模电重点总结~~复习必备~~
模电各章重点内容及总复习.

《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。
2、半导体奇妙特性:热敏性、光敏性、掺杂性。
3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。
4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。
它们在外电场作用下均能移动而形成电流,所以称载流子。
5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。
6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。
7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。
所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。
8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。
9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。
其死区电压:S i管约0。
5V,G e管约为0。
1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。
其导通压降:S i管约0.7V,G e管约为0.2 V 。
这两组数也是判材料的依据。
10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。
(压降为0.7V,)②加反向电压时截止,相当断开。
③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。
11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。
二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。
三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。
是硅管。
b 、二极管反偏截止。
f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。
模拟电路期末重点总结

模拟电路期末重点总结一、基本概念1. 信号与信号描述的方式2. 模拟电路的基本组成部分3. 模拟电路中的基本元件:电阻、电容和电感4. 基本电路定律:欧姆定律、基尔霍夫定律5. 模拟电路的常见信号源:直流电源、交流电源、信号发生器等二、放大器及其应用1. 放大器的基本原理和分类2. 放大器的频率响应:通频带、增益带宽积、截止频率3. 常见放大器电路:共基极放大器、共射极放大器、共集电极放大器4. 放大器的非线性失真及其衡量方法5. 放大器的稳定性分析与补偿方法6. 放大器的应用:功率放大、差分放大器、运算放大器等三、滤波器1. 滤波器的基本原理和分类2. 滤波器的频率响应:通频带、截止频率、衰减特性、相位特性3. 一阶滤波器:低通滤波器、高通滤波器、带通滤波器、带阻滤波器4. 二阶及以上滤波器:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器5. 滤波器的设计:选择频率响应、元件参数计算、频率响应曲线绘制等四、反馈与稳定性1. 反馈的基本概念和分类2. 反馈电路的基本特性:增益、输入阻抗、输出阻抗3. 反馈网络的分析方法:开环增益、闭环增益、反馈系数、传输函数4. 反馈对电路性能的影响:增益稳定、频率稳定、阻抗稳定5. 反馈的设计与应用:选择反馈类型、计算反馈网络参数、稳定性分析等五、振荡器与信号发生器1. 振荡器的基本概念和分类2. 反馈振荡器的工作原理和条件3. 原型振荡器电路:震荡频率计算、电路稳定性分析4. 信号发生器的基本原理和常见电路:正弦波发生器、方波发生器、脉冲发生器等5. 信号发生器的电路设计与参数计算六、功率放大器与运算放大器1. 功率放大器的基本概念和应用领域2. A类、B类、AB类功率放大器的工作原理和特点3. 放大器的功率分配:效率和最大功率输出4. 运算放大器的基本概念和特性5. 运算放大器的基础电路:反相放大器、非反相放大器、加法器等6. 运算放大器的应用:积分器、微分器、比较器、滤波器等七、混频器与调制解调器1. 混频器的基本原理和分类2. 混频器的输入输出特性:转移函数、幅频特性、相频特性3. 调制解调器的基本原理和应用:AM调制解调、FM调制解调、PM调制解调4. 调制解调器的电路实现:调幅电路、调频电路、解调电路等八、特殊用途电路1. 比较器的基本原理和应用2. 电压源的设计与应用3. 倍压电路和反相器:电压倍增电路、反相放大电路等4. 电流源和电流镜电路:恒流源、恒流电桥等5. 电流传感器的电路设计和应用在模拟电路的学习中,我们需要掌握模拟电路的基本概念和基本组成部分,了解模拟电路中的基本元件和基本电路定律。
模电笔记知识点总结

模电笔记知识点总结一、模拟信号处理1. 模拟信号与数字信号模拟信号是指信号的数值是连续变化的,可以用连续的数学函数表示。
数字信号是指信号的数值是离散的,需要经过模数转换才能表示成数值输出。
模拟信号处理的目的是将模拟信号转换为数字信号,或者将数字信号转换为模拟信号。
2. 采样与保持采样是指将连续的模拟信号按照一定的时间间隔进行取样,得到一系列的离散数值。
保持是指在采样之后,保持所获得的信号值,直到下一次采样。
3. 模拟信号重构模拟信号重构是指将数字信号重新转换为模拟信号。
通常通过数字到模拟转换器(DAC)来实现。
4. 模拟信号滤波模拟信号滤波是指对模拟信号进行频率特性的调整,滤除不需要的频率成分,以及放大需要的频率成分。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
5. 模拟信号调制模拟信号调制是指将模拟信号转换为相应的调制信号,以便在传输和处理中更容易应用。
常见的模拟信号调制方式包括调幅调制(AM)、调频调制(FM)和调相调制(PM)。
二、放大器设计1. 放大器的基本原理放大器是一种电路,它可以放大输入信号的幅度,并输出相应的放大信号。
放大器的核心原理是利用晶体管或运算放大器等电子器件的非线性特性,实现信号的增益。
放大器的设计目标通常包括增益、带宽、输入/输出阻抗、噪声等方面的考虑。
2. 放大器的分类放大器可以根据其工作方式、频率响应等特性进行分类。
比较常见的放大器包括运算放大器、差分放大器、共模抑制放大器、功率放大器等。
3. 放大器的频率特性放大器的频率特性是指放大器对不同频率信号的响应。
常见的频率特性包括通频带、截止频率、增益带宽积等。
4. 放大器的非线性失真非线性失真是指放大器输出信号与输入信号之间存在非线性关系,导致输出信号不完全等于输入信号。
常见的非线性失真包括谐波失真、交调失真等。
5. 放大器的稳定性放大器的稳定性是指当放大器输出端负载发生变化时,放大器是否能够保持稳定的工作状态。
完整版)模拟电子技术基础-知识点总结

完整版)模拟电子技术基础-知识点总结共发射极、共基极、共集电极。
2.三极管的工作原理---基极输入信号控制发射结电流,从而控制集电极电流,实现信号放大。
3.三极管的放大倍数---共发射极放大倍数最大,共集电极放大倍数最小。
三.三极管的基本放大电路1.共发射极放大电路---具有电压放大和电流放大的作用。
2.共集电极放大电路---具有电压跟随和电流跟随的作用。
3.共基极放大电路---具有电压放大的作用,输入电阻较低。
4.三极管的偏置电路---通过对三极管的基极电压进行偏置,使其工作在放大区,保证放大电路的稳定性。
四.三极管的应用1.放大器---将弱信号放大为较强的信号。
2.开关---控制大电流的通断。
3.振荡器---产生高频信号。
4.稳压电源---利用三极管的负温度系数特性,实现稳定的输出电压。
模拟电子技术复资料总结第一章半导体二极管一.半导体的基础知识1.半导体是介于导体和绝缘体之间的物质,如硅Si、锗Ge。
2.半导体具有光敏、热敏和掺杂特性。
3.本征半导体是纯净的具有单晶体结构的半导体。
4.载流子是带有正、负电荷的可移动的空穴和电子,是半导体中的两种主要载流体。
5.杂质半导体是在本征半导体中掺入微量杂质形成的半导体。
根据掺杂元素的不同,可分为P型半导体和N型半导体。
6.杂质半导体的特性包括载流子的浓度、体电阻和转型等。
7.PN结是由P型半导体和N型半导体组成的结,具有单向导电性和接触电位差等特性。
8.PN结的伏安特性是指在不同电压下,PN结的电流和电压之间的关系。
二.半导体二极管半导体二极管是由PN结组成的单向导电器件。
1.半导体二极管具有单向导电性,即只有在正向电压作用下才能导通,反向电压下截止。
2.半导体二极管的伏安特性与PN结的伏安特性相似,具有正向导通压降和死区电压等特性。
3.分析半导体二极管的方法包括图解分析法和等效电路法等。
三.稳压二极管及其稳压电路稳压二极管是一种特殊的二极管,其正常工作状态是处于PN结的反向击穿区,具有稳压的作用。
大学模电知识点总结

大学模电知识点总结1. 电路基础电路是由电路元件和互相连接在一起的导线组成的。
电路是由电路元件和互相连接在一起的导线组成的。
电路的基本元件包括电源、电阻、电容和电感等。
电源可以提供电流,电阻可以阻碍电流的流动,电容可以储存电荷,电感可以储存能量。
电路中的元件之间通过电路连接线连接在一起,共同构成了一个闭合的电路。
2. 电路分析方法电路分析方法主要包括基尔霍夫定律、欧姆定律和电容电感元件的动态特性分析等。
基尔霍夫定律是用来分析电路中的电流和电压分布的重要方法。
欧姆定律则是用来分析电路中的电流和电压的关系的基本定律。
电容电感元件的动态特性分析包括对电容电感元件的充放电过程和动态特性的分析。
3. 有源电路分析有源电路分析是分析电路中带有能源的元件的分析方法。
有源电路中的电源可以提供电流和电压,分析有源电路需要考虑电源的作用和影响。
有源电路分析主要包括对电源的特性分析、对有源电路的电流和电压分布的分析等内容。
4. 无源电路分析与有源电路不同,无源电路是指电路中不含电源的电路。
无源电路分析主要是对无源电路中的电阻、电容、电感等元件的分析。
无源电路中的元件都是 passively响应的,因此分析无源电路需要考虑元件之间的相互影响和电流、电压的分布。
5. 交流电路分析交流电路是指交流电源供电的电路,交流电路分析需要考虑交流电源的特性和电路中的电阻、电容、电感等元件的特性。
分析交流电路需要考虑交流电源的频率和幅值对电路的影响,以及交流电路中的电压、电流的相位差等因素。
6. 数字电路设计数字电路设计是指在数字逻辑门的基础上设计各种数字电路。
数字电路设计需要考虑逻辑门的特性和组合逻辑、时序逻辑的设计。
数字电路设计还需要考虑输入信号的采样和量化、数字信号的处理和输出等内容。
7. 模拟电路设计模拟电路设计是指在模拟元件的基础上设计各种模拟电路。
模拟电路设计需要考虑模拟元件的特性和模拟电路的放大、滤波、整定等功能。
模拟电路设计还需要考虑输入信号的采样和处理、模拟信号的处理和输出等内容。
考研复试模电知识点总结

考研复试模电知识点总结一、基本概念模拟电子技术是以连续变化的电压、电流和功率为研究对象的一门科学技术,主要包括模拟信号和模拟电路两大部分。
模拟信号是一种连续变化的信号,与数字信号相对应。
模拟电路是运用模拟电子技术处理模拟信号的电路。
二、基本元件1、二极管:具有单向导电特性,可用于整流、饱和开关等应用。
2、晶体管:具有放大、开关等功能,是现代电子器件的基础。
3、场效应管:具有高输入电阻、低输入电容等特点,广泛应用于放大电路和中频放大电路。
4、集成电路:包括模拟集成电路和数字集成电路,是模电技术的发展方向。
三、基本信号处理电路1、放大电路:包括共射放大电路、共集放大电路、共基放大电路等,是信号处理电路中最基本的一类电路。
2、滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等,用于提取特定频率范围的信号。
3、比较器:比较器是一种电路,用于比较两个信号的大小,输出高电平或低电平,常用于模拟信号的数字化处理。
四、放大器1、放大器的分类:按输入输出信号的形式分类,可分为电压放大器、电流放大器、功率放大器等。
2、放大器的频率特性:放大器的截止频率、通频带等特性对放大器的使用具有重要意义。
3、放大器的频率补偿:放大器在整个频率范围内的增益都能保持不变,称为频率补偿。
4、负反馈:将放大器的一部分输出回路到输入端,可改善放大器的线性度、稳定性和频率响应。
五、振荡器1、振荡器的基本原理:振荡器是一种能够自激地产生周期性输出信号的电路。
2、RC振荡器:由一个反馈网络和一个放大器构成。
当放大器放大之后的输出信号再经过反馈网络后又回到放大器的输入端,这样便形成了一个正反馈回路,从而可以产生振荡。
3、LC振荡器:由一个感性元件和一个电容元件构成的振荡器。
六、调制解调1、调制:将低频信号嵌入到高频信号中传输,可分为调幅调制、调频调制、调相调制等。
2、解调:将调制的信号分离出来,还原成原来的低频信号。
3、调制解调电路:包括调幅调制解调、调频调制解调、调相调制解调电路等。
模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。
2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。
3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。
4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。
二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。
2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。
3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。
4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。
三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。
2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。
四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。
2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。
3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。
五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。
模电 知识点总结

模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。
其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。
2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。
常见的信号形式有直流信号、交流信号、脉冲信号等。
3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。
常见的放大器有运放放大器、晶体管放大器等。
4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。
5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。
调制解调技术是模拟电子技术中的重要应用之一。
二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。
常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。
2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。
常见的电容电路包括RC电路、LC电路、多级滤波器等。
3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。
常见的电感电路包括RLC电路、振荡电路、滤波器等。
4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。
5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。
常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。
6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。
常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。
7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。
模电知识点复习总结

模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。
下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。
2.信号描述与频域分析:时间域与频域的关系。
傅里叶级数和傅里叶变换的基本概念和应用。
3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。
4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。
二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。
2.放大器的稳定性:稳态稳定性和瞬态稳定性。
3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。
4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。
5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。
三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。
2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。
3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。
4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。
四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。
2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。
3.双向可调电源的控制方式:串行控制和并行控制。
五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。
2.滤波器的频率响应特性:通频带、截止频率、衰减量。
3.滤波器的传输函数:频率选择特性、阶数选择。
4.滤波器的实现方法:RC、RL、LC和电子管等。
六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。
2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。
3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。
模电知识点总结笔试

模电知识点总结笔试一、基础理论知识1. 电子学基础(1)电子学的基本概念:电子、电荷、电流、电压等。
(2)半导体物理学:半导体材料的性质、PN结的特性等。
2. 电路基础(1)电路分析方法:基尔霍夫定律、戴维南定理、叠加原理等。
(2)电路中的元件:电阻、电容、电感等实际应用。
二、模拟信号处理1. 信号与系统(1)信号的分类:连续信号、离散信号、周期信号、非周期信号等。
(2)系统的分类:线性系统、非线性系统、时变系统、时不变系统等。
2. 模拟滤波(1)滤波器的分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
(2)滤波器的设计:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
三、放大电路1. 放大器的基本概念(1)放大器的分类:按输入输出信号类型分为模拟放大器和数字放大器。
(2)放大器的性能参数:增益、带宽、输入阻抗、输出阻抗等。
2. 放大电路设计(1)基本放大电路:共射放大器、共集放大器、共基放大器等。
(2)放大电路稳定性分析:稳定性条件、负反馈、电容耦合等。
四、信号发生与调制1. 信号发生器(1)基本信号源:RC震荡器、LC震荡器、晶体振荡器等。
(2)信号源的稳定性分析:频率稳定度、振幅稳定度、相位噪声等。
2. 调制技术(1)调制原理:调频、调幅、调相等基本调制方式的原理和特点。
(2)调制电路设计:频率调制电路、幅度调制电路、相位调制电路等。
五、反馈电路1. 反馈的基本概念(1)反馈电路的分类:正反馈、负反馈。
(2)反馈电路的性能:增益稳定、带宽拓展、非线性失真降低等。
2. 反馈网络设计(1)反馈网络结构:电流负反馈、电压负反馈。
(2)反馈网络应用:放大电路、振荡器、滤波器等反馈电路的设计。
六、运算放大器1. 运算放大器的特性(1)运算放大器的基本原理:差分输入、单端输出、大增益、高输入阻抗等。
(2)运算放大器的理想模型:无输入偏置电流、无输入偏置电压等。
2. 运算放大器的应用(1)运算放大器在电路中的基本应用:比较器、积分器、微分器等。
模电知识重点总结

模电知识重点总结(直流电源比较简单却是考试和做设计的重点,几乎所有设计都用到直流电源。
负反馈也是非常重要的一章,运放应用主要是线性应用,所以负反馈用的比较多。
总之,现在的趋势是复杂理论计算的题越来越少,应用型的设计、分析类题目会越来越多,尤其是结合一些集成芯片的应用。
)第一章绪论放大电路的基本知识第二章半导体二极管及其基本电路半导体物理基础PN结及其单向导电性(重点)半导体二极管外特性、主要参数和二极管正向V-I特性的建模及二极管电路模型法分析法(重点)稳压管的外特性。
第三章半导体三极管及放大电路基础三极管的电流分配、放大原理及特性曲线和主要参数放大电路的组成原则、基本工作原理放大电路的两种分析方法:图解法分析方法(通过放大电路图解分析法的学习,主要掌握如何确定静态工作点,以及了解静态工作点的不同选择对非线性失真的影响)和小信号等效电路分析法(小信号分析法是分析动态指标的重要工具,熟练掌握BJT的H参数小信号模型的建立、受控电源的概念,能够熟练的应用H参数小信号等效电路计算放大电路的电压增益、输入电阻和输出电阻等)(重点)放大电路工作点的稳定问题共射、共集、共基三种组态电路的分析计算(重点掌握射极偏置电路的工作原理和静态、动态指标的计算)(重点)多级放大电路的分析计算放大电路的频率响应(要求掌握一阶RC电路的波特图)(重点)第四章场效应管(FET)放大电路结型场效应管(JFET)、绝缘栅型场效应管(IGFET)及其场效应管(FET)放大电路的组成、工作原理(以JFET、MOSFET为重点),用公式计算法分析场效应管(FET)放大电路静态工作点,用小信号模型分析波分析场效应管(FET)放大电路的动态指标。
第五章功率放大电路(重点)功率放大电路的特点和主要研究对象互补对称功放(OCL、OTL)电路的组成、分析计算和功率BJT的选择(熟练掌握乙类互补功率对称放大电路的组成、分析计算和功率BJT的选择)(重点)第六章集成电路、运算放大器正确理解镜像电流缘、微电流源的工作原理、特点及主要用途,重点掌握差分放大电路的分析和各项指标的计算(重点)定性理解集成运放的基本组成、工作原理和主要参数第七章反馈放大电路正确理解反馈的基本概念及分类,负反馈放大器的方框图及放大倍数的一般表达式,反馈类型及极性的判断正确解释负反馈对放大器性能的影响深度负反馈条件下的负反馈放大器的分析方法(利用“虚短”和“虚断”的概念,进行近似计算为主)(重点)负反馈放大电路的稳定问题第八章信号的运算与处理电路理想运放及参数虚短、虚断的概念运放的三种基本电路(同相放大电路、反相放大电路、差分式放大电路)和信号运算电路(加法器、减法器、积分器、微分器)(熟练掌握基本运算电路的分析计算)(重点) 信号处理电路(有源滤波器)了解对数和反对数运算的工作原理、集成模拟乘法器的工作原理及应用第九章信号产生电路正弦波振荡电路的相位平衡条件及幅度平衡条件(重点)RC串并联正弦波振荡电路的工作原理、起振条件、稳幅原理及振荡频率的计算(重点)LC正弦波振荡电路的工作原理和振荡频率的计算比较器(单门限电压比较器、迟滞比较器)方波发生电路第十章直流稳压电源单相桥式整流、电容滤波电路的工作原理及指标计算(重点)稳压管稳压电路稳压原理和限流电阻的计算串联反馈式稳压电路的稳压原理和输出电压的计算(重点)集成三端稳压器使用方法和典型应用。
模电重点总结复习必备

u
+
-
A
+
∞
i
f
R
i
i
f
i
i
i+
i-
i
+
+
T
-
i
+
u
R
i
i
i
b
i
f
2
虚短
3
虚断
1
串联负反馈,输入端电压求和
6
并联负反馈,输入端电流求和
5
虚断
4
虚短
判断能否自激的方法
(1)画出 的波特图
(2)找出两个特定的频率
(3)判断
(4)若不自激,则判断幅度裕度和相位裕度
方法一:
方法二:
02
01
分析方法:分频段研究法和时间常数法
直流稳压电源
工作原理
整流
计算
稳压
滤波
g
g
d
S
d
i
工作在非线性区时的特点
工作在线性区时的特点
虚断
虚短 虚断
运算放大器
波特图
画复杂电路或系统的波特图,关键在于一些基本因子
基本放大电路
01.
多级放大电路
01.
差分放大电路
01.
反馈放大电路
01.
运算放大器
01.
功率放大器
01.
频率响应
01.
直流稳压电源
01.
三、电路部分
共发射极、共集电极、共基极、 共源、共漏
特点和典型功能:
较大,Ri很大;适于小信号电压放大
共漏放大电路
+
C
g3
模电总结(大全5篇)

模电总结(大全5篇)第一篇:模电总结半导体器件半导体中有两种载流子:电子,空穴。
当电子挣脱共价键的束缚成为自由电子后,共价键就留下一个空位,这个空位就称为空穴。
影响半导体导电性的因素:外界热(温度)和光的作用或往纯净的半导体中掺入某些杂质。
本征半导体:完全纯净的、结构完整的半导体晶体。
在绝对0度(T=0K)和没有外界激发时,价电子完全被共价键束缚着,本征半导体中没有可以运动的带电粒子(即载流子),它的导电能力为0,相当于绝缘体。
在常温下,由于热激发,使一些价电子获得足够的能量而脱离共价键的束缚,成为自由电子,同时共价键上留下一个空位,称为空穴。
本征激发的特点:① 两种载流子参与导电,自由电子数(n)=空穴数(p)② 外电场作用下产生电流,电流大小与载流子数目有关③ 导电能力随温度增加显著增加杂质半导体(通过掺杂,提高导电能力)N 型半导体:电子是多数载流子,空穴是少数载流子,但半导体呈中性,也称为(电子半导体)。
(在硅或锗晶体中掺入少量的五价元素,如磷形成)P 型半导体:空穴是多数载流子,电子是少数载流子,但半导体呈中性,也称为(空穴半导体)。
(在硅或锗晶体中掺入少量的三价元素,如硼形成)多子浓度主要取决于杂质浓度,少子浓度与温度有关。
二极管:导通管的压降看做常值(硅0.7V,锗0.2V)或0V(理想二极管)。
特殊二极管——稳压管(工作在反向击穿区)稳压原理:无论输入变化或负载变化,引起的电流变化都加于稳压管上,使输出电压稳定。
双极性晶体管(BJT)集电区:面积较大,基区:较薄,掺杂浓度低,发射区:掺杂浓度较高。
要使三极管能放大电流,必须使发射结正偏,集电结反偏。
双极性晶体管输出特性三个区域的特点: ① 放大区:发射结正偏,集电结反偏。
② 饱和区:发射结正偏,集电结正偏。
③ 截止区: 发射结、集电结均反偏。
双极型三极管是电流控制器件,场效应管是电压控制器件。
场效应管有两种: 结型场效应管JFET;绝缘栅型场效应管MOS ① N沟道增强型② N 沟道耗尽型③ P 沟道增强型④ P 沟道耗尽型耗尽型与增强型的区别在与UGS=0时是否有导电沟道。
模电知识点总结

模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。
3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。
5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。
反相:虚地。
第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。
点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。
模拟电子技术重点笔记

模拟电子技术重点笔记模拟电子技术是电子信息类专业的一门重要基础课程,它主要研究对模拟信号进行处理和传输的电子电路。
以下是对模拟电子技术重点知识的整理。
一、半导体基础知识半导体材料如硅、锗等具有独特的导电特性。
在纯净的半导体中掺入微量杂质,可以显著改变其导电性能。
P 型半导体中空穴是多数载流子,N 型半导体中电子是多数载流子。
PN 结是半导体器件的核心结构,具有单向导电性。
二、二极管二极管是由一个 PN 结加上电极引线和管壳构成的。
二极管的伏安特性是非线性的,正向导通时电压较小,反向截止时电流极小。
二极管的主要应用包括整流、限幅、钳位等。
三、三极管三极管有 NPN 和 PNP 两种类型,由三个掺杂区和两个 PN 结组成。
三极管具有电流放大作用,其工作状态分为截止、放大和饱和。
要使三极管处于放大状态,发射结正偏,集电结反偏。
四、基本放大电路1、共发射极放大电路这是最基本的放大电路,具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。
2、共集电极放大电路也称为射极跟随器,输入电阻高,输出电阻低,电压放大倍数接近1,具有电流放大作用。
3、共基极放大电路输入电阻小,输出电阻大,电流放大倍数小于 1,但具有较好的高频特性。
五、集成运算放大器集成运放具有高增益、高输入电阻、低输出电阻等特点。
理想运放工作在线性区时,具有“虚短”和“虚断”的特性。
运放可以组成比例运算电路、加法运算电路、减法运算电路等。
六、反馈反馈在电子电路中起着重要作用。
分为正反馈和负反馈。
负反馈可以改善放大电路的性能,如稳定增益、减小非线性失真、扩展频带等。
七、功率放大电路功率放大电路要在输出较大功率的同时,提高效率。
常见的有甲类、乙类和甲乙类功率放大电路。
八、直流稳压电源直流稳压电源包括电源变压器、整流电路、滤波电路和稳压电路。
整流电路将交流变为脉动直流,滤波电路减小纹波,稳压电路提供稳定的直流输出。
在学习模拟电子技术时,需要掌握好电路的分析方法,如图解法、微变等效电路法等。
(完整版)模电知识总结

第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。
1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。
2、本征半导体的导电性很差,但与环境温度密切相关。
3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。
二极管的特性对温度很敏感。
其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。
(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。
(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。
电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。
模电常见知识点总结

模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。
2. 电路元件:电路元件主要包括电阻、电容和电感。
电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。
3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。
模拟信号的处理包括滤波、放大、混频等操作。
4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。
5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。
6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。
7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。
8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。
二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。
2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。
3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。
4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。
5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。
6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。
7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。
模电各章节主要知识点总结

06
第六章:信号发生器与信号变换器
信号发生器的定义和分类
总结词
信号发生器是用于产生所需信号的电子设备 ,根据产生信号的方式不同,可以分为振荡 器和调制器两类。
详细描述
信号发生器是用来产生各种所需信号的电子 设备,这些信号可以是正弦波、方波、脉冲 波等。根据产生信号的方式不同,信号发生 器可以分为两类:振荡器和调制器。振荡器 是利用自激反馈产生所需信号的电子设备, 而调制器则是利用调制技术将低频信号加载
THANKS
感谢观看
限流、分压、反馈等
电阻的串并联
串联增大阻值,并联减小阻值
电容
电容的种类
电解电容、瓷片电容、薄膜电 容等
电容的参数
标称容量、允许偏差、额定电 压、绝缘电阻等
电容的作用
隔直流通交流、滤波、耦合等
电容的充电放电
在交流电下,电容具有“隔直 流通交流”的作用,即让高频 信号通过,阻止低频信号通过
电感
电感的种类
信号变换器的工作原理和应用
• 总结词:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化和 编码,转换成数字信号输出;数字式信号变换器则是将输入的数字信号进行解 码和数模转换,转换成模拟信号输出。
• 详细描述:模拟式信号变换器的工作原理是将输入的模拟信号进行采样、量化 和编码,转换成数字信号输出。采样是将连续时间信号转换为离散时间信号的 过程,量化是将采样后的离散值进行近似取整的过程,编码则是将量化后的离 散值转换为二进制码元的过程。数字式信号变换器的工作原理是将输入的数字 信号进行解码和数模转换,转换成模拟信号输出。解码是将输入的数字码元进 行解码的过程,数模转换则是将解码后的离散值转换为连续时间信号的过程。 模拟式和数字式信号变换器在通信、测量、控制等领域有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rc C2
+
ui -
Re CB
Rb2
RL
uo -
Ri = Re //
rbe 1+ β
-
Ro = Rc
特点和典型功能:
f H 大,适于作宽频带放大电路
共源放大电路
+ VDD Rd Rg1 C1 + ui Rg2
—
指标参数:
d g
ɺ Au = − g m ( Rd // RL )
• 运算放大器
工作在线性区时的特点
虚短 虚断
工作在非线性区时的特点
虚断
• 波特图 画复杂电路或系统的波特图, 画复杂电路或系统的波特图,关 键在于一些基本因子
K, j
f fL
,
1 1+ j
f fP
,
f 1+ j fZ
三、电路部分
• • • • • • • • 基本放大电路 多级放大电路 差分放大电路 反馈放大电路 运算放大器 功率放大器 频率响应 直流稳压电源
1 f
+
+
+
T Rf
ui +
uid
R
R
uf -
+
ii+=ii-=0 (运放电路) 运放电路) ib=0(三极管电路) 三极管电路)
ui
ii
+ ∞ ii+ A + - i i-
if
Rf
+
ui +
+ ii
ib if
T
Rf
串联负反馈, 串联负反馈,输入端电压求和
ɺ ɺ ɺ U id = U i − U f ≈ 0 虚短 ɺ U id ɺ I id = ≈ 0 虚断 ri
电流法判别是否工作在饱和区
临界饱和电流 ICS和IBS :
IB > IBS 则饱和 IB < IBS 则放大
I BS
VCC − U CES = ≈ β β ( RC + RE ) I CS
RB
RC
+VCC
RE
三极管特性曲线(共发射极) 三极管特性曲线(共发射极)
1. 输入特性曲线 iB=f(uBE) uCE=常数 常数 iC=f(uCE) iB=常数 常数
Aud = ±
β (Rc // RL )
2(Rb + rbe )
单端输出时: 单端输出时:
Auc = 0
β (RC // RL ) Auc = − Rb + rbe + (1+ β )2Re
(3)差模输入电阻 (3)差模输入电阻
不论是单端输入还是双端输入, 不论是单端输入还是双端输入,差模输入电阻 Rid是基本放大电路的两倍。 是基本放大电路的两倍。
混合π 混合π型等效电路
简化的混合π 简化的混合π型等效电路
ɺ g mVb′e
ɺ Vbe
ɺ Vb′e
场效应管等效电路
id
d
+
g
+ ugs
—
uds
s
g
-
id
d
+
+
+
ugs
S
—
-
g mugs
uds S
其中: 是压控电流源,它体现了输入电压对输出电流的控制作用。 其中:gmugs是压控电流源,它体现了输入电压对输出电流的控制作用。
2. 共射电路输出 特性曲线
由PCM、 ICM和U(BR)CEO在输出特性曲线上可以 、 确定过损耗区、过电流区和击穿区。 确定过损耗区、过电流区和击穿区。
输出特性曲线上的过损耗区和击穿区
3、场效应管
N沟道 沟道 FET 场效应管 JFET 结型 MOSFET (IGFET) 绝缘栅型 P沟道 沟道 N沟道 沟道 增强型 P沟道 沟道 N沟道 沟道 P沟道 沟道
s
Rg3 Rg2
C2 + uo R -
Ri = Rg3 + ( Rg1 // Rg2 )
RL
1 Ro = R // gm
特点和典型功能:
Ri大、Ro小;适于作输入级、输出级
• 多级放大电路
直流通路 交流通路
求解静态工作点
ɺ 求解 Au , Ri , Ro
关键: 关键:小信号等效电路
ɺ 求解 Au , Ri , Ro
Rid = 2( Rb + rbe )
(4)输出电阻 (4)输出电阻
R 单端输出时, 单端输出时, o = Rc
R 双端输出时, 双端输出时, o
= 2Rc
• 反馈放大电路
反馈类型的判断 负反馈对放大电路性能的影响 深度负反馈下的近似估算 反馈稳定性判断
深度负反馈条件下的近似计算
估算电压增益
一、 估算的依据 深度负反馈: 深度负反馈: 方法一: 方法一:
Ro = Ron
• 差分放大电路
长尾式、 长尾式、恒流源式
特点和典型功能:有两个输入端、四种接法、温漂 小;作集成运放输入级 指标参数:Ad,Ri,Ro
• 差分放大电路
两种信号 输入输出方式 静态分析: 静态分析:注意双端输出与单端输出各自的特点 动态分析: 动态分析:
双端输入
R Rb b
R Rb b
ɺ Xo ɺ 将 AF = ɺ Xi
ɺ Xf ɺ F= ɺ Xo
代入上式
得 或
ɺ ɺ Xf ≈ Xi
即:输入量近似等于反馈量 净输入量近似等于零
ɺ ɺ ɺ X id = X i − X f ≈ 0
由此可得深度负反馈条件下, 由此可得深度负反馈条件下 , 基本放大 电路“虚短” 虚断” 电路“虚短”、“虚断”的概念
Rb
Rb
差动放大器动态参数计算
(1)差模电压增益 (1)差模电压增益 与单端输入还是双端输入无关,只与输出方式有关: 与单端输入还是双端输入无关,只与输出方式有关: 双端输出时: 单端输出时: 双端输出时: 单端输出时:
RL β ( Rc // ) 2 Aud = − Rb + rbe
(2)共模电压增益 (2)共模电压增益 双端输出时: 双端输出时:
∆ϕAF = −180o → fc
(3)判断 )
fo > fc ⇒自激 fo = fc ⇒ 临界 fo < fc ⇒ 稳定
(4)若不自激,则判断幅度裕度和相位裕度 )若不自激,
方法二: 方法二
1 ɺɺ ɺ 20 lg AF = 20 lg A − 20 lg = 0 写为: 将 写为: ɺ F ɺ = 20 lg 1 即: 20 lg A ɺ F ɺ (1) 作出A 的幅频响应和相频响应波特图
各种场效应管的转移特性
iD
UGS/V
-3 -4 -5 -6 -7 -8 -9
3 6 2 5 1 4 0 3 -1 2 U /V GS -2 1 -3 0 耗尽型结型 P沟 MOSP沟
0 可变电阻区
MOSN沟 结型 N沟 耗尽型 增强型 9 0 3 -1 2 8 -2 1 7 -3 0 6 -4 -1 5 4 -5 -2 -6 -3 3 u DS
C2 RL
+
T
s
Ri = Rg3 +(Rg1 // Rg2)
uo -
Rg3 R
Ro = Rd
C
特点和典型功能:
ɺ Au
较大,Ri很大;适于小信号电压放大
共漏放大电路
指标参数:
C1 RS uS +
Rg1
d
+ VDD T
ɺ = g m ( R // RL ) Au 1 + g m ( R // RL )
T C2 Re RL
+
uS -
ui -
uo -
′ Ri = Rb //[rbe + (1 + β ) RL ]
Ro = Re //
rbe + (Rb // Rs ) 1+ β
特点和典型功能:
Ri大、Ro小;适于作输入级、输出级,缓冲级
共基放大电路
+VCC Rb1 C1 RS uS
+ + 指标参数:
各种场效应管的输出特性对比 各种场效应管的输出特性对比
4、运算放大器 运放的组成: 运放的组成:
二、分析方法 • • • • 图解法 等效电路法 运放 波特图
• 等效电路法
参数等效电路和混合π 晶体管h参数等效电路和混合π型等效电路 场效应管等效电路
参数小信号模型。 三极管简化的H参数小信号模型。
ɺ = − β ⋅ ( Rc // RL ) Au rbe + (1 + β ) Re
Ri = Rb1 // Rb2 // [rbe + (1 + β ) Re ]
Ro = Rc
特点和典型功能:
ɺ Au
大,适于小信号电压放大
共集放大电路
+VCC Rb C1 RS
+ +
指标参数:
ɺ Au = ′ (1 + β ) RL ′ rbe + (1 + β ) RL
耗尽型
特性曲线
(1)输出特性曲线: iD=f( uDS )│uGS=常数 输出特性曲线: 输出特性曲线 常数
(2)转移特性曲线: iD=f( uGS )│uDS=常数 转移特性曲线: 转移特性曲线 常数
可根据输出特性曲线作出转移特性曲线(在饱和区内) 可根据输出特性曲线作出转移特性曲线(在饱和区内)
运算电路
反相比例运算
ui
uo
Rf u o = − ui R