高中数学必修一第1讲函数及其表示

合集下载

人教版高中数学必修一第一章函数的概念课件PPT

人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念

人教版数学必修一函数的含义及表达形式

人教版数学必修一函数的含义及表达形式

二、函数及其表示(一)函数的概念1.函数的概念(1)函数的传统定义设在一个变化过程中,有两个变量x和y,如果给定了一个函数值,相应的就有唯一确定的一个y值与之相对应,那么我们就称y是x的函数,其中x是自变量,y是因变量(2)函数的近代定义一般地,设A,B是非空的数集,如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。

其中x是自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y叫做函数值,函数值的集合{f(x)|x∈A} 叫做函数的值域就不是函①A,B都是非空的数集,因此定义域或值域为空集的函数不存在,例如,y=x−1x+1数②集合A是函数的定义域,给定A中一个x值有唯一的y值与之对应;集合B不一定是函数的值域,因为B中的元素可以没有x与之对应,即{f(x)|x∈A}⊆B③符号y=f(x)表示“x对应的函数值”,f表示对应关系,“f(x)”是一个整体,不可分开,也不能理解成“f·x”④f(a),a∈A与f(x)的区别⑤函数的实质是集合A,B的对应关系,可以一对一、多对一,但不能一对多,而且集合A中的元素必须要用完,而集合B中的元素可以不用完例1:设集合M={x|0≦x≦2},N={y|0≦y≦2},给出的下列四个图形中,其能够表示集合M 到集合N的函数关系的是()2.函数的构成要素与函数相等一个函数构成要素为定义域、对应关系、值域值域是由定义域和对应关系决定的,所以确定一个函数就只需要确定定义域和对应关系,即定义域和对应关系使“y是x的函数”的而两个基本条件要检验给定的两个变量之间是否具有函数关系,只需检验(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x在其定义域中的每一个值,是否都有唯一的函数值和它对应如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等①函数的定义域和对应关系一旦确定,值域就确定了,所以判断两个函数是否相等只需要判断他们的定义域和解析式是否相等就可以了,不需要在判断值域②满足定义域和值域相同的两个函数,不一定是相等的函数,例如:函数f(x)=x²与函数f(x)=(x-3)²例2:判断下列各组中的函数是否表示同一个函数(1)f(x)=|x-1|与g(x)=x−1,x≧1 1−x,x<1(2)f(x)=x与f(t)=(33)在判断对应关系是否相同时,两个函数可能表现形式不同,但经过适当地变形,可以化为相同的形式,这是也可以说它们具有相同的对应关系3.函数的定义域函数的定义域是自变量x的取值范围,有时可以省略,如果未加特殊说明,那么函数的定义域就是指能使函数式有意义的所有实数x构成的集合在实际问题中,喊必须考虑自变量x所代表的具体量的允许范围求函数的定义域:①如果f(x)是整式,那么其定义域是实数R②如果f(x)是分式,那么其定义域是使分母不为0的实数集合③如果f(x)是二次根式(偶次根式),那么其定义域是使根号内的式子不小于0的实数集合④如果f(x)是由以上几个部分式子构成的,那么其定义域是使各部分式子都有意义的实数集合⑤f(x)=x0的定义域是{x∈R|x≠0}例3:求下列函数的定义域(1)f(x)=x+1+12−x(2)f(x)=x−2+233x+7(3)f(x)=4.函数的值域函数的值域是在对应法则f的作用下,自变量x在定义域内取值是相应的函数的集合求函数的某个函数值是,可以直接代入解析式,求的相应的函数值;求函数的值域时,可以采取不同的方法求解(1)观察法:对所求的函数解析式进行简单变形,通过观察,得出所求函数的值域如:函数y=11+x(2)配方法:若函数是二次函数,或可以化为二次函数形式,则可以通过配方法求出其值域,但是要注意自变量的取值范围如:求y=x-2x+3的值域(3)判别式法:将函数化为因变量y的二次方程,利用判别式∆≥0求函数的值域,常用于分母是二次函数的分式函数的值域如:求y=x+1x²+2x+2(4)换元法:对函数解析式进行适当换元,将复杂的函数化为几个简单的函数,从而利用基本函数取值范围来求函数的值域如:求y=2x-3+13−4x的值域的函数的值域,舱采用分离常数法(5)分离常数法:用于求形如y=cx+dax+b的值域如:求y=3x−2x−1(6)图像法:做出函数的图像,有图像直观的得出函数值域5.区间设a,b是两个实数,且a<b,区间的定义、名称、符号及数轴表示如下表:①区间的左端点必小于右端点②用数轴表示区间是,要特别注意包括在这个区间内的端点用实心圆点表示,不包括在这个区间内的端点用空心圆点表示③无穷大∞是一个符号,不是一个数,它不具备数的已瞎性质和运算法则④以“+∞”或“- ∞”为区间的一端时,这一端必须是小括号⑤单元素集合不能用区间表示,如集合{0}不能表示为[0]或[0,0]的定义域可用区间表示为__________例4:函数y=1−1−x例5:已知集合A={x|5-x≥0},集合B={x||x|-3≠0},求A∩B,并用区间表示考点1:函数的求值问题1.已知函数f(x)=3x 3+2x,求f(f(1))的值2.已知f(x)=1-2x ,则f(12)=______3.已知f(x)=11+x (x ∈R ,且x ≠-1),g(x)=x ²+2(x ∈R )(1)求f (2),g (2)的值(2)求f(g(2)) 的值考点2:求函数定义域1.求已知解析式的函数定义域1.求下列函数的定义域(1)y= −x 2x²−3x −2(2)y=4x+83 3x −2(3)y= x ²−3· 5−x ²(4)y= x +2+13−x。

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。

[2]通过观察、画图等具体动手,体会分段函数的概念。

[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。

[2]通过细致作图,培养学生的动手能力和识图能力。

2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。

[2]分段函数的概念。

2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。

3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。

4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。

6 教学过程6.1 引入新课【师】同学们好。

初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。

这节课我们来继续进一步学习和函数有关的内容。

【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。

【板演/PPT】PPT演示三个实例。

【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。

相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。

第1讲 函数及其表示

第1讲 函数及其表示

第1讲函数及其表示一、知识梳理1.函数的概念函数两集合A,B A,B是两个非空数集对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应名称称f:A→B为从集合A到集合B的一个函数记法y=f(x),x∈A(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意] 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意]分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论几种常见函数的定义域(1)f (x )为分式型函数时,定义域为使分母不为零的实数集合. (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}. (5)指数函数的底数大于0且不等于1.(6)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .二、教材衍化1.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x +1D .y =x 2+1答案:B2.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 3.函数y =x -2·x +2的定义域是________.解析:⎩⎪⎨⎪⎧x -2≥0,x +2≥0,⇒x ≥2.答案:[2,+∞)4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (-2)=________,f [f (-2)]=________.解析:f (-2)=(-2)2=4,f [f (-2)]=f (4)=4+1=5. 答案:4 5一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B .( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)函数f (x )的图象与直线x =1最多有一个交点.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)对分段函数解不等式时忘记范围; (3)换元法求解析式,反解忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)考点一 函数的定义域(基础型) 复习指导| 学习用集合与对应的语言来刻画函数,了解构成函数的要素,会求一些简单函数的定义域和值域.核心素养:数学抽象 角度一 求函数的定义域(1)(2020·安徽宣城八校联考)函数y =-x 2+2x +3lg (x +1)的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C . [-1,3]D .[-1,0)∪(0,3](2)(2020·华南师范大学附属中学月考)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1] 【解析】 (1)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3].故选B .(2)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .【答案】 (1)B (2)B求函数定义域的两种方法方法 解读适合题型直接法构造使解析式有意义的不等式(组)求解已知函数的具体表达式,求f (x )的定义域转移法若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域已知f (x )的定义域,求f (g (x ))的定义域若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域已知f (g (x ))的定义域,求f (x )的定义域[提醒] 定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.角度二 已知函数的定义域求参数若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________.【解析】 由题意可得mx 2+mx +1≥0对x ∈R 恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎨⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4. 综上可得0≤m ≤4. 【答案】 [0,4]已知函数的定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( ) A .(2,+∞) B .(1,2) C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0,解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2 B .-1 C .1D .2解析:选D .因为-2x +a >0, 所以x <a 2,所以a2=1,所以a =2.3.(2020·山东安丘质量检测)已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x + 8-2x 的定义域为( ) A .[0,3]B .[0,2]C .[1,2]D .[1,3]解析:选A .由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A . 考点二 函数的解析式(基础型) 复习指导| 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.核心素养:数学运算(1)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )的解析式为________.(2)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________. (3)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为________. 【解析】 (1)(换元法)令2x +1=t ,得x =2t -1,因为x >0,所以t >1,所以f (t )=lg 2t -1,即f (x )的解析式是f (x )=lg 2x -1(x >1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3.(3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg2x -1(x >1) (2)f (x )=x 2-x +3 (3)f (x )=2x求函数解析式的4种方法1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:法一(换元法):令2x +1=t (t ∈R ), 则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:因为-1≤x ≤0,所以0≤x +1≤1,所以f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).答案:-12x (x +1)考点三 分段函数(基础型) 复习指导| 通过具体实例,了解简单的分段函数,并能简单应用.核心素养:数学抽象、数学运算 角度一 求分段函数的函数值(1)(2020·合肥一检)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11(2)(2020·山西太原三中模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则f ⎝⎛⎭⎫52-m =________.【解析】 (1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C .(2)当m ≥2时,m 2-1=3,所以m =2或m =-2(舍); 当0<m <2时,log 2m =3,所以m =8(舍). 所以m =2.所以f ⎝⎛⎭⎫52-m =f ⎝⎛⎭⎫12=log 212=-1. 【答案】 (1)C (2)-1分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程、不等式问题(1)(一题多解)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8(2)(一题多解)(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 (1)法一:当0<a <1时,a +1>1, 所以f (a )=a ,f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得a =2a , 所以a =14.此时f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1>1,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6,故选C .法二:因为当0<x <1时,f (x )=x ,为增函数, 当x ≥1时,f (x )=2(x -1),为增函数, 又f (a )=f (a +1),所以a =2(a +1-1),所以a =14.所以f ⎝⎛⎭⎫1a =f (4)=6.(2)法一:①当⎩⎨⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎨⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D .【答案】 (1)C (2)D有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D .当a >0时,不等式a [f (a )-f (-a )]>0可化为a 2+a -3a >0,解得a >2.当a <0时.不等式a [f (a )-f (-a )]>0可化为-a 2-2a <0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞).2.(2020·安徽安庆二模)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0.若实数a 满足f (a )=f (a -1),则f ⎝⎛⎭⎫1a =________.解析:由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a . 解得a =14,则f ⎝⎛⎭⎫1a =f (4)=8, 当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),无解. 答案:8考点四 函数的新定义问题(创新型)复习指导| 所谓“新定义”函数,是相对于高中教材而言,指在高中教材中不曾出现或尚未介绍的一类函数.函数新定义问题的一般形式是:由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题.(2020·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝⎛⎭⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C .由x 2+1=1得x =0,由x 2+1=3得x =±2,所以函数的定义域可以是{0, 2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x ∈R ,都有f (-x )+f (x )=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ; 以上三个函数中,________是“优美函数”.解析:由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的单调递减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.答案:②[基础题组练]1.函数y =1ln (x -1)的定义域为( )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)解析:选C .由ln(x -1)≠0,得x -1>0且x -1≠1.由此解得x >1且x ≠2,即函数y =1ln (x -1)的定义域是(1,2)∪(2,+∞).2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B .74C .43D .-43解析:选B .令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1, 所以f (a )=4a -1=6,即a =74.3.(多选)下列四组函数中,f (x )与g (x )是相等函数的是( ) A .f (x )=ln x 2,g (x )=2ln x B .f (x )=x ,g (x )=(x )2 C .f (x )=x ,g (x )=3x 3D .f (x )=x ,g (x )=log a a x (a >0且a ≠1)解析:选CD .对于选项A ,f (x )的定义域为{x |x ≠0},g (x )的定义域为{x |x >0},两个函数的定义域不相同,不是相等函数;对于选项B ,g (x )的定义域为{x |x ≥0},两个函数的定义域不相同,不是相等函数;对于选项C ,g (x )=3x 3=x ,两个函数的定义域和对应法则相同,是相等函数;对于选项D ,g (x )=log a a x =x ,x ∈R ,两个函数的定义域和对应法则相同,是相等函数.4.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B .由题意得f ⎝⎛⎭⎫43=2×43=83. f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43. 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.5.(多选)函数f (x )=x 1+x 2,x ∈(-∞,0)∪(0,+∞),则下列等式成立的是( )A .f (x )=f ⎝⎛⎭⎫1x B .-f (x )=f ⎝⎛⎭⎫1x C .1f (x )=f ⎝⎛⎭⎫1xD .f (-x )=-f (x )解析:选AD .根据题意得f (x )=x 1+x 2,所以f ⎝⎛⎭⎫1x =1x1+⎝⎛⎭⎫1x 2=x 1+x 2,所以f (x )=f ⎝⎛⎭⎫1x ;f (-x )=-x1+(-x )2=-x 1+x 2=-f (x ),所以f (-x )=-f (x ).故AD 正确,BC 错误.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1]C .⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D .由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1,所以函数f (x )的定义域是[-1,1], 所以要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.(创新型)定义a ⊕b =⎩⎪⎨⎪⎧a ×b ,a ×b ≥0,a b ,a ×b <0,设函数f (x )=ln x ⊕x ,则f (2)+f ⎝⎛⎭⎫12=( ) A .4ln 2 B .-4ln 2 C .2D .0解析:选D .2×ln 2>0,所以f (2)=2×ln 2=2ln 2.因为12×ln 12<0,所以f ⎝⎛⎭⎫12=ln 1212=-2ln 2.则f (2)+f ⎝⎛⎭⎫12=2ln 2-2ln 2=0. 8.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D .当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D .9.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤210.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:因为f (1)=2,且f (1)+f (a )=0,所以f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-311.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:因为f (2)=12,所以f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1), 当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)12.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x ,x <1,则f (f (0))=________,若f (m )>1,则实数m 的取值范围是________.解析:f (f (0))=f (1)=ln 1=0;如图所示,可得f (x )=⎩⎨⎧ln x ,x ≥1,1-x ,x <1的图象与直线y =1的交点分别为(0,1),(e ,1).若f (m )>1,则实数m 的取值范围是(-∞,0)∪(e ,+∞).答案:0 (-∞,0)∪(e ,+∞)[综合题组练]1.(2020·海淀期末)下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:选B .①y =3-x 的定义域与值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝⎛⎭⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0)的定义域和值域均为R .所以定义域与值域相同的函数是①④,共有2个,故选B .2.(创新型)设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A .对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A .3.(2020·宁夏银川一中一模)已知函数f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,则f (x +1)-9≤0的解集为________.解析:因为f (x )=⎩⎪⎨⎪⎧2-x +1,x ≤0,-x ,x >0,所以当x +1≤0时,⎩⎪⎨⎪⎧x ≤-1,2-(x +1)-8≤0,解得-4≤x ≤-1;当x +1>0时,⎩⎪⎨⎪⎧x >-1,-x +1-9≤0,解得x >-1.综上,x ≥-4,即f (x +1)-9≤0的解集为[-4,+∞). 答案:[-4,+∞)4.(创新型)设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1;③f(x)=ln(2x+3);④f(x)=2sin x-1.其中是“美丽函数”的序号有________.解析:由已知,在函数定义域内,对任意的x都存在着y,使x所对应的函数值f(x)与y 所对应的函数值f(y)互为相反数,即f(y)=-f(x).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③。

高中数学必修一 第1讲函数及其表示

高中数学必修一 第1讲函数及其表示

第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。

(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。

高中数学-必修一-函数第一节(巧妙讲解)

高中数学-必修一-函数第一节(巧妙讲解)
2) B 中元素可能没有原象,有也不一定唯一. 通俗的说: B 中元素可以有剩余, B 中的元素可以对应多个 A 中元素.
四、区间的概念
设实数 a b :
1)、若 a x b 的实数 x 的集合叫闭区间,表示为: a,b ,集合表示为: x a x b ;
2)、若 a x b 的实数 x 的集合叫开区间,表示为: a,b ,集合表示为: x a x b ;
二、函数的三种表示法:图象法、列表法、解析法
图象法:把自变量 x 的值与之对应的 f x 的值通过坐标内的点集表示出来.
例如图 1: y
4
3
2
1
O 1234
x
图1
列表法:把自变量 x 的值与之对应的 f x 的值通过列表的方式表示出来.
例如图 2:
x
1
2
3
4
1
2
3
4
图2
★说明:适用于有限集合;
一确定值 f x 与之对应,那么就称 f x 为从集合 A 到 B 的一个映射,记作 f : A B .其中 B 中的元素中 y 叫作
A 中的元素 x 的象, x 叫作 y 的原象.
★说明:在 f : A B 中.
1) A 中元素在 B 中必有象,并且象唯一; 通俗的说: A 中不能有剩余的元素, 并且 A 中元素不能对应 B 中多个,只能对应 一个.
【例 2】只要抓住两点:(1)集合 A 中任何一个元素都有象;(2)集合 B 中的每一个元素不一定有原象;这两条
就不难发现,C 选项当 x 4 时, y 2 4 8 2 ,即 A 中不是所有元素都有象.故答案:C. 33
【例 3】 抓住:一箭一雕、多箭一雕是函数;一箭双雕、一箭多雕不是函数;( x 代表箭, y 代表雕),A、D 是两

人教版高一数学必修一第一章知识点解析:函数及其表示

人教版高一数学必修一第一章知识点解析:函数及其表示

但我们心中永远有一个不灭的心愿。

是雄鹰,要翱翔羽天际!是骏马,要驰骋于疆域!要堂堂正正屹 立于天地!努力!坚持!拼搏!成功!一起来看看包括一对一多对一 考点二、函数的概念 1 函数设和是两个非空的数集,如果按照某种确定的对应关系, 对于集合中的任意一个数,在集合中都存在确定的数与之对应,那么, 就称对应→为集合到集合的一个函数。

记作=,其中叫自变量,的取值范围叫函数的定义域;与的值相对 应的的值函数值,函数值的集合叫做函数的值域。

函数是特殊的映射,是非空数集到非空数集的映射。

2 函数的三要素定义域、值域、对应关系。

这是判断两个函数是否为同一函数的依据。

3 区间的概念设,,且 ①,={ ⑤,+∞={>}⑥[,+∞={≥}⑦-∞,={ 考点三、函数的表示方法 1 函数的三种表示方法列表法图象法解析法 2 分段函数定义域的不同部分,有不同的对应法则的函数。

注意两点①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并 集。

考点四、求定义域的几种情况①若是整式,则函数的定义域是实数集; ②若是分式,则函数的定义域是使分母不等于 0 的实数集; ③若是二次根式,则函数的定义域是使根号内的式子大于或等于 0 的实数集合; ④若是对数函数,真数应大于零。

⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若是由几个部分的数学式子构成的,则函数的定义域是使各部 分式子都有意义的实数集合; ⑦若是由实际问题抽象出来的函数,则函数的定义域应符合实际 问题【人教版高一数学必修一第一章知识点解析函数及其表示】。

人教A版高中数学必修1第一章1.2.2函数的表示法课件

人教A版高中数学必修1第一章1.2.2函数的表示法课件

x
2
f
1 x
x 1,求f x.
解:因为f
x
2
f
1 x
x 1,(1)用x替换 1 ,1 xx
替换x,又得f
1 x
2
f
x
1 1,(2) x
将(2)代入(1)消去f
1 x
,得f
x
4
f
x
2
f x 2 x 1 ,又因为x 1, ,
3
3
所以f x 2 x 1, x 1, .
例5 、 画出函数y=|x|的图象.
解:由绝对值的概念,我们有
y=
图象如下:
x, x≥0, -x, x<0.
y
5 4 3 2 1
-3 -2 -1 0 1 2 3
x
例6、某市空调公共汽车的票价按下列规则制定: (1)5公里以内(含5公里),票价2元; (2)5公里以上,每增加5公里,票价增加1元 (不足5公里的按5公里计算)。
2
x 2 x 11
x 1 2 1,
f x x2 1 x 1.
技巧:拆项、添项
三、y f x与y f gx的关系:
4、换元法、配凑法:
已知f g x的解析式,求f u x的解析式.
例5、已知f x 1 x 2 x,求f 2x 3的解析式.
解:f
x 1 x 2 x
(2)对于映射f : A B,我们通常把集合A中的元素叫原象,而 把集合B中与A中的元素相对应的元素叫象.所以,集合A叫原象 集,集合B叫象所在的集合(集合B中可以有些元素不是象).
(3)映射只要求“对于集合A中的任意一个元素x,在集合 B中都有唯一确定的元素y与之对应”,即对于A中的每一 个原象在B中都有象,至于B中的元素在A中是否有原象, 以及有原象时原象是否唯一等问题是不需要考虑的. (4)用映射刻划函数的定义可以这样叙述:设A,B 都是非2 2 x 0

高中数学必修1 函数及其表示XS

高中数学必修1  函数及其表示XS

高中数学必修1 第二章 函数第一节 函数及其表示1.函数映射的概念2(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成. [试一试]1.(江西高考)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]2.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .求函数解析式的四种常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).[练一练]1.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( ) A .-2x +1 B .2x -1 C .2x -3D .2x +72.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (x )=________.1.A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lgx1002.以下给出的同组函数中,是否表示同一函数?为什么? (1)f 1:y =xx;f 2:y =1. (2)f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:(3)f 1:y =2x ;f 2:如图所示.[类题通法]两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f (x )=2x -1,g (t )=2t -1,h (m )=2m -1均表示同一函数.1.(1)(山东高考)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1](2)(安徽高考)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________.角度二 已知f (x )的定义域,求f (g (x ))的定义域2.已知函数f (x )的定义域是[-1,1],求f (log 2x )的定义域.角度三 已知f (g (x ))的定义域,求f (x )的定义域3.已知函数f(2x)的定义域是[-1,1],求f(x)的定义域.[类题通法]简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.[典例] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式;(2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ).[类题通法]求函数解析式常用的方法(1)待定系数法;(2)换元法(换元后要注意新元的取值范围);(3)配凑法;(4)解方程组法. [针对训练]1.已知f (x +1)=x +2x ,求f (x )的解析式.2.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;3.已知f(x)满足2f(x)+f 1x ⎛⎫⎪⎝⎭=3x,求f(x)的解析式.[典例] (1)已知函数f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +3,x ≤0.若f (a )+f (1)=0,则实数a 的值为( )A .-3B .-1或3C .1D .-3或1(2)(福建高考)已知函数f (x )=⎩⎪⎨⎪⎧2x 3,x <0,-tan x ,0≤x <π2,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫π4=________.[类题通法]分段函数“两种”题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.提醒:当分段函数的自变量范围不确定时,应分类讨论. [针对训练]设函数f (x )=⎩⎨⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[练习]1.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( ) A .f :x →y =18x B .f :x →y =14x C .f :x →y =12x D .f :x →y =x2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln x xC .y =x e xD .y =sin xx3.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是( ) A .9 B.19 C .-9 D .-194.设函数f (x )=⎩⎪⎨⎪⎧x 3,0≤x <5f (x -5),x ≥5,那么f (2 013)=( )A .27B .9C .3D .15.函数y =(x +1)0+ln(-x )的定义域为________.6.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 7.下列函数中,不满足f (2x )=2f (x )的是( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x8.设函数f (x )满足f (x )=1+f ⎝⎛⎭⎫12log 2x ,则f (2)=________.9.有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,(x ≥0)-1,(x <0)表示同一个函数.(2)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(3)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0.其中正确判断的序号是________.10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2));(2)求f (g (x ))与g (f (x ))的表达式.。

高一数学必修1第一章-函数概念及其表示-学生

高一数学必修1第一章-函数概念及其表示-学生

(2)适用范围:元素个数较少的集合.(3)使用方法:把元素写在封闭曲线的内部.7.子集的概念文字语言符号语言图形语言集合A中任意一个元素都是集合B 中的元素,就说这两个集合有包含关系,称集合A是集合B的子集A⊆B(或B⊇A)8.集合相等与真子集的概念定义符号表示图表示集合相等如果A⊆B且B⊆A,就说集合A与B相等A=B真子集如果集合A⊆B,但存在元素x∈B,且x∉A,称集合A是B的真子集A B(或B A)9.空集(1)定义:不含任何元素的集合叫做空集.(2)用符号表示为:∅.(3)规定:空集是任何集合的子集.10.子集的有关性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.11.并集和交集的概念及其表示类别概念自然语言符号语言图形语言并集由所有属于集合A或者属于集合B的元素组成的集合,称为集合A与B的并集,记作A∪B(读作“A并B”)A∪B={x|x∈A,或x∈B}交集由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作“A交B”)A∩B={x|x∈A,且x∈B}12.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅A⊆B⇔A∪B=B A⊆B⇔A∩B=A13.全集(1)定义:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.14.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言15.补集的性质∁U U=∅,∁U∅=U,∁U(∁U A)=A.【新知识梳理与重难点点睛】1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]3.其他区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)4.函数相等如果两个函数定义域相同,并且对应关系完全一致,我们称这两个函数相等.要点一函数概念的应用例1设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A.0个B.1个C.2个D.3个跟踪演练1下列对应或关系式中是A到B的函数的是()A .A ∈R ,B ∈R ,x 2+y 2=1B .A ={1,2,3,4},B ={0,1},对应关系如图:C .A =R ,B =R ,f :x →y =1x -2D .A =Z ,B =Z ,f :x →y =2x -1要点二 求函数的定义域例2 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =x +1|x |-x .跟踪演练2 (1)y =(x +1)0x +2(2)y =2x +3-12-x +1x.要点三 求函数值例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f [g (3)]的值.跟踪演练3 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f [f (1)].1.下列图形中,不可能是函数y =f (x )的图象的是( )2.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2) D .[1,+∞)3.已知f (x )=x 2+x +1,则f [f (1)]的值是( ) A .11 B .12 C .13 D .104.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )25.集合{x |-1≤x <0,或1<x ≤2}用区间表示为________.【新方法、新技巧练习与巩固】一、基础达标1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了 2.函数y =1-x +x 的定义域是( ) A .{x |x ≤1} B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1} 3.下列函数完全相同的是( ) A .f (x )=|x |,g (x )=(x )2 B .f (x )=|x |,g (x )=x 2 C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +34.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]5.已知函数f (x )=2x -1,则f (x +1)等于( ) A .2x -1 B .x +1 C .2x +1 D .16.设函数f (x )=41-x ,若f (a )=2,则实数a =________.7.求下列函数的定义域:13.已知函数f (x )=x 21+x 2. (1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值; (2)求证f (x )+f ⎝⎛⎭⎫1x 是定值.(二)一、基础达标1.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )等于( )A .3x +2B .3x -2C .2x +3D .2x -32.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是( )3.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -1。

高一数学必修一函数及其表示 函数的概念

高一数学必修一函数及其表示 函数的概念

1.2函数及其表示§1.2.1函数的概念【教学目的】1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素;2、理解函数符号的含义,能根据函数表达式求出定义域、值域;3、使学生能够正确使用“区间”、“无穷大”的记号;4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。

【教学重点】在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数?〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函数的传统定义。

〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。

〖提问〗问题1:y =1(x ∈R )是函数吗?问题2:y =x 与y =xx 2是同一函数吗?〖投影〗观察对应:〖分析〗观察分析集合A 与B 之间的元素有什么对应关系?二、讲授新课 函数的概念 (一)函数与映射〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。

其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。

函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。

函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A}注:只有当这三要素完全相同时,两个函数才能称为同一函数。

高一数学必修一函数及其表示知识点

高一数学必修一函数及其表示知识点

高一数学必修一函数及其表示知识点高一数学必修一函数及其表示知识点上学的时候,大家对知识点应该都不陌生吧?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。

哪些才是我们真正需要的知识点呢?以下是店铺整理的高一数学必修一函数及其表示知识点,希望能够帮助到大家。

高一数学必修一函数及其表示知识点篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数及其表示知识点篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高中数学必修一之知识讲解-函数及其表示方法

高中数学必修一之知识讲解-函数及其表示方法

函数及其表示方法【学习目标】(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]x a x b a b{|},≤<=;x a x b a b<≤=;[){|},(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

高中数学__函数及其表示知识点

高中数学__函数及其表示知识点

函数及其表示 (一)知识梳理 1.函数的概念 (1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的 x ,在集合B 中都有 的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值, {}A x x f ∈)(称为函数)(x f y =的值域。

(3)函数的三要素: 、 和 2.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。

3.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

4.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

例1. 试判断以下各组函数是否表示同一函数?(1)2)(x x f =,33)(x x g =; (2)x xx f =)(,⎩⎨⎧<-≥=;01,01)(x x x g (3)x x f =)(1+x ,x x x g +=2)(;(4)12)(2--=x x x f ,12)(2--=t t t g(5)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); 考点2:映射的概念例1.下述两个个对应是A 到B 的映射吗?(1)A R =,{|0}B y y =>,:||f x y x →=;(2){|0}A x x =>,{|}B y y R =∈,:f x y →=例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个 例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( )()A 8个 ()B 12个 ()C 16个 ()D 18个考点3:求函数的定义域题型1:求有解析式的函数的定义域(1)方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。

高中数学(人教B版)必修第一册:函数及其表示方法【精品课件】

高中数学(人教B版)必修第一册:函数及其表示方法【精品课件】

常见错误:
把函数化为 g x
x x 1
再求定义域
例2.已知函数 f x x2 2x 3 .
⑴求f(0), f(1), f(3)的值; ⑵当x∈[0,3]时,求f(x)的值域. 解:⑴由已知可得
f 0 02 2 0 3 3, f 1 12 21 3 2, f 3 32 23 3 6.
例4.定义运算
a
b
a, b,
a a
b, b.
若函数
f
(x)=x²*(2x+3).
⑴ f (-2)= 4 , f (1)= 5 ;
⑵ f (x)的值域为
.
解:由定义
f
x
x2 , x2 2x
2 x
3,
x2
3 2x
= 3
x2 , x 1或x 3, 2x 3, 1 x 3.
f (x)=x²*(2x+3) y
如果用t表示测量的时间,v表示测量的指标值,则v是t的函数吗? 如果是,这个函数可以用一个解析式表示吗?
二、函数概念: 一般地,给定两个非空实数集A与B,以及对应关系f,如果对于
集合A中的每一个实数x,在集合B中都有唯一确定的实数y与x对 应,则称f为定义在集合A上的一个函数.
其中对应关系f具有不同的数学形式,有的是一个解析式,有的 是一个表格,有的是一个图像.
说明:在表示函数时,如果不会产生歧义,函数的定义域通常省 略不写,此时约定:函数的定义域就是使得这个函数有意义的所 有实数组成的集合. 如函数f(x)=2x+1, 其定义域就是R.
四、例题选讲 例1.求下列函数的定义域:
⑴ f x 1 x 20;
x 1
解:因为函数有意义当且仅当

人教版高一数学必修一第一单元知识点:函数及其表示

人教版高一数学必修一第一单元知识点:函数及其表示

人教版高一数学必修一第一单元知识点:函数及其表示
中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射.
注意:
一个方法
求复合函数y=f(t),t=q(x)的定义域的方法:
①若y=f(t)的定义域为(a,b),则解不等式得a
两个防范
(1)解决函数问题,必须优先考虑函数的定义域.
(2)用换元法解题时,应注意换元前后的等价性.
三个要素
函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.
人教版高一数学必修一第一单元知识点就为大家介绍到这里,希望对你有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页共4页第4讲
函数及其表示基础梳理1.函数的基本概念
(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系
f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数
f (x)和它对应,那么称f :A →B 为从集合A 到
集合B 的一个函数,记作:
y =f(x),x ∈A. (2)函数的定义域、值域在函数y =f(x),x ∈A 中,x 叫自变量,x 的取值范围
A 叫做定义域,与x 的值对应的y 值叫
函数值,函数值的集合{f(x)|x ∈A}叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.
(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.
2.函数的三种表示方法
表示函数的常用方法有:解析法、列表法、图象法.
3.映射的概念
一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系
f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.
两个防范
(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.
(2)用换元法解题时,应注意换元后变量的范围.
考向一
相等函数的判断【例1】下列函数中哪个与函数)0(x
x y
是同一个函数()A y =(
x )2 B y=x x 2 C 33x y D y=2
x 【例2】x x y 2与).0,(,);,0(,)(t t t t x f 是相同的函数吗?
考向二
求函数的定义域高中阶段所有基本初等函数求定义域应注意:
(1)分式函数中分母不为
0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于
0(如果底数含自变量,则底数大于0且不为1);
(4)0次幂的底数不为0。

相关文档
最新文档