复化辛普森公式

合集下载

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x %定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn=等分数 n=7019已知值与计算值的误差 R=2. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn=等分数 n=24已知值与计算值的误差 R=用复化梯形公式计算的结果为:,与精确解的误差为:。

复化梯形公式、复化辛卜生公式

复化梯形公式、复化辛卜生公式

复化梯形公式、复化辛卜生公式
一、复化梯形公式及其余项
在区间不大时,用梯形公式、辛卜生公式计算定积分是简单实用的,但当区间较大时, 用梯形公式、辛卜生公式计算定积分达不到精确度要求. 为了提高计算的精确度,我们将 [a,b] 区间n等分,在每个小区间上应用梯形公式、辛卜生公式计算定积分, 然后将其结果相加,这样就得到了复化梯形公式和复化辛卜生公式。

1. 复化梯形公式
将积分区间等分,设, 则节点为
对每个小区间上应用梯形公式, 然后将其结果相加,则得
(3.14)
称(3.14)式为复化梯形公式.
当在[a,b]上有连续的二阶导数时,则复化梯形公式(3.14)的余项推导如下:
因为
所以在区间[a,b]上公式(3.14)的误差为
又因为在区间[a,b]上连续,由连续函数的性质知,在区间[a,b]上存在一点,
于是
(3.15)
称(3.15)式为复化梯形公式的余项。

例1用复化梯形公式计算得
使误差小于
解和公式(3.15), 解不等式

即时,用复化梯形公式计算可达到精度要求,则取,用公式(3.14)计算得
而积分的准确值。

复化辛普森公式在路线中的应用

复化辛普森公式在路线中的应用

复化辛普森公式在路线中的应用
复化辛普森公式是数值积分中一种计算积分的方法。

在对一个区间上的函数进行数值积分时,我们可以将这个区间划分成若干个小区间,然后对每个小区间内的函数进行逼近。

复化辛普森公式可以通过将每个小区间内的函数用二次多项式进行逼近,然后对所有小区间进行加权求和,得到整个区间上的积分值。

在路线中,复化辛普森公式可以应用于求解车辆行驶的路程和速度。

我们可以将车辆行驶的路线分成若干个小区间,然后对每个小区间内的速度进行逼近,得到每个小区间内的路程。

然后对所有小区间内的路程进行加权求和,得到整个路线上的总路程。

同时,我们还可以对每个小区间内的速度进行逼近,得到整个路线上的平均速度。

复化辛普森公式的优点在于它的精度比较高,特别是在小区间数量较多时,积分值的误差会比较小。

因此,在路线中使用复化辛普森公式可以得到比较准确的行驶路程和平均速度数据,有利于对车辆的行驶情况进行分析和评估。

复合辛普森公式matlab例题

复合辛普森公式matlab例题

文章标题:深度剖析复合辛普森公式在Matlab中的应用1.引言复合辛普森公式是数值分析中常用的积分逼近方法,在工程和科学领域都有广泛的应用。

本文将深入探讨复合辛普森公式的原理和在Matlab中的具体例题应用,以帮助读者全面理解该方法的实际操作和应用场景。

2.复合辛普森公式简介复合辛普森公式是一种数值积分方法,通过将积分区间分割成若干个小区间,然后在每个小区间上使用辛普森公式进行积分逼近,最终得到整个积分区间上的近似值。

其公式表达为:\[ S_n(h) = \frac{h}{3}[f(x_0) + 4\sum_{i=1}^{n/2}f(x_{2i-1}) +2\sum_{i=1}^{n/2-1}f(x_{2i}) + f(x_n)] \]其中,\(h\)为步长,\(n\)为分割的小区间数。

3. Matlab实例应用假设要对函数\(f(x) = x^3 + 2x^2 + 4x + 1\)在区间\([a, b]\)上进行积分逼近,可以通过Matlab编程实现复合辛普森公式的应用。

需要确定积分区间的上下限,然后计算步长\(h\),接着编写Matlab代码进行求解。

```matlabfunction result = simpson(f, a, b, n)h = (b - a) / n;x = a:h:b;y = f(x);result = h/3 * (y(1) + 4*sum(y(2:2:end-1)) + 2*sum(y(3:2:end-2)) + y(end));end% 调用simpson函数进行积分逼近f = @(x) x.^3 + 2*x.^2 + 4*x + 1;a = 1;b = 2; n = 4;result = simpson(f, a, b, n);disp(result);```在以上Matlab代码中,首先定义了一个名为simpson的函数,用于计算复合辛普森公式的近似积分值。

复化辛普森公式实验报告

复化辛普森公式实验报告

复化辛普森公式实验报告
复化辛普森公式是数值积分中一种常用的方法,用于计算定积分的近似值。

在实验报告中,通常会包括以下内容:
1. 引言,介绍复化辛普森公式的背景和意义,说明为什么要进行这个实验以及实验的目的和意义。

2. 理论基础,详细介绍复化辛普森公式的原理和推导过程,包括如何将定积分转化为复化求和的形式,以及辛普森公式的误差估计等内容。

3. 实验设计,描述实验的具体步骤和方法,包括选择的函数、积分区间的确定、分割数的选择等。

4. 实验结果,给出实验所得的数值结果,包括原函数的近似积分值以及相应的误差估计。

5. 讨论与分析,对实验结果进行分析,比较实验结果与精确值的差异,讨论误差的来源和可能的改进方法。

6. 结论,总结实验的结果,总结实验的主要发现和得出的结论,提出可能的改进方向和未来的研究方向。

以上是一份完整的复化辛普森公式实验报告的一般结构,您可
以根据实际情况适当调整和完善。

复化辛普森公式应用

复化辛普森公式应用

在公路中线坐标计算中,我们通常采用切线支距公式来计算曲线上各点的坐标。

但当在不同的曲线上计算时就需用不同的计算公式,这为计算也带来不便。

在设有缓和曲线的圆曲线半径较小或是卵形曲线上的坐标计算时,如公式选用不当就会出现较大计算误差,即便是能对切线支距公式进行多项展开,也会增加计算的难度。

而用复化辛卜生公式不仅能解决不同曲线线型或直线上的坐标计算问题,而且用复化辛卜生公式计算完全是可逆的(即:可顺前进方向也可逆向计算),尤其在计算第二缓和曲线和卵形曲线时显得尤为方便。

用辛卜生公式计算坐标的精度可由人为或程序自行判断,其计算结果完全能保证坐标计算的精度要求。

因此,可以说复化辛卜生公式是一个计算公路中线坐标的万能公式。

下面本人就该公式在公路中线坐标计算中的具体应用进行实例解析。

一、复化辛卜生公式式中:H=(Z i-Z A)/n(公式2)(公式3)Zi —待求点桩号Z A—曲线元起点桩号Z B—曲线元终点桩号ρA—曲线元起点曲率ρB—曲线元终点曲率a i曲线上任意一点处切线方位角的计算方法有以下三种方法:1.利用公式(3)求得曲率代入公式(2)计算2.利用曲线元上已知起点和终点曲率用内插法求得曲率代入公式(2)计算3.利用切线角公式计算二、算例例:已知雅(安)攀(枝花)高速公路西昌西宁立交A匝道一卵形曲线(卵形曲线相关参数见图一,其计算略。

),相关设计数据见下表。

现用辛卜生公式来计算卵形曲线中桩坐标。

图一已知相关设计数据见下表:(一)由+271.881推算Zi=+223.715的坐标,n取2等分用公式(3)、公式(2)计算+247.798处曲线及方位角:ρ+247.798=1÷75+(1÷50-1÷75)(247.798-271.881) ÷(223.715-271.881)=0.01666666666666667a+247.798=71°24’18.5” +(0.016666667+1÷75)(247.798-271.881)×180÷π÷2=50°42’26.37”其它各点依次代入公式计算,结果见下表:切线方位角图示1将计算出的数据代入公式(1)求得+223.715中桩坐标如下:X=9880.438+(271.881-223.715)÷2÷6×(cos71°24’18.5”+4(cos61°37’52.22”+cos38°38’0.96”)+2cos50°42’26.37”+ cos25°24’35.99”)=9910.5975 (设计值:9910.603)Y=10100.904+(223.715-271.881)÷2÷6×(sin71°24’18.5”+4(sin61°37’52.22”+sin38°38’0.96”) +2sin50°42’26.37”+ sin25°24’35.99”)=10136.7945 (设计值:10136.791)(二)由+223.715推算Zi=+271.881的坐标,n取2等分用公式(3)计算+247.798处曲线及方位角:ρ+247.798=1÷50+(1÷75-1÷50)(247.798-223.715)÷(271.881-223.715)=.01666666666666667a+247.798=205°24’33.6”+ (0.016666667+1÷50)(247.798-223.715)×180÷π÷2=230°42’23.98”其它各点依次代入公式计算,结果见下表:切线方位角图示2X=9910.603+(271.881-223.715)÷2÷6×(cos205°24’33.6”+4(cos218°37’58.87”+cos241°37’49.83”)+2cos230°42’23.98”+ cos251°24’16.11”)=9880.4431 (设计值:9880.438)Y=10136.791+(271.881-223.715)÷2÷6×(sin205°24’33.6”+4(sin218°37’58.87”+sin241°37’49.83”)+2sin230°42’23.98”+ sin251°24’16.11”)=10100.9008 (设计值:10100.904)由上可知,利用复化辛卜生公式计算路线坐标时可顺向或逆向计算。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n=7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n=24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数 结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x %定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可 f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))' %因fminbnd ()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

数值分析复化Simpson积分公式和复化梯形积分公式计算积分的通用程序培训讲学

数值分析复化Simpson积分公式和复化梯形积分公式计算积分的通用程序培训讲学

数值分析复化S i m p s o n积分公式和复化梯形积分公式计算积分的通用程序数值分析第五次程序作业PB09001057 孙琪【问题】分别编写用复化Simpson积分公式和复化梯形积分公式计算积分的通用程序;用如上程序计算积分:取节点并分析误差;简单分析你得到的数据。

【复化Simpson积分公式】Simpson法则:使用偶数个子区间上的复合Simpson法则:设n是偶数,则有将Simpson法则应用于每一个区间,得到复合Simpson法则:公式的误差项为:其中δ【复化梯形积分公式】梯形法则:对两个节点相应的积分法则称为梯形法则:如果划分区间[a,b]为:那么在每个区间上可应用梯形法则,此时节点未必是等距的,由此得到复合梯形法则:对等间距h=(b-a)/n及节点,复合梯形法则具有形式:误差项为:【算法分析】复合Simpson法则和复合梯形法则的算法上述描述中都已介绍了,在此不多做叙述。

【实验】通过Mathematica编写程序得到如下结果:1.利用复化Simpson积分公式得:可以看出,当节点数选取越来越多时,误差项越来越小,这从复合的Simpson公式很好看出来,因为在每一段小区间内,都是用Simpson法则去逼近,而每一段的误差都是由函数在该区间内4阶导数值和区间长度的4次方乘积决定的,当每一段小区间越来越小时,相应的每一段小区间内的逼近就会越来越好,从而整体的逼近效果就会越来越好。

2.利用复化梯形积分公式得:可以看出,当节点数选取越来越多时,误差项越来越小,这从复合的梯形公式很好看出来,因为在每一段小区间内,都是用梯形法则去逼近,而每一段的误差都是由函数在该区间内2阶导数值和区间长度的2次方乘积决定的,当每一段小区间越来越小时,相应的每一段小区间内的逼近就会越来越好,从而整体的逼近效果就会越来越好。

【分析】通过对上述两种法则的效果来看,复合Simpson法则的误差要比复合梯形法则收敛到0更快,说明复合Simpson法则逼近到原来的解更快,这主要是因为在每一段小区间内,复合Simpson法则利用得是Simpson法则,复合梯形法则利用得是梯形法则,前者的误差项要比后者的误差项小很多,因此造成了逼近速度的不一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档