甲、乙、丙3种草药,这3种草药的质量比是2:3:7,现在要配制1440g 这种中药,这3种草药分别需要多少克?20.若x m =是关于x 的方程112x m -=的解,则m 的值为( ) A.0 B.2 C.-2 D.-621.若三个连续偶数的和为24,则它们的积为( )A.48B.480C.240D.12022.小涵在 2020 年某月的月历上圈出了三个数 a ,b ,c ,并求出了它们的和为 30,则这三个数在月历中的排列位置不可能是()23.对任意四个有理数a ,b ,c ,d ,定义新运算:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x 的值是_____. 24.如图,8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的宽.设每块地砖的宽为x cm ,根据题意,列出的方程为_______________________.25.现有一些分别标有-1,2,-4,8,-16,32,…的卡片,这些卡片上的数字是按一定规律排列的,小明拿到了相邻的三张卡片,且卡片上的数字之和为96,则小明拿到的三张卡片上分别标有什么数字?26.某体育场的环形跑道长400 米,二人在跑道练习跑步,已知甲平均每分钟跑250 米,乙平均每分钟跑290米.(1)两人同时从同一地点同向而行,经过多长时间两人才能第一次相遇?(2)两人同时从同一地点出发,相向而行,经过多少分钟两人第一次相遇?3.2.1 一元一次方程的解法(一)合并同类项 分层作业1.对于方程8x +6x -10x =8,合并同类项正确的是( )A .3x =8B .4x =8C -4x =8D .2x =8【答案】B.【分析】根据合并同类项法则,即可判断【详解】8x +6x -10x =8合并同类项,得 4x=8故选B.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.2.下列方程中可直接用合并同类项解的是( )A. 0.562B. 32111C. 5237 D. 724x x x x x x y y y +=--=++=+=+ 【答案】B.【分析】根据合并同类项解一元一次方程的特征,即可判断【详解】略【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项法则是解题的关键.3.下列解为x =4的方程是( )A .7x -3x =-4B .x +x =5+3C .x =-1+3D .-2x =8【答案】B.【分析】根据合并同类项法则,求出解,即可判断【详解】A .7x -3x =-4 合并同类项,得4x=-4,系数化为1,得 x=-1B .x +x =5+3 合并同类项,得2x=8,系数化为1,得 x=4C .x =-1+3 合并同类项,得x=2D .-2x =8 系数化为1,得 x=-4故选B.题的关键.4.方程353122x x --=-的解为( ) A.x=-3 B.x=−13 C.x=3 D.x=13【答案】A.【分析】根据合并同类项法则,求出解,即可判断【详解】353122--=-x x 合并同类项,得−92x=32.系数化为1,得 x=-3.故选A.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.5.下列解方程的过程中,正确的是( )A .-2m +3m =4,得-5m =4B .4y -2y +y =4,得(4-2)y =4C .-12x =0,得x =0 D .2x =-3,得x =-23【答案】C.【分析】根据合并同类项法则和系数化为1,求出解,即可判断【详解】A .-2m +3m =4,得-m =4B .4y -2y +y =4,得(4-2+1)y =4,3y=4C .-12x =0,得x =0 D .2x =-3,得x =-32故选C.题的关键.6.下列各方程合并同类项不正确的是()A.由3x-2x=4合并同类项,得x=4B.由2x-3x=3合并同类项,得-x=3C.由5x-2x+3x=12合并同类项,得x=-2D.由7252x x-+=合并同类项,得352x-=【答案】C.【分析】根据合并同类项法则,求出解,即可判断【详解】A.由3x-2x=4合并同类项,得x=4 ,正确;B.由2x-3x=3合并同类项,得-x=3,正确;C.由5x-2x+3x=12合并同类项,得x=-2,合并后应为6x=12,解得x=2,错误;D.由7252x x-+=合并同类项,得352x-=,正确.故选C【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.7. 挖一条长为1200米的水渠,由甲、乙两队从两头同时施工,甲队每天挖150米,乙队每天挖90米,需要几天才能挖好?设需要x天才能挖好,则列出的方程为( )A.150x+90x=1200 B.150+90x=1200 C.150x+90=1200 D.150x-90x=1200【答案】A.【分析】根据题意,找等量关系,设未知数,列方程.【详解】解设需要x天才能挖好.由题意得,150x+90x=1200故选A8.解方程8x-3x=10,合并同类项得__________,解得x=_____;若3a-1与1-2a互为相反数,则a=_____.【答案】5x=10;2;0.【分析】根据合并同类项法则,求出解.【详解】8x -3x =10,合并同类项,得5x=10系数化为1,得x =2.因为若3a -1与1-2a 互为相反数,∴3a-1+1-2a=0合并同类项,得a=0【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.9.某数的5倍比这个数的8倍少12,则这个数是_________.【答案】4.【分析】列出方程,根据合并同类项法则,求出解.【详解】8x -5x =12,合并同类项,得3x=12系数化为1,得x=4.【点睛】本题主要考查了利用合并同类项的方法解一元一次方程,熟练掌握合并同类项和系数化为1是解题的关键.10.若关于x 的方程231mx m +=-与363x x +=-的解相同,则m 的值为 . 【答案】37- 【分析】同解方程,根据合并同类项法则,求出363+=-x x 的解.再把解代入到231+=-mx m 中,求出m 的值.【详解】363+=-x x合并同类项,得9x=-3系数化为1,得x=-13.把x=-13代入231+=-mx m 中,得-23m+3m=-1解得m=-3711.某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量是去年的2倍,则前年这个学校购买了 台计算机;【答案】20【分析】根据题意,找等量关系,设未知数,列方程,利用合并同类项的方法解方程,即可求解.【详解】解设前年购买x 台计算机,则去年购买2x 台,今年购买4x 台。

人教版数学七年级上册 第3章 3.2解一元一次方程合并同类项及移项同步测试题(有答案)

人教版数学七年级上册 第3章 3.2解一元一次方程合并同类项及移项同步测试题(有答案)

解一元一次方程合并同类项及移项同步测试题(有答案)一.选择题1.一元一次方程2x﹣5=0的解是()A.x=5B.x=﹣C.x=D.x=2.解关于x的方程﹣3x﹣9=x+5时,下面的变形正确的是()A.﹣3x+x=5﹣9B.﹣3x﹣x=(﹣9)+(﹣5)C.x+3x=(﹣9)+(﹣5)D.x+3x=5+93.若代数式4x﹣5与3x﹣2的值互为相反数,则x的值为()A.1B.﹣1C.0D.24.方程|x+3|﹣|1﹣x|=x+1的解是()A.x=3B.x=﹣5C.x=﹣1或3或5D.x=﹣5,或﹣1或35.若代数式3x﹣4与﹣2x+1的值相等,则x的值是()A.1B.2C.3D.56.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 7.在解方程﹣1=时,去分母正确的是()A.2(2x﹣1)﹣1=3(x+2)B.2(2x﹣1)﹣6=3(x+2)C.3(2x﹣1)﹣1=2(x+2)D.3(2x﹣1)﹣6=2(x+2)8.一元一次方程+++…+=的解是()A.1B.2C.2014D.2015 9.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.010.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)二.填空题11.对于有理数a、b,规定一种新运算:a⊕b=ab+b,则方程(x﹣4)⊕3=6的解为.12.当x=时,代数式3x+1的值与代数式2(3﹣x)的值互为相反数.13.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc.则满足等式=1的x的值为.14.当x=时,5(x﹣2)与2[7x﹣(4x﹣3)]的值相等.15.对于有理数a、b,定义运算“★”;a★b=,例如:2★1,因为2>1,所以2★1=22+12=5,若(x+1)★3=﹣12,则x=.三.解答题16.解方程:①2x+5=3(x﹣1);②﹣=1.17.解下列方程:(1)5x+3=2x﹣9(2)18.解下列方程:(1)=(2)=(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0(4){()﹣3]﹣3}﹣3=019.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求3⊗(﹣1)的值;(2)若(a+1)⊗2=36,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.20.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?参考答案与试题解析一.选择题1.【解答】解:方程2x﹣5=0,解得:x=,故选:C.2.【解答】解:移项可知:﹣3x﹣x=9+5∴3x+x=﹣9﹣5故选:C.3.【解答】解:根据题意得:4x﹣5+3x﹣2=0,移项合并得:7x=7,解得:x=1,故选:A.4.【解答】解:当x<﹣3时,方程整理得:﹣x﹣3﹣1+x=x+1,解得:x=﹣5;当﹣3≤x<1时,方程整理得:x+3﹣1+x=x+1,解得:x=﹣1;当x≥1时,方程整理得:x+3+1﹣x=x+1,解得:x=3,则方程的解为x=﹣5,﹣1,3,故选:D.5.【解答】解:根据题意得:3x﹣4=﹣2x+1,移项合并得:5x=5,解得:x=1,故选:A.6.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.。

人教版七年级上册数学解一元一次方程(三)去分母同步训练

人教版七年级上册数学解一元一次方程(三)去分母同步训练
解:根据题意,可得: =2,
去分母,可得:x﹣1=6,
移项,可得:x=6+1,
合并同类项,可得:x=7.
故答案为:7.
【点评】
此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
11.7
【分析】
利用互为相反数两数之和为0列出方程,求出方程的解即可得出a的值.
去括号,可得:x+1+2x﹣10=0,
移项,合并同类项,可得:3x=9,
系数化为1,可得:x=3,
∴当x=3时,整式 与x﹣5的值互为相反数.
故答案为:3.
【点睛】
本题考查的是互为相反数的定义,一元一次方程的解法,掌握去分母解一元一次方程是解题的关键.
16.分数的基本性质等式的基本性质2去括号法则或乘法分配律移项等式的基本性质1合并同类项法则系数化为1等式的基本性质2
11.已知 的倒数与 互为相反数,则 _______.
12.将方程 的两边同乘12,可得到 ,这种变形叫_______,其依据是___________________________________________________________.
13.方程 的解 ______.
14.若 是关于x的方程 的解,则 ______.
【详解】
去分母:
去括号:
移项:
合并同类项得:
是原方程的解
代表的数字是
【点睛】
本题考查了一元一次方程的解的定义,解一元一次方程,熟悉一元一次方程的解法是解题的关键.
【详解】
解:
去分母时,方程两边同时乘12,等式仍成立,
故答案为:去分母,等式的基本性质.

人教版数学七年级上学期3.2-3.3解一元一次方程测试(原卷+解析版)

人教版数学七年级上学期3.2-3.3解一元一次方程测试(原卷+解析版)

专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2B .﹣2C .8D .﹣82.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1B .-1C .3D .-33.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -34.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1B .-1C .32D .05.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30D .4x +20=5x +306.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+B .345x x -=--C .354x x -=-D .354x x -=+7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x+3)=68.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4B .7C .-1D .19.(2020·河南南召·月考)下列方程变形中,正确的是( ) A .方程3x -2=2x+1,移项,得3x -2x=-1+2 B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1 C .1134x x+=-,去分母,得4(x+1)=3x -1D .方程2-45x =,未知数系数化为1,得x=-10 10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .3012.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-13.(2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8B .﹣8C .6D .﹣614.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______.18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 25.(2020·全国初一课时练习)已知14y x =-+,222y x =-. (1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 .26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR专题3.2-3.3解一元一次方程一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·河南南召·月考)若x =1是关于x 的方程3x ﹣m =5的解,则m 的值为( ) A .2 B .﹣2C .8D .﹣8【答案】B【解析】把x =1代入方程3x ﹣m =5得:3﹣m =5, 解得:m =﹣2, 故选:B .2.(2020·福建宁化·期末)若代数式x +2的值为1,则x 等于( ) A .1 B .-1C .3D .-3【答案】B【解析】解:由题意可知x+2=1,解得x=-1, 故选B .3.(2019·山西浑源·初一期末)下列解方程的变形中,正确的是( ) A .方程3x ﹣5=x +1移项,得3x ﹣x =1﹣5B .方程3x +4x=1去分母,得4x +3x =1 C .方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x D .方程﹣15x =5 两边同除以﹣15,得x = -3【答案】C【解析】A.方程3x ﹣5=x +1移项,得3x ﹣x =1+5,故错误; B.方程3x +4x=1去分母,得4x +3x =12,故错误; C.方程2(x ﹣1)+4=x 去括号,得2x ﹣2+4=x ,正确; D.方程﹣15x =5 两边同除以﹣15,得x = -13,故错误; 故选C .4.(2020·全国单元测试)如果代数式312x +与213x --互为相反数,那么x 的值是( ) A .1 B .-1C .32D .0【答案】D 【解析】∵代数式312x +与213x --互为相反数,∴3211023x x ⎛⎫++--= ⎪⎝⎭,得0x =. 故答案选D .5.(2020·全国初一课时练习)某校在庆祝祖国70周年“我和我的祖国”中学生读书系列活动中,将一些科技类图书分给了七年级一班的学生阅读,如果每人分4本,则剩余20本;如果每人分5本,则还缺30本.若设该校七年级一班有学生x 人,则下列方程正确的是( ) A .4x ﹣20=5x +30 B .4x +20=5x ﹣30 C .4x ﹣20=5x ﹣30 D .4x +20=5x +30【答案】B【解析】解:设该校七年级一班有学生x 人, 依题意,得:420530x x +=﹣ 故选:B6.(2020·全国初一课时练习)方程435x x -=+移项后正确的是( ) A .354x x +=+ B .345x x -=-- C .354x x -=- D .354x x -=+【答案】D【解析】因为435x x -=+, 所以354x x -=+. 故选D .7.(2020·河北文安·初一期末)在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1 B .3(x ﹣1)+2(2x+3)=1 C .3(x ﹣1)+2(2+3x )=6 D .3(x ﹣1)﹣2(2x+3)=6【答案】D【解析】解:方程两边同时乘以6得,3(x ﹣1)+2(2+3x)=6 故选:D8.(2020·全国初一课时练习)“☆”表示一种运算符号,其定义是a ☆2b a b =-+,例如:3☆7237=-⨯+,如果x ☆(5)3-=,那么x 等于( ) A .-4 B .7 C .-1 D .1【答案】A【解析】解:∵x ☆(-5)=3, ∴-2x+(-5)=3, 解得x=-4. 故选A.9.(2020·河南南召·月考)下列方程变形中,正确的是( )A .方程3x -2=2x+1,移项,得3x -2x=-1+2B .方程3-x=2-5(x -1),去括号,得3-x=2-5x -1C .1134x x+=-,去分母,得4(x+1)=3x -1 D .方程2-45x =,未知数系数化为1,得x=-10 【答案】D【解析】A. 方程3x -2=2x+1,移项应得3x -2x=1+2,故该项错误; B. 方程3-x=2-5(x -1),去括号应得3-x=2-5x+5,故该项错误; C.1134x x+=-,去分母,应得4(x+1)=3x -12,故该项错误; D. 方程2-45x =,未知数系数化为1应得x=-10,正确. 故选:D.10.(2020·全国初一课时练习)整式mx n +的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值.则关于x 的方程8mx n --=的解为( )【答案】A【解析】根据表格可知0x =时,4mx n +=-, 所以4n =-.2x =时,4mx n +=,所以244m -=, 移项得244m =+, 合并同类项,得28m = 系数化为1,得4m =. 所以原方程为448x -+=,移项,得484x -=-.合并同类项,得44x -= 系数化为1,得1x =-. 故选A .11.(2020·全国单元测试)三个数的和是98,第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8,则第二个数是( )A .15B .20C .25D .30【解析】解:由题意可得,∵第一个数与第二个数之比是2:3,第二个数与第三个数之比是5:8, ∴三个数之比为10:15:24, 设三个数分别为10x 、15x 、24x , 则10152498x x x ++=, 解得:2x =,∴第二个数为1530x =. 故选:D .12.(2020·陕西神木·期末)关于x 的方程3163a x--=与方程()2157x +-=的解相同,则a 的值为( ) A .103-B .73-C .53-D .23-【答案】A【解析】解:∵()2157x +-=, 解得:x=5, 将x=5代入:3163a x--=, 解得:a=103-. 故选A .13. (2020·湖南天心·长郡中学期末)若“△”是新规定的某种运算符号,设x △y=xy+x+y ,则2△m=﹣16中,m 的值为( ) A .8 B .﹣8C .6D .﹣6【答案】D【解析】因为xΔy =xy +x +y ,且2Δm =-16, 所以2m+2+m=-16, 解得m=- 6, 故选D.14.(2020·全国单元测试)已知1y =是方程()1223m y y --=的解,那么关于x 的方程()()3225m x m x --=-的解是( )A .10x =-B .0x =C .43x =D .2413x =【解析】把1y =代入12()23m y y --=,得1m =, 把1m =代入关于x 的方程, 得3225x x --=-, 可得0x =, 故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上) 15.(2020·全国单元测试)6x =-________方程57811x x -=+的解.(填“是”或“不是”) 【答案】是【解析】57811x x -=+,318x =-, 6x =-,∴是方程的解;故答案为:是.16.(2020·全国课时练习)当x =__________时,代数式32x x +-的值是1. 【答案】5【解析】由题可得312+-=x x , 化简得232x x --=,∴5x =. 故答案是5.17.(2020·全国单元测试)已知方程332x x -=的解为2x a =+,则关于x 的方程()323x x a a --=的解为_______. 【答案】1x =【解析】解:依题意得:3(a+2)-3=2(a+2), 整理得:3a+6-3=2a+4, ∴a=1,将a=1代入方程3x -2(x -a )=3a 得:3x -2x+2×1=3×1 ∴x=1; 故答案为:1x =18.(2020·全国课时练习)若2x =时,()22310x c x c +-+=,则当3x =-时,()223x c x c +-+=____________. 【答案】25【解析】把2x =代入()22310x c x c +-+=得:()2222310c c ⨯+⨯-+=,解得:4c =, 当3x =-时,()223x c x c +-+()22(3)34(3)4⨯=⨯-+--+ 1834=++ 25=,故答案为:25.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.(2020·全国初一课时练习)某区期末考试一次数学阅卷中,阅B 卷第28题(简称B28)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28的教师中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28和阅A18原有教师的人数.【答案】阅A18原有教师6人,阅B28原有教师18人.【解析】设阅A18原有教师人数为x 人,则阅B28原有教师人数为3x 人,3x -12=0.5x+3,解之得x=6,所以阅A18原有教师人数为6人,则阅B28原有教师人数为18人.20.(2019·北京市昌平区第四中学初一期中)本学期学习了一元一次方程的解法,下面是小明同学的解题过程: 解方程23532x x ---=. 解:方程两边同时乘以6,得:23566132x x --⨯-⨯= …………① 去分母,得:()()223351x x ---= …………② 去括号,得:463151x x --+=………………③ 移项,得:631415x x --=-- ……………④ 合并同类项,得:918x -=-……………………⑤ 系数化1,得:2x =………………………⑥上述小明的解题过程从第_____步开始出现错误,错误的原因是_______________. 请帮小明改正错误,写出完整的解题过程.【答案】①,利用等式的性质时漏乘,完整过程见解析【解析】第①步开始出现错误,错误的原因是利用等式的性质时漏乘, 故答案为:①,利用等式的性质时漏乘; 解方程235132x x ---= , 解:方程两边同时乘以6,得:23566632x x --⨯-⨯= , 去分母,得:()()223356x x ---=, 去括号,得:463156x x --+=, 移项,得:636415x x --=--, 合并同类项,得: 913x -=- , 系数化1,得: 139x. 21.(2020·全国初一课时练习)解下列方程: (1)(1)2(1)13x x x +--=-; (2)3 1.4570.50.46x x x --=. 【答案】(1)1x =-;(2)30x =;(3)0.7x =-. 【解析】(1)去括号,得12213x x x +-+=-. 移项及合并同类项,得22x =-. 系数化为1,得1x =-. (2)原方程可化为757626x x x --=,去分母,得362157x x x -=-. 移项及合并同类项,得107x =-. 系数化为1,得0.7x =-.22.(2020·嘉峪关市第六中学初一期末)“*”是新规定的这样一种运算法则:a*b=a 2+2ab .比如3*(﹣2)=32+2×3×(﹣2)=﹣3 (1)试求2*(﹣1)的值; (2)若2*x=2,求x 的值;(3)若(﹣2)*(1*x )=x+9,求x 的值. 【答案】(1)0;(2):x=﹣12;(3)x=﹣1. 【解析】解:(1)根据题中的新定义得:原式=4﹣4=0; (2)根据题中的新定义化简得:4+4x=2,解得:x=﹣;(3)根据题中的新定义化简得:(﹣2)*(1+2x )=4﹣4(1+2x )=x+9, 去括号得:4﹣4﹣8x=x+9, 解得:x=﹣1.23.(2019·河北河间·初一期末)在做解方程练习时,学习卷中有一个方程“2y –12=12y +■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时代数式5(x –1)–2(x –2)–4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗? 【答案】见解析【解析】解:5(x -1)-2(x -2)-4=3x -5, 当x =3时,3x -5=3×3-5=4, ∴y =4.把y =4代入2y -12=12y -■中,得 2×4-12=12×4-■, ∴■=-112. 即这个常数为-112. 24.(2019·河北石家庄·初三一模)数学课上,高老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式.然后翻开纸片②是4x 2+5x +6,翻开纸片③是-3x 2-x -2.解答下列问题:(1)求纸片①上的代数式;(2)若x 是方程2x =-x -9的解,求纸片①上代数式的值. 【答案】(1)244x x ++;(2)1.【解析】解:(1)222456(32)44x x x x x x =+=+--=+-+①②③++,所以纸片①上的代数式为244x x ++; (2)解2x =-x -9得3x =-,将3x =-代入244x x ++得2(3)4(3)491241-+⨯-+=-+=,所以纸片①上代数式的值为1.25.(2020·全国初一课时练习)已知14y x =-+,222y x =-.(1)当x 为何值时,12y y =; (2)当x 为何值时,1y 的值比2y 的值的12大1; (3)先填表,后回答:根据所填表格,回答问题:随着值的增大,1的值逐渐 ;2的值逐渐 . 【答案】(1)2x =;(2)2x =;(3)表格详见解析,减小,增大. 【解析】解:(1)由题意得:422x x -+=-,解得:2x =, 所以,当2x =时,12y y =; (2)由题意得: 1(422)21x x -+=-+,解得:2x =, 所以,当2x =时,1y 的值比2y 的值的12大1. (3)由表格中的数据可知:随着值的增大,1的值逐渐减小;2的值逐渐增大. 故答案为:减小,增大.26.(2020·福建泉州五中月考)在数轴上点A 表示的数为-3,点B 表示的数为-1,点C 表示的数为4. (1)用AC 表示端点为A 、C 的线段长度(以下表示相同),则AC =(2)点P 、Q 、R 同时出发在数轴上运动,点P 从A 点出发以每秒1个单位长度的速度向左运动,点Q 从B 点出发以每秒4个单位长度的速度向右运动,点R 从C 点出发以每秒2个单位长度的速度向右运动,设运动的时间为t 秒.①用含t 的代数式表示:点P 表示的数是 ;点Q 表示的数是 ;点R 表示的数是 ②求在运动过程中,t 为何值时,PQ =12(单位长度) ③求在运动过程中,t 为何值时,PR =2QR【答案】(1)7;(2)①﹣3-t ,4t -1,2t+4;②t=2;③t=17或37【解析】解:(1)AC=4-(﹣3)=4+3=7; 故答案为:7;(2)①点P 表示的数是:﹣3-t ;点Q 表示的数是:4t -1;点R 表示的数是:2t+4; 故答案为:﹣3-t ,4t -1,2t+4;②根据题意得:4t -1-(﹣3-t )=12,解得:t=2; 所以当t=2时,PQ =12;③PR=2t+4-(﹣3-t )=3t+7,QR=()412425t t t --+=-, 若PR =2QR ,则37225t t +=⨯-, 当()37225t t +=-时,解得:t=17, 当()37225t t +=--时,解得:37t =; 所以当t=17或37时,PR =2QR .。

人教版七年级数学上册 3 2解一元一次方程 移项合并同类项练习(word版含简单答案)

人教版七年级数学上册 3 2解一元一次方程 移项合并同类项练习(word版含简单答案)

3.2解一元一次方程--移项合并同类项一、单选题1.一元一次方程21x =的解是( )A .2x =-B .0x =C .12x =- D .12x =2.方程3x =2x +7的解是( ) A .x =4B .x =﹣4C .x =7D .x =﹣73.已知5x =是方程2x −4a =2的解,则a 的值是( ) A .1B .2C .-2D .-14.若m 与13⎛⎫-- ⎪⎝⎭互为相反数,则m 的值为( )A .3-B .13-C .13D .35.代数式3310.3x a b -与323x a b 是同类项,则x 的值是( )A .0B .2C .52D .16.已知关于x 的方程3220x a +-=的解是x a =,则a 的值是( )A .1B .25C .52D .-17.某同学在解关于x 的方程3x -1=mx +3时,把m 看错了,结果解得x =4,该同学把m 看成了( ).A .-2B .2C .43D .728.关于x 的方程3x +5=0与3x =1﹣3m 的解相同,则m 等于( ) A .﹣2B .2C .4-3D .439.对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如: 5*7=5+2×7,则方程3x *12=5-x 的解为( ) A .1B .2C .2.5D .310.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正三角形数”.设第n 个“平行四边形数”和“正三角形数”分别为a 和b .若42a =,则b 的值为( )A .190B .210C .231D .253二、填空题11.若23391m x -+=是关于x 的一元一次方程,则m 的值为_________.12.把方程2y ﹣6=y +7变形为2y ﹣y =7+6,这种变形叫_____,根据是_____. 13.若2x +与2(3)y -互为相反数,则x y -=________.14.利用方程可以将无限循环小数化成分数,例如:将0.7化成分数,可以先设0.7x =,由0.70.777=⋅⋅⋅⋅⋅⋅可知,107.777x =⋅⋅⋅⋅⋅⋅,所以107x x -=,解方程得79x =,于是得70.79=.仿此方法,0.730.7373=⋅⋅⋅⋅⋅⋅用分数表示为__________. 三、解答题 15.解方程 (1)617x +=(2)3845x x -=-16.小明在解一道有理数混合运算时,一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.17.已知两个整式2A x x =+,B =■x +1,其中系数■被污染. (1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?18.对于有理数a 、b 定义一种新运算“⊗”,规定a ⊗b =|a |+|b |﹣|a ﹣b |.(1)计算2⊗3的值;(2)当a 、b 在数轴上的位置如图所示时,化简a ⊗b ; (3)已知a <0,a ⊗a =12+a ,求a 的值.19.已知关于x 的方程()()233210k x k x m ---++=是一元一次方程.(1)求k 的值.(2)若已知方程与方程3243x x -=-的解互为相反数,求m 的值. (3)若已知方程与关于x 的方程7352x x m -=-+的解相同,求m 的值.答案1.D 2.C 3.B 4.B 5.D 6.B 7.B 8.B9.A10.C11.212.移项等式基本性质1 13.-514.73 9915.(1)x=1(2)x=-316.(1)0;(2)1m=-;(3)1m=.17.(1)21x x--(2)-118.(1)4;(2)0;(3)a的值为-4.19.(1)3-;(2)2.5;(3)2.5.。

七年级数学上册-第三章一元一次方程同步练习题-人教新课标版

七年级数学上册-第三章一元一次方程同步练习题-人教新课标版

解一元一次方程的练习题解下列方程:(每题4分)(1)3(x-2)=2-5(x-2) (2) 2(x+3)-5(1-x)=3(x -1)(3) 3(1)2(2)23x x x +-+=+ (4) 3(2)1(21)x x x -+=--(5) 2x -13 =x+22 +1 (6) 12131=--x(7) x x -=+38(8) 12542.13-=-x x(9 ) 310.40.342x x -=+ (10) 3142125x x -+=- (11) 31257243y y +-=-(12) 576132x x -=-+ (13)143321=---m m (14) 52221+-=--y y y(15)12136x x x -+-=- (16) 38123x x ---= (17) 12(x-3)=2-12(x-3) (18)35.012.02=+--x x (19) 301.032.01=+-+x x (20) 223146x x +--= (21)124362x x x -+--=(22) x x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-(23) 112[(1)](1)223x x x --=- (24)27(3y+7)=2 - 32y(25)设k 为整数,方程kx=4-x 的解x 为自然数,求k 的值。

X - 27 X =432X + 25 = 35 70%X + 20%X = 3.6X ×53=20×41 25% + 10X =54X - 15%X = 68 X +83X =121 5X -3×215=75 32X ÷41=126X +5 =13.4 834143=+X 3X=83X ÷72=167 X +87X=43 4X -6×32=2125 ÷X=310 53 X = 7225 98 X = 61×5116X ÷ 356=4526×2513 4x -3 ×9 = 29 21x + 61x = 4103X -21×32=4 2041=+x x 8)6.2(2=-x6X +5 =13.4 25 X-13 X=310 4χ-6=385X=1915 218X=154 X ÷54=281532X ÷41=12 53X=7225 98X=61×5116X ÷356=4526÷2513 X-0.25=41 4X =30%4+0.7X=102 32X+21X=42 X+41X=105 X-83X=400 X-0.125X=8 X 36 = 43X+37 X=18 X ×( 16 + 38 )=1312 x -0.375x=65 x ×32+21=4×83 X -73X =12 5 X -2.4×5=80.36×5- 34 x = 35 23 (x- 4.5) = 7 12 x- 25%x = 10x- 0.8x = 16+6 20 x – 8.5= 1.5 x- 45 x -4= 21X +25%X=90 X -37 X= 89一、解方程:+-×÷=(1) 3.5X +1.8=12.3 (5) X +52X =21 (6) 54X +52X =21(7) 3.6X ÷2=2.16 (8) X +72X =43(2) 0.8X -4=1.6(3) 5X ÷2=10 (4) X -0.25X =3 (9) X -52X =103(10) X -52=103 (11) 2X +7X =109 (12) 83+X =52(13)107X=2514(14)21X=43(15)95X=10(16) 180+6X=330 (17) 2.2X-1=10 (18) X-0.8X=10(19) 15X÷2=60 (20) 4X+X=3.15 (21)3.4X+1.8=8.6(22) 5X-X=2.4 (23) 1.5X-X=1 (24) 6.6X-6X=1.8练习二1、12-3(9-x)=5(x-4)-7(7-x);2、6x-17=133、9-10x=10-9x4、2(x-1)=4.5、13x-26=136、75-5x=707、2(6x-2)=8 8、25x(12-6)=300 9、24x+12=13210、56=12x+8 11、2x+4=30 12、12x=11x-79 13、13x-12(x+2)=0 14、67-12x=7 15、(x-1)-(3x+2)= - (x-1)16、18x-16x+18×1+50=70 17、14×(60-x)×2=20x 18、4x+9(x+2)=20019、100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=117120、5x+4.5(103-x)=486练习三(1)2x+8=16 (2)x/5=10 (3)x+7x=8(4)9x-3x=6 (5)6x-8=4 (6)5x+x=9(7)x-8=6x (8)4/5x=20 (9)2x-6=12(10)7x+7=14 (11)6x-6=0 (12)5x+6=11(13)2x-8=10 (14)1/2x-8=4 (15)x-5/6=7(16)3x+7=28 (17)3x-7=26 (18)9x-x=16(19)24x+x=50 (20)6/7x-8=4 (30)3x-8=30(31)6x+6=12 (32)3x-3=1 (33)5x-3x=4 (34)2x+16=19 (35)5x+8=19 (36)14-6x=8 (37)15+6x=27 (38)5-8x=4 (39)7x+8=15(40)9-2x=1 (41)4+5x=9 (42)10-x=8 (43)8x+9=17 (44)9+6x=14 (45)x+9x=4+7 (46)2x+9=17 (47)8-4x=6 (48)6x-7=12 (49)7x-9=8 (50)x-56=1 (51)8-7x=1 (52)x-30=12 (53)6x-21=21 (54)6x-3=6 (55)9x=18 (56)4x-18=13 (57)5x+9=11 (58)6-2x=11 (59)x+4+8=23 (60)7x-12=8 (61)X-5.7=2.15 (62)15.5X-2X=18 (62)3X 0.7=5(63)3.5×2= 4.2 x (64)26×1.5= 2x (65)0.5×16―16×0.2=4x(66)9.25-X=0.403 (67)16.9÷X=0. 3 (68)X÷0.5=2.6 (69)x+13=33 (70)3 - 5x=80 (71)1.8- 6x=54 (72)6.7x -60.3=6.7 (73)9 +4x =40 (74)0.2x-0.4+0.5=3.7(75)9.4x-0.4x=16.2 (76)12 -4x=20 (77)1/3 x+5/6 x=1.4(78)12 x+34 x=1 (79)18x-14 x= 12 (80)23 x-5×14 = 14 (81)12 +34 x=56 (82)22-14 x= 12 (83)23 x-14 x= 14 (84)x+14 x= 65 (85)23 x=14 x +14 (86)30 x-12 x -14 x=1第三章一元一次方程习题1姓名: 学号: 分数:一、选择题(36分)1.下列各式是一元一次方程的是( )A. x+2y=1B.-5-3= -8C.x+3D.x=02.方程x x 231=+-的解是( ) A .31- B.31 C. 1 D. –1 3.已知等式3a=2b+5,则下列等式中不一定成立的是( ) A.3a-5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.3532+=b a 4.下列根据等式的性质成立的是()A.由y x 3231=-,得x=2y B. 由3x-2=2x+2,得x=4 C.由2x-3=3x ,得x=3 D. 由3x-5=7,得3x=7-55.解方程16110312=+-+x x 时,去分母后,正确结果是( ) A.4x+1-10x+1=1 B. 4x+2-10x-1=1 C. 4x+2-10x-1=6 D. 4x+2-10x+1=66.方程2x+a-4=0的解是x=-2,则a 等于( )A.-8B.0C.2D.87.下列方程的变形正确的是( )A .方程3x-2=2x+1,移项得3x-2x=-1+2B .方程3-x=2-5(x-1),去括号得3-x=2-5x-1C .方程2332=t ,未知数系数化为1得x=1D .方程15.02.01=--x x ,化成3x=6 8.代数式13x x --的值等于1时,x 的值是( ). A .3 B .1 C .-3 D .-19.已知代数式87x -与62x -的值互为相反数,那么x 的值等于( ).A .-1310B .-16C .1310D .1610.下列说法中正确的是 ( )A .a -一定是负数B .a 一定是负数C .a -一定不是负数D .2a -一定是负数11.当3x =时,代数式23510x ax -+的值为7,则a 等于( ).A .2B .-2C .1D .-112.已知方程(m+1)x ∣m ∣+3=0是关于x 的一元一次方程,则m 的值是 ( )A.±1B.1C.-1D.0或1二、填空题(14分)13.24,x x==则14.在公式中v=v0+at,已知v=15,v0=5,t=4,则a=_____。

人教版数学七年级上册第3章 一元一次方程同步检测

人教版数学七年级上册第3章 一元一次方程同步检测

七年级上册第3章同步检测一.选择题1.已知关于x的方程2x+m﹣9=0的解是x=3,则m的值为()A.3B.4C.5D.62.解一元一次方程(x﹣1)=2﹣x时,去分母正确的是()A.2(x﹣1)=2﹣5x B.2(x﹣1)=20﹣5xC.5(x﹣1)=2﹣2x D.5(x﹣1)=20﹣2x3.下列方程变形中属于移项的是()A.由2x=﹣1得x=﹣B.由=2得x=4C.由5x+b=0得5x=﹣b D.由4﹣3x=0得﹣3x+4=04.某景区2018年比2017年旅游人数增加了8%,2019年比2018年旅游人数增加了x%,已知2017年至2019年景区的旅游人数平均年增长率为19%,则下列方程正确的是()A.(1+8%)(1+19%)=(1+x)2B.(1+8%)(1+x%)=1+19%×2C.(1+8%)(1+19%)=(1+x%)2D.(1+8%)(1+x%)=(1+19%)25.下列方程中,解是2的方程是()A.3m﹣2=4m B.x=C.2(y﹣1)+8=5y D.﹣=66.若代数式5﹣4x与的值互为相反数,则x的值是()A.B.C.1D.27.定义运算“*”,其规则为a*b=,则方程4*x=4的解为()A.x=﹣3B.x=3C.x=2D.x=48.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A →O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒9.如图所示,小红将一个正方形剪去一个宽为4cm的长条后,再从剩下的长方形纸片上沿平行短边的方向剪去一个宽为5cm的长条.若两次剪下的长条面积正好相等,则原正方形的面积是()A.100B.196C.256D.40010.下列判断:①若a+b+c=0,则(a+c)2=b2.②若a+b+c=0,且abc≠0,则.③若a+b+c=0,则x=1一定是方程ax+b+c=0的解④若a+b+c=0,且abc≠0,则abc>0.其中正确的是()A.①②③B.①③④C.②③④D.①②③④二.填空题11.当t=时,整式5t+与4(t﹣)的值相等.12.在公式S=n(a+b)中,已知S=5,n=2,a=3,那么b的值是.13.在某足球比赛的前9场比赛中,A队保持连续不败,共积25分,按比赛规则,胜一场得3分,平一场得1分,设A队胜了x场,由题意可列方程为.14.对有理数a,b规定运算“*”的意义为a*b=a+2b,比如:5*7=5+2×7,则方程3x*=2﹣x的解为.15.如图,数轴上线段AB=2,CD=4,点A在数轴上的数是﹣10,点C在数轴上表示的数是16.若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动,点P是线段AB上一点,当点B运动到线段CD上,且BD =3PC+AP,则线段PC的长为.三.解答题16.解方程:(1)5x﹣2(3﹣2x)=﹣3(2)17.已知关于x的方程5x+2m=3x﹣1的根是非负数,求实数m的取值范围.18.列一元一次方程解应用题:元旦晚会是南开中学“辞旧岁,迎新年”的传统活动.晚会当天,小明组织班上的同学出去买气球来布置教室.已知买气球的男生有23人,女生有16人,且每个女生平均买的气球数比每个男生平均买的气球数多1个.回到学校后他们发现,男生买的气球总数比女生气球总数的还少1个,请问每个女生平均买几个气球?19.我们规定,若关于x的一元一次方程ax=b的解为a+b,则称该方程为“合并式方程”,例如:3x=﹣的解为﹣,且﹣,则该方程3x=﹣是合并式方程.(1)判断x=1是否是合并式方程并说明理由;(2)若关于x的一元一次方程5x=m+1是合并式方程,求m的值.20.定义:关于x的两个一次二项式,其中任意一个式子的一次项系数都是另一个式子的常数项,则称这两个式子互为“田家炳式”.例如,式子3x+4与4x+3互为“田家炳式”.(1)判断式子﹣5x+2与﹣2x+5(填“是”或“不是”)互为“田家炳式”;(2)已知式子ax+b的“田家炳式”是3x﹣4且数a、b在数轴上所对应的点为A、B.①化简|x+a|+|x+b|的值为7,则x的取值范围是;②数轴上有一点P到A、B两点的距离的和PA+PB=11,求点P在数轴上所对应的数.(3)在(2)的条件下,①若A点,B点同时沿数轴向正方向运动,A点的速度是B点速度的2倍,且3秒后,2OA=OB,求点A的速度.②数轴上存在唯一的点M,使得点M到A、B两点的距离的差MA﹣MB=m,求m的取值范围.(直接写出结果)参考答案一.选择题1.解:∵关于x的方程2x+m﹣9=0的解是x=3,∴2×3+m﹣9=0,∴m=3.故选:A.2.解:解一元一次方程(x﹣1)=2﹣x时,去分母正确的是5(x﹣1)=20﹣2x.故选:D.3.解:A、由2x=﹣1得:x=﹣,不符合题意;B、由=2得:x=4,不符合题意;C、由5x+b=0得5x=﹣b,符合题意;D、由4﹣3x=0得﹣3x+4=0,不符合题意.故选:C.4.解:设2017年的旅游人数为a人,a(1+8%)(1+x%)=a(1+19%)2,即(1+8%)(1+x%)=(1+19%)2,故选:D.5.解:A、当m=2时,左边=3×2﹣2=4,右边=8,左边≠右边,∴3m﹣2=4m的解不是x=2,故此选项不符合题意;B、当x=2时,左边=×2=,右边=,左边≠右边,∴x=的解不是x=2,故此选项不符合题意;C、当y=2时,左边=2×(2﹣1)+8=10,右边=10,左边=右边,∴2(y﹣1)+8=5y的解是x=2,故此选项符合题意;D、当x=2时,左边=2﹣1=1,右边=6,左边≠右边,∴﹣=6的解不是x=2,故此选项不符合题意.故选:C.6.解:根据题意得:5﹣4x+=0,去分母得:10﹣8x+2x﹣1=0,移项合并得:﹣6x=﹣9,解得:x=,故选:A.7.解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.8.解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.9.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是(x﹣4)cm,宽是5cm,由题意得:4x=5(x﹣4),解得:x=20,∴原正方形的面积=202=400(cm2);故选:D.10.解:①若a+b+c=0,则a+c=﹣b,根据互为相反数的两个数的平方相等即可得到:(a+c)2=b2.故正确;②根据abc≠0即可得到a、b、c都是非0的数,根据a+b+c=0,可以得到a+c=﹣b,则=﹣1,则.故正确;③把x=1代入方程a x+b+c=0,即可求得a+b+c=0,即x=1一定是方程a x+b+c=0的解,故正确;④根据abc≠0,可得到a、b、c都是非0的数,若a+b+c=0,则a、b、c中一定至少有1个正数,至少有一个是负数,则abc>0.不一定是正确的.故选:A.二.填空题(共5小题)11.解:根据题意得:5t+=4(t﹣),去括号得:5t+=4t﹣1,解得:t=﹣,故答案为:﹣.12.解:∵S=n(a+b)中,且S=5,n=2,a=3,∴5=×2×(3+b),解得:b=2.故答案为:2.13.解:设A队胜了x场,由题意可列方程为:3x+(9﹣x)=25.故答案为:3x+(9﹣x)=25.14.解:根据题中的新定义化简得:3x+=2﹣x,去分母得:6x+1=4﹣2x,解得:x=.故答案为:.15.解:设线段AB未运动时点P所表示的数为x,B点运动时间为t,则此时C点表示的数为16﹣2t,D点表示的数为20﹣2t,A点表示的数为﹣10+6t,B点表示的数为﹣8+6t,P点表示的数为x+6t,∴BD=20﹣2t﹣(﹣8+6t)=28﹣8t,AP=x+6t﹣(﹣10+6t)=10+x,PC=|16﹣2t﹣(x+6t)|=|16﹣8t﹣x|,PD=20﹣2t﹣(x+6t)=20﹣8t﹣x=20﹣(8t+x),∵BD=3PC+AP,∴BD﹣AP=3PC,∴28﹣8t﹣(10+x)=3|16﹣8t﹣x|,即:18﹣8t﹣x=3|16﹣8t﹣x|,①当C点在P点右侧时,18﹣8t﹣x=3(16﹣8t﹣x)=48﹣24t﹣3x,∴x+8t=15,∴PD=20﹣(8t+x)=20﹣15=5;②当C点在P点左侧时,18﹣8t﹣x=﹣3(16﹣8t﹣x)=﹣48+24t+3x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=3.5.∴PD的长有2种可能,即5或3.5,则PC的长有2种可能,即5﹣4=1或4﹣3.5=0.5.或①当C点在P点右侧时,18﹣8t﹣x=3(16﹣8t﹣x)=48﹣24t﹣3x,∴x+8t=15,∴PC=|16﹣8t﹣x|=|16﹣15|=1;②当C点在P点左侧时,18﹣8t﹣x=﹣3(16﹣8t﹣x)=﹣48+24t+3x,∴x+8t=,∴PD=20﹣(8t+x)=20﹣=3.5.∴PC=|16﹣8t﹣x|=|16﹣|=0.5.综上所述,PC的长为1或0.5.故答案为:1或0.5.三.解答题(共5小题)16.解:(1)去括号,可得:5x﹣6+4x=﹣3,移项,合并同类项,可得:9x=3,系数化为1,可得:x=.(2)去分母,可得:5(x﹣1)=10+2(x+1),去括号,可得:5x﹣5=10+2x+2,移项,合并同类项,可得:3x=17,系数化为1,可得:x=.17.解:解方程5x+2m=3x﹣1得:x=﹣,∵关于x的方程5x+2m=3x﹣1的根是非负数,∴﹣≥0,解得:m≤﹣,即m的取值范围是:m≤﹣.18.解:设每个女生平均买x个气球,则每个男生平均买(x﹣1)个气球,由题意可得:×16×x﹣1=23×(x﹣1)解得:x=2,答:每个女生平均买2个气球.19.解:(1)∵x=1,∴x=2,∵+1≠2,∴x=1不是合并式方程;(2)∵关于x的一元一次方程5x=m+1是合并式方程,∴5+m+1=,解得:m=﹣.故m的值为﹣.20.解:(1)∵﹣5x+2与﹣2x+5的其中一个式子的一次项系数不是另一个式子的常数项,∴它们不互为“田家炳式”,故答案为:不是;(2)①∵式子ax+b的“田家炳式”是3x﹣4,∴a=﹣4,b=3,∵|x+a|+|x+b|=7,∴|x﹣4|+|x+3|=7,当x<﹣3时,4﹣x﹣x﹣3=7,解得x=﹣3(舍去);当﹣3≤x≤4时,4﹣x+x+3=7,解得,x为﹣3≤x≤4中任意一个数;当x>4时,x﹣4+x+3=7,解得x=4(舍去).综上,﹣3≤x≤4.故答案为:﹣3≤x≤4.②∵PA+PB=11,∴当P点在A作左边时,有PA+PA+AB=11,即2PA+7=11,则PA=2,于是P为﹣4﹣2=﹣6;当P点在A、B之间时,有PA+PB=AB=7≠11,无解;当P点在B点右边时,有2PB+AB=11,则PB=2,于是P为3+2=5,综上,点P在数轴上所对应的数是﹣6或5;(3)①设A点运动的速度为x个单位/秒,∵A点的速度是B点速度的2倍,且3秒后,2OA=OB当点A在原点左边时,有2(4﹣3x)=3+3×x,解得,x=当点A在原点右边时,有2(3x﹣4)=3+3×x,解得,x=,∴点A的速度为个单位/秒或个单位/秒;②由题意可知,当M点在AB的中点与B之间(包括中点,不包括B点),则存在唯一一点M,使得MA﹣MB=m,此时0<MB≤3.5,∵m=MA﹣MB=AB﹣MB﹣MB=7﹣2MB,∴0≤m<7.故答案为:0≤m<7.。

人教版数学七年级上册 第3章 一元一次方程能力检测

人教版数学七年级上册 第3章 一元一次方程能力检测

3.1从算式到方程1.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣32.下列方程的变形正确的是()A.由3+x=5,得x=5+3B.由x=0,得x=2C.由7x=﹣4,得x=﹣D.由3=x﹣2,得x=﹣2﹣33.已知等式3a=2b+5,则下列等式不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc D.a=+4.下列方程中为一元一次方程的是()A.2x+3=0B.2x+y=3C.x2+x=3D.x﹣=35.下列变形正确的是()A.由﹣3+2x=1,得2x=1﹣3B.由3y=﹣4,得y=﹣C.由3=x+2,得x=3+2D.由x﹣4=9,得x=9+46.如果是关于x的一元一次方程,那么n的值为()A.0B.1C.D.7.方程﹣3(★﹣9)=5x﹣1,★处被盖住了一个数字,已知方程的解是x=5,那么★处的数字是()A.1B.2C.3D.48.若3a=2b,下列各式进行的变形中,不正确的是()A.3a+1=2b+1B.3a﹣1=2b﹣1C.9a=4b D.﹣=﹣9.若x=2是关于x的一元一次方程ax﹣b=1的解,则1﹣4a+2b的值是()A.2B.1C.0D.﹣110.下列等式变形正确的是()A.﹣2x=5,则x=﹣B.,则2x+5(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=6+8D.若7(x+1)﹣9x=1,则7x+7﹣9x=1二.填空题11.由3x=2x+1变为3x﹣2x=1,是方程两边同时加上.12.若关于x的方程(k﹣2)x|k﹣1|+5k+4=0是一元一次方程,则k+x=.13.若关于x的一元一次方程|a|x+2=0的解是x=﹣2,则a=.14.如果关于x的方程(a+2)x|a|﹣1=﹣2是一元一次方程,那么其解为.15.已知(m﹣4)x|m|﹣3﹣16=11是关于x的一元一次方程,则m=.三.解答题16.若关于x的方程=x﹣与方程3+4x=2(3﹣x)的解互为倒数,求m的值.17.已知方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,求a的值.18.已知m,n是有理数,单项式﹣x n y的次数为3,而且方程(m+1)x2+mx﹣tx+n+2=0是关于x的一元一次方程.(1)若该方程的解是x=3,求t的值.(2)若题目中关于x的一元一次方程的解是整数,请求出整数t的值.19.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.参考答案与试题解析一.选择题1.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.2.【解答】解:(A)由3+x=5,得x=5﹣3,故A错误;(B)由x=0,得x=0,故B错误;(D)由3=x﹣2,得x=3+2,故D错误;故选:C.3.【解答】解:A.3a=2b+5,等式两边同时减去5得:3a﹣5=2b,即A项正确,B.3a=2b+5,等式两边同时加上1得:3a+1=2b+6,即B项正确,C.3a=2b+5,等式两边同时乘以c得:3ac=2bc+5c,即C项错误,D.3a=2b+5,等式两边同时除以3得:a=+,即D项正确,故选:C.4.【解答】解:根据题意得:A.符合一元一次方程的定义,是一元一次方程,即A项正确,B.属于二元一次方程,不符合一元一次方程的定义,即B项错误,C.属于一元二次方程,不符合一元一次方程的定义,即C项错误,D.属于分式方程,不符合一元一次方程的定义,即D项错误,故选:A.5.【解答】解:A.﹣3+2x=1,等式两边同时加上3得:2x=1+3,即A项错误,B.3y=﹣4,等式两边同时除以3得:y=﹣,即B项错误,C.3=x+2,等式两边同时减去2得:x=3﹣2,即C项错误,D.x﹣4=9,等式两边同时加上4得:x=9+4,即D项正确,故选:D.6.【解答】解:∵是关于x的一元一次方程,∴2﹣n=1,解得n=1,故选:B.7.【解答】解:将x=5代入方程,得:﹣3(★﹣9)=25﹣1,解得:★=1,即★处的数字是1,故选:A.8.【解答】解:A、∵3a=2b,∴3a+1=2b+1,正确,不合题意;B、∵3a=2b,∴3a﹣1=2b﹣1,正确,不合题意;C、∵3a=2b,∴9a=6b,故此选项错误,符合题意;D、∵3a=2b,∴﹣=﹣,正确,不合题意;故选:C.9.【解答】解:把x=2代入ax﹣b=1,得2a﹣b=1.所以1﹣4a+2b=1﹣2(2a﹣b)=1﹣2×1=﹣1.故选:D.10.【解答】解:A.﹣2x=5,等式两边同时除以﹣2得:x=﹣,即A项错误,B.+=1,等式两边同时乘以10得:2x+5(x﹣1)=10,即B项错误,C.若5x﹣6=2x+8,移项得:5x﹣2x=8+6,即C项错误,D.7(x+1)﹣9x=1,去括号得:7x+7﹣9x=1,即D项正确,故选:D.二.填空题(共5小题)11.【解答】解:由3x=2x+1变为3x﹣2x=1,在此变形中,方程两边同时加上﹣2x.故答案为:﹣2x.12.【解答】解:由题意得:|k﹣1|=1,且k﹣2≠0,解得:k=0,﹣2x+4=0,解得:x=2,则k+x=0+2=2,故答案为:2.13.【解答】解:根据题意,得﹣2|a|+2=0,且a≠0,解得:a=±1.故答案为:±1.14.【解答】解:∵关于x的方程(a+2)x|a|﹣1=﹣2是一元一次方程,∴,解得a=2.∴方程为4x=﹣2,解得x=,故答案为:.15.【解答】解:由题意得:|m|﹣3=1,且m﹣4≠0,解得:m=﹣4,故答案为:﹣4.三.解答题(共4小题)16.【解答】解:解方程3+4x=2(3﹣x)得:x=,∵关于x的方程=x﹣与方程3+4x=2(3﹣x)的解互为倒数,∴把x=2代入方程=x﹣得:=2﹣,解得:m=.17.【解答】解:解方程3x+2a﹣1=0得:x=,解方程x﹣2a=0得:x=2a,∵方程3x+2a﹣1=0的解与方程x﹣2a=0的解互为相反数,∴2a+(﹣)=0,解得:a=﹣.18.【解答】解:(1)由题意得:n=2,m=﹣1;∴﹣x﹣xt+4=0,当x=3时,则﹣3﹣3t+2+2=0,∴t=;(2)(m+1)x2+mx﹣tx+n+2=0,∵n=2,m=﹣1,∴﹣x﹣xt+4=0,x=,t==﹣1,∴t≠﹣1,x≠0∵t是整数,x是整数,∴当x=1时,t=3,当x=4时,t=0,当x=﹣1时,t=﹣5,当x=﹣4时,t=﹣2,当x=2时,t=1,当x=﹣2时,t=﹣3.19.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.3.2解一元一次方程合并同类项及移项一.选择题1.一元一次方程+++=4的解为()A.30B.24C.21D.122.方程2x﹣4=3x+6的解是()A.﹣2B.2C.﹣10D.103.下列解方程过程中,变形正确的是()A.由5x﹣1=3得5x=3﹣1B.由﹣75x=76得x=﹣C.由x﹣3(x+4)=5得x﹣3x﹣4=5D.由2x﹣(x﹣1)=1得2x﹣x=04.若(5x+2)与(﹣2x+7)互为相反数,则2﹣x的值为()A.﹣1B.1C.5D.﹣5 5.下列方程变形过程正确的是()A.由x+1=6x﹣7得x﹣6x=7﹣1B.由4﹣2(x﹣1)=3得4﹣2x﹣2=3C.由得2x﹣3=0D.由得2x=96.下列各题正确的是()A.由5x=﹣2x﹣3,移项得5x﹣2x=3B.由=1+,去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x﹣9=1D.把﹣=1中的分母化为整数,得﹣=1 7.如图,小红做了四道方程变形题,出现错误有()A.①②③B.①③④C.②③④D.①②④8.已知代数式5x﹣10与3+2x的值互为相反数,那么x的值等于()A.﹣2B.﹣1C.1D.29.把方程﹣x=1.4整理后可得方程()A.﹣x=1.4B.C.D.10.在梯形的面积公式S=中,已知S=48,h=12,b=6,则a的值是()A.8B.6C.4D.2二.填空题11.已知y1=x+2,y2=4x﹣7,当x=时,y1﹣y2=0.12.规定一种运算“*”,a*b=a﹣2b,则方程x*3=2*3的解为13.定义新运算:对于任意有理数a、b都有a⊗b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊗5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.则4⊗x =13,则x=.14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x=.15.对于任意有理数a,b,c,d,规定一种运算:=ad﹣bc,例如=5×(﹣3)﹣1×2=﹣17.如果=2,那么m=.三.解答题16.解方程:(1)x﹣3(x+2)=6;(2)﹣y=3﹣.17.解方程:(1)x﹣2(2+x)=﹣4;(2)﹣x=3﹣.18.(1)计算:(﹣+)÷(﹣)(2)解方程:5(x﹣1)﹣3=2﹣2x19.定义:若A﹣B=m,则称A与B是关于m的关联数.例如:若A﹣B=2,则称A与B是关于2的关联数;(1)若3与a是关于2的关联数,则a=.(2)若2x﹣1与3x﹣5是关于2的关联数,求x的值.(3)若M与N是关于m的关联数,M=3mn+n+3,N的值与m无关,求N的值.参考答案与试题解析一.选择题1.【解答】解:+++=4,﹣+﹣+﹣+﹣=4,﹣=4,4x=4×21,x=21,故选:C.2.【解答】解:移项,得2x﹣3x=6+4整理,得﹣x=10,系数化为1,得x=﹣10.故选:C.3.【解答】解:选项A,移项没有变号,故变形不正确;选项B等号的两边除以﹣75,结果应该是x=﹣,故变形错误;选项C去括号时,4没有乘﹣3,故变形错误;选项D的变形正确.故选:D.4.【解答】解:由题意,得5x+2+(﹣2x+7)=0,2﹣x=5,故选:C.5.【解答】解:A、∵x+1=6x﹣7,∴x﹣6x=﹣7﹣1,选项A错误;B、∵4﹣2(x﹣1)=3,∴4﹣2x+2=3,选项B错误;C、∵,∴2x﹣3=0,选项C正确;D、∵,∴2x=﹣9,选项D错误.故选:C.6.【解答】解:A、由5x=﹣2x﹣3,移项得5x+2x=﹣3,不符合题意;B、由=1+,去分母得2(2x﹣1)=6+3(x﹣3),不符合题意;C、由2(2x﹣1)﹣3(x﹣3)=1,去括号得4x﹣2﹣3x+9=1,不符合题意;D、把﹣=1中的分母化为整数,得﹣=1,符合题意,故选:D.7.【解答】解:方程7x=4,解得:x=;方程3+x=5,方程y=,解得:y=2,故选:C.8.【解答】解:根据题意得:5x﹣10+3+2x=0,移项合并得:7x=7,解得:x=1,故选:C.9.【解答】解:∵﹣x=1.4,∴﹣x=1.4故选:A.10.【解答】解:把S=48,h=12,b=6代入公式得:48=×(a+6)×12,解得:a=2,故选:D.二.填空题(共5小题)11.【解答】解:由题意可得,(x+2)﹣(4x﹣7)=0,去括号,得x+2﹣4x+7=0,移项,得x﹣4x=0﹣2﹣7,合并同类项,得﹣3x=﹣9,系数化1,得x=3.故答案为:3.12.【解答】解:依题意得:x﹣2×3=2﹣2×3,解得:x=2,故答案为:x=213.【解答】解:根据题意得:4(4﹣x)+1=13,去括号得:16﹣4x+1=13,移项合并得:4x=4,解得:x=1.故答案为:1.14.【解答】解:当>1,即x>时,可得x=1;当<1,即x<时,可得=x,即x=﹣,综上,x=﹣或1,故答案为:﹣或115.【解答】解:由题意可得:3×4﹣m(﹣2)=212+2m=22m=2﹣12m=﹣5.故答案为:﹣5三.解答题(共4小题)16.【解答】解:(1)x﹣3(x+2)=6,去括号,得x﹣3x﹣6=6,移项,x﹣3x=6+6,合并同类项,得﹣2x=12,系数化1,得x=﹣6;(2)﹣y=3﹣,去分母,得4(1﹣y)﹣12y=36﹣3(y+2),去括号,得4﹣4y﹣12y=36﹣3y﹣6,移项,得﹣4y﹣12y+3y=36﹣6﹣4,合并同类项,﹣13y=26,系数化1,得y=﹣2.17.【解答】解:(1)去括号得:x﹣4﹣2x=﹣4,移项合并得:﹣x=0,解得:x=0;(2)去分母得:4(1﹣x)﹣12x=36﹣3(x+2),去括号得:4﹣4x﹣12x=36﹣3x﹣6,移项合并得:﹣13x=26,解得:x=﹣2.18.【解答】解:(1)原式=(﹣+)×(﹣36)=﹣8+9﹣2=﹣1;(2)去括号得:5x﹣5﹣3=2﹣2x,移项合并得:7x=10,解得:x=.19.【解答】解:(1)根据题意得:3﹣a=2,解得:a=1;故答案为:1;(2)根据题意得:2x﹣1﹣3x+5=2,移项合并得:﹣x=﹣2,解得:x=2;(3)根据题意得:M﹣N=m,把M=3mn+n+3代入得:3mn+n+3﹣N=m,即(3n﹣1)m+n+3=N,由N的值与m无关,得到3n﹣1=0,解得:n=,则N=3.3.3解一元一次方程(二)——去括号与去分母1.解方程4(x-2)=2(x+3),去括号,得 .移项,得 .合并同类项,得 .系数化为1,得 .2.将方程2x-3(4-2x)=5去括号,正确的是( )A.2x-12-6x=5B.2x-12-2x=5C.2x-12+6x=5D.2x-3+6x=53.方程2(x-3)+5=9的解是( )A.x=4B.x=5C.x=6D.x=74.解下列方程:(1)2(x-1)+1=0; (2)2x+5=3(x-1).5.解方程:2(3-4x)=1-3(2x-1).解:去括号,得6-4x=1-6x-1.(第一步)移项,得-4x+6x=1-1-6.(第二步)合并同类项,得2x=-6.(第三步)系数化为1,得x=-3.(第四步)以上解方程正确吗?若不正确,请指出错误的步骤,并给出正确的解答过程.6.下列是四个同学解方程2(x -2)-3(4x -1)=9的去括号的过程,其中正确的是( )A.2x -4-12x +3=9B.2x -4-12x -3=9C.2x -4-12x +1=9D.2x -2-12x +1=97.若5m +4与-(m -2)的值互为相反数,则m 的值为( )A.-1B.1C.-12D.-328.对于非零的两个有理数a ,b ,规定a ⊗b =2b -3a ,若1⊗(x +1)=1,则x 的值为( )A.-1B.1C.12D.-129.解下列方程:(1)4(3x -2)-(2x +3)=-1;(2)4(y +4)=3-5(7-2y);(3)12x +2(54x +1)=8+x.10.若方程3(2x-2)=2-3x的解与关于x的方程6-2k=2(x+3)的解相同,求k的值.第2课时利用去括号解一元一次方程的实际问题1.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是( )A.11岁B.12岁C.13岁D.14岁2.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元.问甲、乙两种奖品各购买了多少件?(1)若设甲种奖品购买了x件,请完成下面的表格;件数单价金额甲种奖品x件每件40元40x元乙种奖品件每件30元元(2)列出一元一次方程,解决问题.3.丽水市为打造“浙江绿谷”品牌,决定在省城举办农副产品展销活动.某外贸公司推出品牌产品“山山牌”香菇、“奇尔”惠明茶共10吨前往参展,用6辆汽车装运,每辆汽车规定满载,且只能装运一种产品.因包装限制,每辆汽车满载时能装香菇1.5吨或茶叶2吨.问装运香菇、茶叶的汽车各需多少辆?4.在红城中学举行的“我爱祖国”征文活动中,七年级和八年级共收到征文118篇,且七年级收到的征文篇数是八年级收到的征文篇数的一半还少2篇,求七年级收到的征文有多少篇?5.一架飞机在两城市之间飞行,风速为24 km/h,顺风飞行需要2 h 50 min,逆风飞行需要3 h.求无风时飞机的飞行速度和两城之间的航程.6.食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?第3课时 利用去分母解一元一次方程1.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =15-3(x -1) B.x =1-(3x -1)C.5x =1-3(x -1)D.5x =3-3(x -1)2.下列等式变形正确的是( )A.若-3x =5,则x =-35B.若x 3+x -12=1,则2x +3(x -1)=1 C.若5x -6=2x +8,则5x +2x =8+6D.若3(x +1)-2x =1,则3x +3-2x =13.要将方程2t -53+3-2t 5=3的分母去掉,在方程的两边最好是乘 . 4.依据下列解方程0.3x +0.50.2=2x -13的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据.解:原方程可变形为3x +52=2x -13.( ) 去分母,得3(3x +5)=2(2x -1).( )去括号,得9x +15=4x -2.( )( ),得9x -4x =-15-2.( )合并同类项,得5x =-17.( ),得x =-175.( ) 5.解下列方程:(1)x +12=3+x -64; (2)x -32-4x +15=1.6.某项工程甲单独做4天完成,乙单独做6天完成,已知甲先做1天,然后甲、乙合作完成此项工程.若设甲一共做了x 天,则所列方程为( )A.x 4+x +16=1B.x 4+x -16=1 C.x +14+x 6=1 D.x 4+14+x -16=1 7.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?8.在解方程x 3=1-x -15时,去分母后正确的是( ) A.5x =1-3(x -1) B.x =1-(3x -1)C.5x =15-3(x -1)D.5x =3-3(x -1)9.某书上有一道解方程的题:1+□x 3+1=x ,□处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =-2,那么□处应该是数字( )A.7B.5C.2D.-210.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x 个,则可列方程为( )A.x +12050-x 50+6=3B.x 50-x 50+6=3 C.x 50-x +12050+6=3 D.x +12050+6-x 50=3 11.若规定a*b =a +2b 2(其中a ,b 为有理数),则方程3*x =52的解是x = . 12.解下列方程:(1)x -13-x +26=4-x 2; (2)2x +13-5x -16=1;(3)2x +14-1=x -10x +112; (4)x 0.7-0.17-0.2x 0.03=1.13.某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A ,C 两地相距10千米(C 地在A 地上游),船在静水中的速度为7.5千米/时.求A ,B 两地间的距离.14.解关于x 的方程a -x +73=2(5-x),小刚去分母时忘记了将右边乘3,其他步骤都是正确的,巧合的是他求得的结果仍然是原方程的解,即小刚将求得的结果代入原方程后,左边与右边竟然也相等!你能求出使这种巧合成立的a 的值吗?参考答案:3.3 解一元一次方程(二)——去括号与去分母第1课时 利用去括号解一元一次方程1.解方程4(x -2)=2(x +3),去括号,得4x -8=2x +6.移项,得4x -2x =6+8.合并同类项,得2x =14.系数化为1,得x =7.2.C3.B4.(1)2(x -1)+1=0;解:去括号,得2x -2+1=0.移项、合并同类项,得2x =1.系数化为1,得x =12. (2)2x +5=3(x -1).解:2x +5=3x -3,2x -3x =-3-5,-x =-8,x =8.5.解:第一步错误.正确的解答过程如下:去括号,得6-8x =1-6x +3.移项,得-8x +6x =1+3-6.合并同类项,得-2x =-2.系数化为1,得x =1.6.A7.D8.B9.(1)4(3x -2)-(2x +3)=-1;解:去括号,得12x -8-2x -3=-1.移项,得12x -2x =8+3-1.合并同类项,得10x =10.系数化为1,得x =1.(2)4(y +4)=3-5(7-2y);解:去括号,得4y +16=3-35+10y.移项、合并同类项,得-6y =-48.系数化为1,得y =8.(3)12x +2(54x +1)=8+x. 解:去括号,得12x +52x +2=8+x. 移项、合并同类项,得2x =6.系数化为1,得x =3.10.解:由3(2x -2)=2-3x ,解得x =89. 把x =89代入方程6-2k =2(x +3),得 6-2k =2×(89+3).解得k =-89.第2课时利用去括号解一元一次方程的实际问题1.C2.(2)解:根据题意,得40x+30(20-x)=650.解得x=5.则20-x=15.答:购买甲种奖品5件,乙种奖品15件.3.解:设装运香菇的汽车需x辆.根据题意,得1.5x+2(6-x)=10.解得x=4.所以6-x=2.答:装运香菇、茶叶的汽车分别需要4辆和2辆.4.解:设七年级收到的征文有x篇,则八年级收到的征文有(118-x)篇,依题意,得(x+2)×2=118-x,解得x=38.答:七年级收到的征文有38篇.5.解:设无风时飞机的飞行速度为x km/h,则顺风时飞行的速度为(x+24) km/h,逆风飞行的速度为(x -24) km/h.根据题意,得 176(x +24)=3(x -24).解得x =840. 则3(x -24)=2 448.答:无风时飞机的飞行速度为840 km/h ,两城之间的航程为2 448 km. 6.解:设A 饮料生产了x 瓶,则B 饮料生产了(100-x)瓶.根据题意,得 2x +3(100-x)=270.解得x =30. 则100-x =70.答:A 饮料生产了30瓶,B 饮料生产了70瓶.第3课时 利用去分母解一元一次方程1.A2.D3. 15.4.解:原方程可变形为3x +52=2x -13.(分数的基本性质)去分母,得3(3x +5)=2(2x -1).(等式的性质2) 去括号,得9x +15=4x -2.(去括号法则) (移项),得9x -4x =-15-2.(等式的性质1) 合并同类项,得5x =-17.(系数化为1),得x =-175.(等式的性质2)5.(1)x +12=3+x -64;解:2(x +1)=12+(x -6). 2x +2=12+x -6. 2x +2=x +6. x =4.(2)x -32-4x +15=1.解:去分母,得5x -15-8x -2=10, 移项合并,得-3x =27, 解得x =-9. 6.B7.解:设应先安排x 人工作, 根据题意,得4x 40+8(x +2)40=1.化简可得:x 10+x +25=1,即x +2(x +2)=10. 解得x =2.答:应先安排2人工作. 8.C 9.B 10.C11. 1.12.(1)x -13-x +26=4-x 2;解:去分母,得2(x -1)-(x +2)=3(4-x). 去括号,得2x -2-x -2=12-3x. 移项,得2x -x +3x =2+2+12. 合并同类项,得4x =16. 系数化为1,得x =4. (2)2x +13-5x -16=1;解:去分母,得2(2x +1)-(5x -1)=6. 去括号,得4x +2-5x +1=6. 移项、合并同类项,得-x =3. 系数化为1,得x =-3. (3)2x +14-1=x -10x +112;解:去分母,得6x +3-12=12x -10x -1, 移项合并,得4x =8, 解得x =2.(4)x 0.7-0.17-0.2x 0.03=1. 解:原方程可化为10x 7-17-20x 3=1.去分母,得30x -7(17-20x)=21. 去括号,得30x -119+140x =21.移项、合并同类项,得170x =140. 系数化为1,得x =1417.13.解:设A ,B 两地间的距离为x 千米,依题意,得 x 7.5+2.5+x +107.5-2.5=4,解得x =203.答:A ,B 两地间的距离为203千米.14.解:因为去分母时忘了将右边乘3,所以a -x +73=2(5-x)化为3a -x -7=10-2x ,解得x =17-3a.因为将求得的结果代入原方程,左边与右边相等,所以把x =17-3a 代入a -x +73=2(5-x),得 a -17-3a +73=2[5-(17-3a)],整理,得4a =16. 解得a =4,故a 的值为4.3.4实际问题与一元一次方程一.选择题1.甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.设甲班原有人数是x 人,可列出方程( )A.x﹣3=98+x B.x﹣3=98﹣xC.x=(98﹣x)+3D.x﹣3=(98﹣x)+32.一种商品进价为每件100元,按进价增加20%出售,后因库存积压降价,按售价的九折出售,每件还能盈利()A.8元B.15元C.12.5元D.108元3.已知今年甲的年龄比乙的年龄多12岁,4年后甲的年龄恰好是乙的年龄的2倍,则甲今年的年龄是()A.20岁B.16岁C.15岁D.12岁4.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x﹣2)=2x+9C.D.5.如图,某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了()折.A.5B.5.5C.7D.7.56.篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2B.3C.4D.57.如图是某年的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如3,4,5,10,11,12,17,18,19).若用这样的矩形圈圈这张日历表的9个数,则圈出的9个数的和不可能为下列数中的()A.81B.90C.108D.2168.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知甲种文具比乙种文具单价少1元,如果设乙种文具单价为x元/件,那么下面所列方程正确的是()A.3(x﹣1)+2x=23B.3x+2(x﹣1)=23C.3(x+1)+2x=23D.3x+2(x+1)=239.一些相同的房间需要粉刷墙面.一天3名一级技工去粉刷8个房间,结果其中有50m2墙面未来得及粉刷;同样时间内5名二级技工粉刷了10个房间之外,还多粉刷了另外的40m2墙面,每名一级技工比二级技工一天多粉刷10m2墙面,设每个房间需要粉刷的墙面面积为xm2,则下列的方程正确的是()A.B.C.+10D.+1010.某中学的学生自己动手整理图书馆的图书,如果让七年级(1)班学生单独整理需要5小时;如果让七年级(2)班学生单独整理需要3小时.如果(2)班学生先单独整理1小时,(1)班学生单独整理2小时,剩下的图书由两个班学生合作整理,则全部整理完还需()A.小时B.1小时C.小时D.2小时二.填空题11.某商品标价为125元,现按标价的8折销售,仍可获利25%,则此商品的进价是元.12.为配合枣庄市“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠.小丽同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元.若此次小丽同学不买卡直接购书,则她需付款元.13.某超市在“五一”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠.小敏在该超市两次购物分别付款70元和288元,如果小敏把这两次购物改为一次性购物,则应付款元.14.已知两个完全相同的大长方形,长为a,各放入四个完全一样的白色小长方形后,得到图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是(用含a的代数式表示).15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有人共买鸡,人出九,盈十一;人出六,不足十六.问人数几何?”译文:“有几个人共同出钱买鸡,如果每人出九钱,那么多了十一钱;如果每人出六钱,那么少了十六钱.问:有几个人共同出钱买鸡?设有x个人共同买鸡,根据题意列一元一次方程.三.解答题16.为方便市民出行,减轻城市中心交通压力,青岛市掀起一轮城市基础设施建设高潮,动工修建贯穿东西、南北的地铁1、2、3、11号线,已知修建地铁2号线32千米和3号线66千米共投资581.6亿元,且3号线每千米的平均造价比2号线每千米的平均造价多0.2亿元.(1)求2号线、3号线每千米的平均造价分别是多少亿元?(2)除地铁1、2、3、11号线外,青岛市政府规划未来五年,还要再建182千米的地铁线网,据预算,这182千米地铁线网每千米的平均造价是3号线每千米的平均造价的1.2倍,则还需投资多少亿元?17.如图,已知数轴上的点C表示的数为6,点A表示的数为﹣4,点B是AC的中点,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)点B表示的数是,x=秒时,点P到达点B.(2)运动过程中点P表示的数是.若另一动点Q,从B出发,以每秒1个单位长度的速度沿数轴匀速运动,且P,Q同时出发,当x为多少秒时,点P与点Q之间的距离为2个单位长度?18.已知数轴上三点A,O,B对应的数分别为﹣5,0,1,点M为数轴上任意一点,其对应的数为x.请回答问题:(1)A、B两点间的距离是,若点M到点A、点B的距离相等,那么x的值是;(2)有一动点P从点A出发第一次向左运动1个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动了2017次时,求点P所对应的有理数.(3)当x为何值时,点M到点A、点B的距离之和是8;(4)如果点M以每秒3个单位长度的速度从点O向左运动时,点A和点B分别以每秒1个单位长度和每秒4个单位长度的速度也向左运动,且三点同时出发,那么几秒种后点M运动到点A、点B之间,且点M到点A、点B的距离相等?19.2018年9月7日,财政部和国税总局发布了《关于2018年第四季度个人所得税减除费用和税率适用问题的通知》,通知规定:我国自2018年10月1日起,个人所得税起征点从3500元提高到5000元.月收入不超过5000元的部分不收税;月收入超过5000元但不超过8000元的部分征收3%的个人所得……,例如:某人月收入6000元,他应缴纳个人所得税为(6000﹣5000)×3%=30(元).按此通知完成下面问题:(1)某人月收入为5800元,他应缴纳个人所得税多少元?(2)当月收入超过5000而又不超过8000元时,假设月收入为x(元),那么应缴纳个人所得税是多少元?(用含x的代数式表示);(3)如果某人2020年1月缴纳个人所得税78元,那么此人本月收入是多少元?参考答案与试题解析一.选择题1.【解答】解:设甲班原有人数是x人,可列出方程为:x﹣3=(98﹣x)+3.故选:D.2.【解答】解:由题意可得,每件还能盈利为:100×(1+20%)×0.9﹣100=8(元),故选:A.3.【解答】解:设今年甲的年龄为x岁,则今年乙的年龄为(x﹣12)岁,根据题意得:x+4=2(x﹣12+4),解得:x=20.故选:A.4.【解答】解:设有x个人,则可列方程:.故选:C.5.【解答】解:设一件商品原价为a元,买2件商品共打了x折,根据题意可得:a+0.5a=2a,解得:x=7.5,即相当于这2件商品共打了7.5折.故选:D.6.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.7.【解答】解:设中间的数为x,则左右两边数为x﹣1,x+1,上行邻数为(x﹣7),下行邻数为(x+7),左右上角邻数为(x﹣8),(x﹣6),左右下角邻数为(x+6),(x+8),根据题意得x+x﹣1+x+1+x﹣7+x+7+x﹣8+x﹣6+x+6+x+8=9x,如果9x=81,那么x=9,不符合题意;如果9x=90,那么x=10,不符合题意;如果9x=108,那么x=12,不符合题意;如果9x=216,那么x=24,此时最大数x+8=32,不是日历表上的数,符合题意;故选:D.8.【解答】解:设乙种文具单价为x元/件,则甲种文具的单价为(x﹣1)元/件,根据题意可得:3(x﹣1)+2x=23,故选:A.9.【解答】解:设每个房间需要粉刷的墙面面积为xm2,根据题意,得=+10.故选:D.10.【解答】解:设全部整理完还需x小时,根据题意得:+=1,解得:x=.答:全部整理完还需小时.故选:A.二.填空题(共5小题)11.【解答】解:设此商品的进价为x元,根据题意得:125×0.8﹣x=25%x,解得:x=80.故答案为:80.12.【解答】解:根据题意得:x﹣(0.8x+20)=10,解得:x=150,答:此次小丽同学不买卡直接购书,则她需付款150元.13.【解答】解:第一次购物显然没有超过100元,即在第二次消费70元的情况下,小敏的实质购物价值只能是70元.第二次购物消费288元,则可能有两种情况,这两种情况下付款方式不同(折扣率不同):第一种情况:小敏消费超过100元但不足350元,这时候小敏是按照9折付款的.设第二次实质购物价值为x元,那么依题意有x×0.9=288,解得:x=320.第二种情况:小敏消费不低于350元,这时候小敏是按照8折付款的.设第二次实质购物价值为a元,那么依题意有a×0.8=288,解得:a=360.即在第二次消费288元的情况下,小敏的实际购物价值可能是320元或360元.综上所述,小敏两次购物的实质价值为70+320=390或70+360=430,均超过了350元.因此均可以按照8折付款:390×0.8=312(元),或430×0.8=344(元).故应付款312或344元.故答案为:312或344.14.【解答】解:设图中小长方形的长为x,宽为y,大长方形的宽为b,根据题意,得:x+2y=a、x=2y,则4y=a,图(1)中阴影部分周长为2b+2(a﹣x)+2x=2a+2b,图(2)中阴影部分的周长为2(a+b ﹣2y)=2a+2b﹣4y,图(1)阴影部分周长与图(2)阴影部分周长之差为:(2a+2b)﹣(2a+2b﹣4y)=4y =a,故答案是:a.15.【解答】解:设有x个人共同买鸡,根据题意得:9x﹣11=6x+16.故答案为:9x﹣11=6x+16.三.解答题(共4小题)16.【解答】解:(1)设2号线每千米的平均造价为x亿元,则3号线每千米的平均造价为(x+0.2)亿元,依题意,得:32x+66(x+0.2)=581.6,解得:x=5.8,∴x+0.2=6.答:2号线每千米的平均造价为5.8亿元,3号线每千米的平均造价为6亿元.(2)6×1.2×182=1310.4(亿元).答:还需投资1310.4亿元.17.【解答】解:(1)∵点C表示的数为6,点A表示的数为﹣4,∴AC=10,∵点B是AC的中点,∴AB=BC=5,∴点B表示的数是1,x=秒时,点P到达点B,故答案为:1,;(2)∵动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,∴AP=2x,∴运动过程中点P表示的数是2x﹣4,故答案为:2x﹣4;(3)∵点P与点Q之间的距离为2个单位长度,∴|2x﹣4﹣(x﹣1)|=2,解得:x=1或x=5,∴当x为1或5秒时,点P与点Q之间的距离为2个单位长度.18.【解答】解:(1)∵A,O,B对应的数分别为﹣5,0,1,点M到点A,点B的距离相等,∴AB=1﹣(﹣5)=6,x的值是﹣2,故答案为:6,﹣2;(2)依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2016﹣2017,=﹣5+1008﹣2017,=﹣1014.答:点P所对应的有理数的值为﹣1014;(3)根据题意得:|x﹣(﹣5)|+|x﹣1|=8,解得:x=﹣6或2,∴当x为=﹣6或2时,点M到点A、点B的距离之和是8;(4)设运动t秒时,点M对应的数是﹣3t,点A对应的数是﹣5﹣t,点B对应的数是1﹣4t.①当点A和点B在点M两侧时,有两种情况.情况1:如果点A在点B左侧,MA=﹣3t﹣(﹣5﹣t)=5﹣2t.MB=(1﹣4t)﹣(﹣3t)=1﹣t.因为MA=MB,所以5﹣2t=1﹣t,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,不符合题意,舍去.情况2:如果点A在点B右侧,MA=3t﹣t﹣5=2t﹣5,MB=﹣3t﹣(1﹣4t)=t﹣1.因为MA=MB,所以2t﹣5=t﹣1,解得t=4.此时点A对应的数是﹣9,点B对应的数是﹣15,点A在点B右侧,符合题意.综上所述,三点同时出发,4秒时点M到点A,点B的距离相等.19.【解答】解:(1)由题意可得,某人月收入为5800元,他应缴纳个人所得税为:(5800﹣5000)×3%=800×3%=24(元),即某人月收入为5800元,他应缴纳个人所得税24元;(2)由题意可得,当月收入超过5000而又不超过8000元时,应缴纳个人所得税为(x﹣5000)×3%=(3%x ﹣150)(元),即当月收入超过5000而又不超过8000元时,应缴纳个人所得税(3%x﹣150)元;(3)设此人本月收入x元,3%x﹣150=78,解得x=7600,答:此人本月收入7600元.。

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项 同步练习(附答案)

人教版数学七年级上册:3.2 解一元一次方程(一)——合并同类项与移项  同步练习(附答案)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.对于方程8x +6x -10x =8,合并同类项正确的是( )A.3x =8B.4x =8C.-4x =8D.2x =82.方程x +2x =-6的解是( )A.x =0B.x=1 C.x =2 D.x=-2 3.方程2x +x +x 2=210的解是( )A.x =20B.x=40 C.x =60 D.x=804.下列各方程中,合并正确的是( )A.由3x -x =-1+3,得2x =4B.由23x +x =-7-4,得53x =-3C.由52-13=-x +23x ,得136=13xD.由6x -4x =-1+1,得2x =05.解下列方程:(1)6x -5x =3; (2)-x +3x =7-1;(3)x 2+5x 2=9; (4)6y +12y -9y =10+2+6.6.解方程:-23x +x =3.7.若式子3x -7和6x +13互为相反数,则x 的值为( )A.23B.32C.-32D.-238.小明在做作业时,不小心把方程中的一个常数污染了看不清楚,被污染的方程为:2y -12y =12-■,怎么办?小明想了想,便翻看了书后的答案,此方程的解为y =-53,于是,他很快知道了这个常数,这个常数是 .9.解下列方程:(1)0.3x -0.4x =0.6; (2)5x -2.5x +3.5x =-10;(3)x -25x =3+6; (4)16x -3.5x -6.5x =7-(-5).第2课时 利用合并同类项解一元一次方程的实际问题1.某数的3倍与这个数的2倍的和是30,这个数为( )A.4B.5C.6D.72.小王的妈妈买回一筐苹果,小王吃了13,弟弟吃了12,还剩下4个苹果,则妈妈买回的这筐苹果共有 个.3.已知3个连续偶数的和为36,则这三个偶数分别是 .4.一条长1 210 m 的水渠,由甲、乙两队从两头同时施工.甲队每天挖130 m ,乙队每天挖90 m ,则挖好水渠需要几天?5.麻商集团三个季度共销售冰箱2 800台,第一季度销售量是第二季度的2倍,第三季度销售量是第一季度的2倍,试问麻商集团第二季度销售冰箱多少台?6.我国是一个淡水资源严重缺乏的国家,有关数据显示,中国人均淡水资源占有量仅为美国人均淡水资源占有量的15,中、美两国人均淡水资源占有量之和为13 800 m 3,问中、美两国人均淡水资源占有量各为多少(单位:m 3)?7.有这样一列数,按一定规律排列成1,2,4,8,16,…,其中某三个相邻数的和是448,则这三个数是 .8.某人把360 cm长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 .9.在排成每行七天的日历表中取下一个3×3方块.若所有日期数之和为189,则n的值为 .10.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块的数目比为3∶5,一个足球表面一共有32块皮,黑色皮块和白色皮块各有多少?11.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,求此人第六天走的路程.第3课时 利用移项解一元一次方程1.解方程2x -5=3x -9时,移项正确的是( )A.2x +3x =9+5B.2x -3x =-9+5C.2x -3x =9+5D.2x -3x =9-52.若式子x +2的值为1,则x 等于( )A.1B.-1C.3D.-33.解方程4x -2=3-x 的步骤是( )①合并同类项,得5x =5;②移项,得4x +x =3+2;③系数化为1,得x =1.A.①②③B.③②①C.②①③D.③①②4.下列四组变形属于移项的是( )A.由x -24=3,得x -2=12 B.由9x -3=x +5,得9x -3=5+xC.由5x =15,得x =3D.由1-7x =2-6x ,得-7x +6x =2-15.若3x +6=4,则3x =4-6,这个过程是 .6.解下列方程:(1)4-35m =7; (2)2x -3=3x +4.7.解方程:x -3=-12x -4.8.已知x =1是关于x 的方程a(x -2)=a +3x 的解,则a 的值等于( )A.32B.-32C.34D.-349.下列方程中与2x -4=x +2的解相同的方程为( )A.3x +4=xB.x -2=3C.3x +6=0D.x +1=2x -510.某同学在解方程5x -1=■x+3时,把■处的数字看错了,解得x =-43,则该同学把■看成了( )A.3B.-1289C.-8D.8 11.对于有理数a ,b ,规定运算※的意义是:a ※b =a +2b ,则方程3x ※x =2-x 的解是x = .12.解下列方程:(1)3x +6=31-2x ; (2)x -2=13x +43.13.当m 为何值时,关于x 的方程4x -2m =3x +1的解是x =2x -3m 的解的2倍?第4课时利用移项解一元一次方程的实际问题1.天平的左边放2个硬币和10克砝码,右边放6个硬币和5克砝码,天平恰好平衡.已知所有硬币的质量都相同,如果设一个硬币的质量为x克,可列出方程为( )A.2x+10=6x+5B.2x-10=6x-5C.2x +10=6x -5D.2x -10=6x +52.甲厂库存钢材100吨,每月用去15吨;乙厂库存钢材82吨,每月用去9吨.经过m 个月,两厂剩余钢材相等,则m 的值应为( )A.2B.3C.4D.53.某部队开展植树活动,甲队35人,乙队27人,现另调28人去支援,使甲队人数与乙队人数相等,则应调往甲队的人数是 ,调往乙队的人数是 .4.七年级某班小组活动中,如果每组5人则余3人,每组6人则缺5人,则该班的学生人数为 人.5.小华的妈妈在25岁时生了小华,现在小华妈妈的年龄是小华的3倍多5岁,求小华现在的年龄.6.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A.x +1=2(x -2)B.x +3=2(x -1)C.x +1=2(x -3)D.x -1=x +12+17.“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树.请你仔细数,鸦树各几何?”在这一问题中,若设树有x棵,通过分析题意,鸦的只数不变,则可列方程:.8.甲、乙两人同时从A地出发去B地,甲骑自行车,骑行速度为10 km/h,乙步行,行走速度为6 km/h.当甲到达B地时,乙距B地还有8 km.甲走了多长时间?A,B两地的路程是多少?9.小明到书店帮同学买书,售货员告诉他,如果用20元钱办理“购书会员卡”,将享受八折优惠.(1)请问在这次买书中,小明在什么情况下办会员卡与不办会员卡一样?(2)当小明买标价为200元的书时,怎样做合算,能省多少钱?10.我市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,那么树苗缺21棵;如果每隔6米栽1棵,那么树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是( )A.5(x+21-1)=6(x-1)B.5(x+21)=6(x-1)C.5(x+21-1)=6xD.5(x+21)=6x参考答案:3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程1.B2.D3.C4.D5.(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.6.解方程:-23x +x =3.解:合并同类项,得13x =3.系数化为1,得x =9.7.D8. 3.9.(1)0.3x -0.4x =0.6;解:合并同类项,得-0.1x =0.6.系数化为1,得x =-6.(2)5x -2.5x +3.5x =-10;解:合并同类项,得6x =-10.系数化为1,得x =-53. (3)x -25x =3+6; 解:合并同类项,得35x =9. 系数化为1,得x =15.(4)16x -3.5x -6.5x =7-(-5).解:合并同类项,得6x =12.系数化为1,得x =2.第2课时 利用合并同类项解一元一次方程的实际问题1.C2. 24 .3. 10,12,14.4.解:设需要x天才能挖好水渠,则130x+90x=1 210.解得x=5.5.答:挖好水渠需要5.5天.5.解:设麻商集团第二季度销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二季度销售冰箱400台.6.解:设中国人均淡水资源占有量为x m3,美国人均淡水资源占有量为5x m3,根据题意,得x+5x=13 800.解得x=2 300.则5x=11 500.答:中、美两国人均淡水资源占有量各为2 300 m3,11 500 m3.7.64,128,256.8.40__cm,50__cm.9.21.10.解:设黑色皮有3x块,白色皮有5x块.根据“足球表面一共有32块皮”,可得3x +5x =32.解得x =4.所以3x =3×4=12,5x =5×4=20.答:黑色皮有12块,白色皮有20块.11.解:设第一天走的路程为x 里,则后面5天走得路程分别为:12x 里,14x 里,18x 里,116x 里,132x 里.根据题意,得 则x +12x +14x +18x +116x +132x =378. 解得x =192.则132x =132×192=6. 答:此人第六天走的路程为6里.第3课时 利用移项解一元一次方程1.B2.B3.C4.D5. 移项.6.(1)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(2)2x -3=3x +4.解:移项,得2x -3x =3+4.合并同类项,得-x =7.系数化为1,得x =-7.7.解:移项,得x +12x =-4+3.合并同类项,得32x =-1.系数化为1,得x =-23.8.B9.D10.D11. 13.12.(1)3x +6=31-2x ;解:移项,得3x +2x =31-6.合并同类项,得5x =25.系数化为1,得x =5.(2)x -2=13x +43. 解:移项,得x -13x =2+43. 合并同类项,得23x =103. 系数化为1,得x =5.13.解:因为关于x 的方程x =2x -3m 的解为x =3m ,所以关于x 的方程4x -2m =3x +1的解是x =6m.将x =6m 代入4x -2m =3x +1,得24m -2m =18m +1.移项、合并同类项,得4m =1.所以m =14.第4课时 利用移项解一元一次方程的实际问题1.A2.B3. 10, 18.4. 43 .5.解:设小华现在的年龄为x 岁,则妈妈现在的年龄为(x +25)岁.根据题意,得 x +25=3x +5.解得x =10.答:小华现在的年龄为10岁.6.C7. 3x+5=5(x-1).8.解:设甲走了x h,则A,B两地的路程是10x km.根据题意,得10x=6x+8.解得x=2.则10x=20.答:甲走了2 h,A,B两地的路程是20 km.9.解:(1)设小明在买x元的书的情况下办会员卡与不办会员卡一样.则x=20+80%x.解得x=100.答:小明在买100元的书的情况下办会员卡与不办会员卡一样.(2)20+200×80%=180(元).200-180=20(元).答:当小明买标价为200元的书时,应办理会员卡,能省20元钱. 10.A。

2023学年人教版七年级数学上册《3-3解一元一次方程—去括号与去分母》同步达标测评(附答案)

2023学年人教版七年级数学上册《3-3解一元一次方程—去括号与去分母》同步达标测评(附答案)

2022-2023学年人教版七年级数学上册《3.3解一元一次方程—去括号与去分母》同步达标测评(附答案)(共20小题,每小题6分,满分120分)1.解方程:(1)4x﹣3=7﹣x;(2)=1.(3).2.解方程:+=5.3.解方程:(1)3x﹣9=6x﹣1;(2)﹣=1.4.解方程:(1)=1;(2)1﹣.5.解方程:.6.解方程:9﹣2(x+3)=x﹣(3+6x)7.解方程:.8.解方程:14%x﹣9%(x+10)=7%x﹣0.2.9.解方程:(1)6x﹣7=4x﹣5;(2)=1﹣.10.解方程:(1)10x﹣2(3﹣2x)=4x;(2).11.解一元一次方程:(1)2y+1=5y+7;(2)﹣2=﹣.12.解方程:.13.解方程:(1)3x﹣4=2x+5;(2)=﹣3.14.解方程:x﹣=2﹣.15.解方程:(1)8﹣3(2x﹣1)=17+2(x+3);(2)x﹣=5﹣.16.解方程:(1)﹣=1;(2)[x﹣(x+1)]=(x﹣1).17.解方程:(1)6(1﹣x)﹣5(x﹣2)=2(2x+3);(2)﹣=3.18.解方程:(1)4x﹣3=2(x﹣1);(2).19.解方程:(1)2(x+3)=5x(2)﹣1=2+20.解方程:﹣1=参考答案1.解:(1)4x﹣3=7﹣x,4x+x=7+3,5x=10,x=2.(2)=1,2(2x+1)﹣(10x+1)=6,4x+2﹣10x﹣1=6,﹣6x+1=6,﹣6x=5,x=.(3),﹣=,3(6x+5)﹣(3x+20)=2(x﹣9),18x+15﹣3x﹣20=2x﹣18,15x﹣5=2x﹣18,15x﹣2x=5﹣18,13x=﹣13,x=﹣1.2.解:去分母,得12m﹣2(5m﹣1)+3(7﹣m)=30,去括号,得12m﹣10m+2+21﹣3m=30,移项,得12m﹣10m﹣3m=30﹣2﹣21,合并同类项,得﹣m=7,系数化为1,得m=﹣7.3.解:(1)3x﹣9=6x﹣1;移项,得3x﹣6x=﹣1+9,合并同类项,得:﹣3x=8,解得:x=﹣;(2)﹣=1,去分母,得5(3x﹣1)﹣2(4x+2)=10,去括号,得15x﹣5﹣8x﹣4=10移项,得15x﹣8x=10+5+4,合同类项,得7x=19,解得x=.4.解:(1)﹣=1,2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,﹣x+3=6,x=﹣3.(2)1﹣=,6﹣2(x+2)=3(x﹣1),6﹣2x﹣4=3x﹣3,﹣2x+2=3x﹣3,﹣5x=﹣5,x=1.5.解:,去分母得,24x+3(x﹣5)=6﹣2(1﹣4x),去括号得,24x+3x﹣15=6﹣2+8x,移项得,24x+3x﹣8x=15+6﹣2,合并同类项得,19x=19,系数化为1得,x=1.6.解:9﹣2(x+3)=x﹣(3+6x)9﹣2x﹣6=x﹣3﹣6x,﹣2x﹣x+6x=﹣3﹣9+6,3x=﹣6,x=﹣2.7.解:去括号,得2x+1+2=20﹣3x+3,移项,得2x+3x=20+3﹣1﹣2,合并同类项,得5x=20,系数化为1,得x=4.8.解:14%x﹣9%(x+10)=7%x﹣0.2,整理,得14x﹣9(x+10)=7x﹣20,去括号,得14x﹣9x﹣90=7x﹣20,移项,得14x﹣9x﹣7x=90﹣20,合并同类项,得﹣2x=70,系数化为1,得x=﹣35.9.(1)解:移项,得6x﹣4x=﹣5+7,合并同类项,得2x=2,系数化为1,得x=1;(2)解:去分母,得2(4x﹣1)=6﹣(3x﹣1),去括号,得8x﹣2=6﹣3x+1,移项,得8x+3x=6+1+2,合并同类项,得11x=9,系数化为1,得x=•10.解:(1)去括号得:10x﹣6+4x=4x,移项、合并得:10x=6,把未知数系数化为1得:;(2)去分母得:2(x+1)﹣8=x,去括号得:2x+2﹣8=x,移项、合并得:x=6.11.解:(1)移项得:2y﹣5y=7﹣1,合并同类型得:﹣3y=6,把未知数系数化为1得:y=﹣2;(2)去分母得:5(x+3)﹣20=﹣2(2x﹣2),去括号得:5x+15﹣20=﹣4x+4,移项得:5x+4x=4﹣15+20,合并同类项得:9x=9,把未知数系数化为1得:x=1.12.解:去分母得:2(2x+1)=6﹣(1﹣10x),去括号得:4x+2=6﹣1+10x,移项得:4x﹣10x=6﹣1﹣2,合并同类项得:﹣6x=3,系数化为1得:x=﹣0.5.13.解:(1)3x﹣2x=5+4,x=9.(2)7(1﹣2x)=3(3x+1)﹣3×21,7﹣14x=9x+3﹣63,﹣14x﹣9x=3﹣63﹣7,﹣23x=﹣67,.14.解:去分母得:10x﹣5(x﹣1)=20﹣2(x﹣2),去括号得:10x﹣5x+5=20﹣2x+4,移项得:10x﹣5x+2x=20+4﹣5,合并同类项得:7x=19,系数化为1得:.15.解:(1)去括号,得8﹣6x+3=17+2x+6,移项、合并同类项,得8x=﹣12,系数化为1,得.(2)去分母,得14x﹣7(1﹣x)=70﹣2(x+4),去括号,得14x﹣7+7x=70﹣2x﹣8,移项、合并同类项,得23x=69,系数化为1,得x=3.16.解:(1)﹣=1,2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1,﹣x=3,x=﹣3;(2)[x﹣(x+1)]=(x﹣1),[x﹣x﹣]=x﹣,[x﹣]=x﹣,x﹣=x﹣,x﹣x=﹣+,﹣x=﹣,x=1.17.(1)解:去括号得:6﹣6x﹣5x+10=4x+6,移项,合并同类项得:﹣15x=﹣10,系数化为1得:x=.(2)解:方程整理得:,去分母得:5x﹣10﹣2x﹣2=3,移项合并得:3x=15,系数化为1得:x=5.18.解:(1)4x﹣3=2(x﹣1),去括号,得4x﹣3=2x﹣2,移项,得4x﹣2x=3﹣1,合并同类项,得2x=1,系数化为1,得x=;(2),去分母,得6x﹣3(x﹣2)=6+2(2x﹣1),去括号,得6x﹣3x+6=6+4x﹣2,移项,得6x﹣3x﹣4x=6﹣6﹣2,合并同类项,得﹣x=﹣2,系数化为1,得x=2.19.解:(1)2(x+3)=5x2x+6=5x6=5x﹣2x6=3x2=x(2)﹣1=2+2(x+1)﹣4=8+(2﹣x)2x+2﹣4=8+2﹣x2x﹣2=10﹣x3x=12x=420.解:方程左右两边同时乘以15,得3(2x+1)﹣15=5(x﹣2),去括号得:6x+3﹣15=5x﹣10,移项合并同类项得:x=2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3解一元一次方程(二)(C卷)
一.选择题(共8小题)
1.若代数式x+2的值为1,则x等于()
A.1 B.﹣1 C.3 D.﹣3
2.若2(a+3)的值与4互为相反数,则a的值为()
A.﹣1 B.﹣ C.﹣5 D.
3.若2x+1=8,则4x+1的值为()
A.15 B.16 C.17 D.19
4.在下列解方程的过程中,对方程变形正确的一个是()
A.由x+2=0得x=2 B.由x=0得x=3
C.由﹣2x=﹣1得x=﹣ D.由2=x﹣3得x=5
5.解方程=1﹣,通过去分母的变形,得()
A.2x﹣1=1﹣x+1 B.3(2x﹣1)=1﹣x+1
C.2(2x﹣1)=6﹣(x+1) D.3(2x﹣1)=6﹣6(x+1)
6.定义“*”运算为a*b=ab+2a,若(3*x)+(x*3)=14,则x=()A.﹣1 B.1 C.﹣2 D.2
7.方程7(2x﹣1)﹣3(4x﹣1)=11去括号后,正确的是()A.14x﹣7﹣12x+1=11 B.14x﹣1﹣12x﹣3=11
C.14x﹣7﹣12x+3=11 D.14x﹣1﹣12x+3=11
8.若5m+与5(m+)互为相反数,那么m的值是()
A.0 B. C. D.
二.填空题(共4小题)
9.若代数式x﹣5与2x﹣1的值相等,则x的值是.
10.当x= 时,2x﹣3与的值互为倒数.
11.当x= 时,代数式3x﹣2与代数式6﹣x的值相等.
12.解方程=﹣1去分母得:15x﹣5=8x+4﹣1.错在项;解方程3=1﹣2(4+x),去括号得.
三.解答题(共5小题)
13.解方程:﹣1=0.
14.x为何值时,代数式﹣的值比代数式﹣3的值大3.
15.解方程:x﹣﹣1.
16.若新规定这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3.
(1)试求(﹣2)※3的值;
(2)若(﹣5)※x=﹣2﹣x,求x的值.
17.解方程:(x+4)=x﹣2.
参考答案一.选择题(共8小题)
1.【解答】解:根据题意得:x+2=1,
解得:x=﹣1,
故选B
2.【解答】解:∵2(a+3)的值与4互为相反数,∴2(a+3)+4=0,
∴a=﹣5,
故选C
3.【解答】解:方程2x+1=8得:x=,
把x的值代入4x+1得:15;
故本题选A.
4.【解答】解:A、由x+2=0得x=﹣2,错误;
B、由x=0得x=0,错误;
C、由﹣2x=﹣1得x=,错误;
D、由2=x﹣3得x=5,正确,
故选D
5.【解答】解:两边都乘以6,得
2(2x﹣1)=6﹣(x+1),
故选:C.
6.【解答】解:根据题意(3*x)+(x*3)=14,可化为:(3x+6)+(3x+2x)=14,
解得x=1.
故选B.
7.【解答】解:去括号得:(14x﹣7)﹣(12x﹣3)=11,即:14x﹣7﹣12x+3=11.
故选C.
8.【解答】解:∵与互为相反数,
∴+=0,
∴m=﹣.
故选D.
二.填空题(共4小题)
9.【解答】解:根据题意得:x﹣5=2x﹣1,
解得:x=﹣4,
故答案为:﹣4
10.【解答】解:∵2x﹣3与的值互为倒数,
∴2x﹣3=,
去分母得:5(2x﹣3)=4x+3,
去括号得:10x﹣15=4x+3,
移项、合并得:6x=18,
系数化为1得:x=3.
所以当x=3时,2x﹣3与的值互为倒数.
11.【解答】解:根据题意得:3x﹣2=6﹣x,
解得:x=2.
故答案是:2.
12.【解答】解:解方程=﹣1去分母得:15x﹣5=8x+4﹣1.错在最后一项;解方程3=1﹣2(4+x),去括号得3=1﹣8﹣2x,
故答案为:最后一;3=1﹣8﹣2x
三.解答题(共5小题)
13.【解答】解:去分母得:x+1﹣2=0,
x=2﹣1,
x=1.
14.【解答】解:由题意得:
﹣9(x+1)=2(x+1)
﹣9x﹣9=2x+2
﹣11x=11
x=﹣1.
15.【解答】解:去分母得:12x﹣2(10x+1)=3(2x+1)﹣12,
去括号,得:12x﹣20x﹣2=6x+3﹣12,
移项,得:12x﹣20x﹣6x=3﹣12+2,
合并同类项,得:﹣14x=﹣7,
系数化为1,得:x=.
16.【解答】解:(1)根据题中新定义得:(﹣2)※3=(﹣2)2+2×(﹣2)×3=4+(﹣12)=﹣8;
(2)根据题意:(﹣5)2+2×(﹣5)×x=﹣2﹣x,
整理得:25﹣20x=﹣2﹣x,
解得:x=.
17.【解答】解:去分母得:x+4=3x﹣6,移项合并得:2x=10,
解得:x=5.。

相关文档
最新文档