大连市大连市第三十四中学数学几何图形初步单元试卷(word版含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .

(1)猜想与的数量关系,并说明理由;

(2)若,求的度数;

(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.

【答案】(1)解:,理由如下:

(2)解:如图①,设,则,

由(1)可得,

(3)解:分两种情况:

①如图1所示,当时,,

又,

②如图2所示,当时,,

又,

.

综上所述,等于或时, .

【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.

(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.

(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.

2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.

(1)试判断直线AB与直线CD的位置关系,并说明理由;

(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;

(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.

【答案】(1)解:AB∥CD.理由如下:

如图1,

∵∠1与∠2互补,

∴∠1+∠2=180°.

又∵∠1=∠AEF,∠2=∠CFE,

∴∠AEF+∠CFE=180°,

∴AB∥CD;

(2)证明:如图2,由(1)知,AB∥CD,

∴∠BEF+∠EFD=180°.

又∵∠BEF与∠EFD的角平分线交于点P,

∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,

∴∠EPF=90°,

即EG⊥PF.

∵GH⊥EG,

∴PF∥G H;

(3)解:∠HPQ的大小不发生变化,理由如下:

如图3,∵∠1=∠2,

∴∠3=2∠2.

又∵GH⊥EG,

∴∠4=90°-∠3=90°-2∠2.

∴∠EPK=180°-∠4=90°+2∠2.

∵PQ平分∠EPK,

∴∠QPK= ∠EPK=45°+∠2.

∴∠HPQ=∠QPK-∠2=45°,

∴∠HPQ的大小不发生变化,一直是45°.

【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;

(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;

(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角

的定义、角平分线的定义推知∠QPK= ∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.

3.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.

(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;

(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;

(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)

(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)

【答案】(1)21°

(2)14°

(3)解:∵∠BOA=90°,∠OBA=α,

∴∠BAD=∠BOA+∠ABO=90°+α,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD

∴∠GAD=30°+ α,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA= α.

(4)解:当∠EOD:∠COE=1:2时,

∴∠EOD=30°,

∵∠BAD=∠ABO+∠BOA=α+90°,

∵AF平分∠BAD,

∴∠FAD= ∠BAD,

∵∠FAD=∠EOD+∠OGA,

∴2×30°+2∠OGA=α+90°,

∴∠OGA= α+15°;

当∠EOD:∠COE=2:1时,则∠EOD=60°,

同理得到∠OGA= α−15°,

即∠OGA的度数为α+15°或α−15°.

【解析】解:(1)∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,

∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,

∴∠OGA=∠GAD−∠EOA=66°−45°=21°;

故答案为21°;

⑵∵∠BOA=90°,∠OBA=42°,

∴∠BAD=∠BOA+∠ABO=132°,

∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,

∴∠GAD=44°,∠EOA=30°,

∴∠OGA=∠GAD−∠EOA=44°−30°=14°;

故答案为14°;

【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;

(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,

则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.

4.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.

相关文档
最新文档