五年级奥数数阵问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生课程讲义
课程名称五年级奥数上课时间任课老师李老师
第___讲,本讲课题:数阵问题
内容概要
填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。
这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。
待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。
试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。
例1:
把5、6、7、8、9五个数分别填入下图的五个方格里,如图a使横行三个数的和与竖行三个数的和都是21。
先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。
把两式相比较可知,E=42-35=7,即中间填7。然后再根据5+9=6+8便可把五个数填进方格,如图b。
练习:
1、把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。
2、把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。
3、将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。
例2:
将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。
分析设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2、即55+a+b=60,a+b=5。在1——10这十个数中1+4=5,2+3=5。
当a和b是1和4时,每个大圆上另外四个数分别是(2、6,8,9)和(3、5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1、5,9,10)和(4,6,7,8)。
练习:
1、把1——8八个数分别填入下图的○内,使每个大圆上五个○内数的和相等。
2、把1——10这十个数分别填入下图的○内,使每个四边形顶点的○内四个数的和都相等,且和最大。
3、将1——8八个数填入下图方格里,使上面四格、下面四格、左四格、右四格、中间四格以及对角线四格内四个数的和都是18。
例3:
将1——6这六个数分别填入下图的圆中,使每条直线上三个圆内数的和相等、且最大。
分析设中间三个圆内的数是a、b、c。因为计算三条线上的和时,a、b、c都被计算了两次,根据题意可知:1+2+3+4+5+6+(a+b+c)除以3没有余数。1+2+3+4+5+6=21、21÷3=7没有余数,那么a+b+c的和除以3也应该没有余数。在1——6六个数中,只有4+5+6的和最大,且除以3没有余数,因此a、b、c分别为4、5、6。(1+2+3+4+5+6+4+5+6)÷3=12、所以有下面的填法:
练习:
1、将1——6六个数分别填入下图的○内,使每边上的三个○内数的和相等。
2、将1——9九个数分别填入下图○内,使每边上四个○内数的和都是17。
3、将1——8八个数分别填入下图的○内,使每条安上三个数的和相等。
例4:
将1——7分别填入下图的7个○内,使每条线段上三个○内数的和相等。
分析首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数。由于28÷3=9……1、那么2a除以3应该余2、因此,a可以为1、4或7。当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法。
练习:
1、将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。
2、将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等。
3、将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。