2016-2017学年七年级下数学期中试卷及答案
2017年天津市武清区七年级下学期期中数学试卷及解析答案
2016-2017学年天津市武清区七年级(下)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,请将答案选项天下题中括号内)1.(3分)下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.2.(3分)下列图形可由平移得到的是()A.B.C.D.3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.(3分)平面内三条直线的交点个数可能有()A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个5.(3分)11的算术平方根是()A.121 B.±C. D.﹣6.(3分)在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.7.(3分)下列说法中正确的是()A.两点之间线段最短B.若两个角的顶点重合,那么这两个角是对顶角C.一条射线把一个角分成两个角,那么这条射线是角的平分线D.过直线外一点有两条直线平行于已知直线8.(3分)若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)9.(3分)过点A(﹣3,5)和点B(﹣3,2)作直线,则直线AB()A.平行于x轴B.平行于y轴C.与y轴相交D.垂直于y轴10.(3分)下列说法①2是8的立方根;②±4是64的立方根;③﹣是﹣的立方根;④(﹣4)3的立方根是﹣4,其中正确的说法有()个.A.1 B.2 C.3 D.411.(3分)如图,已知直线a,b,c,d,c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2的大小是()A.30°B.40°C.50°D.60°12.(3分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC ∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)如果用(7,8)表示七年级八班,那么八年级六班可表示成.14.(3分)写出一个大于﹣1而小于3的无理数.15.(3分)线段AB是由线段CD平移得到,点A(﹣2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是.16.(3分)如图,AD∥BC,AB⊥AC,若∠B=60°,则∠1的大小是度.17.(3分)如图,在平面直角坐标系中,正方形ABOC的顶点A在第二象限,顶点B在x轴上,顶点C在y轴上,若正方形ABOC的面积等于7,则点A的坐标是.18.(3分)如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7的大小是.三、解答题(本大题共7小题.其中19-20题每题8分,21-25题每题10分,共66分,解答应写出文字说明、演算步骤或证明过程)19.(8分)计算:(1)()2+﹣;(2)|﹣|++2(﹣1)20.(8分)(1)过点A画出BC的平行线;(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF.21.(10分)按要求填空:(1)填表:a0.00040.044400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.22.(10分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.23.(10分)如图,AD⊥BC,D为垂足,DE∥AB,∠1=∠2,图中EF与BC垂直吗?为什么?24.(10分)王林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(﹣3,3),(﹣4,0),(﹣4,﹣3),(2,﹣2),(5,﹣3),(5,0),(5,4)的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.25.(10分)已知点A(a,0)、B(b,0),且+|b﹣2|=0.(1)求a、b的值.(2)在y轴的正半轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三角形ABC面积的?若存在,求出点D的坐标;若不存在,请说明理由.2016-2017学年天津市武清区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是正确的,请将答案选项天下题中括号内)1.(3分)下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.【解答】解:A、∠1与∠2是同位角,故此选项错误;B、∠1与∠2是内错角,故此选项错误;C、∠1与∠2是同旁内,故此选项正确;D、∠1与∠2不是同旁内角,故此选项错误;故选:C.2.(3分)下列图形可由平移得到的是()A.B.C.D.【解答】解:A、由一个图形经过平移得出,正确;B、由一个图形经过旋转得出,错误;C、由一个图形经过旋转得出,错误;D、由一个图形经过旋转得出,错误;故选A3.(3分)估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2=<=3,∴3<<4,故选B.4.(3分)平面内三条直线的交点个数可能有()A.1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个【解答】解:如图所示,分别有0个交点,1个交点,2个交点,3个交点,∴交点个数可能有0个或1个或2个或3个.故选D.5.(3分)11的算术平方根是()A.121 B.±C. D.﹣【解答】解:11的算术平方根是.故选:C.6.(3分)在下列图形中,线段PQ的长度表示点P到直线L的距离的是()A.B.C.D.【解答】解:图A、B、D中,线段PQ不与直线L垂直,故线段PQ不能表示点P到直线L的距离;图C中,线段PQ与直线L垂直,垂足为点Q,故线段PQ能表示点P到直线L 的距离;故选C.7.(3分)下列说法中正确的是()A.两点之间线段最短B.若两个角的顶点重合,那么这两个角是对顶角C.一条射线把一个角分成两个角,那么这条射线是角的平分线D.过直线外一点有两条直线平行于已知直线【解答】解:A、两点之间线段最短,是线段的性质公理,故本选项正确;B、应为若两个角的顶点重合且两边互为反向延长线,那么这两个角是对顶角,故本选项错误;C、应为一条射线把一个角分成两个相等的角,那么这条射线是角的平分线,故本选项错误;D、应为过直线外一点有且只有一条直线平行于已知直线,故本选项错误.故选A.8.(3分)若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)【解答】解:∵xy=0,∴x=0或y=0,当x=0时,点P在x轴上,当y=0时,点P在y轴上,∵x≠y,∴点P不是原点,综上所述,点P必在x轴上或y轴上(除原点).故选D.9.(3分)过点A(﹣3,5)和点B(﹣3,2)作直线,则直线AB()A.平行于x轴B.平行于y轴C.与y轴相交D.垂直于y轴【解答】解:∵A(﹣3,5)、B(﹣3,2),∴横坐标相等,纵坐标不相等,则过A,B两点所在直线平行于y轴,故选:B.10.(3分)下列说法①2是8的立方根;②±4是64的立方根;③﹣是﹣的立方根;④(﹣4)3的立方根是﹣4,其中正确的说法有()个.A.1 B.2 C.3 D.4【解答】解:①2是8的立方根,故①正确;②4是64的立方根,故②错误;③﹣是﹣的立方根,故③正确;④由于(﹣4)3=﹣64,所以﹣64的立方根是﹣4,故④正确故选(C)11.(3分)如图,已知直线a,b,c,d,c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2的大小是()A.30°B.40°C.50°D.60°【解答】解:∵c⊥a,c⊥b,∠1=50°,∴a∥b,∴∠2=∠1=50°.故选C.12.(3分)在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC ∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5)B.10,(3,﹣5)C.1,(3,4)D.3,(3,2)【解答】解:依题意可得:∵AC∥x,∴y=2,根据垂线段最短,当BC⊥AC于点C时,点B到AC的距离最短,即BC的最小值=5﹣2=3,此时点C的坐标为(3,2),故选D.二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上)13.(3分)如果用(7,8)表示七年级八班,那么八年级六班可表示成(8,6).【解答】解:∵用(7,8)表示七年级八班,∴八年级六班可表示成:(8,6).故答案为:(8,6).14.(3分)写出一个大于﹣1而小于3的无理数.【解答】解:写出一个大于﹣1而小于3的无理数,故答案为:.15.(3分)线段AB是由线段CD平移得到,点A(﹣2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).【解答】解:由点A(﹣2,1)的对应点为C(1,1),坐标的变化规律可知:各对应点之间的关系是横坐标加3,纵坐标加0,故点D的横坐标为3+3=6;纵坐标为2+0=2;即所求点D的坐标为(6,2),故答案为:(6,2).16.(3分)如图,AD∥BC,AB⊥AC,若∠B=60°,则∠1的大小是30度.【解答】解:∵∠B=60°,AC⊥AB,∴在Rt△ABC中,∠BCA=90°﹣60°=30°.又∵AD∥BC,∴∠1=∠BCA=30°.故答案为:30.17.(3分)如图,在平面直角坐标系中,正方形ABOC的顶点A在第二象限,顶点B在x轴上,顶点C在y轴上,若正方形ABOC的面积等于7,则点A的坐标是(﹣,).【解答】解:∵正方形ABOC的面积等于7,∴正方形ABOC的边长,∵正方形ABOC的顶点A在第二象限,顶点B在x轴上,顶点C在y轴上,∴点A的坐标是(﹣,).故答案为:(﹣,).18.(3分)如图,∠1=m°,∠2+∠4+∠6+∠8=n°,则∠3+∠5+∠7的大小是m°+n°.【解答】解:如图,连结AB、BC、CD.∵(∠3+∠9+∠10)+(∠5+∠11+∠12)+(∠7+∠13+∠14)=180°×3=540°,∴∠3+∠5+∠7=540°﹣(∠9+∠10+∠11+∠12+∠13+∠14),∵五边形ABCDE的内角和为(5﹣2)×180°=540°,∴540°=∠1+∠2+∠9+∠10+∠4+∠11+∠12+∠6+∠13+∠14+∠8=(∠1+∠2+∠4+∠6+∠8)+(∠9+∠10+∠11+∠12+∠13+∠14)=(m°+n°)+(∠9+∠10+∠11+∠12+∠13+∠14),∴∠9+∠10+∠11+∠12+∠13+∠14=540°﹣(m°+n°).∴∠3+∠5+∠7=540°﹣[540°﹣(m°+n°)]=m°+n°.故答案为m°+n°.三、解答题(本大题共7小题.其中19-20题每题8分,21-25题每题10分,共66分,解答应写出文字说明、演算步骤或证明过程)19.(8分)计算:(1)()2+﹣;(2)|﹣|++2(﹣1)【解答】解:(1)原式=6+3+2=11;(2)原式=﹣+3+2﹣2=3﹣+1.20.(8分)(1)过点A画出BC的平行线;(2)画出先将△ABC向右平移5格,再向上平移3格后的△DEF.(2)如图,△DEF即为所求.21.(10分)按要求填空:(1)填表:a0.00040.044400(2)根据你发现规律填空:已知:=2.638,则=26.38,=0.02638;已知:=0.06164,=61.64,则x=3800.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.2638;3800.22.(10分)已知如图,直线AB、CD相交于点O,∠COE=90°.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,过点O作OF⊥AB,请直接写出∠EOF的度数.【解答】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°﹣∠AOC﹣∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×=30°,∴∠AOC=30°,∴∠AOE=30°+90°=120°;(3)如图1,∠EOF=120°﹣90°=30°,或如图2,∠EOF=360°﹣120°﹣90°=150°.故∠EOF的度数是30°或150°.23.(10分)如图,AD⊥BC,D为垂足,DE∥AB,∠1=∠2,图中EF与BC垂直吗?为什么?【解答】解:垂直∴∠1=∠ADE,∵∠1=∠2,∴∠2=∠ADE,∴AD∥EF,∴∠ADB=∠EFB,∵AD⊥BC,∴∠ADB=90°,∴∠EFB=90°,∴EF⊥BC.24.(10分)王林同学利用暑假参观了幸福村果树种植基地(如图),他出发沿(1,3),(﹣3,3),(﹣4,0),(﹣4,﹣3),(2,﹣2),(5,﹣3),(5,0),(5,4)的路线进行了参观,请你按他参观的顺序写出他路上经过的地方,并用线段依次连接他经过的地点.【解答】解:由各点的坐标可知他路上经过的地方:葡萄园→杏林→桃林→梅林→山楂林→枣林→梨园→苹果园.如图所示:(1)求a、b的值.(2)在y轴的正半轴上找一点C,使得三角形ABC的面积是15,求出点C的坐标.(3)过(2)中的点C作直线MN∥x轴,在直线MN上是否存在点D,使得三角形ACD的面积是三角形ABC面积的?若存在,求出点D的坐标;若不存在,请说明理由.【解答】解:(1)∵(a+4)2+|b﹣2|=0,∴a+4=0,b﹣2=0,∴a=﹣4,b=2;(2)如图1,∵A(﹣4,0)、B(2,0),∴AB=6,∵三角形ABC的面积是15,∴AB•OC=15,∴OC=5,∴C(0,5);(3)存在,如图2,∵三角形ABC的面积是15,∴S=CD•OC=15,△ACD∴CD×5=×15,∴CD=3,∴D(3,5)或(﹣3,5).赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°ADEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
(完整版)七年级数学下册期中试卷及答案
(完整版)七年级数学下册期中试卷及答案 一、选择题 1.化简4的结果为()A .16B .4C .2D .2± 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡3.如图,小手盖住的点的坐标可能为( )A .()5,4B .()3,4-C .()2,3-D .()4,5-- 4.下列语句中,是假命题的是( )A .有理数和无理数统称实数B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .在同一平面内,垂直于同一条直线的两条直线互相平行D .两个锐角的和是锐角5.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10° 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A .60°B .80°C .75°D .72°8.如图,在平面直角坐标系中,放置半径为1的圆,圆心到两坐标轴的距离都等于半径,若该圆向x 轴正方向滚动2017圈(滚动时在x 轴上不滑动),此时该圆圆心的坐标为( )A .(2018,1)B .(4034π+1,1)C .(2017,1)D .(4034π,1)二、填空题9.计算:36的结果为_____.10.点A ()2,4-关于x 轴的对称点1A 的坐标为____________.11.如图,BD 、CE 为△ABC 的两条角平分线,则图中∠1、∠2、∠A 之间的关系为___________.12.已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度数为______________________°.13.如图,四边形ABCD 中,点M 、N 分别在AB 、BC 上,将△BMN 沿MN 翻折,得△FMN ,若MF ∥AD ,FN ∥DC ,则∠D 的度数为 ___.14.若1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,1220191525m m m ++⋅⋅⋅+=,()()()2221220191111510m m m -+-+⋅⋅⋅+-=,则在1m ,2m ,…,2019m 中,取值为2的个数为___________.15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC 的面积相等,则点P 的坐标为________.16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.三、解答题17.(1)33181254++ (2)3|12|427-+-(3)2(22)3(21)+-+18.求满足下列各式的未知数x .(1)2(1)16x +=.(2)31(6)322x -=. 19.如图,已知∠1=∠2,∠B =∠C ,可推得AB ∥CD .理由如下:∵∠1=∠2(已知),且∠l =∠CGD ( )∴∠2=∠CGD∴.CE ∥BF ( )∴∠ =∠BFD ( )又∵∠B =∠C (已知)∴ ,∴AB ∥CD ( )20.已知点A (-2,3),B (4,3),C (-1,-3).(1)在平面直角坐标系中标出点A ,B ,C 的位置;(2)求线段AB 的长;(3)求点C 到x 轴的距离,点C 到AB 的距离;(4)求三角形ABC 的面积;(5)若点P 在y 轴上,且三角形ABP 的面积与三角形ABC 的面积相等,求点P 的坐标.21.22的小数部分我们不能全212的小数部分,你同意小聪的表示方法吗?事实上21,用个数减去其整数部分,差就是它的小数部分.请解答下列问题:(110的整数部分是____,小数部分是_____.(2)如果55的小数部分是a 412的整数部分是b ,求5a b + (3)已知611x y =+,其中x 是正整数,01y <<,求x y -的相反数.22.(1)如图1,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为______cm ;(2)若一个圆的面积与一个正方形的面积都是22πcm ,设圆的周长为C 圆.正方形的周长为C 正,则C 圆______C 正(填“=”,或“<”,或“>”)(3)如图2,若正方形的面积为2900cm ,李明同学想沿这块正方形边的方向裁出一块面积为2740cm 的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?23.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象.故选:C.【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.C【分析】根据各象限内点的坐标特征判断即可.【详解】由图可知,小手盖住的点在第四象限,∴点的横坐标为正数,纵坐标为负数,∴(2,-3)符合.其余都不符合故选:C.【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.4.D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;︒+︒=︒>︒,故D选项是假命题,符合题意D. 两个锐角的和不一定是锐角,例如505010090故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键.5.C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,45BAE DEF ∴∠=∠=︒,453015CAE BAE BAC ∴∠=∠-∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠EFD ′,由平角的性质可求得∠CFD ′的度数,即可得出答案.【详解】解:∵AB ∥CD ,∴∠CFE =∠AEF ,又∵∠DFE =∠EFD ′,∠CFE =2∠CFD ′,∴∠DFE =∠EFD ′=3∠CFD ′,∴∠DFE +∠CFE =3∠CFD ′+2∠CFD ′=180°,∴∠CFD ′=36°,∴∠AEF =∠CFE =2∠CFD ′=72°.故选:D .【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1解析:B【分析】首先求出圆心坐标(1,1),再根据圆的滚动情况求出平移距离,再根据点平移时其坐标变化规律求解即可.【详解】解:∵圆的半径为1,且圆心到两坐标轴的距离都等于半径,∴圆心坐标(1,1).∵圆向x 轴正方向滚动2017圈,∴圆沿x 轴正方向平移1220174034⨯⨯π⨯=π个单位长度.∴圆心沿x 轴正方向平移4034π个单位长度.∴平移后圆心坐标()40341,1π+.故选:B .【点睛】本题考查了点平移时其坐标变化规律,点向左(右)平移时,横坐标减(加)平移距离,点向下(上)平移时,纵坐标减(加)平移距离.二、填空题9.6【分析】根据算术平方根的定义即可求解.【详解】解:的结果为6.故答案为6【点睛】考查了算术平方根,非负数a 的算术平方根a 有双重非负性:①被开方数a 是非负数;②算术平方根a 本身是非负数解析:6【分析】根据算术平方根的定义即可求解.【详解】6.故答案为6【点睛】考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.10.(2,4)【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:点A(2,-4)关于x轴解析:(2,4)【分析】直接利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而得出答案.【详解】解:点A(2,-4)关于x轴对称点A1的坐标为:(2,4).故答案为:(2,4).【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.11.∠1+∠2-∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、C解析:∠1+∠2-32∠A=90°【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.【详解】∵BD、CE为△ABC的两条角平分线,∴∠ABD=12∠ABC,∠ACE=12∠ACB,∵∠1=∠ACE+∠A,∠2=∠ABD+∠A ∴∠1+∠2=∠ACE+∠A+∠ABD+∠A=1 2∠ABC+12∠ACB+12∠A+32∠A=12(∠ABC+∠ACB+∠A)+32∠A=90°+32∠A故答案为∠1+∠2-32∠A=90°.【点睛】考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.12.60°【分析】如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.【详解】解:如图,∵∠1=30°,∴∠3=∠1=30°,∵a∥b解析:60°【分析】如图,由对顶角相等可得∠3,由平行线的性质可得∠4,由三角形的内角和定理可得∠5,再根据对顶角相等即得∠2.【详解】解:如图,∵∠1=30°,∴∠3=∠1=30°,∵a∥b,∴∠4=∠3=30°,∴∠5=180°-∠4-90°=60°,∴∠2=∠5=60°.故答案为:60°.【点睛】本题考查了对顶角相等、平行线的性质和三角形的内角和定理等知识,属于常考题型,熟练掌握上述基础知识是解题关键.13.95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.解析:95°【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【详解】解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°−50°−35°=95°,∴∠D=360°−100°−70°−95°=95°.故答案为:95°.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.14.508【分析】通过,,…,是从0,1,2,这三个数中取值的一列数,,从而得到1的个数,再由得到2的个数.【详解】解:∵,又∵,,…,是从0,1,2,这三个数中取值的一列数,∴,,…,中为解析:508通过1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,()()()2221220191111510m m m -+-+⋅⋅⋅=-+,从而得到1的个数,再由1220191525m m m ++⋅⋅⋅+=得到2的个数.【详解】 解:∵()()()2221220191111510m m m -+-+⋅⋅⋅=-+,又∵1m ,2m ,…,2019m 是从0,1,2,这三个数中取值的一列数,∴1m ,2m ,…,2019m 中为1的个数是2019−1510=509,∵1220191525m m m ++⋅⋅⋅+=,∴2的个数为(1525−509)÷2=508个.故答案为:508.【点睛】此题考查完全平方的性质,找出1m ,2m ,…,2019m 中为1的个数是解决问题的关键. 15.(-4,1)【分析】根据非负数的性质分别求出a 、b ,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A (0,3),B (4,0),C (4,6),∴△ABC 的面积解析:(-4,1)【分析】根据非负数的性质分别求出a 、b ,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b -+-=,∴a =3,b =4,∴A (0,3),B (4,0),C (4,6),∴△ABC 的面积=12×6×4=12, 四边形ABOP 的面积=△AOP 的面积+△AOB 的面积=12×3×(-m )+12×3×4=6-32m , 由题意得,6-32m =12, 解得,m =-4,∴点P 的坐标为(-4,1),故答案为:(-4,1).本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.16.(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),∴“凸”形ABCDEFGHP的周长为20,2018÷20的余数为18,∴细线另一端所在位置的点在P处,坐标为(1,0).故答案为:(1,0).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式(2)原式(3)原式此题主要考查了实解析:(1)172;(22;(3)1-【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可.【详解】解:(1)原式1112577222=++=+=(2)原式1232=+-=(3)原式231=+=-【点睛】此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.18.(1)或;(2)【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以,再根据立方根的定义直接开立方即可求解.【详解】解:(1),即或,解得或.(2),,解得.解析:(1)3x =或5x =-;(2)10x =【分析】(1)根据平方根的定义直接开平方求解即可;(2)先两边同时除以12,再根据立方根的定义直接开立方即可求解.【详解】解:(1)14x +=±,即14x +=或14x +=-,解得3x =或5x =-.(2)3(6)64x -=, 64x -=,解得10x =.本题主要考查平方根和立方根的应用,解决本题的关键是要熟练掌握平方根和立方根的定义.19.见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,解析:见解析【分析】首先确定∠1=∠CGD是对顶角,利用等量代换,求得∠2=∠CGD,则可根据:同位角相等,两直线平行,证得:CE∥BF,又由两直线平行,同位角相等,证得角相等,易得:∠BFD=∠B,则利用内错角相等,两直线平行,即可证得:AB∥C D.【详解】解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定与性质.注意数形结合思想的应用是解答此题的关键.20.(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根解析:(1)见解析;(2)6;(3)3;6;(4)18;(5)(0,9)或(0,-3)【分析】(1)根据三个点的坐标,在坐标系中标出来对应的位置即可;(2)根据两点坐标求出两点的距离即可;(3)根据点到直线的距离和到x轴的距离为点的纵坐标的绝对值即可求解;(4)根据三角形面积=AB的长×C到直线AB的距离求解即可;(5)根据同底等高的两个三角形面积相等即可求解.【详解】解:(1)如图所示,即为所求;(2)∵A (-2,3),B (4,3),∴AB =4-(-2)=6;(3)∵C (-1,-3),∴C 到x 轴的距离为3,到直线AB 的距离为6;(4)∵AB =6,C 到直线AB 的距离为6, ∴1=66=182ABC S ⨯⨯△;(5)如图所示,三角形ABP与三角形ABC同底等高,即为所求∴P(0,-3);同理当P在AB的上方还有一个到AB距离是6的点满足要求,即P(0,9);∴P(0,-3)或(0,9).【点睛】本题主要考查了坐标与图形,三角形面积公式,点到直线的距离,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3;;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a 的值,同理估计的大小,再求出其整数部分b 的值,即可求解;(解析:(1)33;(2)7;(3)2【分析】(1(2)先估算5的大小,再求出其小数部分a 2的大小,再求出其整数部分b 的值,即可求解;(3)根据题意先求出x ,y 所表示的数,再求出x-y ,即可求出其相反数.【详解】解:(1)∵3<4, ∴33故答案为:33;(2)∵23< ∴32-<<-∴253<<∴5的小数部分a =5-2=3∵67 ∴425<<∴2的整数部分b =4 ∴a b ++=34=7;(3)∵34<< ∴-4<-3 ∴263< ∴62,小数部分为62=4∵6x y =+,其中x 是正整数,01y <<,∴2x =,y=4∴x y -=(242--=∴x y -的相反数为2【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 22.(1);(2)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(12)<;(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,设大正方形的边长为x cm ,∴22x = , ∴x∴;(2)设圆的半径为r ,∴由题意得22r ππ=, ∴r = ∴=22C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C ===<圆正 故答案为:<;(3)解:不能裁剪出,理由如下:∵正方形的面积为900cm 2,∴正方形的边长为30cm∵长方形纸片的长和宽之比为5:4,∴设长方形纸片的长为5x ,宽为4x ,则54740x x ⋅=,整理得:237x=,∴22==⨯=>,(5)252537925900x x∴22x>,(5)30x>,∴530∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.。
【一中】2016-2017学年第二学期初一数学期中试卷及答案
D . (a)6 a3 a3 .
故选 D .
D. (a)6 a3 a3
3.下列命题:①两直线平行,同旁内角互补;②如果 a ∥b , b∥c ,那么 a ∥c ;③直角都相等;④
相等的角是对应角.其中,真命题有( ).
A.1 个
B. 2 个
C. 3 个
D. 4 个
【答案】C
【解析】①两直线平行,同旁内角互补(正确).
二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解题过程,请把答案直接填写在答. 题.卷.相.应.位.置.上)
9.钓鱼岛列岛是我国固有领土,共由 8 个岛屿组成,其中最大的岛是钓鱼岛,面积约为 4.3 平方公里, 最小的岛是飞濑岛,面积约为 0.0008 平方公里,请用科学记数法表示飞濑岛的面积约为__________ 平方公里.
【答案】 3
【解析】
1 3
100
3101
1 3
100
3100
3
(1)100 3
3.
12.如图,将三角尺的顶点放在直尺的一边上,∠1 30 .∠3 20 ,则∠2 __________.
1 3
2
【答案】 50 【解析】∵∠1 30 ,∠3 20 , ∴∠4 50 , ∵ AB ∥CD , ∴∠2 ∠4 , ∴∠2 50 .
南京中小学辅导 1对1、3人班、8人班
∵∠BAC 70 , ∴∠AGD 110 .
22.( 8 分)如图,每个小正方形的边长为1,在方格纸内将 △ABC 经过一次平移后得到 △ABC ;,图 中标出了点 B 的对应点 B .
七年级下册数学期中模拟试卷及答案完整(1)
七年级下册数学期中模拟试卷及答案完整(1)一、选择题1.1.96的算术平方根是()A .0.14B .1.4C .0.14-D .±1.42.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.点()5,4A --在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题是假命题的是( )A .两个锐角的和是钝角B .两条直线相交成的角是直角,则两直线垂直C .两点确定一条直线D .三角形中至少有两个锐角5.如图,//AB CD ,DCE ∠的角平分线CG 的反向延长线和ABE ∠是角平分线BF 交于点F ,48E F ∠-∠=︒,则F ∠等于( )A .42°B .44°C .72°D .76°6.下列叙述中,①1的立方根为±1;②4的平方根为±2;③-8立方根是-2;④116的算术平方根为14.正确的是( ) A .①②③B .①②④C .①③④D .②③④ 7.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,146∠=︒,则2∠等于( )A .138︒B .157︒C .148︒D .159︒8.如图,点()0,1A ,点()12,0A ,点()23,2A ,点()35,1A ,…,按照这样的规律下去,点2021A 的坐标为( )A .()6062,2020B .()3032,1010C .()3030,1011D .()6063,2021二、填空题9.若x =x ,则x 的值为______.10.若(),3A m -与()4,3B -关于y 轴对称,则m =______.11.如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,且∠BAD 、∠ADC 的角平分线AE 、DF 分别交BC 于点E 、F .若EF =2,AB =5,则AD 的长为_______.12.如图,//AB CD ,点F 在CD 上,点A 在EF 上,则132∠+∠-∠的度数等于______.13.如图,在长方形纸片ABCD 中,点E 、F 分别在AD 、BC 上,将长方形纸片沿直线EF 折叠后,点D 、C 分别落在点D 1、C 1的位置,如果∠1AED =40°,那么∠EFB 的度数是_____度.14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果236x =,那么6x =±.15.若点P (a +3,2a +4)在y 轴上,则点P 到x 轴的距离为________.16.如图,在平面直角坐标系中,一动点从原点O 出发,每次移动1个单位长度,依次得到点P 1(0,1),P 2(1,1),P 3(1,0),P 4(1,﹣1),P 5(2,﹣1),P 6(2,0)⋯,则P 2020的坐标是___.三、解答题17.(1)计算:3317362271? 48-++-- (2)比较325- 与-3的大小18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.已知一个角的两边与另一个角的两边分别平行,结合图1,探索这两个角之间的关系.(1)如图1,已知ABC ∠与DEF ∠中,//AB FE ,//BC DE ,AB 与DE 相交于点G .问:ABC ∠与DEF ∠有何关系?①请完成下面的推理过程.理由://AB FE ,AGE DEF ∴∠+∠= ( ).//BC DE ,AGE ABC ∴∠=∠( ).ABC DEF ∴∠+∠= .②结论:ABC ∠与DEF ∠关系是 .(2)如图2,已知//AB FE ,//BC ED ,则ABC ∠与DEF ∠有何关系?请直接写出你的结论.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么 .20.如图,三角形ABC 在平面直角坐标系中,(1)请写出三角形ABC 各点的坐标;(2)将 三角形ABC 经过平移后得到三角形A 1B 1C 1,若三角形ABC 中任意一点M (a ,b )与三角形A 1B 1C 1的对应点的坐标为M 1(a -1,b +2),写出A 1B 1C 1的坐标,并画出平移后的图形;(3)求出三角形ABC 的面积.21.若整数m 的两个平方根为63a -,22a -;b 89(1)求a 及m 的值;(2)求275m b ++的立方根.22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线,AB BC 将它剪开后,重新拼成一个大正方形ABCD .(1)基础巩固:拼成的大正方形ABCD 的面积为______,边长AD 为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B 与数轴上的1-重合.以点B 为圆心,BC 边为半径画圆弧,交数轴于点E ,则点E 表示的数是______; (3)变式拓展:①如图4,给定55⨯的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;②请你利用①中图形在数轴上用直尺和圆规.....表示面积为13的正方形边长所表示的数.23.已知//AM CN ,点B 为平面内一点,AB BC ⊥于B .(1)如图1,求证:90A C ∠+∠=︒;(2)如图2,过点B 作BD MA ⊥的延长线于点D ,求证:ABD C ∠=∠;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,且BF 平分DBC ∠,BE 平分ABD ∠,若AFC BCF ∠=∠,3BFC DBE ∠=∠,求EBC ∠的度数. 24.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍. (1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根即可得出答案.【详解】解:∵2,1.4 1.96∴1.96的算术平方根是1.4,故选:B.【点睛】本题考查了算术平方根,掌握算术平方根的定义是解题的关键,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A,故选A.考点:平移的性质.3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点()5,4A --在第三象限; 故选C .【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.A【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20°、30°,和是50°,还是锐角,因此是假命题.【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20°、30°, 而它们的和是50°,还是锐角,不是钝角;B.两条直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题.故选: A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键.5.B【分析】过F 作FH ∥AB ,依据平行线的性质,可设∠ABF =∠EBF =α=∠BFH ,∠DCG =∠ECG =β=∠CFH ,根据四边形内角和以及∠E -∠F =48°,即可得到∠E 的度数.【详解】解:如图,过F 作FH ∥AB ,∵AB ∥CD ,∴FH ∥AB ∥CD ,∵∠DCE 的角平分线CG 的反向延长线和∠ABE 的角平分线BF 交于点F ,∴可设∠ABF =∠EBF =α=∠BFH ,∠DCG =∠ECG =β=∠CFH ,∴∠ECF =180°-β,∠BFC =∠BFH -∠CFH =α-β,∴四边形BFCE 中,∠E +∠BFC =360°-α-(180°-β)=180°-(α-β)=180°-∠BFC ,即∠E +2∠BFC =180°,①又∵∠E -∠BFC =48°,∴∠E =∠BFC +48°,②∴由①②可得,∠BFC +48°+2∠BFC =180°,解得∠BFC =44°,故选:B .【点睛】本题主要考查了平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.6.D【分析】分别求出每个数的立方根、平方根和算术平方根,再判断即可.【详解】∵1的立方根为1,∴①错误;∵4的平方根为±2,∴②正确;∵−8的立方根是−2,∴③正确; ∵116的算术平方根是14,∴④正确; 正确的是②③④,故选:D .【点睛】本题考查了平方根、算术平方根和立方根.解题的关键是掌握平方根、算术平方根和立方根的定义.7.B【分析】根据平行线的性质推出1GEB ∠=∠,GFE FEB ∠=∠,然后结合角平分线的定义求解即可得出GFE ∠,从而得出结论.【详解】解:∵//AB CD ,∴146GEB ∠=∠=︒,GFE FEB ∠=∠,∵GEB ∠的平分线EF 交CD 于点F , ∴1232GEF FEB GEB ∠=∠=∠=︒, ∴23GFE FEB ∠=∠=︒,∴218018023157GFE ∠=︒-∠=︒-︒=︒,故选:B .【点睛】本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键.8.B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10解析:B【分析】观察图形得到奇数点的规律为,A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A 2n−1(3032,1010).【详解】35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--2462(3,2),(6,3),(9,4)(3,1)n A A A A n n ⋯⋯+∵212021n -=∴1011n =2021(3032,1010)A故选B .【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a,即x²=a,则这个数x叫做a的算术平方根)求解.10.【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐解析:4【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y 轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.11.8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是解析:8【分析】根据题意由平行线的性质得到∠ADF=∠DFC,再由DF平分∠ADC,得∠ADF=∠CDF,则∠DFC=∠FDC,然后由等腰三角形的判定得到CF=CD,同理BE=AB,则四边形ABCD是平行四边形,最后由平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【详解】解:∵AD∥BC,∴∠ADF=∠DFC,∵DF平分∠ADC,∴∠ADF=∠CDF,∴∠DFC=∠CDF,∴CF=CD,同理BE=AB,∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴AB=BE=CF=CD=5,∴BC=BE+CF﹣EF=5+5﹣2=8,∴AD=BC=8,故答案为:8.【点睛】本题考查等腰三角形的判定和性质和平行线的性质以及平行四边形的性质等知识,解答本题的关键是熟练掌握平行线的性质以及平行四边形的性质.12.180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥解析:180°【分析】根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案【详解】解:∵AB∥CD,∴∠1=∠AFD,∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,∴∠2+360°-∠1-∠3=180°,∴∠1+∠3-∠2=180°,故答案为:180°【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解13.70【分析】先利用折叠的性质得出∠DEF =∠D1EF ,再由利用平角的应用求出∠DEF ,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF =∠D1EF ,∵∠AED1=40°解析:70【分析】先利用折叠的性质得出∠DEF =∠D 1EF ,再由利用平角的应用求出∠DEF ,最后长方形的性质即可得出结论.【详解】解:如图,由折叠可得∠DEF =∠D 1EF ,∵∠AED 1=40°,∴∠DEF =180402︒-︒=70°, ∵四边形ABCD 是长方形,∴AD ∥BC ,∴∠EFB =∠DEF =70°.故答案为:70.【点睛】考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF =∠D 1EF 解答. 14.②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题; ②无理数是无限不循环小数,正确,是真命题;③解析:②④⑤【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可.【详解】解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;②无理数是无限不循环小数,正确,是真命题;③两直线平行,同位角相等,故错误,是假命题;④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.证明:∵a//b,∴∠CAE+∠ACF=180°.又AB平分∠CAE,CD平分∠ACF,所以∠1=12∠CAE,∠2=12∠ACF.所以∠1+∠2=12∠CAE+12∠ACF=1 2(∠CAE+∠ACF)=12×180°=90°.又∵△ACG的内角和为180°,∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,∴AB⊥CD.∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;⑤如果236x=,那么6x=±,正确,是真命题.故答案为:②④⑤.【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.15.2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可.【详解】∵点P(a+3,2a+4)在y轴上∴a+3=0,解得:a=-3∴P(0,-2)∴点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的.16.(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而解析:(673,-1)【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而得到P2020(673,-1).【详解】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+4(2n+1,-1),∵2016÷6=336,∴P6×336(2×336,0),即P2016(672,0),∴P2020(673,-1).故答案为:(673,-1).【点睛】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).三、解答题17.(1)-1;(2)【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出-3= ,即可得出结果.【详解】解:(1)原式===-1;(2)∵∴即解析:(1)-1;(23-【分析】(1)根据算数平方根,立方根化简,然后根据实数的运算法则计算即可;(2)求出,即可得出结果.【详解】解:(1)原式= =3163()22-++-- =-1;(2)∵3(3)27-=-2527->- ∴3-.故答案为(1)-1;(23>-.【点睛】本题考查实数的运算及实数的大小比较,熟练掌握平方根和立方根的性质是解题的关键. 18.(1);(2)①;②【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1),,解析:(1)2725;(2)①54125;②95 【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1)3m a =,5n a =,32m n a -∴32m n a a =÷32()()m n a a =÷3235=÷2725=; (2)①35x y -=,1825xy =, 22x y xy ∴-183()255xy x y =-=⨯ 54125=; ②35x y -=,1825xy =, 22x y ∴+2()2x y xy =-+23182525⎛⎫=+⨯ ⎪⎝⎭ 9362525=+ 95=. 【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.19.(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据,,即可得与的关系;(2)如图2,根据解析:(1)①180°;两直线平行,同旁内角互补;两直线平行,同位角相等;180°;②互补;(2)ABC DEF ∠=∠(相等);(3)这两个角相等或互补.【分析】(1)如图1,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(2)如图2,根据//AB FE ,//BC ED ,即可得ABC ∠与DEF ∠的关系;(3)由(1)(2)即可得出结论.【详解】解:(1)①理由://AB FE ,180AGE DEF ∴∠+∠=︒(两直线平行,同旁内角互补),//BC DE ,AGE ABC ∴∠=∠ (两直线平行,同位角相等),180ABC DEF ∴∠+∠=︒.②结论:ABC ∠与DEF ∠关系是互补.故答案为:①180︒;两直线平行,同旁内角互补;两直线平行,同位角相等;180︒;②相等.(2)ABC DEF ∠=∠,理由如下://AB FE ,DGA DEF ∴∠=∠,//BC DE ,DGA ABC ∴∠=∠,ABC DEF ∴∠=∠.(3)由(1)、(2)你得出的结论是:如果一个角的两边与另一个角的两边分别平行,那么这两个角互补或相等,故答案为:这两个角互补或相等.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握平行线的性质定理.20.(1)A (-2,-2),B (3,1),C (0,2);(2)A1(-3,0),B1(2,3),C1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A 、B 、C 的坐标;解析:(1)A (-2,-2),B (3,1),C (0,2);(2)A 1(-3,0),B 1(2,3),C 1(-1,4),图见详解;(3)7【分析】(1)利用点的坐标的表示方法分别写出点A 、B 、C 的坐标;(2)先利用点的坐标平移的规律写出点A 、B 、C 的对应点A 1、B 1、C 1的坐标,然后描点即可得到△A 1B 1C 1;(3)利用一个矩形的面积分别减去三个三角形的面积计算三角形ABC 的面积.【详解】解:(1)如图观察可得:A (-2,-2),B (3,1),C (0,2);(2)根据三角形ABC 中任意一点M (a ,b )与三角形A 1B 1C 1的对应点的坐标为M 1(a -1,b +2)可知,△ABC 向左平移一个单位长度,向上平移两个单位长度,平移后坐标为:A 1(-3,0),B 1(2,3),C 1(-1,4),平移后的△A 1B 1C 1如下图所示:;(3)111545313247222ABC S ==⨯-⨯⨯-⨯⨯-⨯⨯. 【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(1)a=4,m=36;(2)6【分析】(1)根据平方根的性质得到,求出a 值,从而得到m ;(2)估算出的范围,得到b 值,代入求出,从而得到的立方根.【详解】解:(1)∵整数的两个平方根为,解析:(1)a =4,m =36;(2)6【分析】(1)根据平方根的性质得到63220a a -+-=,求出a 值,从而得到m ;(289b 值,代入求出275m b ++,从而得到275m b ++的立方根.【详解】解:(1)∵整数m 的两个平方根为63a -,22a -,∴63220a a -+-=,解得:4a =,∴222426a -=⨯-=,∴m =36;(2)∵b 89∴8189100<<,∴98910<<,∴b=9,∴275275369216++=+⨯+=,m b++的立方根为6.∴275m b【点睛】本题主要考查立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.22.(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,10;(2)101-;(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实数与数轴的关系可得结果;(3)以2×3的长方形的对角线为边长即可画出图形;(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.【详解】解:(1)∵图1中有10个小正方形,∴面积为10,边长AD为10;(2)∵BC=10,点B表示的数为-1,∴BE=10,∴点E表示的数为101-;(3)①如图所示:②∵正方形面积为13,∴13如图,点E 表示面积为13的正方形边长.【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.23.(1)见解析;(2)见解析;(3).【分析】(1)先根据平行线的性质得到,然后结合即可证明;(2)过作,先说明,然后再说明得到,最后运用等量代换解答即可; (3)设∠DBE=a ,则∠BFC=3解析:(1)见解析;(2)见解析;(3)︒=∠105EBC .【分析】(1)先根据平行线的性质得到C BDA ∠=∠,然后结合AB BC ⊥即可证明;(2)过B 作//BH DM ,先说明ABD CBH ∠=∠,然后再说明//BH NC 得到CBH C ∠=∠,最后运用等量代换解答即可;(3)设∠DBE =a ,则∠BFC =3a ,根据角平分线的定义可得∠ABD =∠C =2a ,∠FBC =12∠DBC =a +45°,根据三角形内角和可得∠BFC +∠FBC +∠BCF =180°,可得∠AFC =∠BCF 的度数表达式,再根据平行的性质可得∠AFC +∠NCF =180°,代入即可算出a 的度数,进而完成解答.【详解】(1)证明:∵//AM CN ,∴C BDA ∠=∠,∵AB BC ⊥于B ,∴90B ∠=︒,∴90A BDA ∠+∠=︒,∴90A C ∠+∠=︒;(2)证明:过B 作//BH DM ,∵BD MA ⊥,∴90ABD ABH ∠+∠=︒,又∵AB BC ⊥,∴90ABH CBH ∠+∠=︒,∴ABD CBH∠=∠,∵//BH DM,//AM CN∴//BH NC,∴CBH C∠=∠,∴ABD C∠=∠;(3)设∠DBE=a,则∠BFC=3a,∵BE平分∠ABD,∴∠ABD=∠C=2a,又∵AB⊥BC,BF平分∠DBC,∴∠DBC=∠ABD+∠ABC=2a+90,即:∠FBC=12∠DBC=a+45°又∵∠BFC+∠FBC+∠BCF=180°,即:3a+a+45°+∠BCF=180°∴∠BCF=135°-4a,∴∠AFC=∠BCF=135°-4a,又∵AM//CN,∴∠AFC+∠NCF=180°,即:∠AFC+∠BCN+∠BCF=180°,∴135°-4a+135°-4a+2a=180,解得a=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】本题主要考查了平行线的性质、角平分线的性质及角的计算,熟练应用平行线的性质、角平分线的性质是解答本题的关键.24.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=5407︒().【分析】(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.【详解】解:当108°的角是另一个内角的3倍时,最小角为180°﹣108°﹣108÷3°=36°,当180°﹣108°=72°的角是另一个内角的3倍时,最小角为72°÷(1+3)=18°,因此,这个“梦想三角形”的最小内角的度数为36°或18°.故答案为:18°或36°.(2)△AOB、△AOC都是“梦想三角形”证明:∵AB⊥OM,∴∠OAB=90°,∴∠ABO=90°﹣∠MON=30°,∴∠OAB=3∠ABO,∴△AOB为“梦想三角形”,∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,∴∠OAC=80°﹣60°=20°,∴∠AOB=3∠OAC,∴△AOC是“梦想三角形”.(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC,∴∠CDE=∠BCD,∵AE平分∠ADC,∴∠ADE=∠CDE,∴∠B=∠BCD,∵△BCD是“梦想三角形”,∴∠BDC=3∠B,或∠B=3∠BDC,∵∠BDC+∠BCD+∠B=180°,∴∠B=36°或∠B=5407().【点睛】本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.。
浙教版七年级第二学期期中学习质量检测数学试卷及答案9
浙教版七年级第二学期期中学习质量检测数学试卷及答案一、选择题(共10小题,每小题3分,共30分) 1.下列各组数中①⎩⎨⎧==22y x ②⎩⎨⎧==12y x ③⎩⎨⎧-==22y x ④⎩⎨⎧==61y x 是方程104=+y x 的解的有( )A.1个B.2个C.3个D.4个2.一个正方形边长增加3cm ,它的面积就增加39cm 2,这个正方形边长是( ) A.8 cm B.5 cm C.6cm D.10 cm 3.如图,下列条件中,不能判断直线l 1∥l 2的是( ) A .∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 4.两条直线被第三条直线所截,则( ) A.同位角一定相等 B.内错角一定相等 C.同旁内角一定互补 D.以上结论都不对 5.二元一次方程72=+y x 的正整数解有( ) A.1组 B.2组 C.3组 D.4组6.通过计算几何图形的面积可表示一些代数恒等式,如图可表示的代数恒等式是( )A .()2222a b a ab b -=-+ B .()2222b ab a b a ++=+C .()ab a b a a 2222+=+D .()()22a b a b a b +-=-7.将一条两边沿平行的纸带如图折叠,若∠1=62º,则∠2=( ) A 、62º B 、56º C 、45º D 、30º8.某校春季运动会比赛中,七年级(1)和(5)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(5)班得分比是6:5,乙同学说:(1)班的得分比(5)班得分的2倍少40分,若设(1)班得x 分,(5)班得y 分,根据题意,所列的方程组应为( )⎩⎨⎧-==40256.y x y x A ⎩⎨⎧+==40256.y x y x B ⎩⎨⎧-==40265.y x y x C ⎩⎨⎧+==40265.y x yx D 9.将一条两边沿平行的纸带如图折叠,若∠1=62º,则∠2=( ) 第6题第9题FE DCBA 2110.已知10 x =3,10 y =4,则102x +3y =( )A 、 574B 、575C 、576D 、577 二、填空题:(本题共6小题,每小题4分,共24分) 11.如图,AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,ED平分∠BEF .若∠1=68°,则∠2的度数是 度.12.若1006x y +=,2x y -=,则代数式22x y -的值是13.已知⎩⎨⎧-==24y x 是二元一次方程mx +y =10的一个解,则m 的值为14按如图所示的程序计算,若输入的值17x =,则输出的结果为22;若输入的值34x =, 则输出结果为22.当输出的值为24时,则输入的x 的值在0至40之间的所有正整数 为15. 已知231x y =-⎧⎨=⎩是二元一次方程组11ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值是 .16.如图,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 三、解答题(共7题,共66分) 17、解方程组(本题8分)2x 5y 13(1)3x 5y 7+=⎧⎨-=⎩ ()⎩⎨⎧=-=-195.02.013.02y x y x1 ABF C D E G(1) n 1n 2n n 2n 2n 1n 2xy 2)y x 8y x 4y x 6(÷++++(2) 255323232)y x 2()y x 2()y x 3(-÷-⋅-19.(本题8分)如图,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.20(本题10分)阅读下列材料,解答下面的问题:我们知道方程1232=+y x 有无数个解,但在实际生活中我们往往只需求出其正整数解。
2016初一数学下册期中试卷及答案
2016初一数学下册期中试卷及答案一、填空1、(a-b)(a+b)=______;(x+1)(x-1)=________;2、(x+2)2=______;3、水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001米,用科学计数法表示为______________;4、小明的身高约为1.69米,这个数精确到_____位,将这个数精确到十分位是_______;5、小明在一个小正方体的六个面上分别标了1、2、3、4、5、6六个数字,随意地掷出小正方体,则P(掷出地数字小于7)=________;6、用3cm,8cm,____cm长的三根小木棒能摆成一个三角形。
二、判断1、百分之一米(即10-6米)就是1微米。
()2、“任意掷出一枚均匀的硬币,正面朝上”这个事件的概率是1。
()3、同位角相等。
()4、用“5cm,6cm,10cm”长的三根木条,能摆成一个三角形。
()三、选择1、一个游戏的中将率是1%,小花买100张奖券,下列说法正确的是()A.一定会中奖B.一定不中奖C.中奖的可能性大D.中奖的可能性小2、王刚设计了一个转盘游戏:随意转动转盘,使指针最后落在红色区域的概率为1/3,如果他将转盘等分成12份,则红色区域应占的份数是()3、如图中,方砖除颜色的外完全相同,小老鼠在方砖上自由走动,最终停留在白色方砖上的概率是() A.4 B.1/4 C.5/9 D4/94、在△ABC中,已知∠A=100°,∠B=∠C,则∠C的度数是()A. 40°B. 80°C. 30°D. 60°四、计算1、(3mn-m+2n)-(-3m+4mn)2、(2x+y)(x-y)3、(x+1)2-(x+1)(x-1)4、108×112。
2017年七年级(下)数学期中考试试卷及答案
2017年七年级(下)数学期中考试试题(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无 花果,质量只有0.000000076克,将0.000000076用科学记数法表示为 ( ▲ ) A .7.6×10-8 B .7.6×10-9C .7.6×108D .7.6×10 92.下列各式从左到右的变形中,为因式分解的是 ( ▲ ) A .()x a b ax bx -=- B .2221(1)(1)x y x x y -+=+-+ C .21(1)(1)y y y -=+- D .()cax bx c x a b x++=++3.下列所示的四个图形中,1∠和2∠是同位角的是 ( ▲ ) A. ②③ B. ①②③ C. ①②④ D. ①④4.下列命题是真命题的有 ( ▲ ) ①两个锐角的和是锐角; ②在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 平行; ③一个三角形有三条不同的中线; ④两条直线被第三条直线所截,同旁内角互补. A . 1个 B .2个 C .3个 D .4个5.如图,在△ABC 中,AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D ,则图中能表示点到直线距离的线段共有 ( ▲ ) A .2条 B .3条 C .4条D .5条6.如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠3= 40°,那么∠2为( ▲ )A .80°B .90°C .100°D .102°7.下列计算中错误..的是 ( ▲ ) A .26)3(2a a a -=-⋅ B. 125)1101251(2522+-=+-⨯x x x x C .1)1)(1)(1(42-=+-+a a a a D .41)21(22++=+x x x8.若212x mx k ++是一个完全平方式,则k 等于 ( ▲ )A .214mB .214m ±C .2116mD .2116m ±①2121②12③12④9.已知m x a =,n x b =(x ≠0),则32m nx -的值等于 ( ▲ )A .32a b -B .32a bC .32a bD .32a b -10.如图,把图中的一个三角形先横向平移x 格,再纵向平行y 格,就能与另一个三角形拼合成一个四边形,那么x y + ( ▲ ) A .有一个确定的值 B .有两个不同的值. C .有三个不同的值 D .有三个以上不同的值第5题图 第6题图 第10题图二、填空题(每空1分,共22分) 11.直接写出计算结果:(1)2332()x y xy ⨯-= ▲ ; (2) 2(3)m n -= ▲ ; (3)(8)(5)a a +-= ▲ ; (4)32)()(y x x y n-⋅-= ▲ ;(5) =-⨯714)91(3= ▲ ; (6)23.9×9.1+156×2.39-0.239×470= ▲ . 12.直接写出因式分解的结果:(1) 22328x y xy -+= ▲ ; (2) 221625y x -= ▲ ; (3)=++221236y xy x ▲ ; (4)2584x x --= ▲ . 13.分别根据下列两个图中已知角的度数,写出相应∠α的度数:∠α= ▲ ° ∠α= ▲ ° ∠α= ▲ °14.“如果两个实数相等,那么它们的绝对值相等”的逆命题是 ▲ ,这个逆命题是 ▲ 命题(填“真”或“假”).15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ▲ .16.在下列代数式:①11()()22x y x y -+,②(3)(3)a bc bc a +--,③(3)(3)x y x y -+++④(100)(100)m n n m -+-,能用平方差公式计算的是 ▲ (填序号). 17.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F ,若∠BFA=34°,则∠DEA= ▲ °.18.如图1是我们常用的折叠式小刀,其刀柄外形是一个直角梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是 ▲ °.第17题图 第18题图19.若代数式232x x -+可以表示为2(1)(1)x a x b ++++的形式,则a b -的值是 ▲ .20.已知△ABC 中,∠A=α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C=90°+12α;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C= ▲ °;当∠B 、∠C 同时n 等分时,(n -1)条等分角线分别对应交于O 1、O 2,…,O n -1,如图(3),则∠BO n -1C= ▲ °(用含n 和α的代数式表示).三、计算或化简(写出必要的演算步骤,共33分) 21.(18分)计算:(1)103111()()()222--+-÷- (2) 5243)()()2(a a a -÷+-(3))2131)(312(a b b a -+ (4)2(23)(3)(3)x y y x x y --+-(5) )23)(23(++--+y x y x (6) 2222(32)(32)94)m m m -+-+(22.(12分)因式分解:(1) 2223251035xy z y z y z --+ (2) 2()6()9a b b a ---+(3) 8144-b a (4) 4224817216x x y y -+23.(3分)已知253x x -=,求代数式2(1)(21)(1)1x x x ---++的值.四、解答题(共25分)24.(4分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.请完整填上结论或依据. 证明:∵∠3=∠4( 已知 ) ∴BD ∥EC ( )∴∠5+∠ =180° ( ) ∵∠5=∠6( 已知 )∴∠6+∠ =180°( 等式的性质 ) ∴AB ∥CD ( )∴∠2=∠ ( 两直线平行,同位角相等 ) ∵∠1=∠2( 已知 )∴∠1=∠ ( 等量代换 ) ∴ED ∥FB ( )25.(5分)如图,BD 是△ABC 的角平分线,DE ∥BC , 交AB 于点E ,∠A=38°,∠BDC=55°,求△BED 各内角的度数.26.(6分)观察下列各式:①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳、发现的规律,写出4×2016×2017+1可以是哪个数的平方? (2)试猜想第n 个等式,并通过计算验证它是否成立.(3)利用前面的规律,将22114()(1)122x x x x ++++因式分解.AD27.(10分)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足23210a b b b -+-+=.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN= 45° (1)则a = ,b = ;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.图1 图2MM数 学 试 题 答 案题号 1 2 3 4 5 6 7 8 9 10 答案ACCBDABCBB二、填空题(每空1分;共22分)11、(1)652y x -,(2)2296m mn n -+(3)2340a a +-.(4)32)(+-n y x(5)1-, (6)47812、(1)()224xy x y --,(2))45)(45(y x y x -+,(3)()26y x +,(4)(12)(7)x x -+.13、50,27,50; 14、如果两个实数的绝对值相等,那么它们相等.假 15、六.16、①③ 17、73°. 18、90°. 19、-11. 20、2603α+.1801n n nα-+三、计算或化简(写出必要的演算步骤,共33分)21、(18分)计算:(1)-10;(2)39a -.(3)229121b a ab +- (4)xy x y 1251022-- (5)44922-+-x x y (6) 2144m -22、(12分)因式分解:(1)25(527)y z x z y -+- (2)2(3)a b -+(3))3)(3)(9(22-++ab ab b a (4)22(32)(32)x y x y +-23、(3分) 原式=251x x -+ 当253x x -=时,原式= 4四、解答题(共25分)24、(4分)证明:∵∠3=∠4( 已知 )∴BD ∥EC ( 内错角相等,两直线平行 )∴∠5+∠ CAB =180° ( 两直线平行 ,同旁内角互补 ) ∵∠5=∠6( 已知 )∴∠6+∠ CAB =180°( 等式的性质 ) ∴AB ∥CD ( 同旁内角互补,两直线平行 ) ∴∠2=∠ EGA ( 两直线平行,同位角相等 ) ∵∠1=∠2( 已知 )∴∠1=∠ EGA ( 等量代换 ) ∴ED ∥FB ( 同位角相等,两直线平行 )25、(5分)∠EDB=∠EBD=17°,∠BED=146°26、(6分):(1)4×2016×2017+1=(2016+2017)2= 4033 2;(2)猜想第n 个等式为4n (n+1)+1=(2n+1)2,理由如下:∵左边= 4n (n+1)+1= 4n 2+4n+1,右边=(2n+1)2= 4n 2+4n+1, ∴左边=右边, ∴4n (n+1)+1=(2n+1)2; (3)利用前面的规律,可知22222241114()(1)12()1(21)(1)222x x x x x x x x x ⎡⎤++++=⨯++=++=+⎢⎥⎣⎦ 27、(10分)(1)a=3,b=1;(2)设A 灯转动x 秒,两灯的光束互相平行, ①在灯A 射线转到AN 之前AF 位置,如右图1 此时BE ∥AF ,则3t=(20+t )×1,解得t=10;②在灯A 射线转到AN 之后回转AF 位置,如右图2此时BE ∥AF ,则3t ﹣3×60+(20+t )×1=180°,解得t=85,综上所述,当t=10秒或85秒时,两灯的光束互相平行; (3)不变,理由如下:设灯A 射线转动时间为t 秒, ∵∠CAN=180°﹣3t ,∴∠BAC= 45°﹣(180°﹣3t )=3t ﹣135°, 又∵PQ ∥MN ,∴∠BCA=∠CBD +∠CAN= t +180°﹣3t=180°﹣2t , 而∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t )=2t ﹣90°, ∴∠BAC :∠BCD=3:2, 即2∠BAC=3∠BCD .PP AM。
安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5C.a8•a2=a4D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5C.a8•a2=a4D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解. 【解答】解:A 、4x 4+4x 2+1=(2x 2+1)2,故本选项错误; B 、4x+4x 2+1=(2x+1)2,故本选项错误; C 、﹣4x+4x 2+1=(2x ﹣1)2,故本选项错误;D 、2x+4x 2+1不能构成完全平方公式结构,故本选项正确. 故选D .7.长方形的面积为4a 2﹣6ab+2a ,若它的一边长为2a ,则它的周长为( ) A .4a ﹣3b B .8a ﹣6b C .4a ﹣3b+1 D .8a ﹣6b+2【考点】4H :整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解. 【解答】解:另一边长是:(4a 2﹣6ab+2a )÷2a=2a ﹣3b+1, 则周长是:2[(2a ﹣3b+1)+2a]=8a ﹣6b+2. 故选D .8.若使代数式的值在﹣1和2之间,m 可以取的整数有( )A .1个B .2个C .3个D .4个【考点】CC :一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m >﹣,由②得m <,所以不等式组的解集为﹣<x <, 则m 可以取的整数有0,1共2个. 故选:B .9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b 的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x <﹣解不等式②得x ≥﹣1∴不等式组的解集为﹣1≤x <﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x ﹣2)﹣5x (x ﹣1)﹣(2x ﹣1)2,其中x=﹣.【考点】4J :整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x 2﹣4﹣(5x 2﹣5x )﹣(4x 2﹣4x+1)=9x 2﹣4﹣5x 2+5x ﹣4x 2+4x ﹣1=9x ﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
2017年湖北省武汉市洪山区七年级下学期数学期中试卷与解析答案
2016-2017学年湖北省武汉市洪山区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣42.(3分)如图,能判定AD∥BC的条件是()A.∠3=∠2 B.∠1=∠2 C.∠B=∠D D.∠B=∠13.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2 D.8的立方根是±25.(3分)一个长方形在平面直角坐标系中,若其三个顶点的坐标分别为(﹣3,﹣2),(2,﹣2),(2,1),则第四个顶点为()A.(2,﹣5)B.(2,2) C.(3,1) D.(﹣3,1)6.(3分)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140° D.150°7.(3分)下列各数:、1.414、0.、、中,其中无理数有()个.A.1个 B.2个 C.3个 D.4个8.(3分)如图,AB∥CD,∠P=35°,∠D=100°,则∠ABP的度数是()A.165°B.145°C.135° D.125°9.(3分)比较实数:2、、的大小,正确的是()A.<2< B.2<< C.<<2 D.2<<10.(3分)如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F 之间满足的数量关系是()A.∠E=∠F B.∠E+∠F=180°C.3∠E+∠F=360°D.2∠E﹣∠F=90°二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一个正数a的平方根是5x+18与6﹣x,则这个正数a是.12.(3分)已知A(1,﹣2)、B(﹣1,2)、E(2,a)、F(b,3),若将线段AB 平移至EF,点A、E为对应点,则a+b的值为.13.(3分)如图,在直角坐标系中,△ABC的三个顶点均在格点上,其位置如图所示.现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置,写出平移过程中线段AB扫过的面积.14.(3分)把一张长方形纸片按图中那样折叠后,若得到∠BGD′=40°,则∠C′FE=°.15.(3分)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是.16.(3分)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA 的度数为.三、解答题(共7题,共52分)17.(8分)求值或计算:(1)求满足条件的x值:x2﹣8=0(2)计算:﹣﹣.18.(6分)如图,已知∠AGE+∠AHF=180°,∠BEC=∠BFC,则∠A与∠D相等吗?下面是童威同学的推导过程,请你帮助他在括号内填上推导依据∵∠AGE+∠AHF=180°(已知)∠AGE=∠CGD ()∴∠CGD+∠AHF=180°∴CE∥BF ()∴∠BEC+∠B=180°∵∠BFC+∠BFD=180°∠BEC=∠BFC(已知)∴∠B=∠BFD ()∴AB∥CD∴∠A=∠D.19.(6分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.20.(8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校七(1)班教室简图,点A、B、C、D、E分别代表五个学习小组的位置,已知C点的坐标为(﹣2,﹣2)(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标;(2)过点D作直线DF∥AC交y轴于点F,直接写出点F的坐标.21.(6分)△ABC在平面直角坐标系中的位置如图所示,三个顶点A、B、C的坐标分别是(﹣1,4)、(﹣4,﹣1)、(1,1).将△ABC向右平移5个单位长度,再向上平移1个单位长度,得到△A′BC(1)请画出平移后的,并写出的坐标(2)若在第四象限内有一点M(4,m),是否存在点M,使得四边形A′OMB′的面积等于△ABC的面积的一半?若存在,请求出点M的坐标;若不存在,请说明理由.22.(8分)如图,四边形ABCD中,AD∥BC,∠ADC=α,P为直线CD上一动点,点M在线段BC上,连MP,∠MPD=β(1)如图,若MP⊥CD,α=120°,则∠BMP=;(2)如图,当P点在DC延长线上时,∠BMP=;(3)如图,当P点在CD延长线上时,请画出图形,写出∠BMP、β、α之间的数量关系,并证明你的结论.23.(10分)如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A (0,3)、B(﹣4,0)、P(0,﹣3),点C是线段OP(不包含O、P)上一动点,AB∥CE,延长CE到D,使CD=BA(1)如图,点M在线段AB上,连MD,∠MAO与∠MDC的平分线交于N.若∠BAO=α,∠BMD=130°,则∠AND的度数为(2)如图,连BD交y轴于F.若OC=2OF,求点C的坐标(3)如图,连BD交y轴于F,在点C运动的过程中,的值是否变化?若不变,求出其值;若变化,请说明理由.2016-2017学年湖北省武汉市洪山区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4【解答】解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.2.(3分)如图,能判定AD∥BC的条件是()A.∠3=∠2 B.∠1=∠2 C.∠B=∠D D.∠B=∠1【解答】解:A、∠3=∠2可知AB∥CD,不能判断AD∥BC,故A错误;B、∠1=∠2不能判断AD∥BC,故B错误;C、∠B=∠D不能判断AD∥BC,故C错误;D、当∠B=∠1时,由同位角相等,两直线平行可知AD∥BD,故D正确.故选:D.3.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣3,2)在第二象限,故选:B.4.(3分)下列说法正确的是()A.﹣3是﹣9的平方根B.3是(﹣3)2的算术平方根C.(﹣2)2的平方根是2 D.8的立方根是±2【解答】解:A、负数没有平方根,故A错误;B、3是(﹣3)2的算术平方根,故B正确;C、(﹣2)2的平方根是±2,故C错误;D、8的立方根是2,故D错误.故选:B.5.(3分)一个长方形在平面直角坐标系中,若其三个顶点的坐标分别为(﹣3,﹣2),(2,﹣2),(2,1),则第四个顶点为()A.(2,﹣5)B.(2,2) C.(3,1) D.(﹣3,1)【解答】解:依照题意画出图形,如图所示.设点D的坐标为(m,n),∵点A(﹣3,﹣2),B(2,﹣2),C(2,1),AB=2﹣(﹣3)=5,DC=AB=5=2﹣m=5,解得:m=﹣3;BC=1﹣(﹣2)=3,AD=BC=3=n﹣(﹣2),解得:n=1.∴点D的坐标为(﹣3,1).故选D.6.(3分)如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A是100°第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是()A.120°B.130°C.140° D.150°【解答】解:过点B作BD∥AE,∵AE∥CF,∴AE∥BD∥CF,∴∠A=∠1,∠2+∠C=180°,∵∠A=100°,∠1+∠2=∠ABC=150°,∴∠2=50°,∴∠C=180°﹣∠2=180°﹣50°=130°,故选B.7.(3分)下列各数:、1.414、0.、、中,其中无理数有()个.A.1个 B.2个 C.3个 D.4个【解答】解:是无理数,故选:A.8.(3分)如图,AB∥CD,∠P=35°,∠D=100°,则∠ABP的度数是()A.165°B.145°C.135° D.125°【解答】解:延长AB交DP于点E.∵AB∥CD,∴∠BEP=∠D=100°,∴∠ABP=∠BEP+∠P=100°+35°=135°.故选C.9.(3分)比较实数:2、、的大小,正确的是()A.<2< B.2<< C.<<2 D.2<<【解答】解:∵2=<,∴2<,∵<=2,∴<2,∴<2<.故选:A.10.(3分)如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F 之间满足的数量关系是()A.∠E=∠F B.∠E+∠F=180°C.3∠E+∠F=360°D.2∠E﹣∠F=90°【解答】解:过点E作EN∥DC,∵AB∥CD,∴AB∥EN∥DC,∴∠ABE=∠BEN,∠CDE=∠NED,∴∠ABE+∠CDE=∠BED,∵∠EBF=2∠ABE,∠EDF=2∠CDE,∴设∠ABE=x,则∠EBF=2x,设∠CDE=y,则∠EDF=2y,∵2x+2y+∠BED+∠F=360°,∴2∠BED+∠BED+∠F=360°,∴3∠BED+∠F=360°.故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一个正数a的平方根是5x+18与6﹣x,则这个正数a是144.【解答】解:∵一个正数a的平方根是5x+18与6﹣x,∴5x+18+6﹣x=0,解得x=﹣6∴a=(6+6)2=144.故答案为:144.12.(3分)已知A(1,﹣2)、B(﹣1,2)、E(2,a)、F(b,3),若将线段AB 平移至EF,点A、E为对应点,则a+b的值为﹣1.【解答】解:∵线段AB平移至EF,即点A平移到E,点B平移到点F,而A(1,﹣2),B(﹣1,2),E(2,a),F(b,3),∴点A向右平移一个单位到E,点B向上平移1个单位到F,∴线段AB先向右平移1个单位,再向上平移1个单位得到EF,∴﹣2+1=a,﹣1+1=b,∴a=﹣1,b=0,∴a+b=﹣1+0=﹣1.故答案为:﹣1.13.(3分)如图,在直角坐标系中,△ABC的三个顶点均在格点上,其位置如图所示.现将△ABC沿AA′的方向平移,使得点A移至图中的点A′的位置,写出平移过程中线段AB扫过的面积8.【解答】解:如图,线段AB扫过的图形为平行四边形ABB′A′,则S▱ABB′A′=6×3﹣×4×2﹣×2×1﹣×4×2﹣×2×1=8,故答案为:8.14.(3分)把一张长方形纸片按图中那样折叠后,若得到∠BGD′=40°,则∠C′FE= 110°.【解答】解:∵AD∥BC,∴∠BGD′=∠AEG=40°,由折叠的性质得,∠DEF=∠D′EF=(180°﹣40°)=70°,∴∠C′FE=∠EFC=180°﹣∠E=DEF=110°故答案为:110.15.(3分)如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动.物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是(﹣1,1).【解答】解:矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2017÷3=672…1,故两个物体运动后的第2014次相遇地点的是:第一次相遇地点,即物体甲行的路程为12×1×13=4,物体乙行的路程为12×1×23=8;此时相遇点F的坐标为:(﹣1,1),故答案为:(﹣1,1).16.(3分)如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA 的度数为50°.【解答】解:如图,设∠DAB=∠BAC=x,即∠1=∠2=x,∵EF∥GH,∴∠2=∠3,在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x,∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣180°+∠ACB+2x)=∠ACB+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5=180°﹣x﹣(180°﹣∠ACB﹣2x)﹣(∠ACB+x)=180°﹣x﹣180°+∠ACB+2x﹣∠ACB﹣x=∠ACB=×100°=50°.故答案为:50°.三、解答题(共7题,共52分)17.(8分)求值或计算:(1)求满足条件的x值:x2﹣8=0(2)计算:﹣﹣.【解答】解:(1)方程整理得:x2=16,解得:x=±4;(2)原式=3+4﹣6=1.18.(6分)如图,已知∠AGE+∠AHF=180°,∠BEC=∠BFC,则∠A与∠D相等吗?下面是童威同学的推导过程,请你帮助他在括号内填上推导依据∵∠AGE+∠AHF=180°(已知)∠AGE=∠CGD (对顶角相等)∴∠CGD+∠AHF=180°∴CE∥BF (同旁内角互补,两直线平行)∴∠BEC+∠B=180°∵∠BFC+∠BFD=180°∠BEC=∠BFC(已知)∴∠B=∠BFD (等角的补角相等)∴AB∥CD∴∠A=∠D.【解答】解:∵∠AGE+∠AHF=180°(已知),∠AGE=∠CGD (对顶角相等),∴∠CGD+∠AHF=180°,∴CE∥BF (同旁内角互补,两直线平行),∴∠BEC+∠B=180°,∵∠BFC+∠BFD=180°,∠BEC=∠BFC(已知),∴∠B=∠BFD (等角的补角相等),∴AB∥CD,∴∠A=∠D,故答案为:对顶角相等,同旁内角互补,两直线平行,等角的补角相等.19.(6分)已知:如图,AE⊥BC,FG⊥BC,∠1=∠2(1)求证:AB∥CD(2)若∠D=∠3+50°,∠CBD=70°,求∠C的度数.【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴∠AMB=∠GNM=90°,∴AE∥FG,∴∠A=∠2;又∵∠2=∠1,∴∠A=∠1,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+50°,∠CBD=70°,∴∠3=30°,∵AB∥CD,∴∠C=∠3=30°.20.(8分)某区进行课堂教学改革,将学生分成5个学习小组,采取团团坐的方式.如图,这是某校七(1)班教室简图,点A、B、C、D、E分别代表五个学习小组的位置,已知C点的坐标为(﹣2,﹣2)(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为1个单位长度),写出图中其他几个学习小组的坐标;(2)过点D作直线DF∥AC交y轴于点F,直接写出点F的坐标.【解答】解:(1)由题意可得,建立平面直角坐标系,如右图所示,则A点的坐标为(﹣3,0),B点的坐标为(0,0),D点的坐标为(1,﹣3),E 点的坐标为(﹣4,2);(2)如右图所示,直线DF∥AC交y轴于点F,则点F的坐标为(0,﹣1).21.(6分)△ABC在平面直角坐标系中的位置如图所示,三个顶点A、B、C的坐标分别是(﹣1,4)、(﹣4,﹣1)、(1,1).将△ABC向右平移5个单位长度,再向上平移1个单位长度,得到△A′BC(1)请画出平移后的,并写出的坐标(2)若在第四象限内有一点M(4,m),是否存在点M,使得四边形A′OMB′的面积等于△ABC的面积的一半?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)如图,△A′B′C′即为所求;A′(4,5)、B′(1,0)、C′(6,2);(2)存在.=5×5﹣×3×5﹣×2×3﹣×2×5∵S△A′B′C′=25﹣﹣3﹣5=,=S△A′OB′+S△MOB′∴S四边形A′OMB′=×1×5+×4×(﹣m)=﹣2m,∴﹣2m=,解得m=﹣,∴M(4,﹣).22.(8分)如图,四边形ABCD中,AD∥BC,∠ADC=α,P为直线CD上一动点,点M在线段BC上,连MP,∠MPD=β(1)如图,若MP⊥CD,α=120°,则∠BMP=150°;(2)如图,当P点在DC延长线上时,∠BMP=60°+β;(3)如图,当P点在CD延长线上时,请画出图形,写出∠BMP、β、α之间的数量关系,并证明你的结论.【解答】解:(1)∵AD∥BC,∴∠C=180°﹣∠ADC=180°﹣120°=60°,∵MP⊥CD,∴∠CMP=90°﹣∠C=90°﹣60°=30°,∴∠BMP=180°﹣∠CMP=180°﹣30°=150°;(2)∵AD∥BC,∴∠ASC=∠BCP=α,∴∠BMP=∠PCM+∠P=α+β.故答案为:(1)150°;(2)α+β;(3)∵AD∥BC,∴∠BCP=180°﹣∠ADP=180°﹣α,在△CMP中,∠CMP=180°﹣∠BCP﹣∠MPD=α﹣β,∴∠BMP=180°﹣∠CMP=180°﹣(α﹣β)=180°﹣α+β.23.(10分)如图,在平面直角坐标系中,点A、B、C、E、P均在坐标轴上,A(0,3)、B(﹣4,0)、P(0,﹣3),点C是线段OP(不包含O、P)上一动点,AB∥CE,延长CE到D,使CD=BA(1)如图,点M在线段AB上,连MD,∠MAO与∠MDC的平分线交于N.若∠B AO=α,∠BMD=130°,则∠AND的度数为α+25°(2)如图,连BD交y轴于F.若OC=2OF,求点C的坐标(3)如图,连BD交y轴于F,在点C运动的过程中,的值是否变化?若不变,求出其值;若变化,请说明理由.【解答】解:(1)如图1中,作NG∥AB.∵AB∥CD,NG∥AB,∴AB∥NG∥CD,∴∠ANG=∠BAN,∠DNG=∠NDC,∵∠NAB=∠BAO,∠NDC=∠MDC,∴∠AND=∠ANG+∠DNG=∠BAO+∠MDC,∵∠BAO=α,∠MDC=180°﹣∠BMD=180°﹣130°=50°,∴∠AND=α+25°,故答案为α+25°;(2)如图2中,∵AB∥CD,∴△AFB∽△CFD,∴=,∵AB=CD,∴AF=FC,∵OC=2OF,设OF=a,则OC=2a,FC=AF=3a,OA=4a,∴4a=3,∴a=,∴OC=2a=,∴C(0,﹣);(3)结论:的值不变.理由如下:如图2中,∵AB∥CD,AB=CD,∴∠ABF=∠D,∠AFB=∠DFC,∴△AFB≌△△CFD,∴AF=FC,设OF=m,则AF=3﹣m,OC=3﹣m﹣m=3﹣2m,∴===2,∴的值不变.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
湖南省常德市澧县 湘教版 七年级数学 下册 期中考试教学质量检测监测调研 统联考真题模拟卷(含答案)
2017-2018学年湖南省常德市澧县七年级(下)期中数学试卷收获!来检测一下自己吧,请你认真审题,精心作答,细心检查。
相信你能取得好成绩一、选择题(本题共8小题,每小题3分,共24分)1.(3分)计算(﹣2xy2)3的结果是()A.﹣2x3y6 B.﹣6x3y6C.8x3y6D.﹣8x3y62.(3分)将多项式﹣6a3b2﹣3a2b2因式分解时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b33.(3分)下列计算中,正确的是()A.(m﹣2)(m+2)=m2﹣2 B.(x﹣6)(x+6)=x2+36 C.(x﹣y)(x+y)=x2﹣y2D.(x+y)(x+y)=x2+y24.(3分)下列方程组中,为二元一次方程组的是()A. B.C.D.5.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c6.(3分)已知是方程组的解,则a﹣b的值是()A.﹣1 B.3 C.4 D.67.(3分)多项式x2﹣mxy+9y2能用完全平方因式分解,则m的值是()A.3 B.6 C.±3 D.±68.(3分)某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A.50、100 B.50、56 C.56、126 D.100、126二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(﹣3x+1)•(﹣2x)2=.10.(3分)因式分解a(b﹣c)﹣3(c﹣b)=.11.(3分)解下列方程组:①;②;③;④,其中适宜用代入消元法,适宜用加减消元法(填序号).12.(3分)分解因式:(a﹣b)2﹣4b2=.13.(3分)若x+y=6,xy=5,则x2+y2=.14.(3分)已知x2﹣4x+n因式分解的结果为(x+2)(x+m),则n=.15.(3分)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为.16.(3分)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=.三、解答题(本题共7小题,共52分,解答应写出文字说明、证明过程或演算步骤)17.(5分)化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.18.(6分)用适当方法解下列二元一次方程组:(1)(2).19.(8分)用适当方法计算:(1)1.992+1.99×0.01(2)20162+2016﹣20172.20.(8分)把下列多项式因式分解:(1)x3y﹣2x2y+xy;(2)9a2(x﹣y)+4b2(y﹣x).21.(8分)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?22.(8分)4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,这个记号就叫做二阶行列式,例如:=1×4﹣2×3=﹣2,若=10,求x的值.23.(9分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为;(2)观察图b,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,利用(2)提供的等量关系计算x﹣y的值.2016-2017学年湖南省常德市澧县七年级(下)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题3分,共24分)1.(3分)(2016•秦淮区一模)计算(﹣2xy2)3的结果是()A.﹣2x3y6 B.﹣6x3y6C.8x3y6D.﹣8x3y6【分析】直接利用积的乘方运算法则化简求出答案.【解答】解:(﹣2xy2)3=﹣8x3y6.故选:D.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.2.(3分)(2017春•澧县期中)将多项式﹣6a3b2﹣3a2b2因式分解时,应提取的公因式是()A.﹣3a2b2B.﹣3ab C.﹣3a2b D.﹣3a3b3【分析】提取公因式时:系数取最大公约数;字母取相同字母的最低次幂.【解答】解:﹣6a3b2﹣3a2b2=﹣3a2b2(2a+3).所以应提取的公因式是﹣3a2b2.故选:A.【点评】本题主要考查公因式的确定,注意找公因式的方法,特别不要漏掉找系数的最大公约数.3.(3分)(2017春•澧县期中)下列计算中,正确的是()A.(m﹣2)(m+2)=m2﹣2 B.(x﹣6)(x+6)=x2+36 C.(x﹣y)(x+y)=x2﹣y2D.(x+y)(x+y)=x2+y2【分析】根据各个选项中的式子可以写出与其相等的式子,从而可以判断哪个选项是正确的.【解答】解:∵(m﹣2)(m+2)=m2﹣2,故选项A错误,∵(x﹣6)(x+6)=x2﹣36,故选项B错误,∵(x﹣y)(x+y)=x2﹣y2,故选项C正确,(x+y)(x+y)=x2+2xy+y2,故选项D错误,故选C.【点评】本题考查平方差公式、完全平方公式,解答本题的关键是明确平方差公式和完全平方公式.4.(3分)(2017春•澧县期中)下列方程组中,为二元一次方程组的是()A. B.C.D.【分析】根据二元一次方程组的定义,可得答案.【解答】解:A是分式方程,故A不符合题意;B、不是二元一次方程组,故B不符合题意;C、是二元二次方程组,故C不符合题意;D、是二元一次方程组,故D符合题意;故选:D.【点评】本题考查了二元一次方程组,熟记二元一次方程组的定义是解题关键.5.(3分)(2017•平南县一模)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.6.(3分)(2017春•澧县期中)已知是方程组的解,则a﹣b的值是()A.﹣1 B.3 C.4 D.6【分析】先根据解的定义将代入方程组,得到关于a,b的方程组.两方程相减即可得出答案.【解答】解:∵是方程组的解,∴,两个方程相减,得a﹣b=6,故选:D.【点评】本题考查了二元一次方程的解,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.解题的关键是要知道两个方程组之间解的关系.7.(3分)(2015春•平谷区期末)多项式x2﹣mxy+9y2能用完全平方因式分解,则m的值是()A.3 B.6 C.±3 D.±6【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2﹣mxy+9y2能用完全平方因式分解,∴m=±6,故选D【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.8.(3分)(2014春•兴业县期末)某商场购进甲、乙两种服装后,都加价40%标价出售.“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售.某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A.50、100 B.50、56 C.56、126 D.100、126【分析】设甲服装的进价为x元,乙服装的进价为y元,根据题意可得,甲服装标价+乙服装标价=210,甲服装标价×0.8+乙服装标价×0.9=182,据此列方程组求解.【解答】解:设甲服装的进价为x元,乙服装的进价为y元,由题意得,,解得:.故选A.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,诈骗穿合适的等量关系,列方程组求解.二、填空题(本题共8小题,每小题3分,共24分)9.(3分)(2017春•澧县期中)计算:(﹣3x+1)•(﹣2x)2=﹣12x3+4x2.【分析】先算积的乘方,再根据单项式乘多项式的法则计算即可求解.【解答】解:(﹣3x+1)•(﹣2x)2=(﹣3x+1)•(4x2)=﹣12x3+4x2.故答案为:﹣12x3+4x2.【点评】考查了积的乘方,单项式乘多项式,单项式与多项式相乘时,应注意以下几个问题:①单项式与多项式相乘实质上是转化为单项式乘以单项式;②用单项式去乘多项式中的每一项时,不能漏乘;③注意确定积的符号.10.(3分)(2017春•澧县期中)因式分解a(b﹣c)﹣3(c﹣b)=(b﹣c)(a+3).【分析】原式变形后,提取公因式即可得到结果.【解答】解:原式=a(b﹣c)+3(b﹣c)=(b﹣c)(a+3).故答案为:(b﹣c)(a+3)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.11.(3分)(2017春•澧县期中)解下列方程组:①;②;③;④,其中①④适宜用代入消元法,②③适宜用加减消元法(填序号).【分析】根据二元一次方程组的特点选取适当的消元法即可.【解答】解:其中①④适宜用代入消元法,②③适宜用加减消元法,故答案为:①④,②③.【点评】本题考查了解二元一次方程组的方法,根据二元一次方程组的特点选取适当的消元法是解题的关键.12.(3分)(2015•孝感)分解因式:(a﹣b)2﹣4b2=(a+b)(a﹣3b).【分析】直接利用平方差公式分解因式得出即可.【解答】解:(a﹣b)2﹣4b2=(a﹣b+2b)(a﹣b﹣2b)=(a+b)(a﹣3b).故答案为:(a+b)(a﹣3b).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.13.(3分)(2015秋•新疆期末)若x+y=6,xy=5,则x2+y2=26.【分析】首先把x2+y2进行变形,即x2+y2=(x+y)2﹣2xy,然后,把x+y=6,xy=5,整体代入求值即可.【解答】解:∵x+y=6,xy=5,∴x2+y2=(x+y)2﹣2xy=62﹣2×5=36﹣10=26.故答案为26.【点评】本题主要考查完全平方公式的运用,关键在于根据完全平方公式,把x2+y2变形为(x+y)2﹣2xy的形式.14.(3分)(2017春•澧县期中)已知x2﹣4x+n因式分解的结果为(x+2)(x+m),则n=﹣12.【分析】将(x+2)(x+m)展开,然后利用待定系数法即可求出答案.【解答】解:(x+2)(x+m)=x2+(m+2)x+2m∴m+2=﹣4,n=2m,∴m=﹣6,n=﹣12,故答案为:﹣12【点评】本题考查因式分解,解题的关键是利用待定系数法求出n的值,本题属于基础题型.15.(3分)(2016春•泰山区期末)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为.【分析】根据房间共20间,总共可以住旅客48人可列方程组.【解答】解:设3人房间有x间,2人房间有y间,根据题意可列方程组:,故答案为:.【点评】本题主要考查根据实际问题列二元一次方程组,理解题意找到题目蕴含的相等关系是解题的关键.16.(3分)(2017春•澧县期中)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=41.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:,①×4﹣②×3得:﹣b=﹣25,解得:b=25,把b=25代入①得:a=﹣37,则原式=﹣5×37+9×25+1=41,故答案为:41【点评】此题考查了解二元一次方程组,以及有理数的混合运算,弄清题中的新定义是解本题的关键.三、解答题(本题共7小题,共52分,解答应写出文字说明、证明过程或演算步骤)17.(5分)(2015春•房山区期末)化简:2(a4)3+(﹣2a3)2•(﹣a2)3+a2•a10.【分析】先算乘方,再算乘法,最后合并同类项即可.【解答】解:原式=2a12+4a6•(﹣a6)+a12=3a12﹣4a12=﹣a12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行计算是解此题的关键,注意运算顺序.18.(6分)(2017春•澧县期中)用适当方法解下列二元一次方程组:(1)(2).【分析】(1)方程组整理后,利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由②得:x=y+4③,把③代入①得:3y+12+4y=19,解得:y=1,把y=1代入③得:x=5,则方程组的解为;(2),①×3+②×2得:13x=13,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)(2017春•澧县期中)用适当方法计算:(1)1.992+1.99×0.01(2)20162+2016﹣20172.【分析】(1)应用提取公因式法,求出算式的值是多少即可.(2)把2017分成2016+1,应用完全平方公式,求出算式的值是多少即可.【解答】解:(1)1.992+1.99×0.01=1.99×(1.99+0.01)=1.99×2=3.98(2)20162+2016﹣20172=20162+2016﹣(2016+1)2=20162+2016﹣20162﹣2×2016﹣1=﹣2017【点评】此题主要考查了因式分解的应用,要熟练掌握,根据题目的特点,先通过因式分解将式子变形,然后再进行整体代入.20.(8分)(2017春•澧县期中)把下列多项式因式分解:(1)x3y﹣2x2y+xy;(2)9a2(x﹣y)+4b2(y﹣x).【分析】(1)原式提取公因式即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=xy(x2﹣2x+1)=xy(x﹣1)2;(2)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(3a+2b)(3a﹣2b).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.21.(8分)(2015•张家界)小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60m,下坡路每分钟走80m,上坡路每分钟走40m,则他从家里到学校需10min,从学校到家里需15min.问:从小华家到学校的平路和下坡路各有多远?【分析】设出平路和坡路的路程,从家里到学校走平路和下坡路一共用10分钟,从学校到家里走上坡路和平路一共用15分钟,利用这两个关系式列出方程组解答即可.【解答】解:设平路有xm,下坡路有ym,根据题意得,解得:,答:小华家到学校的平路和下坡路各为300m,400m.【点评】本题考查了二元一次方程的应用,此题主要利用时间、速度、路程三者之间的关系解答,注意来回坡路的变化是解题的关键.22.(8分)(2017春•澧县期中)4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,这个记号就叫做二阶行列式,例如:=1×4﹣2×3=﹣2,若=10,求x的值.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义得:(x+1)(x+1)﹣(x+2)(x﹣2)=10,整理得:x2+2x+1﹣x2+4=10,解得:x=2.5,则x的值为2.5.【点评】此题考查了整式的混合运算,弄清题中的新定义是解本题的关键.23.(9分)(2017春•澧县期中)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为(m﹣n)2;(2)观察图b,请你写出三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是(m+n)2=(m﹣n)2+4mn;(3)若x+y=﹣6,xy=2.75,利用(2)提供的等量关系计算x﹣y的值.【分析】(1)根据阴影部分的面积=正方形的面积﹣4个长方形的面积计算即可;(2)根据(1)的结论解答;(3)把已知数据代入(2)的关系式计算即可.【解答】解:(1)图b中的阴影部分面积为:(m+n)2﹣4mn=(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2=(m﹣n)2+4mn,故答案为:(m+n)2=(m﹣n)2+4mn;(3)(x﹣y)2=(x+y)2﹣4xy=36﹣11=25,则x﹣y=±5.【点评】本题考查的是完全平方公式的几何背景,能够运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释是解题的关键.。
2016-2017年江西省景德镇市七年级(下)期中数学试卷(解析版)
2016-2017学年江西省景德镇市七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共30分)1.(3分)化简(a+2b)(a﹣2b)=()A.a2﹣2b2B.﹣a2﹣2b2C.﹣a2﹣4b2D.a2﹣4b2 2.(3分)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.73.(3分)将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个过程中不改变的是()A.圆柱的高B.圆柱的侧面积C.圆柱的体积D.圆柱的底面积4.(3分)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的()A.∠1=∠2B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE 5.(3分)如果(﹣a m)n=(﹣a n)m,则()A.m为奇数,n为奇数B.m为偶数,n为偶数C.m,n奇偶性相同D.m,n奇偶性相反6.(3分)小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)2a3÷a2=.8.(3分)如果一个角的余角是50°,那么这个角的补角是.9.(3分)若多项式x2﹣mx+1是一个完全平方式,则m=.10.(3分)如图,将一张长方形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的度数是.11.(3分)小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,它的高度h 与n的函数关系是.12.(3分)如图1,直角△OAB(其中O为直角顶点,∠OAB=30°)的直角边OA 与线段OP重合在同一根射线OM上,它们绕着点O同时进行转动,△OAB 沿着逆时针方向,线段OP沿着顺时针方向,已知OA,OP分别与OM的夹角关于时间t的变化图象如图2所示,则t=(单位:秒)时,有AB∥OP.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)已知x+y=4,x2+y2=9,求xy的值;(2)如图,AB,CD相交于点O,OE平分∠AOD,已知∠AOC=120°,求∠AOE 的度数.14.(6分)先化简,后求值:已知:[(x﹣2y)2﹣2y(2y﹣x)]÷2x,其中x=1,y=2.15.(6分)观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a,图中共有组对顶角;(2)如图b,图中共有组对顶角;(3)如图c,图中共有组对顶角.16.(6分)请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.17.(6分)为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.19.(8分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE 平分∠BOC.(1)图中∠BOD的邻补角为,∠AOE的邻补角为;(2)如果∠COD=25°,那么∠BOE=,如果∠COD=60°,那么∠BOE=;(3)试猜想∠COD与∠BOE具有怎样的数量关系,并说明理由.20.(8分)如图1,一条笔直的公路上有A,B,C三地,甲,乙两辆汽车分别从A,B两地同时开出,沿公路匀速相向而行,驶往B,A两地,甲、乙两车到C地的距离y1、y2(千米)与行驶时间x(时)的关系如图2所示.(1)A、B两地之间的距离为千米;(2)图中点M代表的实际意义是什么?(3)分别求出甲,乙两人的速度,并求出他们的相遇点距离点C多少千米.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.22.(9分)已知直线a∥b,直线c分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线c的左侧,点P是直线c上一动点(不与点E,F 重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图,当点P在线段EF上运动时,试探索∠1,∠2,∠3之间的关系,并给出证明;(2)当点P在线段EF外运动时,请你在备用图中画出图形,并判断(1)中的结论是否还成立?若不成立,请你探索∠1,∠2,∠3之间的关系(不需要证明).六、解答题(本大题共1小题,每小题12分,共12分)23.(12分)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路::①线段OA、②圆弧A→D→B→C、③线段CO 后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=,b=.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.2016-2017学年江西省景德镇市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共30分)1.(3分)化简(a+2b)(a﹣2b)=()A.a2﹣2b2B.﹣a2﹣2b2C.﹣a2﹣4b2D.a2﹣4b2【解答】解:原式=a2﹣4b2故选:D.2.(3分)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.7【解答】解:如图,根据垂线段最短可知:PC≤3,∴CP的长可能是2,故选:A.3.(3分)将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个过程中不改变的是()A.圆柱的高B.圆柱的侧面积C.圆柱的体积D.圆柱的底面积【解答】解:一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个过程中不改变的是圆柱的体积,圆柱的侧面积变化,底面积变化,高不变化,故选:C.4.(3分)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的()A.∠1=∠2B.∠2=∠AFD C.∠1=∠AFD D.∠1=∠DFE【解答】解:∵EF∥AB,∴∠1=∠2(两直线平行,同位角相等).∵∠1=∠DFE,∴∠2=∠DFE(等量代换),∴DF∥BC(内错角相等,两直线平行).所以只需满足下列条件中的∠1=∠DFE.故选:D.5.(3分)如果(﹣a m)n=(﹣a n)m,则()A.m为奇数,n为奇数B.m为偶数,n为偶数C.m,n奇偶性相同D.m,n奇偶性相反【解答】解:∵(﹣a m)n=(﹣a n)m,∴m,n可以同时奇数,也可以同时偶数,故选:C.6.(3分)小强每天从家到学校上学行走的路程为900m,某天他从家去上学时以每分30m的速度行走了450m,为了不迟到他加快了速度,以每分45m的速度行走完剩下的路程,那么小强离学校的路程s(m)与他行走的时间t(min)之间的函数关系用图象表示正确的是()A.B.C.D.【解答】解:小强离学校的路程S(米)应随他行走的时间t(分)的增大而减小,因而选项A、B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)2a3÷a2=2a.【解答】解:2a3÷a2=2a.故答案为:2a.8.(3分)如果一个角的余角是50°,那么这个角的补角是140°.【解答】解:∵一个角的余角是50°,则这个角为90°﹣50°=40°,∴这个角的补角的度数是180°﹣40°=140°.故答案为:140°.9.(3分)若多项式x2﹣mx+1是一个完全平方式,则m=±2.【解答】解:∵(x±1)2=x2±2x+1,∴﹣m=±2,∴m=±2故答案为:±210.(3分)如图,将一张长方形纸片和一张直角三角形纸片叠放在一起,∠1+∠2的度数是270°.【解答】解:如图,连接AB,∵EF∥MN,∴∠FAB+∠ABN=180°,∵∠C=90°,∴∠CAB+∠CBA=180°﹣90°=90°,即∠1+∠2=180°+90°=270°,故答案为:270°11.(3分)小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图请你根据图中的信息,若小明把n个纸杯整齐叠放在一起时,它的高度h 与n的函数关系是h=n+6.【解答】解:设纸杯的高是x,纸杯边沿的高是y,由题意,得,解得.高度h与n的函数关系是h=(n﹣1)+7,即h=n+6,故答案为:h=n+6.12.(3分)如图1,直角△OAB(其中O为直角顶点,∠OAB=30°)的直角边OA 与线段OP重合在同一根射线OM上,它们绕着点O同时进行转动,△OAB 沿着逆时针方向,线段OP沿着顺时针方向,已知OA,OP分别与OM的夹角关于时间t的变化图象如图2所示,则t=或3或(单位:秒)时,有AB∥OP.【解答】当0<t≤3时,Ⅰ、如图1,此时,△OAB和OP同时旋转,旋转到如图1的位置时,BA∥OP,∴∠AOP=∠A=30°,∴60°t+10°t=30°,∴t=;Ⅱ、如图2,△OAB和OP同时旋转到如图2的位置时,AB∥OP,∴∠BOP=∠B=90°﹣∠A=60°,∴△OAB和OP同时旋转了360°﹣∠BOP﹣∠AOB=360°﹣60°﹣90°=210°,∴60°t+10°t=210°,∴t=3,当3<t<6时,此时OP不动,△OAB按原速度,原方向旋转,不存在AB∥OP 的情况,当6≤t≤9时,如图3,此时,△OAB按原速度原方向旋转,OP也按原速度原方向旋转,旋转到如图3的位置时,BA∥OP,∴∠AOP=30°,OP旋转了60°(t﹣3),△OAB旋转了10°t,∴60°(t﹣3)+10°t=360°+∠AOP=390°,∴t=.故答案为或3或.三、解答题(本大题共5小题,每小题6分,共30分)13.(6分)(1)已知x+y=4,x2+y2=9,求xy的值;(2)如图,AB,CD相交于点O,OE平分∠AOD,已知∠AOC=120°,求∠AOE 的度数.【解答】解:(1)∵x+y=4,x2+y2=(x+y)2﹣2xy=9,∴42﹣2xy=9,∴2xy=7,∴xy=;(2)∵∠AOC=120°,∴∠AOD=180°﹣∠AOC=60°,∵OE平分∠AOD,∴∠AOE=∠AOD=30°.14.(6分)先化简,后求值:已知:[(x﹣2y)2﹣2y(2y﹣x)]÷2x,其中x=1,y=2.【解答】解:原式=(x2﹣4xy+4y2﹣4y2+2xy)÷2x=x﹣y,将x=1,y=2代入,∴原式=﹣,15.(6分)观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a,图中共有2组对顶角;(2)如图b,图中共有6组对顶角;(3)如图c,图中共有12组对顶角.【解答】解:(1)如图a,图中共有1×2=2组对顶角;(2)如图b,图中共有3×2=6组对顶角;(3)如图c,图中共有6×2=12组对顶角.故答案为:2;6;12.16.(6分)请在如图所示的正方形和等边三角形网格内,仅用无刻度的直尺完成下列作图,过点P向线段AB引平行线.【解答】解:如图所示,PQ即为所求.17.(6分)为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是t,因变量是Q;(2)根据上表可知,该车邮箱的大小为100升,每小时耗油6升;(3)请求出两个变量之间的关系式(用t来表示Q)【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;6四、解答题(本大题共3小题,每小题8分,共24分)18.(8分)根据已知求值:(1)已知a m=2,a n=5,求a3m+2n的值;(2)已知3×9m×27m=321,求m的值.【解答】解:(1)a3m+2n=(a m)3•(a n)2=23×52=200;(2)∵3×9m×27m=321,∴3×32m×33m=321,31+5m=321,∴1+5m=21,m=4.19.(8分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE 平分∠BOC.(1)图中∠BOD的邻补角为∠AOD,∠AOE的邻补角为∠BOE;(2)如果∠COD=25°,那么∠BOE=65°,如果∠COD=60°,那么∠BOE=30°;(3)试猜想∠COD与∠BOE具有怎样的数量关系,并说明理由.【解答】解:(1)如图所示:∠BOD的邻补角为:∠AOD,∠AOE的邻补角为:∠BOE;故答案为:∠AOD,∠BOE;(2)∵∠COD=25°,∴∠AOC=2×25°=50°,∴∠BOC=130°,∴∠BOE=×130°=65°,∵∠COD=60°,∴∠AOC=120°,∴∠BOC=60°,∴∠BOE=∠BOC=30°,故答案为:65°,30°;(3)由题意可得:∠COD+∠BOE=∠AOC+∠BOC=(∠AOC+∠BOC)=90°.20.(8分)如图1,一条笔直的公路上有A,B,C三地,甲,乙两辆汽车分别从A ,B 两地同时开出,沿公路匀速相向而行,驶往B ,A 两地,甲、乙两车到C 地的距离y 1、y 2(千米)与行驶时间 x (时)的关系如图2所示. (1)A 、B 两地之间的距离为 150 千米; (2)图中点M 代表的实际意义是什么?(3)分别求出甲,乙两人的速度,并求出他们的相遇点距离点C 多少千米.【解答】解:(1)由图象可知AC=60,BC=90, ∴A 、B 两地距离为60+90=150km ; 故答案为:150.(2)∵甲乙两车匀速运动, ∵AC=60,BC=90,∴v 甲==60(km/s ),v 乙=(km/s ),∴乙到达C 的时间t==1.2,∴M 点点M 表示乙车1.2小时到达C 地; (3)∵v 甲==60(km/s ),v 乙==75(km/s ),设t 小时相遇,(60+75)t=150, ∴t=(小时),此时乙车行驶了75×=(km ),而乙车距离C 点90km ,故他们的相遇点距离C 点90﹣=千米.五、解答题(本大题共2小题,每小题9分,共18分)21.(9分)在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”操作步骤如下:第一步:计算这个数与1的和的平方,减去这个数与1的差的平方;第二步:把第一步得到的数乘以25;第三步:把第二步得到的数除以你想的这个数.(1)若小明同学心里想的是数9.请帮他计算出最后结果.[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0).请你帮小明完成这个验证过程.【解答】解:(1)[(9+1)2﹣(9﹣1)2]×25÷9=18×2×25÷9=100;(2)[(a+1)2﹣(a﹣1)2]×25÷a=4a×25÷a=100.22.(9分)已知直线a∥b,直线c分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线c的左侧,点P是直线c上一动点(不与点E,F 重合),设∠PAE=∠1,∠APB=∠2,∠PBF=∠3.(1)如图,当点P在线段EF上运动时,试探索∠1,∠2,∠3之间的关系,并给出证明;(2)当点P在线段EF外运动时,请你在备用图中画出图形,并判断(1)中的结论是否还成立?若不成立,请你探索∠1,∠2,∠3之间的关系(不需要证明).【解答】(1)∠1+∠3=∠2,证明:过P作PM∥a,∵a∥b,∴a∥b∥PM,∴∠1=∠APM,∠3=∠BPM,∴∠1+∠3=∠APM+∠BPM,即∠1+∠3=∠2;(2)不成立,有两种情况:①如图2,此时∠1+∠2=∠3,理由是:∵a∥b,∴∠3=∠PQE,∵∠1+∠2=∠PQE,∴∠1+∠2=∠3;②如图3,此时∠2+∠3=∠1,理由是:∵a∥b,∴∠1=∠PQF,∵∠2+∠3=∠PQF,∴∠2+∠3=∠1.六、解答题(本大题共1小题,每小题12分,共12分)23.(12分)如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路::①线段OA、②圆弧A→D→B→C、③线段CO 后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)(1)a=120,b=11.(2)当t≤2时,试求出y关于t的关系式;(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;②求他此行总共花了多少分钟的时间.【解答】解:(1)由题意可得,a=(60÷1)×2=120,b===11,故答案为:120,11;(2)设t≤2时,y关于t的关系式是y=kt,k×1=60,得k=60,即t≤2时,y关于t的关系式是y=60t;(3)①由函数图象可知,小川与小翔的聊天地点位于CO两点之间,此时他距离终点O的距离为:120﹣(14.5﹣2﹣11)×60=120﹣90=30(米),即此时他距离终点O的距离为30米;②由题意可得,他此行总共花的时间为:11+2+2=15(分钟),即他此行总共花了15分钟.第21页(共21页)。
北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷及答案
北师大附属实验中学2016—2017学年度第二学期初一数学期中考试试卷第Ⅰ卷一、选择题(每小题3分,共30分)1.9的平方根是( ).A .B. C .3 D .±32.用不等式表示:x 的2倍与4的差是负数( ).A .042>-xB .042<-xC .0)4(2<-xD .024<-x3.已知a b <,则下列不等式中不正确的是( ).A .44a b <B .44a b +<+C .44a b -<-D .44a b -<-4.下列四个数中,无理数是( ).A .0.14B .117C. D .5.要调查下面几个问题,你认为不应做抽样调查的是( ).A .调查某电视剧的收视率;B .调查“神舟七号”飞船重要零部件的产品质量;C .调查一批炮弹的杀伤力;D .调查一片森林的树木有多少棵.6.下列命题正确的是( ).A .同位角相等;B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c ;C .相等的角是对顶角;D .在同一平面内,如果a //b ,b //c ,则a //c .7.如图所示,下列推理不正确的是( ).A .若1C ∠=∠,则//AE CDB .若2BAE ∠=∠,则//AB DEC .若180B BAD ∠+∠=︒,则//AD BCD .若180C ADC ∠+∠=︒,则//AE CD8.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( ).A .景仁宫(4,2)B .养心殿(-2,3)C .保和殿(1,0)D .武英殿(-3.5,-4)9.如图,小明从家到学校分别有①、②、③三条路可走:①为折线段ABCDEFG ,②为折线段AIG ,③为折线段AJHG .三条路的长依次为a 、b 、c ,则( ).A .a >b >cB .a =b >cC .a >c >bD .a =b <c10.对某校七年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是( ).A .2.25B .2.5C .2.95D .3二、填空题:(每小题2分,共20分)11.27-的立方根是 .12.12-的相反数是 .13.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .14.若a 、b 为实数,且满足|a -2|0,则b -a 的值为 .15.已知点(38,1)P a a --,若点P 在y 轴上,则点P 的坐标为 .16.如图,a //b ,AC 分别交直线a 、b 于点B 、C ,AC ⊥CD ,若∠1=25°,则∠2= 度.17.若关于x 的方程7x +6-2a =5x 的解是负数,则a 的取值范围是 .18.若不等式组3x x a>⎧⎨>⎩的解集是3x >,则a 的取值范围是 .b a(第13题图)19.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图(图中等待时间1~2分钟表示大于或等于1分钟而小于2分钟,其余类似),这个时间段内顾客等待时间低于3分钟的有 人.20.在平面直角坐标系中,点A 的坐标为(3,3),点B 在坐标轴上,6=∆AOB S , 则B 点的坐标为 .第Ⅱ卷三、解答题(共50分)21.(本题4分) 计算:+-22.(本题共8分) 解不等式(组) . (1) 求不等式5(1)2163x x -+-<的正整数解. (2)326532x x x x -≤+⎧⎪⎨+>⎪⎩. 23.(本题4分)作图题.(1)作线段BE ∥AD 交DC 于E ;(2)连接AC ,作直线BF ∥AC 交DC 的延长线于F ;(3)作线段AG ⊥DC 于G .24.(本题6分)如图,E 点为DF 上的点,B 为AC 上的点,∠1=∠2, ∠C =∠D ,求证:DF//AC .证明:∵∠1=∠2(已知),∠1=∠3 ,∠2=∠4( ),∴∠3=∠4(等量代换).∴________//________( ).∴∠C =∠ABD ( ).∵∠C =∠D ( ),∴∠D =________( ).∴AC//DF ( ).25.(本题6分)某商场去年前五个月销售额共计600万元.下表表示该商场去年前五个月的月销售额(统计信息不全).图①表示该商场服装部...各月销售额占.商场..当月销售额的百分比情况统计图. 商场月销售额统计表图① 图②(1)商场5月份的销售额是 万元;(2)服装部5月份的销售额是 万元;小明同学观察图①后认为,服装部5月份的销售额比服装部4月份的销售额减少了,你同意他的看法吗?请说明理由;单位:万元 服装部各月销售额占商场 当月销售额的百分比统计图 50%40% 30% 20% 1月 2月 3月 4月 月份 5月份服装部各卖区销售额 占5月份服装部销售额的百分比统计图答: .(3)在该商场服装部,下设A 、B 、C 、D 、E 五个卖区,图②表示在5月份,服装部各卖区销售额......占5月份服装部销售额的百分比情况统计图.则 卖区的销售额最高,销售额最高的卖区占5月份商场销售额的百分比是 .26.(本题5分)已知:ABC ∆的三个顶点坐标A (-2, 0),B (5,0),C (4,3),在平面直角坐标系中画出ABC ∆,并求ABC ∆的面积.27.(本题5分)列不等式解应用题:在一次奥运知识竞赛中,共有25道选择题,每道题的四个选项中,有且只有一个答案正确,选对得4分,不选或错选扣2分,如果得分不低于60分才能得奖,那么要得奖至少应答对多少道题?28.(本小题6分)已知:如图,EF ⊥BC ,AB // DG ,∠1=∠2. 求证:AD ⊥BC .29.(本小题6分)在平面直角坐标系中,△ABC 的三个顶点位置如图所示,点A '的坐标是(-2,2),现将△ABC 平移,使点A 移动到点A ',且点B ',C '分别是B ,C 的对应点.(1)请画出平移后的A B C '''∆(不写画法).并直接写出点B ',C '的坐标:B '( ),C '( ).(2)若三角形内部有一点P (a ,b ),则P 的对应点P '的坐标是P '( ).(3)如果坐标平面内有一点D ,使得以A B C D ,,,为顶点的四边形为平行四边形,请直接写出点D 的坐标.答: .四.附加题(本大题共20分,第30小题6分,第31、32小题各7分)30.如图,在平面直角坐标系中,一动点 从原点 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点 ,,,,则点9A 的坐标为 ,点 2018A 的坐标为 ,点 43n A +( 是自然数)的坐标为 .31. 作图题(不写作法)(1) 如图 1,一个牧童从 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.(2)如图2,直线是一条河,,是两个村庄,欲在上的某处修建一个水泵站,向,两地供水,要使所需管道的长度最短,在图中标出点.(保留作图过程)(3)如图3,在一条河的两岸有,两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段表示.试问:桥建在何处,才能使到的路程最短呢?请在图中画出桥的位置.(保留作图过程)32. 某工厂有甲种原料千克,乙种原料千克,现计划用这两种原料生产A,B 两种型号的产品共件.已知每件 A 型号产品需要甲种原料千克,乙种原料千克;每件 B 型号产品需要甲种原料千克,乙种原料千克.请解答下列问题:(1)该工厂有哪几种生产方案?(2)在这批产品全部售出的条件下,若件 A 型号产品获利元,件B 型号产品获利元,(1)中哪种方案获利最大?最大利润是多少?。
七年级下册期中数学试卷及答案 (5)
七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40°B.50° C.100°D.130°2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x63.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.46.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±67.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50° C.60° D.70°8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣159.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A. B.C. D.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为.12.若5m=3,5n=2,则52m+n= .13.计算:()2015(﹣)2016=()4031.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是,因变量是.15.已知x+y=5,xy=2,则(x+2)(y+2)= .三、解答题(共13小题,满分105分)16.(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5()∴∠3=∠4()∴DE平分∠BDE()19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= .22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 度.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠E FG=56°,则∠1= ,∠2= .24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P nAM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,﹣1其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)七年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如果一个角是50°,那么它的余角的度数是()A.40°B.50° C.100°D.130°【考点】余角和补角.【分析】根据余角的定义,即可解答.【解答】解:∵一个角是50°,∴它的余角的度数是:90°﹣50°=40°,故选:A.【点评】本题考查了余角的定义,解决本题的关键是熟记余角的定义.2.下列运算中,正确的是()A.x3+x3=2x6B.x2•x3=x6C.x18÷x3=x6 D.(x2)3=x6【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的除法运算法则以及合并同类项法则和同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、x3+x3=2x3,故此选项错误;B、x2•x3=x5,故此选项错误;C、x18÷x3=x15,故此选项错误;D、(x2)3=x6,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算以及合并同类项和同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)【考点】平方差公式.【专题】计算题;整式.【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x)(﹣1﹣x),故选C.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,下列能判定AB∥CD的条件有()个(1)∠1=∠2 (2)∠3=∠4(3)∠B=∠5 (4)∠B+∠BCD=180°.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2,∴AD∥BC;(2)∵∠3=∠4,∴AB∥CD;(3)∵∠B=∠5,∴AB∥CD;(4)∵∠B+∠BCD=180°,∴AB∥CD.故选C.【点评】本题考查了平行线判定:同位角相等,两直线平行;同旁内角互补,两直线平行;内错角相等,两直线平行.6.若关于x的二次三项式x2﹣ax+36是一个完全平方式,那么a的值是()A.12 B.±12 C.6 D.±6【考点】完全平方公式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出a的值.【解答】解:∵x2﹣ax+36是一个完全平方式,∴a=±12,故选B【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50° C.60° D.70°【考点】平行线的性质.【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论.【解答】解:∵a∥b,∴∠4=∠1=110°,∵∠3=∠4﹣∠2,∴∠3=110°﹣40°=70°,故选D.【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.若(x﹣3)(x+5)=x2+ax+b,则a+b的值是()A.﹣13 B.13 C.2 D.﹣15【考点】多项式乘多项式.【分析】先计算(x﹣3)(x+5),然后将各个项的系数依次对应相等,求出a、b的值,再代入计算即可.【解答】解:∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴a=2,b=﹣15,∴a+b=2﹣15=﹣13.故选:A.【点评】考查了多项式乘以多项式的法则.解题此类题目的基本思想是等式的左右两边各个项的系数相等,解题的关键是将等式的左右两边整理成相同的形式.9.一个圆柱的底面半径为Rcm,高为8cm,若它的高不变,将底面半径增加了2cm,体积相应增加了192πcm,则R=()A.4cm B.5cm C.6cm D.7cm【考点】一元一次方程的应用.【分析】表示出增加后的半径算出体积后相减即可得到相应增加的体积,据此列出方程并解答.【解答】解:依题意得:8π(R+2)2﹣8πR2=192,解得r=5.故选:B.【点评】本题考查了一元一次方程的应用.解题的关键是了解圆柱的体积的计算方法,难度不大.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A.B.C.D.【考点】函数的图象.【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(共5小题,每小题3分,满分15分)11.若长方形的面积是3a2+2ab+3a,长为3a,则它的宽为a+b+1 .【考点】整式的除法.【专题】计算题;整式.【分析】根据长方形的面积除以长确定出宽即可.【解答】解:根据题意得:(3a2+2ab+3a)÷(3a)=a+b+1,故答案为:a+b+1【点评】此题考查了整式的除法,熟练掌握除法法则是解本题的关键.12.若5m=3,5n=2,则52m+n= 18 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.13.计算:()2015(﹣)2016=()4031.【考点】幂的乘方与积的乘方.【分析】先用负数的偶次方为正,判断出符号,再用同底数幂的乘法即可.【解答】解:()2015(﹣)2016=()2015×()2016=()2015+2016=()4031,故答案为()4031.【点评】此题是幂的乘方与积的乘方,主要考查了同底数相乘,解本题的关键是熟练掌握同底数幂相乘的法则.14.如图,圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.【考点】常量与变量.【专题】推理填空题.【分析】根据自变量、因变量的含义,判断出自变量、因变量各是哪个即可.【解答】解:圆锥的底面半径是2cm,当圆锥的高由小到大变化时,圆锥的体积也随之发生了变化.在这个变化过程中,自变量是圆锥的高,因变量是圆锥的体积.故答案为:圆锥的高,圆锥的体积.【点评】此题主要考查了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y 都有唯一确定的值与之对应,则x叫自变量,y叫因变量.15.已知x+y=5,xy=2,则(x+2)(y+2)= 16 .【考点】多项式乘多项式.【分析】将原式展开可得xy+2(x+y)+4,代入求值即可.【解答】解:当x+y=5,xy=2时,(x+2)(y+2)=xy+2x+2y+4=xy+2(x+y)+4=2+2×5+4=16,故答案为:16.【点评】本题主要考查多项式乘多项式及代数式求值,熟练掌握多项式乘多项式的法则是解题的关键.三、解答题(共13小题,满分105分)16.(2016春•成华区期中)(1)计算:(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)计算:(﹣2x2y)2•3xy÷(﹣6x2y)(3)先化简,再求值:[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.(4)用整式乘法公式计算:.【考点】整式的混合运算—化简求值;整式的混合运算;零指数幂;负整数指数幂.【分析】(1)直接利用有理数的乘方运算法则以及负整数指数幂的性质以及零指数幂的性质分别化简求出答案;(2)直接利用积的乘方运算法则结合整式乘除运算法则化简,求出答案;(3)首先利用乘法公式化简进而将已知数据代入求出答案;(4)直接利用平方差公式将原式变形进而求出答案.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+﹣1=﹣1+27﹣1=25;(2)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(3)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1;(4)===620.【点评】此题主要考查了实数运算以及整式的混合运算和化简求值,熟练应用乘法公式是解题关键.17.已知:|3﹣xy|+(x+y﹣2)2=0,求x2+y2+4xy的值.【考点】完全平方公式;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求得xy=3,x+y=2,再根据完全平方公式,即可解答.【解答】解:∵|3﹣xy|+(x+y﹣2)2=0,∴3﹣xy=0,x+y﹣2=0,∴xy=3,x+y=2,∴x2+y2+4xy=(x+y)2+2xy=22+2×3=10.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.18.阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义)【考点】平行线的性质.【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴DE平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.19.图中反映了某地某一天24h气温的变化情况,请仔细观察分析图象,回答下列问题:(1)上午9时的温度是多少?(2)这一天的最高温度是多少?几时达到最高温度?(3)这一天的温差是多少?在什么时间范围内温度在下降?(4)A点表示什么?几时的温度与A点表示的温度相同?【考点】函数的图象.【分析】根据函数图象可以解答(1)﹣(4)小题.【解答】解:(1)由图象可知,上午9时的温度是27.5℃;(2)这一天的最高温度是36℃,15时达到最高温度;(3)由图象可知,这一天最高气温是36℃,最低气温是24℃,∴这一天的温差是:36﹣24=12(℃),即这一天的温差是12℃,在0﹣3时温度在下降,15﹣24时温度在下降;(4)A点表示21时的温度,12时的温度与A点表示的温度相同;【点评】本题考查函数的图象,解题的关键是明确题意,利用数形结合的思想解答问题.20.如图,点D、F在线段AB上,点E、G分别在线段BC和AC上,CD∥EF,∠1=∠2.(1)判断DG与BC的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠3=85°,且∠DCE:∠DCG=9:10,试说明AB与CD有怎样的位置关系?【考点】平行线的判定与性质.【分析】(1)先根据CD∥EF得出∠2=∠BCD,再由∠1=∠2得出∠1=∠BCD,进而可得出结论;(2)根据DG∥BC,∠3=85°得出∠BCG的度数,再由∠DCE:∠DCG=9:10得出∠DCE的度数,由DG是∠ADC的平分线可得出∠ADC的度数,由此得出结论.【解答】解:(1)DG∥BC.理由:∵CD∥EF,∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC;(2)CD⊥AB.理由:∵由(1)知DG∥BC,∠3=85°,∴∠BCG=180°﹣85°=95°.∵∠DCE:∠DCG=9:10,∴∠DCE=95°×=45°.∵DG是∠ADC的平分线,∴∠ADC=2∠CDG=90°,∴CD⊥AB.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理及角平分线的性质即可得出结论.21.若多项式5x2+2x﹣2与多项式ax+1的乘积中,不含x2项,则常数a= ﹣.【考点】多项式乘多项式.【专题】计算题;整式.【分析】根据题意列出算式,计算后根据结果不含二次项确定出a的值即可.【解答】解:根据题意得:(5x2+2x﹣2)(ax+1)=5ax3+(5+2a)x2+2x﹣2ax﹣2,由结果不含x2项,得到5+2a=0,解得:a=﹣,故答案为:﹣【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.22.若∠1与∠2互补,∠3与30°互余,∠2+∠3=210°,则∠1= 30 度.【考点】余角和补角.【分析】根据和为90度的两个角互为余角,和为180度的两个角互为补角列出算式,计算即可.【解答】解:∵∠3与30°互余,∴∠3=90°﹣30°=60°,∵∠2+∠3=210°,∴∠2=150°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=30°.故答案为:30.【点评】本题考查的余角和补角的概念,掌握和为90度的两个角互为余角,和为180度的两个角互为补角是解题的关键.23.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,若∠EFG=56°,则∠1= 68°,∠2= 112°.【考点】平行线的性质;翻折变换(折叠问题).【分析】首先根据折叠的性质和平行线的性质求∠FED的度数,然后根据三角形内角和定理求出∠1的度数,最后根据平行线的性质求出∠2的度数.【解答】解:∵一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D,C分别在M,N的位置上,∴∠MEF=∠FED,∠EFC+∠GFE=180°,∵AD∥BC,∠EFG=56°,∴∠FED=∠EFG=56°,∵∠1+∠GEF+∠FED=180°,∴∠1=180°﹣56°﹣56°=68°,又∵∠1+∠2=180°,∴∠2=180°﹣68°=112°.故答案为:68°,112°.【点评】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.24.已知(a﹣4)(a﹣2)=3,则(a﹣4)2+(a﹣2)2的值为10 .【考点】整式的混合运算—化简求值.【分析】直接利用完全平方公式将原式变形,进而求出答案.【解答】解:∵(a﹣4)(a﹣2)=3,∴[(a﹣4)﹣(a﹣2)]2=(a﹣4)2﹣2(a﹣4)(a﹣2)+(a﹣2)2=(a﹣4)2+(a﹣2)2﹣2×3=4,∴(a﹣4)2+(a﹣2)2=10.故答案为:10.【点评】此题主要考查了整式的混合运算,正确运用完全平方公式是解题关键.25.若规定符号的意义是: =ad﹣bc,则当m2﹣2m﹣3=0时,的值为9 .【考点】整式的混合运算—化简求值.【专题】新定义.【分析】结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解即可.【解答】解:由题意可得,=m2(m﹣2)﹣(m﹣3)(1﹣2m)=m3﹣7m+3,∵m2﹣2m﹣3=0,解得:x1=﹣1,x2=3,将x1=﹣1,x2=3代入m2﹣2m﹣3=0,等式两边成立,故x1=﹣1,x2=3都是方程的解,当x=﹣1时,m3﹣7m+3=﹣1+7+3=9,当x=3时,m3﹣7m+3=27﹣21+3=9.所以当m2﹣2m﹣3=0时,的值为9.故答案为:9.【点评】本题考查了整式的混合运算﹣化简求值,解答本题的关键在于结合题中规定符号的意义,求出=m3﹣7m+3,然后根据m2﹣2m﹣3=0,求出m的值并代入求解.26.(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【考点】平方差公式的几何背景.【专题】计算题;整式.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.27.已知动点P以2cm/s的速度沿图1所示的边框从B→C→D→E→F→A的路径运动,记△ABP的面积为t(cm2),y与运动时间t(s)的关系如图2所示.若AB=6cm,请回答下列问题:(1)求图1中BC、CD的长及边框所围成图形的面积;(2)求图2中m、n的值.【考点】动点问题的函数图象.【分析】(1)根据路程=速度×时间,即可解决问题.(2)由图象可知m的值就是△ABC面积,n的值就是运动的总时间,由此即可解决.【解答】解:(1)由图2可知从B→C运动时间为4s,∴BC=2×4=8cm,同理CD=2×(6﹣4)=8cm,∴边框围成图形面积=AF×AB﹣CD×DE=14×6﹣4×6=60cm2.(2)m=S△ABC=×AB×BC=24,n=(BC+CD+DE+EF+FA)÷2=17.【点评】本题考查动点问题的函数图象、速度、时间、路程之间的关系等知识,解题的关键是读懂图象信息,属于中考常考题型.28.如图,直线l1∥l2,直线l与l1、l2分别交于A、B两点,点M、N分别在l1、l2上,点M、N、P均在l的同侧(点P不在l1、l2上),若∠PAM=α,∠PBN=β.(1)当点P在l1与l2之间时.①求∠APB的大小(用含α、β的代数式表示);②若∠APM的平分线与∠PBN的平分线交于点P1,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n AM的平分线与∠P n﹣1BN的平分线交于点P n,则∠AP1B= ,∠AP n B= .(用含α、β的代数式表示,﹣1其中n为正整数)(2)当点P不在l1与l2之间时.若∠PAM的平分线与∠PBN的平分线交于点P,∠P1AM的平分线与∠P1BN的平分线交于点P2,…,∠P n﹣1AM 的平分线与∠P n﹣1BN的平分线交于点P n,请直接写出∠AP n B的大小.(用含α、β的代数式表示,其中n为正整数)【考点】平行线的性质.【分析】(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α,由∠APQ=∠MAP=α①,∠QPB=∠PBN=β②,①+②即可解决问题.(2)利用(1)的结论即可解决问题.(3)分两种情形写出结论即可.【解答】解:(1)过点P作PQ∥l1交AB于Q,则∠APQ=∠MAP=α ①∵l1∥l2,∴PQ∥l2,∴∠QPB=∠PBN=β ②,①+②得∠APQ+∠BPQ=∠MAP+∠PBN,∴∠APB=α+β.(2)由(1)可知∠P1=(α+β),∠p2=(α+β),∠p3=(α+β)…∴∠AP n B=.故答案分别为,.(3)当P在l1上方时,β>α,∠AP n B=.当点P在l2下方时,α>β,∠Ap n B=.【点评】本题考查平行线的性质,角的和差定义等知识,解题的关键是学会添加常用辅助线,从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.。
【期中卷】北师大版七年级数学下册期中质量检测卷(六)含答案与解析
北师大版七年级下册期中质量检测卷(六)数学(考试时间:100分钟试卷满分: 120分)班级___________ 姓名___________ 学号____________ 分数____________注意事项:1.本试卷满分120分,试题共25题,选择10道、填空8道、解答7道,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a62.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣93.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b29.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣310.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是.15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为千米.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=(度).18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=.三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:=;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,正确的有()A.a3+a2=a5B.x(x m)3=x3mC.a8÷a2=a4D.(﹣2a3)2=4a6【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则分别判断得出答案.【解析】A、a3+a2,无法合并,故此选项错误;B、x(x m)3=x3m+1,故此选项错误;C、a8÷a2=a6,故此选项错误;D、(﹣2a3)2=4a6,正确.故选:D.2.芯片是手机、电脑等高科技产品的核心部件,目前我国芯片已可采用14纳米工艺.已知14纳米为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】0.000000014=1.4×10﹣8.故选:B.3.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角【分析】根据同位角定义可得答案.【解析】直线b、c被直线a所截,则∠1与∠2是同位角,故选:B.4.如图,在四边形ABCD中,连接BD,判定正确的是()A.若∠1=∠2,则AB∥CDB.若∠3=∠4,则AD∥BCC.若∠A+∠ABC=180°,则AD∥BCD.若∠C=∠A,则AB∥CD【分析】根据平行线的性质和判定逐个判断即可.【解析】A、根据∠1=∠2不能推出AB∥CD,故本选项不符合题意;B、根据∠3=∠4不能推出AD∥BC,故本选项不符合题意;C、根据∠A+∠ABC=180°能推出AD∥BC,故本选项符合题意;D、根据∠C=∠A不能推出AB∥CD,故本选项不符合题意.故选:C.5.如图,把长方形ABCD沿EF对折,若∠1=44°,则∠AEF等于()A.136°B.102°C.122°D.112°【分析】根据折叠的性质和平角的定义,可以得到∠3的度数,再根据平行线的性质,即可得到∠AEF 的度数.【解析】由折叠的性质可得,∠2=∠3,∵∠1=44°,∴∠2=∠3=68°,∵AD∥BC,∴∠AEF+∠3=180°,∴∠AEF=112°,故选:D.6.水滴进如图所示的玻璃容器(水滴的速度是相同的),那么水的高度随着时间变化的图象大致是()A.B.C.D.【分析】根据容器的粗细变化情况,可得答案.【解析】因为容器内容积的横截面先变大,再变小,而水滴的速度是相同的,所以容器下面大,上升速度慢,上面较小,上升速度变快,故选:D.7.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个矩形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣ab=a(a﹣b)【分析】这个图形变换可以用来证明平方差公式:已知在左图中,大正方形减小正方形剩下的部分面积为a2﹣b2;因为拼成的长方形的长为(a+b),宽为(a﹣b),根据“长方形的面积=长×宽”代入为:(a+b)×(a﹣b),因为面积相等,进而得出结论.【解析】由图可知,大正方形减小正方形剩下的部分面积为a2﹣b2;拼成的长方形的面积:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:A.8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把正确结果的最后一项染黑了,正确的结果为9a2+12ab+(),则被染黑的这一项应是()A.2b2B.3b2C.4b2D.﹣4b2【分析】利用完全平方公式的结构特征判断即可.【解析】根据题意得:9a2+12ab+(),其中被染黑的这一项应是4b2,故选:C.9.若关于x的多项式(2x﹣m)与(3x+5)的乘积中,一次项系数为25,则m的值()A.5 B.﹣5 C.3 D.﹣3【分析】先求出两个多项式的积,再根据一次项系数为25,得到关于m的一次方程,求解即可.【解析】(2x﹣m)(3x+5)=6x2﹣3mx+10x﹣5m=6x2+(10﹣3m)x﹣5m.∵积的一次项系数为25,∴10﹣3m=25.解得m=﹣5.故选:B.10.用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A.a+b=8 B.a﹣b=4 C.a•b=12 D.a2+b2=64【分析】根据正方形的面积可以求出其边长,即可得到a+b,a﹣b,进而又可以求出a、b的值,再逐个判断即可.【解析】∵大正方形的面积为64,中间空缺的小正方形的面积为16,∴大正方形的边长为8,小正方形的边长为4,即:a+b=8,a﹣b=4,因此a=6,b=2,∴a2+b2=36+4=40,ab=6×2=12,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.若2m=3,2n=4,则23m﹣2n等于.【分析】先根据同底数幂的除法和幂的乘方的性质的逆用,把23m﹣2n转化为用已知条件表示,然后代入数据计算即可.【解析】∵2m=3,2n=4,∴23m﹣2n=(2m)3÷(2n)2,=27÷16,.故应填:.12.已知m+2n=2,m﹣2n=2,则m2﹣4n2=4.【分析】原式利用平方差公式分解,把各自的值代入计算即可求出值.【解析】∵m+2n=2,m﹣2n=2,∴m2﹣4n2=(m+2n)(m﹣2n)=2×2=4.故答案为:4.13.如图,AB∥CD,且∠DEC=100°,∠C=45°,则∠B的度数是35°.【分析】根据平行线的性质和三角形内角和,可以求得∠B的度数,本题得以解决.【解析】∵∠DEC=100°,∠DEC=∠BEA,∴∠BEA=100°,∵AB∥CD,∠C=45°,∴∠C=∠A=45°,∴∠B=180°﹣∠A﹣∠BEA=35°,故答案为:35°.14.某水库的水位在一天内持续上涨,初始的水位高度为8米,水位以每小时0.2米的速度匀速上升,这天水库的水位高度y(米)与时间x(小时)的函数表达式是y=8+0.2x(x>0).【分析】根据水位高度随着时间x的变化关系,得出y与x之间的函数关系式.【解析】由题意得,y=8+0.2x(x>0),故答案为:y=8+0.2x(x>0).15.一辆轿车和一辆货车同时从甲地出发驶往乙地,轿车到达乙地后立即以另一速度原路返回甲地,货车到达乙地后停止.如图所示的图象分别表示货车、轿车离甲地的距离(千米)与轿车所用时间(小时)的关系.当轿车从乙地返回甲地的途中与货车相遇时,相遇处离甲地的距离为75千米.【分析】根据函数图象中的数据,可以计算出货车的速度已经轿车返回时的速度,然后即可计算出相遇处到甲地的距离.【解析】由图象可得,货车的速度为:90÷2=45(千米/小时),轿车返回时的速度为:90÷(2.5﹣1.5)=90(千米/小时),设当轿车从乙地返回甲地的途中与货车相遇时,货车行驶的时间为a小时,45a+90(a﹣1.5)=90,解得,a,4575(千米),即相遇处到甲地的距离是75千米.故答案为:75.16.若a=20170,b=2015×2017﹣20162,c=()2016×()2017,则下列a,b,c的大小关系正确的是a>b>c.【分析】直接利用积的乘方运算法则以及乘法公式进而计算得出答案.【解析】∵a=20170=1,b=2105×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1﹣20162=﹣1,c=()2016×()2017=[()×()]2016×(),∴a>b>c.故答案为:a>b>c.17.如图,BD平分∠ABC,EF∥BC,AE与BD交于点G,连接ED.若∠A=22°,∠D=20°,∠DEF =2∠AED,则∠AGB的大小=142(度).【分析】根据平行线的性质和角平分线的定义解答即可.【解析】∵BD平分∠ABC,∴∠ABD=∠DBC,设∠ABD=x°,DE与BC交于点M,∵∠AGB=∠DGE,∵∠AGB=180°﹣∠A﹣∠ABD,∠DGE=180°﹣∠D﹣∠AED,∴∠AED=x+2°,∵∠DGE=2∠AED,∴∠DEF=2x+4°,∵BC∥EF,∴∠DMC=∠DEF=2x+4°,∵∠DMC=∠D+∠DBC,∴2x+4°=20°+x,解得:x=16°,∴∠AGB=180°﹣∠A﹣∠ABD=180°﹣22°﹣16°=142°,故答案为:142.18.观察下列各式(x﹣1)(x+1)=x2﹣1(x﹣1)(x2+x+1)=x3﹣1(x﹣1)(x3+x2+x+1)=x4﹣1…你能否由此归纳出一般性规律:(x﹣1)(x2019+x2018+…+x+1)=x2020﹣1.【分析】根据已知算式得出规律,再根据所得的规律得出答案即可.【解析】∵(x﹣1)(x+1)=x2﹣1=x1+1﹣1,(x﹣1)(x2+x+1)=x3﹣1=x2+1﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1=x3+1﹣1,…∴(x﹣1)(x2019+x2018+…+x+1)=x2019+1﹣1=x2020﹣1,故答案为:x2020﹣1.三.解答题(共7小题)19.计算(1)(x2y)3•(﹣3xy2)(2)(xy+z)(﹣xy+z)【分析】(1)先计算单项式的乘方,再计算单项式乘单项式即可得.(2)根据平方差公式解答.【解析】(1)原式=(x6y3)•(﹣3xy2)=()×(﹣3)•x2×3+1y3+2x7y5;(2)原式=z2﹣x2y2.20.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x,y.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解析】原式=4x2+12xy+9y2﹣(4x2﹣y2)=4x2+12xy+9y2﹣4x2+y2=12xy+10y2,当,时,原式.21.如图,已知HM平分∠EHD,GB∥HD,∠3=35°.(1)求∠1的度数;(2)求∠EGB的度数.【分析】(1)根据角平分线的性质可得∠1=∠2∠GHD,再根据平行线的性质可得∠2=∠3=35°,进而可得∠1的度数;(2)根据两直线平行同位角相等可得∠EGB=∠GHD,进而可得答案.【解析】(1)∵HM平分∠EHD,∴∠1=∠2∠GHD,∵GB∥HD,∴∠2=∠3=35°,∴∠1=35°;(2)∵∠1=∠2=35°,∴∠GHD=70°,∵GB∥HD,∴∠EGB=∠GHD=70°.22.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,EO⊥AB于点O,FO⊥CD于点O.(1)若∠AOD=40°,求∠EOC的度数;(2)若∠AOD:∠EOF=1:5,求∠BOP的度数.【分析】(1)直接利用垂线的定义结合平角的性质得出答案;(2)设∠AOD为x°,则∠EOF为5x°利用周角的性质得出答案.【解析】(1)∵EO⊥AB,∴∠AOE=90°.∵∠AOD=40°,∴∠EOC=180°﹣∠AOD﹣∠AOE=180°﹣40°﹣90°=50°.(2)∵∠AOD:∠EOF=1:5,设∠AOD为x°,则∠EOF为5x°∵DO⊥FO,∴∠DOF=90°.∵∠AOD+∠AOE+∠EOF+∠DOF=360°,∴x+90°+5x+90°=360°.解得x=30°,即∠AOD=30°.又∴∠BOC=∠AOD=30°(对顶角相等),∵OP是∠BOC的平分线,∴∠POB∠BOC30°=15°.23.一辆汽车在公路上行驶,其所走的路程和所用的时间可用下表表示:时间/t(min) 1 2.5 5 10 20 50 …路程/s(km) 2 5 10 20 40 100 …(1)在这个变化过程中,自变量、因变量各是什么?(2)当汽车行驶路程s为20km时,所花的时间t是多少分钟?(3)从表中说出随着t逐渐变大,s的变化趋势是什么?(4)如果汽车行驶的时间为t(min),行驶的路程为s(km),那么路程s与时间t之间的关系式为s =2t.(5)按照这一行驶规律,当所花的时间t是300min时,汽车行驶的路程s是多少千米?【分析】(1)根据函数的定义可得出自变量为时间t,因变量为函数:路程s;(2)根据表格可知,每分钟行2千米,由公式t,再得出行驶路程s为20km时,所花的时间t即可;(3)从表中得出随着t逐渐变大,s逐渐变大;(4)路程、速度、时间之间的关系式为s=vt,再把v=2代入即可;(5)把t=300代入s=2t即可得出答案.【解析】(1)自变量是时间,因变量是路程;(2)∵当t=1时,s=2,∴v2,∴t10分钟;(3)由表得,随着t逐渐变大,s逐渐变大(或者时间每增加1分钟,路程增加2千米);(4)由(2)得v=2,∴路程s与时间t之间的关系式为s=2t,故答案为s=2t;(5)把t=300代入s=2t,得s=600.24.对于一个平面图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如:图1可以得到(a+b)2=a2+2ab+b2,请解答下列问题:(1)写出图2所表示的数学等式:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)已知上述等式中的三个字母a,b,c可取任意实数,若a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37,请利用(1)所得的结论求ab+bc+ac的值;(3)小明同学用图3中2张边长为a的正方形,3张边长为b的正方形和m张邻边长分别为a、b的长方形纸片拼出一个长方形,通过拼图求出m的值.(求出1个即可)【分析】(1)直接求得正方形的面积,然后再根据正方形的面积=各矩形的面积之和求解即可;(2)将a=7k﹣5,b=﹣4k+2,c=﹣3k+4,且a2+b2+c2=37代入(1)中得到的关系式,然后进行计算即可;(3)根据所拼图形写出m的值即可.【解析】(1)正方形的面积可表示为=(a+b+c)2;正方形的面积=各个矩形的面积之和=a2+b2+c2+2ab+2bc+2ac,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故答案为(a+b+c)2;a2+b2+c2+2ab+2bc+2ac;(2)∵a=7k﹣5,b=﹣4k+2,c=﹣3k+4,a2+b2+c2=37,∴(7k﹣5﹣4k+2﹣3k+4)2=37+2(ab+bc+ac),∴ab+bc+ac=﹣18;(3)如图所示:2a2+7ab+3b2=(a+3b)(2a+b).∴m=7.25.(1)如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.请补充下面的推理过程:解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,已知AB∥ED,借鉴(1)的方法,求∠B+∠BCD+∠D的度数;(3)如图3,已知AB∥CD,∠ADC=70°.∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE 所在的直线交于点E,点E在AB与CD两条平行线之间,借鉴(1)的方法,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解析】(1)过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAC.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°.(2)如图2,过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴,,∴∠BED=∠BEF+∠DEF=30°+35°=65°.故答案为:∠DAC.。
厦门市同安区016七年级下册数学期中试卷及答案
2016-2017学年度第二学期七年级期中联考数学科试卷满分:150分;考试时间:120 分钟参考学校: 翔安一中 柑岭中学 五显中学 翔安实验 诗坂中学 凤南中学 莲河中学等学校一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A. B. C. D.2、方程组的解为( ) A.B.C.D.3、在①+y=1;②3x﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个 B .2个 C .3个 D .4个 4、如图所示,图中∠1与∠2是同位角的是( )1212(3)12(4)A 、1个B 、2个C 、3个D 、4个 5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动 6、如图1,下列能判定AB∥CD 的条件有( )个. (1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.4 7、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行. A .2个 B .3个 C .4个 D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( )A 、50° B、55° C、60° D、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°54D3E 21C B A 图1F E DC B音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥 10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是,的平方根是 ,如果=3,那么a=,的绝对值是 , 2的小数部分是_______12、命题“对顶角相等”的题设 ,结论 13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若 ,则. 14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 , 点A 2014的坐标为__________三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分) (一)计算:(1)322769----)( (2))13(28323-++-(3)2(2-2)+3(3+13).(二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …};(2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘记了在图中标出原点和x 轴. y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;图4 图5(2)分别写出∠COE和∠BOE的对顶角;(3)如果∠BOD=60°,EFAB ,求∠DOF和∠FOC的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v表示车速(单位:千米/时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴ ∠ = ∠ (等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.得平行四边形ABDC(1)直接写出点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB=S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.请画出图形,直接写出∠CPO、∠DCP、∠BOP的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分)11. -5 、 ±3 、 9 、﹣2 、 2 -1 12.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++-......2 =0 ........................3 =...233- (3)(3)2(2-2)+3(3+13).解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4 解:x 2=,……1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,……3 x ═6或x=2……3 (求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分19(本小题6分)解:(1)正确画出直角坐标系;……1分 (2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0); (6)分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0, ∴, 解得:, (3)题号 12345678910答案CDBCBCAAAD∴==3. (5)21(本小题8分)解:(1)∠COF和∠EOD (2)(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF. (4)(3)∵AB⊥EF∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠ C =∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF ∴∠3=∠ADE (3)又∠B=∠3 ∴∠B=∠ADE ∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)不用注册,免费下载!。
【常考题】初一数学下期中模拟试卷及答案
【常考题】初一数学下期中模拟试卷及答案一、选择题1.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .2.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <3.如图所示的是天安门周围的景点分布示意图.若以正东、正北方向为x 轴、y 轴的正方向建立坐标系,表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),则表示博物馆的点的坐标为( )A .(1,0)B .(2,0)C .(1,-2)D .(1,-1)4.若x y >,则下列变形正确的是( )A .2323x y +>+B .x b y b -<-C .33x y ->-D .33x y ->- 5.若10x x y -++=,则xy 的值为( )A .0B .1C .-1D .26.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )A .2B .3C .23D .327.如图,点E 在AB 的延长线上,则下列条件中,不能判定AD BC ∥的是( )A .180D DCB ∠+∠=︒B .13∠=∠C .24∠∠=D .CBE DAE ∠=∠8.下列命题中,是真命题的是( ) A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行9.下列所示的四个图形中,∠1=∠2是同位角的是( )A .②③B .①④C .①②③D .①②④10.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°11.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm12.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个二、填空题13.已知12x y =⎧⎨=⎩是关于x 、y 的二元一次方程3210mx y --=的解,则m=__________. 14.已知方程3x +5y -3=0,用含x 的代数式表示y ,则y=________.15.若关于x 、y 的二元一次方程组2212x y a x y a +=⎧⎨+=-⎩的解互为相反数,则a 的值是_______________.16.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________17.如图,有一块长为32 m 、宽为24 m 的长方形草坪,其中有两条直道将草坪分为四块,则分成的四块草坪的总面积是________m 2.18.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.19.46的整数部分是________.20.用反证法证明命题“三角形中至少有一个内角大于或等于60°”,第一步应假设_____.三、解答题21.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A .从一个社区随机选取1 000户家庭调查;B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题:①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.某校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)求本次接受随机抽样调查的学生人数及图①中m的值;(2)本次调查获取的样本数据的平均数是,众数是,中位数是;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.某水果店计划进A,B两种水果共140千克,这两种水果的进价和售价如表所示进价(元/千克)售价(元/千克)A种水果58B种水果913()1若该水果店购进这两种水果共花费1020元,求该水果店分别购进A ,B 两种水果各多少千克?()2在()1的基础上,为了迎接春节的来临,水果店老板决定把A 种水果全部八折出售,B 种水果全部降价10%出售,那么售完后共获利多少元?25.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C 、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D 、∵∠1=∠2,∴AB ∥CD (同位角相等,两直线平行).故选D .【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.2.D解析:D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P(a,b)在第四象限内,得a>0,b<0,故选:D.【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.D解析:D【解析】【分析】根据平面直角坐标系,找出相应的位置,然后写出坐标即可.【详解】表示电报大楼的点的坐标为(-4,0),表示王府井的点的坐标为(3,2),可得:原点是天安门,所以可得博物馆的点的坐标是(1,-1)故选D.【点睛】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.4.A解析:A【解析】【分析】根据不等式的性质逐个判断即可.【详解】解: A、两边都乘2再加3,不等号的方向不变,故A正确;B、两边都减,b不等号的方向不变,故B错误;C、两边都乘以3-,不等号的方向改变,故C错误;D、两边都除以3-,不等号的方向改变,故D错误;故选:A【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.5.C解析:C【解析】解:∵10x x y -++=,∴x ﹣1=0,x +y =0,解得:x =1,y =﹣1,所以xy =﹣1.故选C .6.A解析:A 【解析】分析:由S △ABC =9、S △A′EF =4且AD 为BC 边的中线知S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92,根据△DA′E ∽△DAB 知2A DE ABD S A D AD S ''=V V (),据此求解可得. 详解:如图,∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',∴A′E ∥AB ,∴△DA′E ∽△DAB ,则2A DE ABD S A D AD S ''=V V (),即22912A D A D '='+(), 解得A′D=2或A′D=-25(舍), 故选A .点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 7.C解析:C【解析】【分析】根据平行线的判定方法一一判断即可:A.同旁内角互补,两直线平行;B 、C 内错角相等,两直线平行;D.同位角相等,两直线平行,再根据结果是否能判断//AD BC ,即可得到答案.【详解】解:A. Q 180D DCB ∠+∠=︒,∴//AD BC ,此项正确,不合题意;B. Q 13∠=∠,∴//AD BC ,此项正确,不合题意;C. ∵∠2=∠4,∴CD ∥AB ,∴不能判定//AD BC ,此项错误,符合题意;D. Q CBE DAE ∠=∠,∴//AD BC ,此项正确,不合题意.故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.8.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.9.D解析:D【解析】【分析】根据同位角的定义(在截线的同侧,并且在被截线的同一方的两个角是同位角),即可得到答案;【详解】解:图①、②、④中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角; 图③中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选D .【点睛】本题主要考查了同位角的概念,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.10.B解析:B【解析】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.12.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m-?=,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.;【解析】分析:将x看作已知数求出y即可详解:方程3x+5y-3=0解得:y=故答案为点睛:此题考查了解二元一次方程解题的关键是将x看作已知数求出y解析:335x -;【解析】分析: 将x看作已知数求出y即可.详解:方程3x+5y-3=0,解得:y=335x -.故答案为33 5x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.15.1【解析】【分析】两方程相加表示出根据方程组的解互为相反数得到即可求出的值【详解】解:①②得:即由题意得:即解得:故答案为:1【点睛】此题考查了二元一次方程组的解方程组的解即为能使方程组中两方程成立解析:1【解析】【分析】两方程相加表示出x y +,根据方程组的解互为相反数,得到0x y +=,即可求出a 的值.【详解】解:2212x y a x y a +=⎧⎨+=-⎩①②, ①+②得:331x y a +=-,即x y +=13a -, 由题意得:0x y +=, 即103a -=, 解得:1a =.故答案为:1.【点睛】 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.16.或【解析】【分析】已知可知AB=8已知的面积为即可求出OC 长得到C 点坐标【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(04)或(0-4)故答案为:(04)或(0-4)【点睛】本题考查解析:(0,4)或(0,4) -【解析】【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4 ∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解.17.【解析】【分析】【详解】解:如图两条直道分成的四块草坪分别为甲乙丙丁把丙和丁都向左平移2米然后再把乙和丁都向上平移2米组成一个长方形长为32-2=30米宽为24-2=22米所以四块草坪的总面积是30解析:【解析】【分析】【详解】解:如图,两条直道分成的四块草坪分别为甲、乙、丙、丁,把丙和丁都向左平移2米,然后再把乙和丁都向上平移2米,组成一个长方形,长为32-2=30米,宽为24-2=22米,所以四块草坪的总面积是30×22=660(㎡). 故答案为:660.【点睛】本题考查了平移的应用,将草坪平移组成一个长方形是解决此题的关键.18.【解析】【分析】观察分析可得则将此规律用含自然数n(n≥1)的等式表示出来是【详解】由分析可知发现的规律用含自然数n(n≥1)的等式表示出来是故答案为:【点睛】本题主要考查二次根式找出题中的规律是解 11(1)1)22n n n n n +=+≥++ 【解析】【分析】 111(1+1)312+=+112(21)422+=++113(31)532+=++n(n ≥1)的等式表示出来是11((1)22n n n n n +=+≥++ 【详解】由分析可知,发现的规律用含自然数n(n ≥1)的等式表示出来是11((1)22n n n n n +=+≥++ 11((1)22n n n n n +=+≥++ 【点睛】本题主要考查二次根式,找出题中的规律是解题的关键,观察各式,归纳总结得到一般性规律,写出用n 表示的等式即可.19.6【解析】【分析】求出在哪两个整数之间从而判断的整数部分【详解】∵又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算正确掌握整数的平方数是解题的关键解析:6【解析】【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤直接填空即可【详解】第一步应假设结论不成立即三角形的三个内角都小于60°故答案为三角形的三个内角都小于60°【点睛】反证法的步骤是:(1) 解析:三角形的三个内角都小于60°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】第一步应假设结论不成立,即三角形的三个内角都小于60°.故答案为三角形的三个内角都小于60°.【点睛】反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时,要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、解答题21.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)400;(2)补全条形图见解析;C类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A类别人数及其所占百分比可得总人数;(2)总人数减去A、C、D三个类别人数求得B的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人;(2)B类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N ==100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.(1)50、32;(2)16,10,15;(3)608人.【解析】【分析】(1)由5元的人数及其所占百分比可得总人数,用10元人数除以总人数可得m 的值; (2)根据统计图可以分别得到本次调查获取的样本数据的平均数、众数和中位数; (3)根据统计图中的数据可以估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为48%50÷=人, Q 16100%32%50⨯=, 32m ∴=,故答案为:50、32;(2)15元的人数为5024%12⨯=,本次调查获取的样本数据的平均数是:1(45161012151020830)1650创+????(元),本次调查获取的样本数据的众数是:10元,本次调查获取的样本数据的中位数是:15元;(3)估计该校本次活动捐款金额为10元的学生人数为190032%608⨯=人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,找出所求问题需要的条件.24.(1) 购进A 种水果60千克,B 种水果80千克;(2)300元.【解析】【分析】(1)设该水果店购进A 种水果x 千克,B 种水果y 千克,根据总价=单价×数量结合花1020元购进A ,B 两种水果共140千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据利润=销售收入﹣成本,即可求出结论.【详解】(1)设该水果店购进A 种水果x 千克,B 种水果y 千克,依题意,得:140591020x y x y +=⎧⎨+=⎩解得:6080x y =⎧⎨=⎩. 答:该水果店购进A 种水果60千克,B 种水果80千克.(2)8×0.8×60+13×(1﹣10%)×80﹣1020=300(元).答:售完后共获利300元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有10小题,每题4分,共40分) 1、下面四个图形中∠1与∠2是对顶角的是( )A .B .C .D .2、方程组的解为( ) A .B .C .D .3、在①+y=1;②3x ﹣2y=1;③5xy=1;④+y=1四个式子中,不是二元一次方程的有( ) A .1个B .2个C .3个D .4个4、如图所示,图中∠1与∠2是同位角的是( )2(1)11212(3)12(4)A 、1个B 、2个C 、3个D 、4个5.下列运动属于平移的是( )A .冷水加热过程中小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .投篮时的篮球运动D .随风飘动的树叶在空中的运动6、如图1,下列能判定AB ∥CD 的条件有( )个.(1) ︒=∠+∠180BCD B ; (2)21∠=∠; (3) 43∠=∠; (4) 5∠=∠B . A .1 B .2 C .3 D.47、下列语句是真命题的有( )①点到直线的垂线段叫做点到直线的距离; ②内错角相等;③两点之间线段最短; ④过一点有且只有一条直线与已知直线平行; ⑤在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.54D3E21CB A图1A .2个B .3个C .4个D .5个8、如图2,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,则∠AED′=( )A 、50°B 、55°C 、60°D 、65°9、如图3,直线21//l l ,∠A=125°,∠B=85°,则∠1+∠2=( )A .30°B .35°C .36°D .40°10、如图4,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.42B.96C.84D.48 二、填空题(本题有6小题,11题10分,其余每题4分,共30分) 11、﹣125的立方根是 ,的平方根是 , 如果=3,那么a= ,的绝对值是 ,2的小数部分是_______12、命题“对顶角相等”的题设 ,结论13、(1)点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为_______; (2)若,则.14、如图5,一艘船在A 处遇险后向相距50 海里位于B 处的救生船 报警.用方向和距离描述遇险船相对于救生船的位置15、∠A 的两边与∠B 的两边互相平行,且∠A 比∠B 的2倍少15°,则∠A 的度数为_______16、在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(-y+1,x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为 ,点A 2014的坐标为_________图图FEDCB A 音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔三、解答题(本题有10小题,共80分) 17、(本题有6小题,每小题3分,共18分)(一)计算:(1)322769----)( (2))13(28323-++- (3)2(2-2)+3(3+13). (二)解方程:(1)9x 2=16. (2)(x ﹣4)2=4 (3)18、(本小题5分)把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.••02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1). (1)正有理数集合:{ …}; (2)负无理数集合:{ …}; 19、(本小题6分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区 地图,如图所示.可是她忘记了在图中标出原点和x 轴.y 轴. 只知道游乐园D 的坐标为(2,-2), 请你帮她画出坐标系,并写出其他各景点的坐标.20、(本小题5分)已知2是x 的立方根,且(y-2z+5)2+=0,求的值.21、(本小题8分)如图,直线AB 、CD 、EF 相交于点O . (1)写出∠COE 的邻补角;(2)分别写出∠COE 和∠BOE 的对顶角;(3)如果∠BOD=60°,EF AB ⊥,求∠DOF 和∠FOC 的度数.22、(本小题4分)某公路规定行驶汽车速度不得超过80千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.在一次交通事故中,经测量d=32米,f=2.请你判断一下,肇事汽车当时是否超出了规定的速度?23、(本小题11分)完成下列推理说明:(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4()所以∠2=∠4(等量代换)所以CE∥BF()所以∠=∠3()又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD()(2)如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD ()∴∠B= ()又∵∠B=∠D(已知),∴∠= ∠(等量代换)∴AD∥BE()∴∠E=∠DFE()24、(本小题6分)如图,长方形OABC中,O为平面直角坐标系的原点,点A、C的坐标分别为A(3,0),C(0,2),点B在第一象限.(1)写出点B的坐标;(2)若过点C的直线交长方形的OA边于点D,且把长方形OABC的周长分成2:3的两部分,求点D的坐标;(3)如果将(2)中的线段CD向下平移3个单位长度,得到对应线段C′D′,在平面直角坐标系中画出△CD′C′,并求出它的面积.25、(本小题6分)如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.26(本小题11分)如图,在平面直角坐标系中,点A ,B 的坐标分别为(﹣1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .得平行四边形ABDC(1)直接写出点C ,D 的坐标;(2)若在y 轴上存在点 M ,连接MA ,MB ,使S △MAB =S 平行四边形ABDC ,求出点M 的坐标.(3)若点P 在直线BD 上运动,连接PC ,PO .请画出图形,直接写出∠CPO 、∠DCP 、∠BOP 的数量关系.2016-2017学年度第二学期期中联考数学科 评分标准一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,11题10分,其余每小题4分,共30分) 11. -5 、 ±3 、 9 、﹣2 、2 -112.题设 两个角是对顶角 . 结论 这两个角相等 13.(1) (-3,4) .(2) 7.160 14. 南偏西15°,50海里15. 15°或115° . (答出一种情况2分) 16. (-3,1) 、 (0,4)三、解答题(本大题共11小题,共80分)17(18分)(一)(1)322769----)( (2))13(28323-++-解:原式=3-6-(-3) ...2 解:原式=232223-++- (2)题 1234567891答CDBCBCAAAD=0 ........................3 =...233- (3)(3)2(2-2)+3(3+13). 解:原式=13222++- (2)=222+ (3)(二)(1)9x 2=16. (2)(x ﹣4)2=4解:x 2=,......1 x ﹣4=2或x ﹣4=﹣2 (1)x=±,……3 x ═6或x=2……3 (求出一根给2分)(3),(x+3)3=27,......1 x+3=3,......2 x=0. (3)18(本小题5分)解:(1)正有理数集合:{38,722,1.414,…} ……3分 (2)负无理数集合:{32-,7-,…}.……5分19(本小题6分)解:(1)正确画出直角坐标系;……1分(2)各点的坐标为A(0,4),B (-3,2),C (﹣2,-1),E (3,3),F (0,0);……6分 20(本小题5分)解:∵2是x 的立方根, ∴x=8,……1 ∵(y ﹣2z+5)2+=0,∴, 解得:, (3)∴==3. (5)21(本小题8分)解:(1)∠COF 和∠EOD (2)(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF. (4)(3)∵AB⊥EF∴∠AOF=∠BOF=90°∴∠DOF=∠BOF-∠BOD=90°-60°=30° (6)又∵∠AOC=∠BOD=60°∴∠FOC=∠AOF+∠AOC=90°+60°=150°. (8)22(本小题4分)解:把d=32,f=2代入v=16,v=16=128(km/h) (2)∵128>80, (3)∴肇事汽车当时的速度超出了规定的速度. (4)23.(11分)(1)如图,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:因为∠1=∠2(已知),且∠1=∠4(对顶角相等) (1)所以∠2=∠4(等量代换)所以CE∥BF(同位角相等,两直线平行) (2)所以∠C=∠3(两直线平行,同位角相等) (4)又因为∠B=∠C(已知)所以∠3=∠B(等量代换)所以AB∥CD(内错角相等,两直线平行) (5)(2)在括号内填写理由.如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行) (1)∴∠B=∠DCE(两直线平行,同位角相等) (3)又∵∠B=∠D(已知),∴∠DCE=∠D (等量代换) (4)∴AD∥BE(内错角相等,两直线平行) (5)∴∠E=∠DFE(两直线平行,内错角相等) (6)24.(6分)解:(1)点B的坐标(3,2); (1)(2)长方形OABC周长=2×(2+3)=10,∵长方形OABC的周长分成2:3的两部分,∴两个部分的周长分别为4,6,∵OC+OA=5<6∴OC+OD=4∵OC=2,∴OD=2,∴点D的坐标为(2,0); (4)(3)如图所示,△CD′C′即为所求作的三角形, (5)CC′=3,点D′到CC′的距离为2,所以,△CD′C′的面积=×3×2=3. (6)25(6分)解:∠C与∠AED相等, (1)理由为:证明:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE (2)∴AB∥EF∴∠3=∠ADE (3)又∠B=∠3∴∠B=∠ADE∴DE∥BC (5)∴∠C=∠AED (6)26、(本小题11分)解:(1)C(0,2),D(4,2); (2)(2)∵AB=4,CO=2,∴S平行四边形ABOC=AB•CO=4×2=8,设M坐标为(0,m),∴×4×|m|=8,解得m=±4∴M点的坐标为(0,4)或(0,﹣4);……5(求出一点给2分)(3)当点P在BD上,如图1,∠DCP+∠BOP=∠CPO; (7)当点P在线段BD的延长线上时,如图2,,∠BOP﹣∠DCP=∠CPO; (9)同理可得当点P在线段DB的延长线上时,∠DCP﹣∠BOP=∠CPO. (11)(每种情况正确画出图形给1分)。