中心对称与中心对称图形的区别与联系宋亚男

合集下载

中心对称与中心对称图形PPT课件

中心对称与中心对称图形PPT课件
又是中心对称图形的有_①__⑥__⑦_⑧__⑨____.
2021
38
在26个英文大写正体字母中,哪些字母是 中心对称图形?哪些字母是轴对称图形?
ABCDEFGH I J KLM NOPQRSTUVWXYZ
2021
39
工农业生产
旋转的物体必须具有稳定性,而中心对称的设计恰恰
满足了旋转物体的这一需求。因而在工农业生产制作转动工 具时,都不可避免地考虑应用中心对称的设计,小的如日常 生活中单车、闹钟内的齿轮,电风扇的扇叶;大的如推动飞 机、轮船的轮桨,风力发电用的风车等等。
如果一个图形绕着一个点旋转 180后的图形能够与原来的 图形重合,那么这个图形叫做 中心对称图形,这个点就是它 的对称中心
①两个图形可完全重合;
①是一个特殊的图形
②对应点连线都经过对称中心,并且被对 ②对应点连线都经过对称
称中心平分
性质
中心,并且被对称中心平 分
①两个图形的关系 区别 ②对称点在两个图形上
A’. 2. 同样画B、C、D的对称点B’、C’、D’.
3. 顺次连结A’、B’、C’、D’各点.
四边形A’B’C’D’就是所求的四边形.
2021
25
想一想中心对称与轴对称有什么区 别?又有什么联系?
轴对称
中心对称
有一条对称轴---直线 有一个对称中心---点
图形沿对称轴对折(翻 折1800)后重合
后三个图形都是旋转1800后能与自身重合
2021
29
A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对 称点.

中心对称与中心对称图形

中心对称与中心对称图形
对称图形
常见中心对称 图形:正方形、 长方形、圆形

中心对称图形的性质
定义:中心对称图形是指在平面内,如果一个图形绕某一点旋转180度后能与自身重 合,则称该图形为中心对称图形。
性质:中心对称图形具有对称中心,该点是图形旋转后能与自身重合的点。
特点:中心对称图形在几何学中具有重要地位,其性质在许多几何问题中都有应用。
中心对称与中心对称图形的关系
中心对称是指两个图形关于某一点旋转180度后能够完全重合的性质。 中心对称图形是指一个图形关于某一点旋转180度后能够与自身重合的性质。 中心对称的两个图形一定中心对称图形,但中心对称图形不一定是中心对称的两个图形。 中心对称的两个图形具有相同的形状和大小,但方向相反。
XX,a click to unlimited possibilities
汇报人:XX
目录
中心对称的定义
中心对称:两 个图形关于某 一点对称,即 它们关于这一 点旋转180度
后重合
中心对称图形的 定义:一个图形 关于某一点对称, 即该图形上任意 一点关于这一点 对称的点都在图
形上
中心对称的性 质:两个中心 对称的图形, 其对应线段平
工程学:中心对称图形在工程学中的应用,如机械部件、电路板等的设计中,可以利用对称性简化设计和提高效 率。
汇报人:XX
中心对称图形的美学价值
中心对称图形在自然界和生 活中的体现
中心对称图形在建筑和景观 设计中的运用
中心对称图形在艺术和设计 中的应用
中心对称图形在平面设计和 视觉传达中的重要性
常见的中心对称图形
圆形:无论从哪个 角度看,圆形都是 中心对称的,它的 对称中心是圆心。
正方形:正方形有四条 等长的边和四个直角, 它沿着中心点旋转180 度后与原图重合。

四边形中心对称和中心对称图形ppt

四边形中心对称和中心对称图形ppt
构造中心对称图形
在解决几何问题时,可以根据题目的条件和需求,构造出中 心对称图形,利用其性质解决问题。
04
中心对称图形的判定和性质
中心对称图形的判定方法
定义法
若一个图形沿着一条直线对折后两部分完全重合,则这个图形就是中心对称 图形。
性质法
如果一个图形是中心对称图形,那么这个图形必具有如下性质:图形的中点 是对称中心,过对称中心的任意一条直线都会将图形分成两个全等形。
四边形中心对称和中心对称图形
xx年xx月xx日
目录
• 中心对称和中心对称图形概述 • 四边形的性质和判定 • 四边形中心对称的证明和应用 • 中心对称图形的判定和性质 • 四边形和中心对称图形的综合应用
01
中心对称和中心对称图形概述
中心对称的定义
定义
把一个图形绕着某一点旋转180度,如果旋转后的图形能够与 原来的图形重合,那么这个图形叫做中心对称图形,这个点 叫做对称中心。
矩形是有一个内角为直角的平行四边形;菱形是有一组邻边相等的平行四边 形;正方形是有一个内角为直角且一组邻边相等的平行四边形。此外,还可 通过四边相等、对角线相等、角相等等方法进行判定。
四边形与矩形、菱形、正方形的关系
四边形是矩形、菱形、正方形的上位概念,即所 有矩形、菱形、正方形都是四边形,但并非所有 四边形都是矩形、菱形或正方形。
性质
中心对称是特殊的平移对称,即把一个图形绕某一点旋转180 度。
中心对称图形的定义
定义
在平面内,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来 的图形重合,那么这个图形叫做中心对称图形。
性质
中心对称图形是一种特殊的旋转对称图形,其特点是旋转中心位于图形的中 心位置,且旋转角度为180度。

23.2.2中心对称图形

23.2.2中心对称图形
23.2.2
中心对称图形
知识点一
知识点二
知识点一中心对称图形 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来 的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对 称中心. 名师解读: (1)中心对称图形的判别方法:由中心对称图形的定义可知,能找 到一个点,使该图形绕它旋转180°后能与原图形重合,这个图形就是 中心对称图形,因此,可以简单认为“找到对称中心的图形就是中心 对称图形,找不到对称中心的图形就不是中心对称图形”.
拓展点一
拓展点二
拓展点三
拓展点四
解:如图所示.
拓展点一
拓展点二
拓展点三
拓展点四
过中心对称图形的对称中心的直线,一定将图形分成全等 的两部分,所以如果出现要求将图形分成面积或周长相等 的两部分,只要过对称中心画一条直线即可.
知识点一
知识点二
(2)中心对称图形与中心对称的区别与联系: 区别: ①中心对称图形是指一个具有某种性质的图形,中心对称是指两 个图形的关系. ②成中心对称的两个图形中对称点分别在两个图形中,而中心对 称图形的对称点在一个图形上. 联系:把中心对称图形分成两个图形,则它们又可成中心对称,如 果把成中心对称的两个图形看成一个整体(即为一个图形),则它又 可成为中心对称图形.
拓展点二
拓展点三
拓展点四
解答这类问题时,要注意仔细观察,不要凭想当然,如其 中的图形②就容易被误认成既是中心对称图形,又是轴 对称图形.
拓展点一
拓展点二
拓展点三
拓展点四
拓展点三网格中的中心对称图形 例3 如图所示,正方形网格中的每个小正方形边长都是1,每个小 格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

中心对称与中心对称图形的区别和联系

中心对称与中心对称图形的区别和联系

中心对称与中心对称图形的区别与联系
中心对称与中心对称图形的区别与联系
中心对称图形与轴对称图形的区别
①对称中心——点.
②图形绕对称中心旋转180度.
③旋转后与原图形重合.
补充:1.既是轴对称图形又是中心对称图形的有:线段,两条相交直线,矩形,菱形,正方形,圆等.
2.只是轴对称图形的有:射线,角,等腰三角形,等边三角形,等腰梯形等.
3.只是中心对称图形的有:平行四边形等.
4.线段有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线
中心对称图形与轴对称图形的区别
①对称中心——点
②图形绕对称中心旋转180度
③旋转后与原图形重合
补充:1.既是轴对称图形又是中心对称图形的有:线段,两条相交直线,矩形,菱形,正方形,圆等.
2.只是轴对称图形的有:射线,角,等腰三角形,等边三角形,等腰梯形等.
3.只是中心对称图形的有:平行四边形等.
4.线段有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线.。

人教版初中数学九年级上册期末考点大串讲中心对称和中心对称图形含解析新版

人教版初中数学九年级上册期末考点大串讲中心对称和中心对称图形含解析新版

中心对称和中心对称图形知识网络重难突破知识点一 中心对称与中心对称图形中心对称概念:把一个图形绕着某一点旋转180︒,如图它能够与另一个图形重合,那么就说这两个U 形关于这个点对称或中心对称,这个点叫作对称中心(简称中心).这两个图形再旋转后能重合的对应点叫作关于对称中心的对称点.如图,ABO ∆绕着点O 旋转180︒后,与CDO ∆完全重合,则称CDO ∆和ABO ∆关于点O 对称,点C 是点A 关于点O 的对称点.中心对称图形概念:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫作中心对称图形,这个点就是它的对称中心. 中心对称与中心对称图形的区别与联系:ODABC典例1 (2019春南京市期末)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【详解】A. 不是轴对称图形,是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C. 是轴对称图形,不是中心对称图形,故不符合题意;D. 是轴对称图形,不是中心对称图形,故不符合题意;故选B.典例2 (2019·春武威市期中)下列所给图形中,既是中心对称图形又是轴对称图形的是( ) A. B. C. D.【答案】D【详解】解:A. 是轴对称图形,不是中心对称图形,不符合题意;B. 是轴对称图形,不是中心对称图形,不符合题意;C. 不是轴对称图形,是中心对称图形,不符合题意;D. 既是轴对称图形,又是中心对称图形,符合题意,故选:D.典例3 2019春深圳市期末)如图案中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】C【详解】A、是中心对称图形,不是轴对称图形,故此选项错误;B、是中心对称图形,不是轴对称图形,故此选项错误;C、是中心对称图形,是轴对称图形,故此选项正确;D、不是中心对称图形,不是轴对称图形,故此选项错误;故选:C.知识点二作中心对称图形的方法中心对称图形的性质:➢中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;➢中心对称的两个图形是全等图形.作中心对称图形的一般步骤(重点):➢作出已知图形各顶点(或决定图形形状的关键点)关于中心的对称点——连接关键点和中心,并延长一倍确定关键的对称点.➢把各对称点按已知图形的连接方式依次连接起来,则所得到的图形就是已知图形关于对称中心对称的图形.找对称中心的方法和步骤:对于中心对称图形和关于某一点对称的两个图形,它们的对称中心非常重要,找不对称中心是解决先关问题的关键.由中心对称的特征可知,对称中心为对应点连线的中点或两组相对应点连线的交点,因此找对称中心的步骤如下:方法1:连接两个对应点,取对应点连线的中点,则中点为对称中心.方法2:连接两个对应点,在连接两个对应点,两组对应点连线的交点为对称中心.典例1 (2019春长沙市期末)如图,在小正方形组成的网格中,每个小正方形的边长均为1个单位(1)画出三角形ABC向右平移4个单位所得的三角形A1B1C1.(2)若连接AA1、CC1,则这两条线段之间的关系是_______.(3)画出三角形ABC绕点O逆时针旋转180°所得的三角形A2B2C2.【答案】(1)见解析;(2)平行且相等;(3)见解析.【详解】(1)见图:(2)平行且相等; (3)见图.典例2 (2019春 成都市期末)如图,在边长为1个单位长度的88⨯的小正方形网格中.(1)将ABC △先向右平移3个单位长度,再向下平移2个单位长度,作出平移后的A B C '''; (2)请画出A B C '''''△,使A B C '''''△和A B C '''关于点C '成中心对称; (3)直接写出A A B '''''△的面积.【答案】(1)详见解析;(2)详见解析;(3)3. 【详解】(1)如图所示: (2)如图所示:(3)13232A AB S '''''=⨯⨯=△.知识点三 关于原点对称的点的坐标规律两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点P’(-x ,-y) 典例1 (2018春 江门市期末)在平面直角坐标系中,点A 的坐标为(﹣3,4),那么下列说法正确的是( ) A .点A 与点B (﹣3,﹣4)关于y 轴对称 B .点A 与点C (3,﹣4)关于x 轴对称C .点A 与点E (﹣3,4)关于第二象限的平分线对称D .点A 与点F (3,﹣4)关于原点对称 【答案】D【详解】解:A 、点A 的坐标为(-3,4),∴则点A 与点B (-3,-4)关于x 轴对称,故此选项错误; B 、点A 的坐标为(-3,4),∴点A 与点C (3,-4)关于原点对称,故此选项错误; C 、点A 的坐标为(-3,4),∴点A 与点E (-3,4)重合,故此选项错误; D 、点A 的坐标为(-3,4),∴点A 与点F (3,-4)关于原点对称,故此选项正确; 故选:D .典例2 (2018春 菏泽市期末)若点P (m ,2)与点Q (3,n )关于原点对称,则m ,n 的值分别为( ) A .3-,2 B .3,2-C .3-,2-D .3,2【答案】C【详解】点P (m ,2)与点Q (3,n )关于原点对称,得 m=-3,n=-2, 故选:C .典例3 (2019春 莆田市期末)若P(x ,3)与点Q(4,y)关于原点对称,则xy 的值是( )A .12B .﹣12C .64D .﹣64【答案】A【详解】∵()P x,3与点()Q 4,y 关于原点对称, ∴x 4=-,y 3=-, ∴xy 12=. 故选:A .巩固训练一、单选题(共10小题)1.(2019春 芜湖市期末)下列图形中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【答案】C【详解】A 、不是轴对称图形,是中心对称图形,故本选项错误; B 、不是中心对称图形,是轴对称图形,故本选项错误; C 、既是中心对称图形,又是轴对称图形,故本选项正确; D 、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C . 【名师点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2019春 济南市期末)如图,在平面直角坐标系中,ABC ∆的顶点A 在第一象限,点B 、C 的坐标分别为(2,1)、()6,1,90BAC ∠=︒,AB AC =,直线AB 交y 轴于点P ,若ABC ∆与A B C '''∆关于点P 成中心对称,则点A '的坐标为( )A .(4,5)--B .(5,4)--C .(3,4)--D .(4,3)--【答案】A【解析】详解:∵点B ,C 的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC , ∴△ABC 是等腰直角三角形, ∴A (4,3),设直线AB 解析式为y=kx+b ,则4321k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,∴直线AB 解析式为y=x ﹣1, 令x=0,则y=﹣1, ∴P (0,﹣1),又∵点A 与点A'关于点P 成中心对称, ∴点P 为AA'的中点, 设A'(m ,n ),则42m +=0,32n+=﹣1,∴m=﹣4,n=﹣5, ∴A'(﹣4,﹣5), 故选:A .3.(2019春 济南市期末)已知点P (a +1,12a-+)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是( ) A . B . C .D .【答案】C【解析】∵P (1a +,12a -+)关于原点对称的点在第四象限,∴P 点在第二象限,∴10a +<,102a-+>,解得:1a <-,则a 的取值范围在数轴上表示正确的是.故选C .4.(2019春 黄石市期中)正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)【答案】B【解析】试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2, 则OC′=3,故C′的坐标是(3,0). 故选B .5.(2018春 郑州市期末)国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A .B B .J C .4 D .0 【答案】D【解析】选项A 是轴对称图形,不是中心对称图形,故此选项错误;选项B 不是轴对称图形,不是中心对称图形,故此选项错误;选项C 不是轴对称图形,不是中心对称图形,故此选项错误;选项D 是轴对称图形,又是中心对称图形,故此选项正确, 故选D .6.(2018春 德州市期末)已知点A(a +b ,4)与点B(-2,a -b)关于原点对称,则a 2-b 2等于( ) A.8 B.-8C.5D.-5【答案】B【详解】∵点A (a+b ,4)与点B (-2,a-b )关于原点对称,24a b a b +⎧⎨--⎩==, ∴a 2-b 2=(a+b )(a-b )=2×(-4)=-8. 故选:B .【名师点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.7.(2018春 南宁市期中)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠,且组成的图形既是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 ( )A .2种B .3种C .4种D .5种【答案】C【解析】解:如图所示:组成的图形是轴对称图形,又是中心对称图形, 则这个格点正方形的作法共有4种. 故选:C .8.(2018春 重庆市期末)已知点()11,1p a -和()22,1p b -关于原点对称,则()2008a b +的值为( )A .1B .0C .-1D .()20053-【答案】A【解析】试题解析:根据题意得:a-1=-2,b-1=-1, 解得:a=-1 b=0. 则(a+b )2008=1.故选A .9.(2018春 哈尔滨市期中)如图,已知长方形的长为10cm ,宽为4cm ,则图中阴影部分的面积为( )A.20cm2 B.15cm2 C.10cm2 D.25cm2【答案】A【解析】由图形可知,长方形的面积=10×4=40cm2,再根据中心对称的性质得,图中阴影部分的面积即是长×40=20cm2,故选A.方形面积的一半,则图中阴影部分的面积=1210.(2016春沈阳市期末)将点P(-2,3)向右平移3个单位得到点P1,点P2与点P1关于原点对称,则P2的坐标是()A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)【答案】C【解析】点P(-2,3)向右平移3个单位得到点P1,则P1(1,3),点P2与点P1关于原点对称,则P2(−1,−3).故选C.二、填空题(共5小题)11.(2018春南阳市期末)在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A 与点B关于原点O对称,则ab=_____.【答案】12【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为:12.【名师点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.12.(2018春泸西县期末)若点(P,1)与(﹣2,b)关于原点对称,则P P=_______.【答案】1.2.故答案为:【解析】试题分析:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴P P=2−1=121.213.(2017春东营市期中)已知M(a,﹣3)和N(4,b)关于原点对称,则(a+b)2002=_____.【答案】1【解析】∵M(a,﹣3)和N(4,b)关于原点对称,∴a=-4,b=3,∴200220022002()(43)(1)1a b +=-+=-=.14.(2018春 长沙市期末)点()2,3M -关于x 轴对称的点A 的坐标是________,点M 关于y 轴对称的C 的坐标是________,点M 关于原点对称的点B 的坐标是________.【答案】(-2,-3), (2,3), (2,-3)【详解】点A (-2,3)关于x 轴对称的点的坐标是(-2,-3),关于y 轴对称的点的坐标是(2,3),关于原点对称的点是(2,-3).故答案为(-2,-3),(2,3),(2,-3).【名师点睛】本题考查了关于坐标轴对称的点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标和纵坐标都为互为相反数.15.(2018春 南京市期中)抛物线y =2x 2-4x +5绕它的坐标原点O 旋转180°后的二次函数表达式为________.【答案】P =-2(P +1)2-3【解析】详解:y =2x 2-4x +5=2(x -1)2+3,顶点坐标是(1,3),二次项系数是2,绕原点旋转180°后的二次函数的顶点是(-1,-3),二次项系数是-2,所以表示式为y =-2(x +1)2-3.故答案为y =-2(x +1)2-3.三、解答题(共2小题)16.(2016春 苏州市期中)如图,在平面直角坐标系中,Rt ABC ∆的三个顶点分别是(4,2)A -、(0,4)B 、(0,2)C . (1)画出ABC ∆关于点C 成中心对称的△11A B C ;平移ABC ∆,若点A 的对应点2A 的坐标为(0,4)-,画出平移后对应的△222A B C ;(2)△11A B C 和△222A B C 关于某一点成中心对称,则对称中心的坐标为 .【答案】(1)画图见解析;(2)(2,-1).【解析】试题解析:(1)、△A1B1C如图所示,△A2B2C2如图所示; (2)、如图,对称中心为(2,﹣1).17.(2018春连云港市期末)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.【答案】(1)画图见解析;(2)(0,2).【解析】详解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.。

中心对称和中心对称图形初中二年级教案重点

中心对称和中心对称图形初中二年级教案重点

知识归纳1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1关于中心对称的两个图形全等;(2关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.2.中心对称图形把一个图形绕某一点旋转,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.矩形、菱形、正方形、平行四边形都是中心对称图形,对角钱的交点就是它们的对称中心;圆是中心对称图形,圆心是对称中心;线段也是中心对称图形,线段中点就是它的对称中心.知识结构重点、难点分析:本节课的重点是中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.本节课的难点是中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别.教法建议本节内容和生活结合较多,新课导入可考虑以下方法:(1从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

2020年中考数学人教版专题复习: 中心对称与中心对称图形

2020年中考数学人教版专题复习: 中心对称与中心对称图形

2020年中考数学人教版专题复习: 中心对称与中心对称图形一、考点突破1. 了解中心对称图形的概念,认识两个图形关于某一点对称或中心对称的本质;2. 掌握成中心对称的两个图形的性质,能利用两种不同方式作出中心对称图形;3. 会识别常见的中心对称图形或图案,并能用推理方式说明一个图形是中心对称图形。

二、重难点提示重点:中心对称的概念、性质和作已知点关于某点的对称点。

难点:中心对称与中心对称图形之间的联系和区别。

考点精讲中心对称和中心对称图形把一个图形绕着某一个点旋转180°,如果它能够和另一个图形完全重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于该中心的对称点。

把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

【要点诠释】中心对称的性质:(1)关于中心对称的两个图形是全等形;(2)关于中心对称的两个图形,对称点的连线都经过对称中心并且被对称中心平分;(3)如果两个图形的对应点的连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称;(4)过对称中心的直线把中心对称图形分为面积相等的两部分。

【难点剖析】中心对称和中心对称图形的区别:中心对称是指两个全等图形之间的相互位置关系,这两个图形关于某一点(对称中心)对称叫做中心对称。

中心对称和中心对称图形的联系:如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形;如果把一个中心对称图形中对称的部分看成两个图形,那么它们又是关于中心对称的。

典例精析例题1 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N ,则线段BM 、DN 的大小关系是( )A. BM >DNB. BM <DNC. BM =DND. 无法确定思路分析:根据P 为平行四边形ABCD 的对称中心,可推出△DNP ≌△BMP,从而可得BB(1)(2)到BM =DN 或者利用中心对称图形的概念也可以说明相等。

3.3中心对称

3.3中心对称

举例
想一想
中心对称与中心对称图形的联系与区别
区别:
中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系:
如果将中心对称图形的两个图形看成一个整 体,则它们是中心对称图形.
如果将中心对称图形对称的部分看成两个图 形,则它们成中心对称.
想一想
我们平时见过的几何图形中,有哪些是 中心对称图形?并指出对称中心.
怎样的多边形是中心对称图形?
偶数边的 正多边形
注意: 等边三角形不是中心对称图形! 是轴对称图形
O
注意:
平行四边形不是轴对称图形! 是中心对称图形


O


填空题:
巩固练习
1.下列图形中既是轴对称图形又是中心对称图
形的是 ③ .
①角 ②正三角形 ③线段 ④ 平行四边形
2.下列多边形中,是中心对称图形而不是轴 对称图形的是 ① . ① 平行四边形 ② 矩形 ③ 菱形 ④ 正方形 3.下列多边形中,是轴对称图形而不是中心对 称图形的是 ④ . ① 平行四边形 ② 矩形 ③ 菱形 ④ 等腰梯形
想一想 中心对称与轴对称的联系与区别
A
C1
B1
B
轴对称
O
C
A1
中心对称
1 有一条对称轴——直线 有一个对称中心——点
2
图形沿轴对折
图形绕中心旋转180°
3 对折后和另一个图形重合 旋转后和另一个图形重合
பைடு நூலகம்
A
O
B C
C1 B1
A1
A
C1
B1
O
B
C
A1
(1)关于中心对称的两个图形是全等形;

中心对称

中心对称

3.2中心对称与中心对称图形1.中心对称把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称,这个点叫做对称中心,两个图形关于点对称也称中心对称,这两个图形中的对应点,叫做关于中心的对称点.中心对称的两个图形具有如下性质:(1)关于中心对称的两个图形全等;(2)关于中心对称的两个图形,对称点的连线都过对称中心,并且被对称中心平分.判断两个图形成中心对称的方法是:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.【说教材.】1、地位与重要性中心对称图形一节属七年级几何重要内容之一,这一节课与轴对称图形基本概念、性质有着紧密的联系,同时与图形的三种运动(平移、翻折、旋转)之一的“旋转”有着不可分割的联系,通过对这一节课的学习,既可以让学生掌握图形的三种基本运动中“旋转”在几何知识中的重要体现,同时也完善了初中部分对“对称图形”(轴对称图形、中心对称图形)的知识讲授,它不但起到了承上启下的作用,为以后学习“平行四边形、全等三角形”等做了充分准备,同时还是学生从学习“认知几何”到“认证几何”的重要过渡阶梯。

所以虽然中心对称所占章节不多,但是对于初中几何的教学却有着十分重要的意义.【教学目标】根据中心对称图形在初中几何教学中的地位与作用,我制订了如下教学目标:、(1)在丰富的现实情境中,经历观察生活中的中心对称现象,探索中心对称现象共同特征等活动,进一步建立中心对称的概念.(2)理解平行四边形的中心对称性,对其他简单图形能判断是否是中心对称;(3)掌握中心对称的性质,会画简单的中心对称图形(4)培养学生发现问题、观察问题、解决问题的能力(5)能设计简单的对称图形及深刻体会对称在生活中的广泛存在及运用价值;培养学生的创新能力,体验中心对称图形的美感【知识结构】【教学重点】中心对称的概念、性质和作已知点关于某点的对称点.因为概念是推导三个性质的主要依据、性质是今后解决有关问题的理论依据;而作已知点关于某个点的对称点又是作中心对称图形的关键.【教学难点】中心对称与中心对称图形之间的联系和区别.从概念角度来说,中心对称图形和中心对称是两个不同而又紧密相联的概念.从学生角度来讲,在学习轴对称时,有相当一部分学生对轴对称和轴对称图形的概念理解上出现误点.因此本节课的难点是中心对称与中心对称图形之间的联系和区别【教学建议】本节内容和生活结合较多,新课导入可考虑以下方法:(1)从相似概念引入:中心对称概念与轴对称概念比较相似,中心对称图形与轴对称图形比较相似,可从轴对称类比引入,(2)从汉字引入:有许多汉字都是中心对称图形,如“田”、“日”、“曰”、“中”、“申”、“王”,等等,可从汉字引入,(3)从生活实例引入:生活中有许多中心对称实例和中心对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花,等等,可从生活实例引入,(4)从商标引入:各公司、企业的商标中有许多中心对称实例和中心对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行,等等,可从这些商标引入,(5)从车标引入:各品牌汽车的车标中有许多都是中心对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马,等等,可从车标引入,(6)从几何图形引入:学习过的许多图形都是中心对称图形,如圆,平行四边形,矩形,菱形,正方形,等等,可从几何图形引入,(7)从艺术品引入:艺术品中有许多都是呈中心对称或是中心对称图形,如下图,可从艺术品引入。

华东师大初中数学七年级下册中心对称--知识讲解

华东师大初中数学七年级下册中心对称--知识讲解

中心对称--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,这种图形叫做中心对称图形,这个中心叫做对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.2.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形1. (2016·铜仁市)如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有 ()A.2个 B.3个 C.4个 D.5个【答案】A【解析】中心对称图形要求绕中心旋转180°与原图形重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、学Biblioteka 任务1、自己动手制作图形,
2、通过看PPT的演示,更加清晰中心对称与中心对称图形的联系与区别。
六、后续学习预告(可选):
五、学习困惑
中心对称和中心对称图形是两个不同而又紧密联系的概念,因此能够清楚明确中心对称与中心对称图形的联系与区别会需要花些时间。
《中心对称与中心对称图形的联系与区别》
微课程学习任务单
一、学习目标
1.回顾中心对称的定义、性质;
2.回顾中心对称图形的定义、性质;
3.认识中心对称与中心对称图形的联系与区别。
二、学习资源
运用卡纸制作图形
三、学习方法
动手移动图形感受中心对称与中心对称图形的联系与区别;
通过PPT的演示,更加明确中心对称与中心对称图形的联系与区别。
相关文档
最新文档