复化梯形公式和复化Simpson公式word.doc

合集下载

(完整版)复合梯形公式与复合辛普森公式对比

(完整版)复合梯形公式与复合辛普森公式对比

SHANGHAI JIAO TONG UNIVERSITY题目名称:复合梯形公式与复合辛普森公式对比学生姓名:学生学号:班级:学院(系):目录1.概述 (3)2.问题提出 (4)3.算法推导 (5)4.算法框图 (6)4.1复合梯形公式算法流程图 (6)4.2 复合辛普森公式算法流程图 (7)5.MATLAB源程序 (8)6.结论与展望 (9)图表目录图4-1 复合梯形公式算法流程图 (6)图4-2 复合辛普森公式算法流程图 (7)图6-1 MATLAB计算结果 (9)表2-1函数计算结果表 (4)1.概述梯形求积公式和辛普森求积公式分别是牛顿-科斯特公式中n=1和n=2时的情形。

其中梯形求积公式可表示为由于牛顿-科斯特公式在n≥8时不具有稳定性,故不可能通过提高阶的方法来提高求积精度。

为了提高精度通常可把积分区间分成若干子区间(通常是等分),再在每个子区间上用低阶求积公式。

这种方法称为复合求积法。

本文主要讨论复合梯形公式和复合辛普森公式在同一数学问题中的应用。

首先给出了复合梯形公式和复合辛普森公式的推导过程以及其余项的表达形式,然后用流程图的形式介绍算法思路,再运用MATLAB编写代码计算结果,最后对结果进行对比讨论。

希望通过两个算法在同一个算例中的应用对比,更好的理解和掌握复合梯形公式和复合辛普森公式的适用范围和适用条件。

并且能够熟悉MATLAB编程求解问题的流程,掌握编程化的思想方法。

同时对两种方法的计算结果对比分析,讨论两种求积方法的计算精度。

2.问题提出对于函数f(x)=sinxx给出的函数表如下,试用复合梯形公式和复合辛普森公式计算积分I=∫sinxx dx1。

表 2-1函数计算结果表3. 算法推导3.1复合梯形公式根据梯形公式,将区间[a,b]划分为n 等份,分点x k =a +kℎ,h =b−a n,k =0,1,…,n ,在每个子区间[x k ,x k+1](k =0,1,…,n −1)上采用梯形公式,则得:记则T n 为复合梯形公式。

复化梯形公式和复化辛普生公式

复化梯形公式和复化辛普生公式
return result;
}
void simpson::integration()//实现积分
{
cout<<"输入上限和下限";
cin>>b>>a;
cout<<"输入你要使用simposn法则的数目(即等分数)";
cin>>n;
h=(b-a)/n;
sum_even_terms=0.0;
sum_odd_terms=0.0;
for(k=1;k<n;k++)
{
sum_even_terms+=sine(k*h);
}
for(k=0;k<n;k++)
{
sum_odd_terms+=sine((2*k+1)*h/2);
}
integral=(2.0*sum_even_terms+4.0*sum_odd_terms+sine(b)+1)*h/6.0;
《数值分析》实验报告
姓名
学号
日期
2012.11.20
实验室
设备编号
实验题目
用复化梯形公式和复化辛普生公式求I=∫01sinx/xdx
一实验目的
1.了解复化梯形公式和复化辛普生公式。
2.用复化梯形公式和复化辛普生公式求I=∫01sinx/xdx。
二实验内容
算法:复化梯形公式是Tn=∑h/2[f(xi)+ f(xi+1)]=(b-a)/2n[f(a)+2∑f(xi)+f(b)]记子段[xi,xi+1]的中点为xi+1/2,则复化Simpson公式为Sn=∑h/6[f(xi)+4f(xi+1/2)+ f(xi+1)]=b-a/6n[f(a)+4∑f(xi+1/2)+2f(xi)+f(b)]

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x %定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn=等分数 n=7019已知值与计算值的误差 R=2. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn=等分数 n=24已知值与计算值的误差 R=用复化梯形公式计算的结果为:,与精确解的误差为:。

(完整版)复化积分法(复化梯形求积,复化Simpson公式,变步长求积法)MATLAB编程实验报告

(完整版)复化积分法(复化梯形求积,复化Simpson公式,变步长求积法)MATLAB编程实验报告
format loБайду номын сангаасg;
syms t;
y=sin(t)/t;
a=0;b=1;
R0=0.5*10^(-3);
TN(a,b,y,R0);
结论如下:
三、结论:
复化梯形求积:
复化Simpson公式
变步长求积法
h=(b-a)/n;
f=0;
for k=1:n
x(k)=a+h*(k-1);
w(k)=x(k)+h/2;
z(k)=subs(y,t,w(k));
f=f+z(k);
end
T(i)=T(i-1)/2+h/2*f
if ((T(i)-T(i-1))/3)<=R0
break;
end
end
tl=T(i)
clc,clear;
q=1;
end
p=subs(y,t,b);
T(1)=(b-a)/2*(q+p);
i=2;
n=i-1;
h=(b-a)/n;
z1=a+h/2;
z2=subs(y,t,z1);
T(2)=T(1)/2+h/2*z2;
while ((T(i)-T(i-1))/3)>R0
i=i+1
n=i-1;
n=2^(n-1)
x(k)=a+(k-1)*h
z(k)=subs(y,t,x(k));
end
for i=2:n
f=f+z(i);
end
q=subs(y,t,a);
if y=='sin(t)/t'&&a==0
q=1;
end

复化梯形和复化simposon求积分

复化梯形和复化simposon求积分

课程设计报告课程名称数值逼近专业信息与计算科学班级姓名学号指导教师日期2011-06-27理学院应用数学系一、目的意义 (1) 进一步熟悉掌握复化梯形公式及其算法;(2) 进一步熟悉掌握复化Simpsom 公式及其算法;(3) 了解比较复化梯形公式和复化Simpsom 公式的代数精度。

二、内容要求积分计算问题:分别用复化梯形和复化Simpsom 求积公式计算积分dx e x x x 5.1402)(13-⎰-,并比较计算量(精度为10-8)。

三、问题解决的方法与算法方法:复化梯形和复化Simpsom 积分公式算法:输入:端点a 、b 以及要计算的积分公式f(x);输出:积分f(x)在指定区间上的近似值Step1:编写复化梯形和复化Simpson 积分公式Step2:输入所需的断点个数nSetp3:分别调用复化梯形和复化Simpson 积分公式数值积分及其应用 报告1Setp4:比较代数精度使其达到10-8Setp5:输出复化梯形和复化Simpson积分公式对应的值四、计算程序复化梯形积分公式:#include"stdio.h"#include"math.h"void main()#define n 4{float a,b,d,y;float h[n-2],k[n-2],s[n-1];a=0.0;b=4.0;printf("输出相邻节点间距:\n");d=(b-a)/n;printf("%f\n",d);printf("输出节点函数值:\n");for(int i=0;i<n+1;i++){h[i]=a+i*d;k[i]=13*(h[i]-h[i]*h[i])*exp(-1.5*h[i]);printf("k[%d]=%f\n",i,k[i]);}s[0]=k[0]+k[n];for(i=1;i<n;i++){s[i]=s[i-1]+2*k[i];}y=0.5*d*s[n-1];printf("输出积分值:\n");printf("%f\n",y);}复化抛物线积分公式:#include"stdio.h"#include"math.h"#define n 4void main(){float a,b,h;double x[100],k[100],y[100],g[100],z[100];printf("输入积分上下限:\n");scanf("%f %f",&a,&b);printf("输出积分步长:\n");h=(b-a)/4;printf("%f\n",h);for(int i=1;i<n;i++){x[i]=a+h*i;k[i]=x[i]-0.5*h;}k[n]=b-0.5*h;x[0]=a;x[n]=b;for(i=0;i<n+1;i++){y[i]=13*(x[i]-x[i]*x[i])*exp(-1.5*x[i]);} for(i=1;i<n+1;i++){g[i]=13*(k[i]-k[i]*k[i])*exp(-1.5*k[i]);} z[0]=y[0]+y[n];z[1]=0.0;z[2]=0.0;for(i=1;i<n;i++){z[1]=z[1]+y[i];}for(i=1;i<n+1;i++){z[2]=z[2]+g[i];}z[3]=h*(z[0]+2*z[1]+4*z[2])/6;printf("%f\n",z[3]);}五、计算结果与分析:复化梯形积分公式:复化抛物线积分公式:输出相邻节点间距:1.000000输出节点函数值:k[0]=0.000000k[1]=0.000000k[2]=-1.294464k[3]=-0.866502k[4]=-0.000026输出积分值:-6.482936Press any key to continue输入积分上下限:0 4输出积分步长:1.000000-1.608667Press any key to continue结果分析:通过该算法可以看出复化体形积分和simpson积分比梯形积分和抛物线积分具有更好的精度。

matlab实现复化梯形公式,复化simpson公式以及romberg积分

matlab实现复化梯形公式,复化simpson公式以及romberg积分

(一) 实验目的熟悉并掌握数值积分的方法,重要训练复化梯形公式,复化simps on 公式以及 romberg 积分。

问题三数值积分椭圆周长的计算。

考虑椭圆其周长,只要计算其第一象限的长度即可.用参数方程可以表示为X acost (0 t /2), y bs int计算公式为.a 2 sin 21 b 2 cos 2 tdt0 为计算方便,我们可以令a 1,即计算下面的积分0 Ja 2sin 2t~ t a 0 <si n 2t (b )2cos 2 tdt 可以归结为上面的形式)采用复化梯形公式,复化Simpson 公式以及Romberg 积分的方法 计算积分I (b )「J 1 (b 2 1)cos 2tdt给出通用程序,该通用程序可以计算任何一个函数在任意一个区 间在给定的精度下的数值积分。

程序输出为计算出的数值积分值以及 计算函数值的次数。

(三)算法介绍首先利用给出的各迭代公式,设计程序。

在matlab 对话框中输入要计算的函数,给出区间和精度。

问题描述b 2 1,为计算 sin 21 2 2 b cos tdt复化梯形的迭代公式为:J b f (x) dx 二h/2 f(已)+ 2X°二+ f (b);章L. J * ' 』,复化simps on迭代公式为:J;f (x)dx 二h/3p(a) + 辽負1(x2j) + 4斗g〔fgj - i) + f (b)Romberg迭代公式为:削」- 1 h - 1. j - 1n _ n(四)程序对于复化梯形公式和复化simpson公式,我们放在中(転记后的程序可用来把b看为变量时的算法实现) %复化梯形公式function y=jifenn(f,n,a,b) (说明:f表示任一函数,n精度,a, b为区间)fi=f(a)+f(b);h=(b-a)/n;d=1;%fun cti on f=jife n(n ,a,b,c)%syms t%y=sqrt(1+(c A2-1)*cos(t)A2);%ya=subs(y,t,a);%yb=subs(y,t,b);%fi=ya+yb;for i=1:n-1x=a+i*h;fi=fi+2*f(x);d=d+1;%yx=subs(y,t,x);%fi=fi+2*yx;endf4=h/2*fi,d%复化simposon公式f仁0;f2=0;dd=1;for i=1:n-1dd=dd+1;if rem(i,2)~=0;x1=a+i*h; f1=f1+f(x1);else rem(i,2)==0; x2=a+i*h; f2=f2+f(x2) ;endendf3=(h/3)*(f(a)+4*f1+2*f2+f(b)),dd对于romberg积分,建立文件。

复合梯形公式和复合Simpson公式用法的比较

复合梯形公式和复合Simpson公式用法的比较

复合梯形公式和复合Simpson 公式用法的比较一、问题叙述由曲线y ()f x = ,a x b ≤≤绕x 轴旋转得到立体,其表面积计算公式为2(baS f x π=⎰分别用N=10的复合梯形公式和N=5的复合Simpson 公式求解下列每个的曲线绕x 轴旋转得到立方体的表面积。

(1)3(),01f x x x =≤≤ (2)()sin ,0/4f x x x π=≤≤ ; (3)()e ,01x f x x -=≤≤。

二、问题分析由叙述可知,三个函数在各自的定义域上函数值都大于0,且函数在各自的定义域上都是单调的。

(1)复合梯形公式取正整数n,令(b a)/n h =-,则点(k 0,1,,n)k x a kh =+=将[a,b]分为n 个小区间,利用定积分的性质可得11110011(x)(x)(x )f(x )2 =(a)f(b)2(x )2j jn n bx j j ax j j n j j h f dx f dx f h f f +--+==-=⎡⎤=≈+⎣⎦⎡⎤++⎢⎥⎣⎦∑∑⎰⎰∑所以,复合梯形公式的近似面积为:11(a)f(b)2(x )2n j j h S f f -=⎡⎤=++⎢⎥⎣⎦∑(2)复合Simpson 公式取正整数n,令h=(b-a)/2n,(j 0,1,,2n)j x a jh =+=.利用定积分的性质,以及Simpson 公式[]012(x)(x )4f(x )f(x )(f)3bahf dx f R =+++⎰在小区间222,j j x x -⎡⎤⎣⎦上的应用,有 2222221211(x)(x)(x )4f(x )f(x )3j nnbj j j j ax j j hf dx f dx f ---==⎡⎤=≈++⎣⎦∑∑⎰⎰整理可得,复合Simpson 公式的近似面积为:121211[f(a)f(b)4(x )2(x )]3n n j j j j hS f f --===+++∑∑。

复化梯形公式和复化抛物线公式 -回复

复化梯形公式和复化抛物线公式 -回复

复化梯形公式和复化抛物线公式是数值积分中常用的近似计算方法,用于估计函数在给定区间上的定积分值。

1. 复化梯形公式(Composite Trapezoidal Rule):复化梯形公式通过将积分区间划分为多个小区间,然后在每个小区间上应用梯形公式进行计算。

具体步骤如下:- 将积分区间[a, b]均匀地分成n个小区间,每个小区间的宽度为h = (b - a) / n。

- 对于每个小区间,计算函数在两个端点的值,然后将这两个值与小区间宽度相乘并除以2,得到该小区间的梯形面积。

- 将所有小区间的梯形面积相加,即可得到近似的定积分值。

复化梯形公式的公式表示为:∫[a, b] f(x) dx ≈ h/2 * [f(a) + 2f(a+h) + 2f(a+2h) + ... + 2f(a+(n-1)h) + f(b)]2. 复化抛物线公式(Composite Simpson's Rule):复化抛物线公式通过将积分区间划分为多个小区间,然后在每个小区间上应用抛物线公式进行计算。

具体步骤如下:- 将积分区间[a, b]均匀地分成n个小区间,每个小区间的宽度为h = (b - a) / n。

- 对于每个小区间,计算函数在三个节点(起点、终点和中点)处的值,然后将这三个值与小区间宽度相乘并按照一定的权重进行组合,得到该小区间的抛物线面积。

- 将所有小区间的抛物线面积相加,即可得到近似的定积分值。

复化抛物线公式的公式表示为:∫[a, b] f(x) dx ≈ h/3 * [f(a) + 4f(a+h) + 2f(a+2h) + 4f(a+3h) + ... + 2f(a+(n-2)h) + 4f(a+(n-1)h) + f(b)]需要注意的是,选择合适的n值对于准确估计积分值非常重要。

一般情况下,增加n的值可以提高计算精度,但也会增加计算的复杂性和时间成本。

因此,在实际应用中需要根据需求进行权衡和选择合适的n值。

复化梯形法 复化矩形法 变步长梯形 变步长辛普森

复化梯形法 复化矩形法 变步长梯形 变步长辛普森

陕西科技大学机械教改班用C++的积分其实积分的思想就是,微分—>求和—>取极限,如果是用纯手工法那就是先对一个函数微分,再求出它的面积,在取极限,因为我们的计算速度和计算量有限,现在有了计算机这个速度很快的机器,我们可以把微分后的每个小的面积加起来,为了满足精度,我们可以加大分区,即使实现不了微分出无限小的极限情况,我们也至少可以用有限次去接近他,下面我分析了四种不同的积分方法,和一个综合通用程序。

一.积分的基本思想1、思路:微分—>求和—>取极限。

2、Newton —Leibniz 公式 ⎰-=ba a Fb F dx x f )()()( 其中,)(x F 被积函数)(x f的原函数。

3、用计算机积分的思路在积分区间内“微分—>求和—>控制精度”。

因为计算机求和不可以取极限,也就是不可以无限次的加下去,所以要控制精度。

二.现有的理论1、一阶求积公式---梯形公式⎰=+-=b a T b f a f a b dx x f )]()([2)( 他只能精确计算被积函数为0、1次多项式时的积分。

2、二阶求积分公式——牛顿、科特斯公式 ⎰=+++-=ba Sb f a b f a f a b dx x f )]()2(4)([6)(他只能精确计算被积函数为0、1、2、3次多项式时的积分。

三.四种实现方法1.复化矩形法将积分区间[a,b]等分成n 个子区间:],[],[],[],[],[112322110n n n n x x x x x x x x x x ---、、、 则h=(b-a)/n,区间端点值k x =a+kh)hf(x ))f(x x (x I 11121=-=)()()x (22232x hf x f x I =-=............................)()()(111n ---=-=n n n n x hf x f x x I∑==ni i x hf T 1n )(源程序:#include <iostream.h>#include<math.h>double f(double x) //计算被积函数{double y;y=log(1+x)/(1+x*x); //被积函数return y;}double Tn(double a,double b,int n) //求Tn{double t=0.0;double xk; //区间端点值double t1,t2; //用来判断精度do{double h=(b-a)/n;for(int k=1;k<=n-1;k++) //每一小段的矩形叠加 {t1=t;xk=a+k*h;t+=h*f(xk);t2=t;}n++; //如果精度不够就对区间再次细分,直到达到精度要求 }while(fabs(t1-t2)<=1e-7); //判断计算精度return t;}void main(){double a=0.0; //积分下线double b=2.0; //积分上限int n=1024; //把区间分为1024段cout<<Tn(a,b,n)<<endl; //输出积分结果}执行结果:2.复化梯形法方法和复化矩形法类似,只是把原来的矩形小面积变成了梯形小面积,但是精确度明显提高了,也就是说达到同样的精度需要的时间少了。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果 Tn= 7.3891等分数 n=7019已知值与计算值的误差 R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果 Sn= 7.3891等分数 n=24已知值与计算值的误差 R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

复合梯形公式与复合辛普森公式对比

复合梯形公式与复合辛普森公式对比

SHANGHAI JIAO TONG UNIVERSITY之阳早格格创做题目称呼:复合梯形公式与复合辛普森公式对付比教死姓名:教死教号:班级:教院(系):目录1. 概括 (2)2. 问题提出 (3)3. 算法推导 (3)4. 算法框图 (4)4.1复合梯形公式算法过程图 (4)4.2 复合辛普森公式算法过程图 (4)5. MATLAB源步调 (5)6. 论断与预测 (6)图表目录图4-1 复合梯形公式算法过程图4图4-2 复合辛普森公式算法过程图4图6-1 MATLAB预计截止6表2-1函数预计截止表31.概括梯形供积公式战辛普森供积公式分别是牛顿-科斯特公式中n=1战n=2时的情形.其中梯形供积公式可表示为其公式左端是以[a,b]区间上积分,左端为b-a为下、端面函数值为上下底的梯形的里积值,故通称为梯形公式,具备1次代数透彻度.类似的,辛普森供积公式不妨表示为该公式普遍正在坐体几许中用去供拟柱体的体积,由于奇数n阶牛顿-科特斯供积公式起码具备n+1次代数透彻度,所以辛普森公式本质上具备3次代数透彻度.由于牛顿-科斯特公式正在n≥8时没有具备宁静性,故没有成能通过普及阶的要领去普及供积粗度.为了普及粗度常常可把积分区间分成若搞子区间(常常是平分),再正在每身材区间上用矮阶供积公式.那种要领称为复合供积法.本文主要计划复合梯形公式战复合辛普森公式正在共一数教问题中的应用.最先给出了复合梯形公式战复合辛普森公式的推导历程以及其余项的表白形式,而后用过程图的形式介绍算法思路,再使用MATLAB编写代码预计截止,末尾对付截止举止对付比计划.期视通过二个算法正在共一个算例中的应用对付比,更佳的明白战掌握复合梯形公式战复合辛普森公式的适用范畴战适用条件.而且不妨认识MATLAB编程供解问题的过程,掌握编程化的思维要领.共时对付二种要领的预计截止对付比分解,计划二种供积要领的预计粗度.2.问题提出对付于函数给出的函数表如下,试用复合梯形公式战复合辛普森公式预计积分.表21函数预计截止表x f(x)011/80.9973978670818221/40.9896158370180923/80.9896158370180921/20.9588510772084065/80.9361556367047403/40.9088516800311127/80.87719257398403110.8414709848078973.算法推导3.1复合梯形公式根据梯形公式,将区间区分为n等份,分面,,,正在每身材区间上采与梯形公式,则得:记则为复合梯形公式.其余,复合梯形公式的余项可表示为3.2 复合辛普森公式 根据辛普森公式 将区间区分为n 等份,正在每身材区间上采与辛普森公式.若记 则得 记该公式即为复合辛普森公式. 复合辛普森公式的余项可表示为4. 算法框图4.1复合梯形公式算法过程图4.2复合辛普森公式算法过程图启初供出步少h ,各节面及相映的各节面函数值供战sum,k=1,2,..n-1 中断输进区间断面a,b 及平分数n输出积分值启初输进区间断面a, b及平分数n供出步少h ,各节面,相邻节面中面及相映的函数值,k=1,2,..n-1 各节面函数值供战sum1, 各相邻节面核心面函数值供战sum2 k=1,2,..n-1输出积分值 中断 图 4-1 复合梯形公式算法过程图图 4-2 复合辛普森公式算法过程图5.MATLAB源步调%复合梯形公式及复合辛普森积分公式clear all;format long;a=0;b=1;n=8;h=(b-a)/n;%步少for i=1:n+1x(i)=a+(i-1)*h;if isnan(sin(x(i))/x(i))syms t;tmp=limit(sin(t)./t,t,x(i));%当被积函数正在某面值没有存留时,供其极限y(i)=eval(tmp);elsey(i)=sin(x(i))/x(i);%被积函数供节面的值endend%复合梯形公式及复合辛普森积分公式s1=0;for k=2:ns1=s1+y(k);endT8=h/2*(y(1)+2*s1++y(n+1))%复合辛普森积分公式s2=0;s3=0;for k=2:2:ns2=s2+y(k);endfor k=3:2:n-1s3=s3+y(k);endh1=2*h;%注:此时步少是本去的2倍S4=h1/6*(y(1)+4*s2+2*s3+y(n+1))fprintf('梯形积分公式:%6.6f\n辛普森公式积分:%6.6f\n',T8,S4)6.论断与预测图61MATLAB预计截止运止MATLAB步调,得到复合梯形供积公式的积分值为0.945691,复合辛普森供积公式的积分值为0.946083(四舍五进后死存6位小数).而本质的积分准确值死存到6位小数的截止为0.946083.通过上述截止对付比不妨得出,虽然复合梯形公式将区间分成了8平分而复合辛普森公式将区间分成了4平分,但是二种预计要领本质皆需要使用9个面上的函数值,预计量基础也相共,然而最后粗度没有共却很大.正在死存6位小数的前提下,复合辛普森法预计截止与透彻解真足普遍,而复合梯形公式的预计截止却惟有前二位数字与透彻解相共,缺面相对付比较大.底下利用余项公式去预计二种算法的缺面.最先需央供的下阶导数.由于10sin ()cos()xf x xt dt x==⎰, 所以有1100()(cos )cos()2k kk k d k f x xt dt t xt dt dx π==+⎰⎰,于是1100011max ()cos()21k k k x k f x xt t dt t dt k π≤≤≤+≤=+⎰⎰. 进而复合梯形公式的缺面223801111()max ()()0.43410121283x h R f f x -≤≤''≤≤=⨯.而复合辛普森公式的缺面468111()()0.27110288045R f -≤=⨯. 进而,对付比二者可得,复合辛普森公式正在预计该问题时的粗度近下于复合梯形公式.通过以上分解,本文所得论断如下:1.复合梯形公式战复合辛普森公式皆不妨用去动做数值积分估算的代替公式.2.正在预计量基本相共的前提下,复合辛普森公式预计截止的预计粗度要比复合梯形公式预计粗度下的多.3.本算例也考证了辛普森公式动做奇数阶牛顿-柯特斯公式的更为透彻的代数粗度.闭于怎么样启展下一步钻研,提出以下构念:1.对付多个算例举止分解,包管预计量基本相共的情况下去比较预计粗度,考证复合辛普森公式具备更下粗度的论断.2.对付多个算例举止MATLAB编程分解,正在央供相共预计粗度的前提下去比较预计量的大小,进而分解复合梯形公式与复合辛普森公式的劣劣.参照文件[1]穆耶赛我·艾合购提,阿布皆热西提·阿布皆中力. 矫正复合梯形供积公式[J]. 尾皆师范大教教报(自然科教版),2016,06:1-4.[2]刘智颖,王背公,任威龙,龙耀萍. 辛普森公式的推广形式及应用[J]. 山东理工大教教报(自然科教版),2014,01:29-31. [3]陈凤忠. 辛普森公式的统一好[J]. 少秋理工大教教报(概括版),2005,03:59-60+80.[4]李庆扬, 王能超, 易大义. 数值分解.第5版[M]. 浑华大教出版社, 2008,12:106-109.。

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数 结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x %定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可 f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))' %因fminbnd ()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

MATLAB实现复化梯形公式复化SIMPSON公式以及ROMBERG积分

MATLAB实现复化梯形公式复化SIMPSON公式以及ROMBERG积分

MATLAB实现复化梯形公式复化SIMPSON公式以及ROMBERG积分复化梯形公式、复化SIMPSON公式和ROMBERG积分是常用的数值积分方法,用于对定积分进行数值近似计算。

下面将介绍MATLAB实现这三种方法的具体步骤。

复化梯形公式使用多个等距的子区间进行近似计算,然后将子区间上的梯形面积求和。

MATLAB代码如下:```matlabh=(b-a)/n;%子区间宽度x=a:h:b;%子区间节点y=f(x);%子区间节点对应的函数值result = h * (sum(y) - (y(1) + y(end)) / 2); % 计算近似积分值end```复化SIMPSON公式同样使用多个等距的子区间进行近似计算,但是每个子区间上使用二次多项式拟合。

MATLAB代码如下:```matlabh=(b-a)/n;%子区间宽度x=a:h:b;%子区间节点y=f(x);%子区间节点对应的函数值result = (h / 3) * (y(1) + y(end) + 4 * sum(y(2:2:end-1)) + 2 * sum(y(3:2:end-2))); % 计算近似积分值end```3. ROMBERG积分(Romberg Integration)ROMBERG积分是一种逐次精化的数值积分方法,通过不断提高梯形法则的阶数进行近似计算。

MATLAB代码如下:```matlabfunction result = romberg_integration(f, a, b, n)R = zeros(n, n); % 创建一个n*n的矩阵用于存储结果h=b-a;%子区间宽度R(1,1)=(h/2)*(f(a)+f(b));%计算初始近似积分值for j = 2:nh=h/2;%缩小子区间宽度sum = 0;for i = 1:2^(j-2)sum = sum + f(a + (2 * i - 1) * h);endR(j, 1) = 0.5 * R(j-1, 1) + (h * sum); % 使用梯形法则计算积分值for k = 2:jR(j, k) = R(j, k-1) + (R(j, k-1) - R(j-1, k-1)) / ((4^k) - 1); % 使用Romberg公式计算积分值endendresult = R(n, n); % 返回最终近似积分值end```以上是MATLAB实现复化梯形公式、复化SIMPSON公式以及ROMBERG积分的代码。

常用的复化求积公式有复化梯形公式和复化辛普森公式。

常用的复化求积公式有复化梯形公式和复化辛普森公式。

)

2
k 1
f
( xk ) f
(b)
称为复化辛普森公式。
类似于复化梯形公式余项的讨论,复化辛普森公式的 求积余项为
Rs


b a h4 2880
f
(4) ( )
a,b
显然,复化辛普森公式是收敛且稳定的.
复化求积公式的余项表明,只要被积函数f(x)及所涉及 的各阶导数在[a,b]上连续,那么复化梯形公式、复化辛普
n1
求出积分值Ik,然后将它们累加求和,用 I k 作为所求积分I
的近似值。
k 0
I
b
n1
f ( x)dx
a k0ቤተ መጻሕፍቲ ባይዱ
xk1 f ( x)dx n1 h
xk
k0 2
f ( xk ) f ( xk1)

h 2

f
(
x0
)

2(
f
(
x1
)

f (x2 ) ...
森公式所得近似值 Tn , Sn , Cn 的余项和步长的关系依次 为O(h2 ) 、O(h4 )、O(h6 ) 。因此当h→0 (即n→∞)时,Tn , Sn , Cn
都收敛于积分真值,且收敛速度一个比一个快。
例1 依次用n=8的复化梯形公式、n=4的复化辛普森公式计算
I
1 sin x dx
213等份时,用复化梯形公式计算误差不超过 1 105。
2
由于Tn 的求积系数为正,由定理2知复合梯形公式是稳定的.
4.3.2 复化辛普森公式及其误差
将积分区间[a,b]划分为n等分,记子区间 xk , xk1 的中点

复化梯形公式和复化Simpson公式

复化梯形公式和复化Simpson公式

数值计算方法上机题目3一、计算定积分的近似值:221x e xe dx =⎰ 要求:(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限71021-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式程序:程序1(求f (x )的n 阶导数:syms xf=x*exp(x) %定义函数f (x )n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n 阶导数结果1输入n=2f2 =2*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hTn1=0for k=1:n-1 %求连加和xk=a+k*hTn1=Tn1+f(xk)endTn=h/2*((f(a)+2*Tn1+f(b)))z=exp(2)R=Tn-z %求已知值与计算值的差fprintf('用复化梯形算法计算的结果 Tn=')disp(Tn)fprintf('等分数 n=')disp(n) %输出等分数fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用复化梯形算法计算的结果Tn= 7.3891等分数n=7019已知值与计算值的误差R= 2.8300e-0082. Simpson公式程序:程序1:(求f(x)的n阶导数):syms xf=x*exp(x) %定义函数f(x)n=input('输入所求导数阶数:')f2=diff(f,x,n) %求f(x)的n阶导数结果1输入n=4f2 =4*exp(x) + x*exp(x)程序2:clcclearsyms x%定义自变量xf=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值e=5*10^(-8) %精度要求值a=1 %积分下限b=2 %积分上限x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值for n=2:1000000 %求等分数nRn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项if abs(Rn)<e %用余项进行判断break% 符合要求时结束endendh=(b-a)/n %求hSn1=0Sn2=0for k=0:n-1 %求两组连加和xk=a+k*hxk1=xk+h/2Sn1=Sn1+f(xk1)Sn2=Sn2+f(xk)endSn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)z=exp(2)R=Sn-z %求已知值与计算值的差fprintf('用Simpson公式计算的结果 Sn=')disp(Sn)fprintf('等分数 n=')disp(n)fprintf('已知值与计算值的误差 R=')disp(R)输出结果显示:用Simpson公式计算的结果Sn= 7.3891等分数n=24已知值与计算值的误差R= 2.7284e-008用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值计算方法上机题目3
一、计算定积分的近似值:
2
21x e xe dx =⎰ 要求:
(1)若用复化梯形公式和复化Simpson 公式计算,要求误差限7102
1
-⨯=ε,分别利用他们的余项估计对每种算法做出步长的事前估计;
(2)分别利用复化梯形公式和复化Simpson 公式计算定积分;
(3)将计算结果与精确解比较,并比较两种算法的计算量。

1.复化梯形公式
程序:
程序1(求f (x )的n 阶导数:
syms x
f=x*exp(x) %定义函数f (x )
n=input('输入所求导数阶数:')
f2=diff(f,x,n) %求f(x)的n 阶导数
结果1
输入n=2
f2 =
2*exp(x) + x*exp(x)
程序2:
clc
clear
syms x%定义自变量x
f=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可
f2=inline('(2*exp(x) + x*exp(x))','x') %定义f(x)的二阶导数,输入程序1里求出的f2即可。

f3='-(2*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,以便求最大值
e=5*10^(-8) %精度要求值
a=1 %积分下限
b=2 %积分上限
x1=fminbnd(f3,1,2) %求负的二阶导数的最小值点,也就是求二阶导数的最大值点对应的x值
for n=2:1000000 %求等分数n
Rn=-(b-a)/12*((b-a)/n)^2*f2(x1) %计算余项
if abs(Rn)<e %用余项进行判断
break% 符合要求时结束
end
end
h=(b-a)/n %求h
Tn1=0
for k=1:n-1 %求连加和
xk=a+k*h
Tn1=Tn1+f(xk)
end
Tn=h/2*((f(a)+2*Tn1+f(b)))
z=exp(2)
R=Tn-z %求已知值与计算值的差
fprintf('用复化梯形算法计算的结果 Tn=')
disp(Tn)
fprintf('等分数 n=')
disp(n) %输出等分数
fprintf('已知值与计算值的误差 R=')
disp(R)
输出结果显示:
用复化梯形算法计算的结果Tn= 7.3891
等分数n=7019
已知值与计算值的误差R= 2.8300e-008
2. Simpson公式
程序:
程序1:(求f(x)的n阶导数):
syms x
f=x*exp(x) %定义函数f(x)
n=input('输入所求导数阶数:')
f2=diff(f,x,n) %求f(x)的n阶导数
结果1
输入n=4
f2 =
4*exp(x) + x*exp(x)
程序2:
clc
clear
syms x%定义自变量x
f=inline('x*exp(x)','x') %定义函数f(x)=x*exp(x),换函数时只需换该函数表达式即可
f2=inline('(4*exp(x) + x*exp(x))','x') %定义f(x)的四阶导数,输入程序1里求出的f2即可
f3='-(4*exp(x) + x*exp(x))'%因fminbnd()函数求的是表达式的最小值,且要求表达式带引号,故取负号,一边求最大值
e=5*10^(-8) %精度要求值
a=1 %积分下限
b=2 %积分上限
x1=fminbnd(f3,1,2) %求负的四阶导数的最小值点,也就是求四阶导数的最大值点对应的x值
for n=2:1000000 %求等分数n
Rn=-(b-a)/180*((b-a)/(2*n))^4*f2(x1) %计算余项
if abs(Rn)<e %用余项进行判断
break% 符合要求时结束
end
end
h=(b-a)/n %求h
Sn1=0
Sn2=0
for k=0:n-1 %求两组连加和
xk=a+k*h
xk1=xk+h/2
Sn1=Sn1+f(xk1)
Sn2=Sn2+f(xk)
end
Sn=h/6*(f(a)+4*Sn1+2*(Sn2-f(a))+f(b)) %因Sn2多加了k=0时的值,故减去f(a)
z=exp(2)
R=Sn-z %求已知值与计算值的差
fprintf('用Simpson公式计算的结果 Sn=')
disp(Sn)
fprintf('等分数 n=')
disp(n)
fprintf('已知值与计算值的误差 R=')
disp(R)
输出结果显示:
用Simpson公式计算的结果Sn= 7.3891
等分数n=24
已知值与计算值的误差R= 2.7284e-008
用复化梯形公式计算的结果为:7.3891,与精确解的误差为:2.8300e-008。

等分数n=7019
用复化Simpson公式计算的结果为:7.3891,与精确解的误差为:2.7284e-008。

等分数n=24
3、柯斯特公式求积分:
程序代码:
(1)function [y,Ck,Ak]=NewtonCotes(fun,a,b,n)
if nargin==1
[mm,nn]=size(fun);
if mm>=8
error('为了保证NewtonCotes积分的稳定性,最多只能有9个等距节点!')
elseif nn~=2
error('fun构成应为:第一列为x,第二列为y,并且个数为小于10的等距节点!')
end
xk=fun(1,:);
fk=fun(2,:);
a=min(xk);
b=max(xk);
n=mm-1;
elseif nargin==4
xk=linspace(a,b,n+1);
if isa(fun,'function_handle')
fx=fun(xk);
else
error('fun积分函数的句柄,且必须能够接受矢量输入!') end
else。

相关文档
最新文档