直流变换器课程设计样本

合集下载

直流变换器的设计(降压)

直流变换器的设计(降压)

直流变换器的设计(降压)一、设计要求: (1)二、题目分析: (1)三、总体方案: (2)四、原理图设计: (2)五、各部分定性说明以及定量计算: (5)六、在设计过程中遇到的问题及排除措施: (6)七、设计心得体会: (6)直流变换器的设计(降压)BUCK降压斩波电路就是直流斩波中最基本的一种电路,是用BUCK作为全控型器件的降压斩波电路,用于直流到直流的降压变换。

IGBT是MOSFET与双极晶体管的复合器件。

它既有MOSFET易驱动的特点,又具有功率晶体管电压、电流容量大等优点。

其频率特性介于MOSFET与功率晶体管之间,可正常工作于几十千赫兹频率范围内,故在较高频率的大、中功率应用中占据了主导地位。

所以用BUCK作为全控型器件的降压斩波电路就有了IGBT易驱动,电压、电流容量大的优点。

BUCK降压斩波电路由于易驱动,电压、电流容量大在电力电子技术应用领域中有广阔的发展前景,也由于开关电源向低电压,大电流和高效率发展的趋势,促进了IGBT 降压斩波电路的发展。

一、设计要求:技术参数:输入直流电压Vin=36V输出电压Vo=12V输出电流Io=3A最大输出纹波电压50mV工作频率f=100kHz二、题目分析:电力电子器件在实际应用中,一般是由控制电路,驱动电路和以电力电子器件为核心的主电路组成一个系统。

由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。

课程设计步骤分析(顺序):1.设计主电路,主电路为:采用BUCK变换器,主功率管用MOSFET;2.选择主电路所有图列元件,并给出清单;3.设计MOSFET驱动电路及控制电路;4.绘制装置总体电路原理图,绘制: MOSFET驱动电压、BUCK电路中各元件的电压、电流以及输出电压波形;5.编制设计说明书、设计小结。

课程设计报告全桥直流变换器的设计与仿真

课程设计报告全桥直流变换器的设计与仿真

重庆大学电气工程学院电力电子技术课程设计设计题目:全桥直流变换器的设计与仿真年级专业:2010级电气工程与自动化学生姓名:学号:成绩评定:完成日期:2021年6月 23日课程设计指导教师评定成绩表指导教师评定成绩:指导教师签名:年月日重庆大学本科学生电力电子课程设计任务书摘要电力电子课程设计的目的在于进一步巩固和加深所学电力电子大体理论知识。

使学生能综合运用相关关课程的大体知识,通过本课程设计,培育学生独立试探能力,学会和熟悉查阅和占有技术资料的重要性,了解专业工程设计的特点、思路、和具体的方式和步骤,把握专业课程设计中的设计计算、软件编制,硬件设计及整体调试。

通过设计进程学习和治理,树立正确的设计思想和严谨的工作作风,以期达到提高学生设计能力。

本次课题为全桥直流变换器的设计与仿真,利用了全控器件IGBT,能将直流信号转换成变压的直流信号,其作用相当于一个变压器。

一样的变压器是由交流电压只是变比能很方便的通过操纵IGBT的驱动信号占空比来操纵,而且能有滤波的功能。

全桥直流变换器集PWM技术和谐振技术于一体,具有体积小、重量轻、效率高的特点,专门适合中大功率应用处合,然后对其工作原理的分析。

本次课程设计确实是基于对全桥直流变换器的设计与仿真练习,达到培育学生独立试探解决问题的能力。

正文1.引言问题的提出随着科学技术进展的日新日异,电力电子技术在现代社会生产中占据着非常重要的地位,电力电子技术应用在是生活中能够说得是无处不在若是把计算机操纵比喻为人的大脑,电磁机械等动力机构喻为人的四肢的话,那么电力电子技术那么可喻为循环和消化系统,它是能力转化和传递的渠道。

因此作为二十一世纪的电气专业的学生而言把握电力电子应用技术十分重要。

全桥DC/DC变换器是可双象限运行的直流-直流变换器。

随着科技和生产的进展,对全桥DC/DC 变换器的需求慢慢增多,要紧有直流不断电电源系统、航天电源系统、电动汽车等应用处合。

在需要能量双向流动的场合,全桥DC/DC变换器的应用可大幅度减轻系统的体积重量和本钱,有重要的研究价值。

电力电子的课程设计--BUCK变换器的设计

电力电子的课程设计--BUCK变换器的设计

目录一、设计要求 (2)二、设计方案 (2)三、电路的设计 (3)四、主电路参数计算和元器件选择 (4)1、IGBT (4)2、二极管 (4)3、电感 (4)4、电容 (5)五、各模块所选器件说明 (5)1、变压器EI86 (5)2、误差放大器UC3842 (5)3、脉宽调制器SG3525 (6)4、驱动器MC34152 (7)5、三端正稳压器7815 (8)六、电气原理总图及元器件明细表 (8)七、课程设计心得 (10)八、参考资料 (10)汽车电力电子技术课程设计——BUCK变换器的设计一、设计要求设计一稳压直流电源,输入为交流220V/50HZ,输出为直流15V的直流稳压电源,如下图1所示,其中DC-DC变换时主要采用BUCK变换器,变换器主器件采用IGBT,控制方式采用PWM控制。

图1 总电路原理框图二、设计方案小功率直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四个部分组成,其原理框图如2所示。

图2 直流稳压电源原理框图三、电路的设计GabcVi 0WMV Gd图3 Buck 变换器电路及相关波形Buck 变换器主要包括:开关元件M1,二极管D1,电感L1,电容C1和反馈环路。

而一般的反馈环路由四部分组成:采样网络,误差放大器(Error Amplifier ,E/A ),脉宽调制器(Pulse Width Modulation ,PWM )和驱动电路。

为了便于对Buck 变换器基本工作原理的分析,我们首先作以下几点合理的假设: a 、开关元件M1和二极管D1都是理想元件。

它们可以快速的导通和关断,且导通时压降为零,关断时漏电流为零;b 、电容和电感同样是理想元件。

电感工作在线性区而未饱和时,寄生电阻等于零。

电容的等效串联电阻(Equivalent Series Resistance ,ESR )和等效串联电感(Equivalent Seriesinductance ,ESL )等于零;c 、输出电压中的纹波电压和输出电压相比非常小,可以忽略不计。

《直流直流变换器》课件

《直流直流变换器》课件

测试方法与步骤
• 测试方法:采用恒流恒压源进行测试,分别对输入电压、 输出电压、输入电流、输出电流进行测量。
测试方法与步骤
测试步骤 1. 将DC电源设置为所需的输入电压。
2. 将DC-DC变换器模块连接到电源和测量设备上。
测试方法与步骤
01
3. 启动电源,并记录测量数据。
02
4. 改变输入电压,重复步骤3。
集成化
集成化技术使得多个功能模块在单一芯片上实现 ,提高了系统的可靠性和紧凑性。
市场发展前景
电动汽车市场增长
随着电动汽车市场的不断扩大,直流-直流变换器的需求量将大 幅增加。
分布式电源并网
分布式电源并网技术的发展将促进直流-直流变换器在分布式能 源系统中的应用。
工业自动化
工业自动化领域的快速发展将带动直流-直流变换器在电机驱动 、自动控制系统等领域的应用。
03
5. 分析测量数据,得出结论。
实验结果分析
数据分析
根据测量数据,分析DC-DC变换器的性能指标 ,如效率、电压增益、电流增益等。
结果比较
将实验结果与理论值进行比较,分析误差原因 。
结论总结
根据实验结果,总结DC-DC变换器的性能特点,并提出改进意见。
05
直流-直流变换器的应用实例
BIG DATA EMPOWERS TO CREATE A NEW
可靠性和可维护性。
BIG DATA EMPOWERS TO CREATE A NEW ERA
04
直流-直流变换器的实验与测试
实验平台搭建
实验设备
实验平台调试
DC电源、DC-DC变换器模块、电压 表、电流表、电感、电容等。
确保实验设备的正确连接,并进行必 要的调试,以确保实验的顺利进行。

电动汽车DCDC变换器的设计【毕业作品】

电动汽车DCDC变换器的设计【毕业作品】

BI YE SHE JI(20 届)电动汽车DC/DC变换器的设计所在学院专业班级自动化学生姓名学号指导教师职称完成日期年月摘要电动汽车DC/ DC变换器是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响子设备性能,其体积的大小也直接影响到电子设备整体的体积。

本设计根据设计任务进行了方案设计,设计了相应的硬件电路,研制了半桥开关电源。

整个系统包括主电路、控制电路和反馈电路三部分内容。

系统主电路包括单相输入整流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。

控制电路包括主电路开关管控制脉冲的产生和保护电路。

论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计及实验过程,包括元器件的选取以及参数计算。

本设计中采用的芯片主要是PWM控制芯片SG3525A。

设计过程中程充分利用了SG3525A的控制性能,具有宽的可调工作频率,死区时间可调,具有输入欠电压锁定功能和双路输出电流。

关键词:直流变换器;SG3525;高频变压器;MOSFETIAbstractElectric vehicle DC/ DC converter is a modern power electronic equipment indispensable component, its quality has a direct influence on equipment performance, its size will directly affect the whole volume of electronic equipment. According to the design of design tasks for the design, designs the corresponding hardware circuit, a half-bridge switching power supply development. The whole system consists of main circuit, control circuit and feedback circuit three parts. System main circuit comprises a single-phase input rectifier, half-bridge inverter, high frequency AC output, output rectifier, output filter sections. The control circuit comprises a main circuit switch tube to control the pulse generation and protection circuit. This paper introduces the main circuit, control circuit, driving circuit and other parts of the design and the experimental process, including the selection of components and parameters calculation. The design of the chip is mainly PWM control chip SG3525A. The design process of medium-range makes full use of SG3525A control performance, wide adjustable frequency, adjustable dead time, with input under-voltage locking function and dual output current.Key words: DC / DC converter; SG3525; high-frequency transformer; MOSFETII目录摘要 (I)ABSTRACT (II)目录 (III)第一章绪论 (1)1.1课题选择的背景及意义 (1)1.2电动汽车DC/DC变换器的发展概况 (2)1.3本文所研究的课题内容 (3)第二章电动汽车DC/DC变换器的原理 (4)2.1电动汽车DC/DC变换器控制系统概述 (4)2.2电动汽车DC/DC变换器的基本结构 (4)2.3 MOSFET基本原理 (5)2.4 PWM调制技术 (6)2.5高频变压器的原理介绍 (7)第三章电动汽车DC/DC变换器主电路的设计 (9)3.1 半桥电路的结构与工作过程 (9)3.2 主要功率器件的选型 (12)3.2.1 MOSFET参数的确定 (12)3.2.2 自举电容的选取 (13)3.3高频变压器设计 (14)3.4 输出整流回路的设计 (16)3.4.1 输出整流回路的结构 (16)3.4.2 快恢复二极管的选择 (16)3.4.3 滤波电感的选择 (18)3.4.4 滤波电容的选择 (18)第四章.DC-DC变换器控制电路的设计 (20)III4.1 PWM控制芯片SG3525功能简介 (20)4.1.1 SG3525引脚功能及特点简介 (20)4.1.2 SG3525的工作原理 (23)4.2电动汽车DC/DC变换器反馈电路的设计 (27)4.2.1 输出电压反馈电路 (27)4.2.2 过压保护电路的设计 (28)4.2.3 输出限流电路 (29)总结 (31)参考文献 (33)致谢 (34)IV第一章绪论1.1课题选择的背景及意义DC/DC变换器是燃料电池电动汽车的重要组成部分,它的研制直接关系到燃料电池电动汽车的稳定与性能。

dcdc变换课程设计

dcdc变换课程设计

dcdc变换课程设计一、课程目标知识目标:1. 理解DC-DC变换器的基本原理和分类;2. 掌握升压、降压、反相等常见DC-DC变换器的工作原理及电路特点;3. 学会分析DC-DC变换器的性能指标,如效率、输出纹波等。

技能目标:1. 能够运用所学知识设计简单的DC-DC变换器电路;2. 掌握使用示波器、万用表等工具对DC-DC变换器电路进行测试和调试;3. 培养学生动手实践能力,能独立完成DC-DC变换器实验。

情感态度价值观目标:1. 激发学生对电子技术的兴趣,培养创新意识和探索精神;2. 培养学生严谨、细致的科学态度,注重实验安全与环境保护;3. 增强团队合作意识,提高沟通与协作能力。

课程性质:本课程属于电子技术领域,以理论教学与实践操作相结合的方式进行。

学生特点:学生处于高中阶段,已具备一定的电子基础,对新鲜事物充满好奇,喜欢动手实践。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,提高学生的实际操作能力,同时注重培养学生的科学素养和团队协作精神。

在教学过程中,将目标分解为具体的学习成果,便于后续教学设计和评估。

二、教学内容1. DC-DC变换器概述:介绍DC-DC变换器的基本概念、分类及在电子设备中的应用;关联教材章节:第3章“直流-直流变换技术”第1节“DC-DC变换器概述”2. 升压、降压、反相DC-DC变换器:详细讲解升压、降压、反相变换器的工作原理、电路结构及性能特点;关联教材章节:第3章“直流-直流变换技术”第2节“升压、降压、反相DC-DC变换器”3. DC-DC变换器性能指标:分析效率、输出纹波、输出电流等性能指标,探讨影响性能的因素;关联教材章节:第3章“直流-直流变换技术”第3节“DC-DC变换器性能指标”4. 实践操作:设计并搭建升压、降压、反相DC-DC变换器电路,进行性能测试与分析;关联教材章节:第3章“直流-直流变换技术”第4节“实验:DC-DC变换器的设计与测试”5. 教学进度安排:共需4课时,其中理论教学2课时,实践操作2课时。

基于SG3525的DCDC直流变换器的设计

基于SG3525的DCDC直流变换器的设计

基于SG3525的DCDC直流变换器的设计**学院 **系 2012届电子信息科学与技术专业毕业设计基于SG3525的DC/DC直流变换器的设计***(******,******)要本文调研分析了DC/DC变换器并联均流技术及其发展现状,介绍了集成芯片SG3525定频摘PWM的特点和主要功能,针对升压隔离推挽正激DC/DC变换器的工作原理及其特点,通过添加电流环为内环并将均流环和电压环并列,设计了一个基于改进式自主均流控制的DC/DC变换器并联系统。

电源模块中,控制电路主要由电压霍尔元件,电流霍尔元件,集成运放LM324N,PWM芯片SG3525AN和隔离驱动电路构成,实现了DC/DC直流变换的作用。

关键词 SG3525; 改进式自主均流; 升压隔离型推挽正激; DC/DC变换 1 绪论随着电能变换技术的发展, 功率MOSFET在开关变换器中开始广泛使用。

为此, 美国硅通用半导体公司推出了SG3525, 以用于驱动沟道功率MOSFET。

SG3525是一种性能优良、功能齐全和通用性强的单片集成控制芯片, 它简单可靠及使用方便灵活, 输出驱动为推拉输出形式,增加了驱动能力内部含有欠压锁定电路、软启动控制电路、PWM锁存器, 有过流保护功能, 频率可调, 同时能限制最大占空比。

电源系统的发展趋势是采用新型功率器件实现高性能电源模块化,再通过并联进行扩容,从而充分利用新型开关器件的高频优势,如减小系统体积、降低噪音、提高动态响应速度等。

目前,大量电子设备,特别是计算机、通讯、空间站等大型设备,均要求组建一个大容量、安全可靠、不间断供电的电源系统。

如果使用单台电源来供电,该变换器将处理巨大的功率,电应力很大,而电力电子器件性能有限,要将单台变换器的容量做的很大比较困难。

与传统的单电源供电相比,并联电源系统具有很多优点,如可实现大电流、高效率;有较高的可靠性;能够实现电源容量的可扩充性;可降低成本投入等。

因而,[1]并联均流技术将在大功率电源系统的应用中起主导作用。

交流变直流的课程设计

交流变直流的课程设计

交流变直流的课程设计一、课程目标知识目标:1. 学生能理解交流电与直流电的基本概念,掌握两者的区别与联系。

2. 学生能够描述交流电转换为直流电的基本原理,掌握相关电路的工作原理。

3. 学生能够了解并列举生活中常见的交流变直流的应用实例。

技能目标:1. 学生能够运用所学知识,设计简单的交流变直流电路。

2. 学生能够运用实验方法,验证交流电转换为直流电的过程,并分析实验结果。

3. 学生能够运用数学工具,进行相关电路参数的计算。

情感态度价值观目标:1. 学生通过学习,培养对物理现象的好奇心,提高学习物理的兴趣。

2. 学生通过动手实践,培养解决问题的能力和合作精神。

3. 学生通过了解交流变直流在生活中的应用,认识到物理知识与现实生活的密切关系,增强学以致用的意识。

课程性质:本课程为物理学科的电学基础知识,结合学生的年级特点,注重理论与实践相结合。

学生特点:学生在本年级已具备一定的物理知识基础,对电路有一定的了解,但对交流变直流的原理和应用尚不熟悉。

教学要求:教师应引导学生通过观察、实验、分析等方法,掌握交流变直流的基本原理,提高学生的动手能力和解决问题的能力。

在教学过程中,注重激发学生的兴趣,培养学生的合作精神和学以致用的意识。

通过具体可衡量的学习成果,评估学生对课程内容的掌握程度。

二、教学内容本节课教学内容主要依据课程目标,结合教材相关章节,进行以下安排:1. 理论知识:- 复习交流电与直流电的基本概念,对比分析两者的特点。

- 介绍交流电转换为直流电的基本原理,包括整流电路的原理和种类。

- 讲解教材中关于交流变直流电路的章节内容,如电容滤波、电感滤波等。

2. 实践操作:- 安排学生分组进行交流变直流电路的搭建,观察并分析实验现象。

- 组织学生进行相关电路参数的计算,加深对理论知识的理解。

3. 应用拓展:- 结合教材实例,介绍交流变直流在生活中的应用,如充电器、手机等。

- 引导学生思考交流变直流技术在实际应用中的优缺点,激发学生的创新意识。

交直流转换电路课程设计

交直流转换电路课程设计

交直流转换电路课程设计一、教学目标本课程的教学目标是使学生掌握交直流转换电路的基本原理和应用方法,培养学生的电路分析和设计能力。

具体目标如下:1.理解交直流转换电路的基本概念和原理。

2.掌握交直流转换电路的电路图符号和参数含义。

3.了解交直流转换电路的种类和特点。

4.熟悉交直流转换电路的应用领域。

5.能够分析交直流转换电路的工作原理。

6.能够设计简单的交直流转换电路。

7.能够对交直流转换电路进行调试和故障排除。

8.能够运用交直流转换电路解决实际问题。

情感态度价值观目标:1.培养学生的科学思维和创新能力。

2.培养学生对电子技术的兴趣和热情。

3.培养学生的团队合作和交流能力。

二、教学内容本课程的教学内容主要包括交直流转换电路的基本原理、电路图符号、参数含义、种类和特点以及应用领域。

具体内容包括:1.交直流转换电路的基本原理和电路图符号。

2.常见交直流转换电路的种类和特点。

3.交直流转换电路的参数含义和计算方法。

4.交直流转换电路的应用领域和实例分析。

三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学。

具体方法包括:1.讲授法:通过教师的讲解,使学生掌握交直流转换电路的基本原理和应用方法。

2.讨论法:通过小组讨论,培养学生的思考能力和团队合作精神。

3.案例分析法:通过分析实际案例,使学生更好地理解和应用交直流转换电路的知识。

4.实验法:通过实验操作,培养学生的动手能力和实验技能。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:选用合适的教材,提供全面、系统的交直流转换电路知识。

2.参考书:提供相关的参考书籍,供学生深入学习和拓展知识。

3.多媒体资料:制作PPT、动画等多媒体资料,生动展示交直流转换电路的工作原理和应用实例。

4.实验设备:准备交直流转换电路实验所需的设备和器材,提供学生动手实践的机会。

五、教学评估本课程的评估方式将采用多元化的形式,以全面、客观地评价学生的学习成果。

buck直流变流器课程设计

buck直流变流器课程设计

buck直流变流器课程设计一、课程目标知识目标:1. 学生能理解并描述Buck直流变流器的基本原理和工作过程。

2. 学生能掌握Buck直流变流器的电路构成、参数计算及功能特点。

3. 学生能了解Buck直流变流器在实际应用中的优势及适用场景。

技能目标:1. 学生能运用所学知识,分析并设计简单的Buck直流变流器电路。

2. 学生能通过实验操作,验证Buck直流变流器的工作原理和性能。

3. 学生能运用相关软件(如Multisim、Protel等)进行Buck直流变流器的仿真与调试。

情感态度价值观目标:1. 培养学生对电力电子技术及Buck直流变流器的兴趣,激发学习热情。

2. 培养学生团队协作、沟通表达的能力,增强集体荣誉感。

3. 培养学生关注新能源、节能环保等方面的意识,提高社会责任感。

课程性质:本课程为电子技术专业课程,以理论教学与实践操作相结合的方式展开。

学生特点:学生具备一定的电子技术基础知识,具有较强的动手能力和求知欲。

教学要求:注重理论与实践相结合,引导学生主动参与、积极思考,提高学生的实践能力和创新能力。

通过课程学习,使学生能够掌握Buck直流变流器的相关知识和技能,为后续专业课程打下坚实基础。

二、教学内容1. Buck直流变流器原理- 介绍Buck直流变流器的基本原理- 分析Buck直流变流器的工作过程- 讲解Buck直流变流器的电路构成及功能2. Buck直流变流器电路设计- 参数计算与选择- 元器件选型与应用- 电路仿真与调试3. 实际应用案例分析- 介绍Buck直流变流器在新能源、节能环保等领域的应用案例- 分析Buck直流变流器的优势及适用场景4. 实践教学- 搭建Buck直流变流器实验电路- 实验操作与数据分析- 故障排查与解决方案教学内容安排:- 第1周:Buck直流变流器原理学习- 第2周:Buck直流变流器电路设计- 第3周:实际应用案例分析- 第4周:实践教学与总结教材章节:- 第1章:直流变流器概述- 第2章:Buck直流变流器原理与设计- 第3章:Buck直流变流器的应用与实例教学内容注重科学性和系统性,结合课程目标,理论与实践相结合,使学生在掌握基本原理的基础上,能够独立完成Buck直流变流器电路的设计与搭建。

buckboost变换器课程设计

buckboost变换器课程设计

buckboost变换器课程设计一、课程目标知识目标:1. 学生能理解并掌握buckboost变换器的基本工作原理及电路组成;2. 学生能掌握buckboost变换器在直流电压调节中的应用及性能特点;3. 学生能了解buckboost变换器的各类参数计算及影响变换效率的因素。

技能目标:1. 学生能运用所学知识,正确绘制并分析buckboost变换器的电路图;2. 学生能通过实验操作,验证buckboost变换器的性能及效率;3. 学生能运用仿真软件对buckboost变换器进行模拟,优化电路设计。

情感态度价值观目标:1. 学生通过学习buckboost变换器,培养对电子技术的兴趣和热情;2. 学生能认识到buckboost变换器在节能环保方面的重要性,树立正确的能源观念;3. 学生在团队协作中培养沟通、合作能力,增强解决问题的自信心。

课程性质:本课程为电子技术专业课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生已具备一定的电子技术基础,具有较强的学习能力和动手能力。

教学要求:注重理论与实践相结合,强调学生的主体地位,充分调动学生的积极性与创造性。

通过本课程的学习,使学生能够将理论知识与实际应用相结合,提高解决实际问题的能力。

二、教学内容1. buckboost变换器基本原理:讲解buckboost变换器的工作原理,包括升压、降压模式切换,以及开关元件、二极管、电感、电容等关键元件的作用。

教材章节:第三章“开关电源原理”第2节“buckboost变换器”2. buckboost变换器电路组成:分析buckboost变换器的电路结构,探讨不同模式下电路元件的工作状态及相互关系。

教材章节:第三章“开关电源原理”第2节“buckboost变换器”3. 参数计算与性能分析:介绍buckboost变换器关键参数的计算方法,分析影响变换效率的因素,如开关频率、元件参数等。

教材章节:第三章“开关电源原理”第3节“开关电源的性能分析”4. 电路图绘制与分析:指导学生绘制buckboost变换器电路图,分析电路工作过程,掌握电路调试方法。

交流-直流变换器(整流器1PPT培训课件

交流-直流变换器(整流器1PPT培训课件
案例总结
电动车充电桩中的整流器应用需要综合考虑充电的安全性 、稳定性和效率,以确保电动车电池能够得到安全、高效 的充电。
实际应用案例三
案例名称
案例描述
案例分析
案例总结
风力发电系统中的整流器应用
风力发电系统中,发电机发出 的交流电需要通过整流器转换 为直流电,再通过逆变器转换 为交流电供用户使用。
在风力发电系统中应用整流器 需要考虑发电效率、电压稳定 性和可靠性等问题。整流器需 要具备过载保护、短路保护等 功能,以确保风力发电系统的 正常运行。
04
交流-直流变换器(整流器)的参数和性
能指标
主要参数
输入电压范围
整流器正常工作的交 流输入电压范围。
输出电压
整流器输出的直流电 压值。
最大输出电流
整流器能够提供的最 大直流输出电流。
效率
整流器将交流电转换 为直流电的效率,通 常以百分比表示。
开关频率
整流器中开关元件的 开关次数或工作频率。
性能指标
汽车电子应用
车载电器供电
灯光控制
汽车内部许多电子设备都需要直流电 才能正常工作,整流器能够将汽车电 池的交流电转换为直流电,为车载电 器提供稳定的电源。
汽车前大灯、转向灯等都需要直流电 源才能正常工作,整流器能够将交流 电转换为直流电,为灯光控制系统提 供稳定的电源。
发动机控制
整流器在发动机控制系统中发挥着重 要作用,将交流发电机发出的交流电 转换为直流电,为发动机控制模块提 供稳定的电源。
电压调整率
整流器输出电压的变化 范围与输入电压的变化
范围之比。
电流调整率
整流器输出电流的变化 范围与输入电压的变化
范围之比。

《电力电子技术》课程设计-直流变换器的设计

《电力电子技术》课程设计-直流变换器的设计

《电力电子技术》课程设计-直流变换器的设计摘要
本课程的主要目的是设计一个直流变换器,以降低直流电路的功耗和提高效率。

本课程将使用常用的电力电子技术,如可控硅、变压器、IGBT等并结合相应的组件作为本次设计的基础。

该设计将使用变换器以及PWM技术来把一个高电压稳定输出相应的低压可控电流,从而更加有效地降低能耗以及提高效率。

关键词:直流变换器;可控硅;变压器;IGBT
2.模型设计
2.1 可控硅的设计
可控硅(SCR)由两个主要的功能部分组成:‘触发器’和‘调节器’,它们由晶闸管和二极管构成,它们负责把输入电压转换成恒定的输出电压。

在直流变换器中,可控硅用于控制直流变换器的输出电流。

本次设计采用cs3031型号的可控硅,同时使用恒定电流源来输出调节电流,进而实现直流变换器工作的调节。

2.2变压器的设计
变压器的工作原理是通过回路的电磁耦合将输入低压转换成输出高压。

本次设计采用TLP063D1000型号的变压器,输入100V,输出400V,额定功率为3KVA。

变压器的设计采用的是单次侧激励,变压比为4:1,其用于把输入的低压电流转换成输出的高压电流。

2.3.IGBT模块的设计
IGBT是一种高压半导体元件,有非常优异的开关特性,在本次设计中主要用于切断或控制输出低压电流的输出,本次设计采用的是IRFP450型号的IGBT模块,其可以实现300V的隔离,能够有效地把输出的高压转换成较低的可控电流。

直流变换器课程设计

直流变换器课程设计

实验结束后,按照操作规程关闭 设备,并整理好实验台
设计规范和标准遵守
遵守相关国家和行业标准,如GB/T 18488.1-2015《电动汽车用驱动电机系统 第1部分:技 术条件》等。
确保设计符合安全、环保、能效等方面的要求,避免使用有害材料和违规设计。
在设计过程中应充分考虑电磁兼容性(EMC)问题,采取相应措施降低干扰。
直流变换器的基本原理
直流变换器是一种将直流电能转换为其他直流电压或电流的电路设备。
基本原理基于磁耦合原理,通过变压器实现电压转换。
直流变换器具有较高的转换效率,可实现快速响应和宽范围电压调节。
在实际应用中,直流变换器广泛应用于各种电子设备和电力系统中,如开关电源、电动汽车、航 天器等。
03
仿真分析
仿真软件介绍: MATLAB/Simuli nk
仿真模型建立: 基于电路原理图 或模块化设计
仿真参数设置: 输入电压、输出 电压、工作频率 等
仿真结果分析: 波形、效率、温 升等
实验验证
实验目的:验证直流变换器的性能指标 实验设备:直流电源、负载、测量仪表等 实验步骤:按照设计要求搭建电路,进行测试和数据记录 实验结果:分析实验数据,评估直流变换器的性能表现
感谢观看
汇报人:
测试方法:采用 合适的测试仪器 和设备进行测试
注意事项:确保 安全操作,遵循 测试规范和安全 准则
总结和报告撰写
总结设计过程和 经验教训
整理和汇总实验 数据
编写设计报告, 包括电路图、原 理说明、实验结 果等
提交设计报告, 进行答辩或评审
05
直流变换器课程设计注意事项
安全注意事项
确保电源断开,避免触电危险
案例一:DC-DC变换器设计

直流变换器课程设计

直流变换器课程设计

目录第一章.设计概要1.1 技术参数1.2 设计要求第二章.电路基本概述第三章.电力总体设计方案第三章.电力总体设计方案3.1 电路的总设计思路3.2电路的设计总框图第四章 BUCK 主电路设计4.1 Buck变换器主电路原理图4.2 Buck变换器电路工作原理图4.3 主电路保护(过电压保护)4.4 Buck变换器工作模态分析4.5 主电路参数分析第五章控制电路5.1 控制带你撸设计方案选择5.2 SG3525控制芯片介绍5.3 SG3525各引脚具体功能5.4 SG3525内部结构及工作特性5.5 SG3525构成的控制电路单元电路图第六章驱动电路原理与设计6.1 驱动电路方案设计与选择6.2 驱动电路工作分析第七章附录第八章设计心得第一章.设计概要1.1 技术参数:输入直流电压 Vin=25V,输出电压 Vo=10V,输出电流 Io=0.5A,最大输出纹波电压 50mV,工作频率 f=30kHz。

1.2 设计要求:(1)设计主电路,建议主电路为:采用 BUCK 变换器,大电容滤波,主功率管用 MOSFET;(2)选择主电路所有图列元件,并给出清单;(3)设计 MOSFET 驱动电路及控制电路;(4)绘制装置总体电路原理图,绘制: MOSFET 驱动电压、 BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系);(5)编制设计说明书、设计小结。

第二章.电路基本概述直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。

直流斩波电路的种类较多,包括 6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和 Zeta 斩波电路。

Buck 电路作为一种最基本的 DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。

直流变换器设计

直流变换器设计

摘要三电平换流器是20世纪80年代产生并发展起来的一种新兴变流技术,它通过对直流侧的分压和开关动作的不同组合,实现三电平阶梯波输出电压,能有效的提高换流器系统的容量和耐压,减少输出电压谐波和开关损耗。

本课题通过三电平零电压开关直流变换器的设计,探讨了三电平软开关PWM直流变换器的大体工作原理及其控制策略,并利用电路设计软件完成了控制系统及主系统的仿真设计。

讨论了超前管,滞后管实现零电压开关的不同以副边占空比丢失的原因。

解决了零电压开关的移相PWM控制策略的实现、高速大功率驱动电路的实现等几个难点问题。

最后,通过仿真分析和对230V/10A样机的调试实验,验证了零电压三电平移相控制PWM三电平直流变换器的工作原理。

关键词:零电压开关,三电平直流变换器,控制策略,占空比丢失第一章绪论直流开关电源的大体电路拓扑现代开关电源分为直流开关电源和交流开关电源两类,前者输出质量较高的直流电,后者输出质量较高的交流电。

开关电源的核心是电力电子变换器。

电力电子变换器是应用电力电子器件将一种电能转变成另一种或多种形式电能的装置,按转换电能的种类,可分为四种类型:①直流—直流变换器,它是将一种直流电能转换成另一种或多种直流电能的变换器,是直流开关电源的主要部件;②逆变器,是将直流电转换为交流电的电能变换器,是直流开关电源和不中断电源UPS的主要部件;③整流器,是将交流电转换为直流电的电能变换器;④交交变频器,是将一种频率的交流电直接转换为另一种恒定频率的交流电,或是将变频交流电直接转换为恒频交流电的电能变换器。

这四类变换器可以是单向变换的,也可以是双向变换的。

单向电能变换器只能将电能从一个方向输入,经变换后从另一个方向输出;双向电能变换器可以实现电能的双向流动。

对电力电子变换器的大体要求是:靠得住性高、可维修性好、体积小、重量轻、价钱廉价和电气性能好。

靠得住性高,就是要求电力电子变换器能适应不良的工作条件,有足够长的平均故障距离时间。

DC-DC变换器电力电子课程设计报告

DC-DC变换器电力电子课程设计报告

电力电子课程设计报告DC—DC变换器学院:信息科学与工程学院班级:电气1201 班姓名:学号:指导教师:时间:2015.01.20目录一、引言⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯ .⋯.1 二、设计要求与方案⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..22.1设计要求⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯ .⋯⋯⋯⋯ .22.2方案确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯ .2三、主电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯ .⋯⋯⋯⋯⋯⋯⋯ ..43.1主电路方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯ ..⋯ ..⋯ .43.2工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯43.3参数分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯ .⋯ 6四、控制电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯ ...⋯⋯⋯⋯⋯⋯ 104.1控制电路方案选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯ ..⋯⋯⋯ 104.2工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯⋯⋯ 104.3控制芯片介绍及参数选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ (10)五、驱动电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯⋯⋯⋯⋯⋯ ..155.1驱动电路方案选择⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..155.2工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ...⋯⋯ (15)六、保护电路设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯..⋯⋯⋯ 186.1过压保护电路⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯.⋯⋯⋯⋯186.2过流保护电路⋯⋯⋯⋯⋯⋯⋯⋯⋯ .⋯⋯⋯ ...⋯⋯ .⋯⋯ .19七、系统仿真及结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯ .21八、总电路原理图⋯⋯⋯ ...⋯⋯⋯⋯⋯ (26)九、参考文献⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯⋯.⋯⋯⋯⋯ 28十、致谢⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ..⋯⋯⋯⋯⋯ ..⋯⋯ .⋯..29 一、引言DC/DC 变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。

直流-直流变换器

直流-直流变换器

T o n DT S
1.两种开关状态
VG=0, T管阻断
T T T ( 1 D ) T off S on S
2. 变压比和电压、电流基本关系
理想Boost变换器的变压比
T导通,D截止
T 阻断,D导通
D T T Ld i t V Ld S V iL S DT s L
d di V L dt dt V t
( 1 D ) T T off S
电感磁链的减小量为: (V 0 VS ) Toff (V 0 VS ) (1 D ) Ts
D T T on S
电 感 的 磁 链 增 量 为 : V S Ton V S DTs
V0 const时
I V Lf 0 Kmo 0 2
VS const时
I V L f 0 K m i S8
3. Buck变换器输出电压外特性
变换器的变压比(或输出电压)
与占空比和负载电流的函数关 系称为外特性。
电感电流连续时,变压比等于
占空比,输出电压与负载电流 无关。控制特性是线性的。
V MV DV V / 2 (3 3) O S S S
将(3-2),(3-4)代入到(3-1)中

2VS VEO (t ) DVS sin( nD ) cos( nt ) (3 - 5) n 1 n
3.控制方式
改变开关管T的导通时间,即改变导通占空比D ,
M V V 0/ S
DT /T on S
T ( 1 D ) T off s
导通比(占空比):
T on DT s
变压比与电路结构和导通比都有关系,它们之间 的关系可用多种方法推导。由此了解电力电子电路的 分析方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流变换器课程设

目录第一章.设计概要
1.1 技术参数
1.2 设计要求
第二章.电路基本概述
第三章. 电力总体设计方案
第三章.电力总体设计方案
3.1 电路的总设计思路
3.2电路的设计总框图
第四章 BUCK 主电路设计
4.1 Buck变换器主电路原理图
4.2 Buck变换器电路工作原理图4.3 主电路保护(过电压保护)4.4 Buck变换器工作模态分析
4.5 主电路参数分析
第五章控制电路
5.1 控制带你撸设计方案选择
5.2 SG3525控制芯片介绍
5.3 SG3525各引脚具体功能
5.4 SG3525内部结构及工作特性
5.5 SG3525构成的控制电路单元电路图第六章驱动电路原理与设计
6.1 驱动电路方案设计与选择
6.2 驱动电路工作分析
第七章附录
第八章设计心得
第一章.设计概要
1.1 技术参数:
输入直流电压Vin=25V,输出电压Vo=10V,输出电流Io=0.5A,最大输出纹波电压 50mV,工作频率 f=30kHz。

1.2 设计要求:
(1)设计主电路,建议主电路为:采用 BUCK 变换器,大电容滤波,主功率管用 MOSFET;(2)选择主电路所有图列元件,并给出清单;
(3)设计 MOSFET 驱动电路及控制电路;
(4)绘制装置总体电路原理图,绘制: MOSFET 驱动电压、 BUCK 电路中各元件的电压、电流以及输出电压波形(波形汇总绘制,注意对应关系);
(5)编制设计说明书、设计小结。

第二章.电路基本概述
直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,输入与输出不之间不隔离。

直流斩波电路的种类较多,包括 6 种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk 斩波电路,Sepic 斩波电路和 Zeta 斩波电路。

Buck 电路作为一种最基本的 DC/ DC 拓扑,结构比较简单,输出电压小于输入电压,广泛用于各种电源产品中。

根据对输出电压平均值进行调制的方式不同,斩波电路能够分为脉冲宽度调试、频率调制和混合型三种控制方式,Buck 电路的研究对电子产品的发展有着重要的意义。

MOSFET 特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于 GTR,但其电流容量小,耐压低,一般只适用于功率不超过 10kW 的电力电子装置。

功率MOSFET 的种类:按导电沟道可分为P 沟道和 N 沟道。

按栅极电压幅值可分为;耗尽型;当栅极电压为零时漏源极之间就存在导电沟道,增强型;对于 N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道,功率 MOSFET 主要是 N 沟道增强型。

第三章.电力总体设计方案
3.1 电路的总设计思路。

相关文档
最新文档