高斯混合模型
十二、Sklearn高斯混合模型
⼗⼆、Sklearn⾼斯混合模型参考url:1、⾼斯混合模型(GMM)为什么会出现:k-means算法的缺陷 某些点的归属簇⽐其他点的归属簇更加明确,⽐如中间的两个簇似乎有⼀⼩块区域重合,因此对重合部分的点将被分配到哪个簇不是很有信⼼,⽽且k-means模型本⾝没有度量簇的分配概率或不确定性的⽅法。
理解k-means模型的⼀种⽅法是:它在每个簇的中⼼放置了⼀个圆圈(在更⾼维空间中是⼀个超空间),圆圈半径根据最远的点与簇中⼼点的距离算出。
这个半径作为训练集分配簇的硬切断(hard cutoff),即在这个圆圈之外的任何点都不是该簇的成员。
k-means有⼀个重要特征,它要求这些簇的模型必须是圆形:k-means算法没有内置的⽅法来实现椭圆形的簇,因此,如果对同样的数据进⾏⼀些转换,簇的分配就被变得混乱。
这些变形的簇并不是圆形的,因此圆形的簇拟合效果⾮常糟糕,k-means强⾏将数据拟合⾄4个圆形的簇会导致多个圆形的簇混在⼀起、互相重叠,右下部分尤其明显。
k-means的两个缺点(类的形状缺少灵活形、缺少簇分配的概率),使得它对许多数据集(特别是低维数据集)的拟合效果不尽⼈意。
⾼斯混合模型的两个基本组成部分: (1)通过⽐较每个点与所有簇中⼼点的距离来度量簇分配的不确定性,⽽不仅仅是关注最近的簇。
(2)通过将簇的边界由圆形放宽⾄椭圆形,从⽽得到⾮圆形的簇。
2、⼀般化E-M:⾼斯混合模型 ⾼斯混合模型(Gaussian mixture model,GMM)试图找到多维⾼斯概率分布的混合体,从⽽获得任意数据集最好的模型。
由于GMM有⼀个隐含的概率模型,因此它也可能找到簇分配的概率结果——在Scikit-Learn中⽤predict_proba⽅法实现,这个⽅法返回⼀个⼤⼩为[n_samples,n_clusters]的矩阵,矩阵会给出任意点属于某个簇的概率。
⾼斯混合模型本质上和k-means模型⾮常类似,它们都使⽤了期望最⼤化⽅法,具体实现如下: (1)选择初始簇的中⼼位置和形状 (2)重复直⾄收敛 a、期望步骤(E-step):为每个点找到对应每个簇的概率作为权重。
高斯混合模型python
高斯混合模型python一、什么是高斯混合模型?高斯混合模型(Gaussian Mixture Model,简称GMM)是一种用于对数据进行建模的概率分布模型。
它假设数据集由多个高斯分布组成,每个高斯分布称为一个“成分”,并且每个成分都有自己的均值和协方差矩阵。
二、为什么要使用高斯混合模型?1. 能够对复杂的数据进行建模:GMM可以对非线性、非正态的数据进行建模,因此在处理复杂的数据时比较实用。
2. 能够对多峰分布进行建模:当数据集中存在多个峰值时,GMM可以将其拆分成多个单峰分布,并将它们组合在一起形成一个多峰分布。
3. 能够用于聚类:通过对数据进行聚类,可以将相似的样本划分到同一个聚类中。
三、如何使用Python实现高斯混合模型?1. 导入必要的库```pythonimport numpy as npfrom sklearn.mixture import GaussianMixtureimport matplotlib.pyplot as plt```2. 生成数据集```pythonnp.random.seed(0)n_samples = 500X = np.concatenate((np.random.randn(n_samples, 2), 10 + np.random.randn(n_samples, 2),-5 + np.random.randn(n_samples, 2)))```3. 训练模型```pythongmm = GaussianMixture(n_components=3).fit(X)```4. 可视化结果```pythonplt.scatter(X[:, 0], X[:, 1], c=gmm.predict(X))plt.show()```四、如何确定成分数?在使用GMM时,如何确定成分数是一个比较重要的问题。
通常有以下几种方法:1. AIC(Akaike Information Criterion)和BIC(Bayesian Information Criterion):这两种方法都是基于信息论的方法,它们通过最小化惩罚项来选择最优的成分数。
高斯混合模型gmm 3sigma准则
高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,常用于聚类分析和密度估计。
GMM在模式识别和机器学习领域有着广泛的应用,其中3sigma准则是一种常用的判别方法,用于确定数据点是否属于某一特定的类别或组。
1、GMM的基本原理GMM是一种灵活的聚类算法,它假设数据是由若干个高斯分布组成的混合体。
具体来说,GMM假设数据点是由多个高斯分布生成的,每个高斯分布对应一个聚类中心。
GMM的目标是通过调整高斯分布的参数来最大化数据的似然函数,从而完成聚类分析或密度估计的任务。
2、GMM的参数估计GMM的参数估计通常使用期望最大化(Expectation-Maximization,EM)算法来实现。
EM算法是一种迭代的优化方法,它通过反复地执行两个步骤来估计GMM的参数:E步骤(Expectation step)和M步骤(Maximization step)。
在E步骤中,计算每个数据点属于每个高斯分布的后验概率;在M步骤中,基于E步骤的结果,更新高斯分布的参数。
3、GMM的应用GMM可以用于聚类分析、异常检测和密度估计等任务。
在聚类分析中,GMM可以有效地识别数据中的不同聚类中心,并将数据点分配到各个聚类中心;在异常检测中,GMM可以通过计算数据点的概率密度来判断数据点是否异常;在密度估计中,GMM可以用于估计数据的概率密度函数。
4、3sigma准则3sigma准则是一种常用的判别方法,用于确定数据点是否属于某一特定的类别或组。
具体来说,3sigma准则假设数据符合正态分布,并利用正态分布的性质来判断数据的异常情况。
根据3sigma准则,大约68的数据位于平均值加减一个标准差的范围内,大约95的数据位于平均值加减两个标准差的范围内,大约99.7的数据位于平均值加减三个标准差的范围内。
如果某个数据点的取值超出了平均值加减三个标准差的范围,就可以认为这个数据点是异常的。
5、GMM与3sigma准则的结合在实际应用中,GMM和3sigma准则常常会结合使用。
高斯混合模型详解
高斯混合模型详解高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,将数据集看作是由多个高斯分布组成的混合体。
每个高斯分布表示一个聚类,通过使用多个高斯分布的线性组合来描述数据的分布。
GMM的基本思想是假设数据是由K个高斯分布组成的混合体,每个高斯分布都有自己的均值和方差。
同时,每个数据点都有一个相应的隐含变量,表示该数据点属于哪个高斯分布。
GMM的参数包括每个高斯分布的均值、方差和混合系数,以及隐含变量的分布。
参数的估计可以通过最大似然估计来完成。
GMM的工作流程如下:1. 初始化模型参数,包括每个高斯分布的均值、方差和混合系数,以及隐含变量的分布。
2. 通过观测数据和当前参数估计每个数据点属于每个高斯分布的概率。
3. 根据估计的数据点属于每个高斯分布的概率,更新模型参数。
4. 重复步骤2和3,直到模型参数收敛或达到指定的迭代次数。
GMM的优点包括:1. 可以灵活地拟合各种形状的数据分布,因为每个高斯分布可以模拟不同的数据簇。
2. 由于采用了概率模型,可以通过计算后验概率来获得样本属于每个簇的概率,从而更好地理解数据。
3. GMM的参数估计可以通过EM算法来实现,相对简单而且具有良好的收敛性。
GMM的应用领域包括聚类分析、异常检测、图像分割等。
在聚类分析中,GMM可以用于识别数据中的聚类,并对数据点进行分类。
在异常检测中,GMM可以通过比较数据点的后验概率来检测异常值。
在图像分割中,GMM可以用于将图像分割为不同的区域,每个区域对应一个高斯分布。
总之,高斯混合模型是一种强大且灵活的概率模型,适用于各种数据分布的建模和分析。
它通过使用多个高斯分布的混合来描述数据的分布,能够更好地捕捉数据的复杂性和多样性。
高斯混合模型
EM演算法
• 取得第i個混和的事後機率值
p(i | xt , )
wibi (xt )
M k 1
wk
bk
(
xt )
第1個特徵參數 第2個特徵參數 第3個特徵參數 第4個特徵參數
w1b1 w2b2 w3b3
EM演算法
• 對各參數進行重新估算
wi
1 T
T t 1
p
(i
|
xt
1 T
T t 1
xt
• 進行分裂:
m m (1 ) m m (1 )
• 將分裂後的平均向量進行分類,並計算出新群集的平均向 量
LBG演算法
• 計算平均向量與特徵參數的距離總和,使得總體距離和獲 得最小,也就是當更新率小於δ時即停止 (D D')
高斯混合模型
• 用一個高斯混合模型來表示一位語者
高斯混合模型
• 高斯混合密度為M個高斯密度的權重加總,其公式為:
p(x| )
M
wibi (x)
i 1
其中 x 為特徵向量,bi (x) 為高斯機率密度值, wi 為混合權重值
M
• 混合權重必須符合 wi 1 之條件 i 1
1k S
Sˆ
arg max 1k S
T
log
t 1
p( xt
| k )
D
其中,D’為前一回合的總距離值
• 重複之前的步驟,直到分裂到所設定的數目
EM演算法
估算初始參數值
• 假設有12個特徵參數(音框),分群後的其中一பைடு நூலகம்A群聚由 特徵參數1 、 4、7和8四個特徵參數所組成,如下:
高斯混合模型详解
高斯混合模型详解摘要:1.高斯混合模型的基本概念2.高斯混合模型的组成部分3.高斯混合模型的求解方法4.高斯混合模型的应用实例5.总结正文:一、高斯混合模型的基本概念高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率模型,用于对由多个高斯分布组成的数据集进行建模。
它是一个多元高斯分布,由多个一元高斯分布组合而成,每个一元高斯分布表示数据集中的一个子集。
高斯混合模型可以看作是多个高斯分布的加权和,其中每个高斯分布的权重表示该高斯分布在数据集中的重要性。
二、高斯混合模型的组成部分高斯混合模型包含三个主要组成部分:1.样本向量:样本向量是数据集中的一个观测值,通常表示为一个列向量。
2.期望:期望是每个高斯分布的均值,表示数据集中所有样本向量的平均值。
3.协方差矩阵:协方差矩阵表示数据集中各个样本向量之间的相关性。
它由多个一元高斯分布的协方差矩阵组成,每个协方差矩阵描述了一个子集内样本向量的相关性。
三、高斯混合模型的求解方法高斯混合模型的求解方法主要有两种:1.极大似然估计(Maximum Likelihood Estimation,简称MLE):MLE 是通过最大化似然函数来确定高斯混合模型的参数,即期望和协方差矩阵。
具体方法是使用EM 算法(Expectation-Maximization)迭代求解。
2.贝叶斯信息准则(Bayesian Information Criterion,简称BIC):BIC 是一种模型选择方法,用于比较不同模型的拟合效果。
它通过计算模型的复杂度和拟合优度来选择最佳模型。
四、高斯混合模型的应用实例高斯混合模型在许多领域都有广泛应用,例如:1.语音识别:高斯混合模型可以用来对语音信号进行建模,从而实现语音识别。
2.聚类分析:高斯混合模型可以用来对数据进行聚类,每个聚类对应一个高斯分布。
3.异常检测:高斯混合模型可以用来检测数据中的异常值,因为异常值通常不符合高斯分布。
高斯混合模型详解
高斯混合模型详解摘要:一、高斯混合模型简介1.模型背景2.模型结构二、高斯混合模型原理1.硬聚类与软聚类2.概率模型3.参数估计三、高斯混合模型的应用1.数据降维2.异常检测3.密度估计四、高斯混合模型在实际场景中的应用案例1.图像分割2.文本分类3.生物信息学五、高斯混合模型的优缺点及改进方法1.优点2.缺点3.改进方法六、总结与展望1.模型发展历程2.当前研究热点3.未来发展方向正文:一、高斯混合模型简介1.模型背景高斯混合模型(Gaussian Mixture Model,简称GMM)起源于20世纪60年代,是一种用于聚类和密度估计的统计模型。
它通过对数据进行软聚类,将不同类别的数据分布用高斯分布进行建模,从而实现对数据特征的描述和分类。
2.模型结构高斯混合模型由多个高斯分布组成,每个高斯分布表示数据集中的一个子集。
各个高斯分布的参数(均值、协方差矩阵和权重)决定了其在混合模型中的贡献程度。
通过优化这些参数,我们可以得到一个最佳的高斯混合模型。
二、高斯混合模型原理1.硬聚类与软聚类高斯混合模型属于软聚类方法,与硬聚类方法(如K-means)相比,软聚类方法允许每个数据点以不同的概率属于多个类别。
这使得高斯混合模型在处理复杂数据分布时具有优势。
2.概率模型高斯混合模型是一种概率模型,它描述了数据分布的概率密度函数。
给定数据集X,高斯混合模型可以表示为:p(x) = ∑[w_i * N(x; μ_i, Σ_i)],其中w_i为第i个高斯分布的权重,N(x; μ_i, Σ_i)表示均值为μ_i、协方差矩阵为Σ_i的高斯分布。
3.参数估计高斯混合模型的参数估计采用最大似然估计(MLE)方法。
通过对数据进行建模,并使观测到的数据概率最大,我们可以得到模型参数的估计值。
三、高斯混合模型的应用1.数据降维高斯混合模型可以用于对高维数据进行降维,通过软聚类将数据划分为几个子集,再对每个子集进行降维处理,从而提取出关键特征。
高斯混合模型gmm计算silhouette score
高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,用于拟合任意形状的数据分布。
GMM由多个高斯分布线性组合而成,每个高斯分布称为一个成分,成分的个数称为混合度,通常用K表示。
GMM的参数包括每个成分的均值向量和协方差矩阵,以及混合权重向量。
在聚类分析中,GMM可以用来对数据进行聚类。
聚类的目的是将相似的对象归为一类,不同的对象归为另一类,因此需要评估聚类的质量。
Silhouette score是一种常用的聚类评估指标,它衡量了聚类的紧密程度和分离程度。
Silhouette score的计算步骤如下:
1. 对于每个聚类Ck,计算其内部的紧密程度,即所有属于Ck的样本点的平均距离,记为ak。
2. 对于每个聚类Ck,计算其与其他聚类的分离程度,即所有属于Ck的样本点与所属聚类最近的聚类Cj(不同于Ck)的平均距离,记为bk。
3. 计算每个聚类Ck的Silhouette score,定义为ak与bk的比值,即:
s_k = ak / bk
其中,s_k的取值范围为[0,1],越接近1表示聚类Ck越好,越接近0表示聚类Ck越差。
4. 对于所有聚类,计算所有聚类的Silhouette score的平均值,即为整个聚类的Silhouette score:
s = (s_1 + s_2 + ... + s_K) / K
其中,s的取值范围也为[0,1],越接近1表示整个聚类越好,越接近0表示整个聚类越差。
在实际应用中,GMM可以用来拟合数据分布,然后根据每个聚类的Silhouette score来评估聚类的质量。
通常,可以使用EM算法来拟合GMM模型。
混合高斯模型
混合高斯模型高斯混合模型(GMM) 是一种机器学习算法。
它们用于根据概率分布将数据分类为不同的类别。
高斯混合模型可用于许多不同的领域,包括金融、营销等等!这里要对高斯混合模型进行介绍以及真实世界的示例、它们的作用以及何时应该使用GMM。
高斯混合模型(GMM) 是一个概率概念,用于对真实世界的数据集进行建模。
GMM 是高斯分布的泛化,可用于表示可聚类为多个高斯分布的任何数据集。
高斯混合模型是一种概率模型,它假设所有数据点都是从具有未知参数的高斯分布的混合中生成的。
高斯混合模型可用于聚类,这是将一组数据点分组为聚类的任务。
GMM 可用于在数据集中可能没有明确定义的集群中查找集群。
此外,GMM 可用于估计新数据点属于每个集群的概率。
高斯混合模型对异常值也相对稳健,这意味着即使有一些数据点不能完全适合任何集群,它们仍然可以产生准确的结果。
这使得GMM 成为一种灵活而强大的数据聚类工具。
它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。
GMM 由两部分组成——均值向量(μ) 和协方差矩阵(Σ)。
高斯分布被定义为呈钟形曲线的连续概率分布。
高斯分布的另一个名称是正态分布。
这是高斯混合模型的图片:它可以被理解为一个概率模型,其中为每个组假设高斯分布,并且它们具有定义其参数的均值和协方差。
GMM 由两部分组成——均值向量(μ) 和协方差矩阵(Σ)。
高斯分布被定义为呈钟形曲线的连续概率分布。
高斯分布的另一个名称是正态分布。
这是高斯混合模型的图片:GMM 有许多应用,例如密度估计、聚类和图像分割。
对于密度估计,GMM 可用于估计一组数据点的概率密度函数。
对于聚类,GMM 可用于将来自相同高斯分布的数据点组合在一起。
对于图像分割,GMM 可用于将图像划分为不同的区域。
高斯混合模型可用于各种用例,包括识别客户群、检测欺诈活动和聚类图像。
在这些示例中的每一个中,高斯混合模型都能够识别数据中可能不会立即明显的聚类。
高斯混合模型em算法
高斯混合模型em算法高斯混合模型(Gaussian Mixture Model,简称GMM)是一种概率模型,它能够将多个高斯分布组合在一起,从而更好地对数据进行建模和描述。
EM算法(Expectation-Maximization Algorithm,期望最大化算法)是一种常用于GMM参数估计的迭代算法。
本文将重点介绍GMM和EM算法,并对EM算法的具体步骤进行详细解释。
1. 高斯混合模型(Gaussian Mixture Model)高斯混合模型通过同时拟合多个高斯分布的线性组合来对数据进行建模。
设X为观测数据,其概率密度函数可以表示为:P(X) = Σk=1 to K (πk * N(x|μk, Σk))其中,N(x|μk, Σk)表示高斯分布的概率密度函数,πk为每个分布的权重,并满足Σk=1 to K πk = 1。
通过最大化似然函数,可以估计出每个高斯分布的参数μk和Σk。
2. EM算法(Expectation-Maximization Algorithm)EM算法是一种迭代算法,用于求解含有隐变量的概率模型参数估计问题。
EM算法通过交替进行E步和M步来迭代地逼近模型参数的最大似然估计。
- E步(Expectation Step):在E步中,通过当前的模型参数估计隐变量的期望。
对于GMM,E步的目标是计算每个样本属于每个高斯分布的后验概率。
- M步(Maximization Step):在M步中,根据E步计算得到的隐变量的期望,更新模型参数。
对于GMM,M步的目标是最大化对数似然函数,从而估计出每个高斯分布的参数μk和Σk。
具体的EM算法步骤如下:(1) 初始化参数,包括高斯分布的个数K、每个高斯分布的权重πk、每个高斯分布的均值μk和协方差矩阵Σk。
(2) 进行E步,计算每个样本属于每个高斯分布的后验概率。
根据当前的参数估计后验概率如下:γij = πj * N(xi|μj, Σj) / Σk=1 to K (πk * N(xi|μk, Σk))(3) 进行M步,更新模型参数。
混合模型公式混合高斯模型隐马尔可夫模型
混合模型公式混合高斯模型隐马尔可夫模型混合模型是一种统计模型,它结合了多个基本模型的特点,以适应数据的复杂性和多样性。
本文将重点介绍混合模型中常用的两种类型:混合高斯模型和隐马尔可夫模型。
一、混合高斯模型混合高斯模型是一种基于高斯分布的混合模型。
它假设数据点是从多个高斯分布中生成的,这些高斯分布具有不同的均值和方差,各自对应不同的类别或簇。
混合高斯模型通过考虑每个高斯分布的权重来描述不同类别或簇的重要性。
混合高斯模型可以使用以下公式进行表示:p(x) = ∑[i=1 to k] w[i] * N(x|μ[i],Σ[i])其中,p(x)表示给定数据点x的概率,k表示高斯分布的数量,w[i]表示第i个高斯分布的权重,N(x|μ[i],Σ[i])表示第i个高斯分布的概率密度函数。
通过调整权重和调整各个高斯分布的参数,可以根据实际情况对数据进行分类或聚类。
二、隐马尔可夫模型隐马尔可夫模型(Hidden Markov Model,简称HMM)是一种描述具有隐藏状态的序列数据的统计模型。
它假设系统的状态是一个马尔可夫链,即当前状态只依赖于前一状态,并且观测数据仅与当前状态有关。
隐马尔可夫模型可以使用以下公式进行表示:π(i) = P(q[i]) 初始状态概率a(ij) = P(q[j]|q[i]) 状态转移概率b(i) = P(x[i]|q[i]) 观测概率其中,π(i)表示初始状态概率,表示系统在时间序列的初始时刻处于状态i的概率;a(ij)表示状态转移概率,表示系统由状态i转移到状态j的概率;b(i)表示观测概率,表示系统处于状态i时,观测到某个具体观测值的概率。
隐马尔可夫模型广泛应用于语音识别、自然语言处理、生物信息学等领域。
通过调整初始状态概率、状态转移概率和观测概率,可以对序列数据进行建模与分析,包括状态预测、序列生成和序列估计等任务。
总结:混合模型是一种统计模型,可以适应数据的多样性和复杂性。
混合高斯模型和隐马尔可夫模型是混合模型的两种常见形式,分别适用于数据的分类和序列建模。
高斯混合模型原理
高斯混合模型原理
高斯混合模型(Gaussian Mixture Model,GMM)是一种用来描述多元数据分布的统计模型。
它基于高斯分布(也称为正态分布)的概念,将数据看作是由多个高斯分布组成的混合体。
GMM的核心思想是假设观测数据来自于多个高斯分布,每个高斯分布代表了数据的一个子集或簇。
每个簇由一个均值向量和协方差矩阵来描述,均值向量决定了簇的中心位置,而协方差矩阵则决定了簇内数据的分散程度。
通过调整每个高斯分布的参数,可以灵活地适应不同形状、大小和方向的数据分布。
GMM的目标是通过最大似然估计来估计数据的参数。
最大似然估计的思想是找到一组参数,使得给定参数下观测数据出现的概率最大。
对于GMM来说,最大似然估计的目标是最大化整体数据的似然函数。
由于GMM考虑了多个高斯分布,需要用到期望最大化(Expectation-Maximization,EM)算法来求解参数。
EM算法是一种迭代的优化算法,它首先通过随机初始化参数来估计每个数据点属于每个簇的概率。
然后,通过计算每个簇的权重、均值和协方差矩阵来更新参数。
这个过程不断迭代直到收敛,即参数变化很小或似然函数的变化很小。
GMM具有广泛的应用,特别是在聚类和密度估计问题中。
在聚类问题中,GMM可以将数据分成多个簇,每个簇对应一个高斯分布;在密度估计问题中,GMM可以估计数据的概率密度函数,从而对数据的分布进行建模。
总的来说,高斯混合模型提供了一种灵活且强大的工具,能够描述复杂的多元数据分布。
通过使用EM算法进行参数估计,GMM能够适应各种形状和分散程度不同的数据。
高斯混合模型
E[(X1
1 ) ( X
n
n
)T
]
E[(X
2
2
)(X1
1 )T
]
E[(X 2 2 )(X 2 2 )T ]
E[(X 2 2 )(X n n )T ]
E[(X n n )(X1 1)T ]
E[(X n n )(X n n )T ]
估算初始参数值
• 假设有三组特征参数分别为 X 1 [1 2] X 2 [3 4] X3 [5 6],
p(i
|
xt
,
T t 1
)(xt p(i
i
)T
| xt , )
( xt
i
)
EM算法
• 进行最大相似估算
T
T
p( X | ) p(xt | ) log p(xt | )
t 1
t 1
其中
p( xt
|)
M
wibi (xt )
i 1
• 收敛条件
p( X | (k1) ) p( X | (k) ) 收敛门槛
• 将分裂后的平均矢量进行分类,并计算出新群集的平均矢 量
LBG算法
• 计算平均矢量与特征参数的距离总和,使得总体距离和获 得最小,也就是当更新率小于δ时即停止 (D D')
D
其中,D’为前一回合的总距离值
• 重复之前的步骤,直到分裂到所设定的数目
EM算法
估算初始参数值
• 假设有12个特征参数(音框),分群后的其中一个A群聚由 特征参数1 、 4、7和8四个特征参数所组成,如下:
高斯混合模型
• 用一个高斯混合模型来表示一位语者
高斯混合模型
• 高斯混合密度为M个高斯密度的权重加总,其公式为:
高斯混合模型(GMM)-混合高斯回归(GMR)
⾼斯混合模型(GMM)-混合⾼斯回归(GMR) ⾼斯模型就是⽤⾼斯概率密度函数(正态分布曲线)精确地量化事物,将⼀个事物分解为若⼲的基于⾼斯概率密度函数(正态分布曲线)形成的模型。
对图像背景建⽴⾼斯模型的原理及过程:图像灰度直⽅图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。
如果图像所包含的⽬标区域和背景区域相差⽐较⼤,且背景区域和⽬标区域在灰度上有⼀定的差异,那么该图像的灰度直⽅图呈现双峰-⾕形状,其中⼀个峰对应于⽬标,另⼀个峰对应于背景的中⼼灰度。
对于复杂的图像,尤其是医学图像,⼀般是多峰的。
通过将直⽅图的多峰特性看作是多个⾼斯分布的叠加,可以解决图像的分割问题。
在智能监控系统中,对于运动⽬标的检测是中⼼内容,⽽在运动⽬标检测提取中,背景⽬标对于⽬标的识别和跟踪⾄关重要。
⽽建模正是背景⽬标提取的⼀个重要环节。
我们⾸先要提起背景和前景的概念,前景是指在假设背景为静⽌的情况下,任何有意义的运动物体即为前景。
建模的基本思想是从当前帧中提取前景,其⽬的是使背景更接近当前视频帧的背景。
即利⽤当前帧和视频序列中的当前背景帧进⾏加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,⼀般的建模后的背景并⾮⼗分⼲净清晰,⽽⾼斯混合模型(GMM,Gaussian mixture model)是建模最为成功的⽅法之⼀,同时GMM可以⽤在监控视频索引与检索。
混合⾼斯模型使⽤K(基本为3到5个)个⾼斯模型来表征图像中各个像素点的特征,在新⼀帧图像获得后更新混合⾼斯模型,⽤当前图像中的每个像素点与混合⾼斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。
通观整个⾼斯模型,他主要是有⽅差和均值两个参数决定,,对均值和⽅差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。
由于我们是对运动⽬标的背景提取建模,因此需要对⾼斯模型中⽅差和均值两个参数实时更新。
为提⾼模型的学习能⼒,改进⽅法对均值和⽅差的更新采⽤不同的学习率;为提⾼在繁忙的场景下,⼤⽽慢的运动⽬标的检测效果,引⼊权值均值的概念,建⽴背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进⾏前景和背景的分类。
高斯混合模型算法
高斯混合模型算法高斯混合模型(GMM)算法是一种用于数据聚类和概率建模的统计方法。
它假设数据是由多个高斯分布组成的混合体,每个高斯分布代表一个簇或类别。
以下将按照段落排版标注序号,详细解释GMM算法的相关问题。
1. 什么是高斯混合模型高斯混合模型是一种参数化的概率密度函数,用于表示数据的分布。
它是多个高斯分布的线性组合,其中每个高斯分布都有自己的均值和协方差矩阵。
高斯混合模型可以用于聚类分析,其中每个高斯分布代表一个聚类簇。
2. GMM算法的基本思想是什么GMM算法的基本思想是通过最大化似然函数来估计数据的参数。
它假设数据是从多个高斯分布中生成的,然后通过迭代的方式调整每个高斯分布的参数,使得模型能够最好地拟合数据。
具体而言,GMM算法使用EM算法(期望最大化算法)来估计参数。
3. GMM算法的步骤是什么GMM算法的步骤如下:a) 初始化:随机选择高斯分布的参数(均值和协方差矩阵),设置每个高斯分布的权重(表示每个簇的概率)。
b) E步骤:根据当前的高斯分布参数计算每个数据点属于每个簇的后验概率,即计算每个数据点属于每个高斯分布的概率。
c) M步骤:根据当前的后验概率重新估计高斯分布的参数,即更新每个高斯分布的均值和协方差矩阵。
d) 重复步骤b)和c),直到模型收敛(参数不再明显改变)或达到最大迭代次数。
e) 输出:得到每个数据点所属的簇标签。
4. GMM算法如何处理不同形状和大小的簇GMM算法通过调整每个高斯分布的协方差矩阵来适应不同形状和大小的簇。
每个高斯分布的协方差矩阵可以表示数据在每个维度上的分散程度。
如果一个簇的数据在某些维度上更分散,则该维度对应的协方差矩阵元素会较大。
相反,如果一个簇的数据在某些维度上更集中,则该维度对应的协方差矩阵元素会较小。
5. GMM算法如何确定簇的数量确定簇的数量是GMM算法中的一个重要问题。
一种常用的方法是使用信息准则,例如贝叶斯信息准则(BIC)或赤池信息准则(AIC)。
高斯混合模型em算法
高斯混合模型 (Gaussian Mixture Model, GMM) 和 EM 算法1. 引言高斯混合模型 (Gaussian Mixture Model, GMM) 是一种常见的概率模型,用于对数据进行聚类和密度估计。
它假设数据是由多个高斯分布组成的混合体,每个高斯分布称为一个分量。
EM 算法是一种迭代优化算法,用于估计 GMM 的参数。
在本文中,我们将介绍 GMM 和 EM 算法的基本概念,并详细解释 EM 算法在估计 GMM 参数时的工作原理。
2. 高斯混合模型 (GMM)高斯混合模型是一种生成模型,用于描述多变量数据的概率分布。
它假设数据是由 K 个高斯分布组成的混合体,每个高斯分布具有自己的均值向量和协方差矩阵。
对于一个 K 维随机变量 X ,其概率密度函数可以表示为:p (X )=∑πk Kk=1⋅N (X|μk ,Σk )其中 πk 是第 k 个高斯分布的权重(满足 ∑πk K k=1=1),N (X|μk ,Σk ) 是第 k 个高斯分布的概率密度函数。
GMM 的参数包括每个高斯分布的权重 πk 、均值向量 μk 和协方差矩阵 Σk 。
3. EM 算法EM 算法是一种迭代优化算法,用于估计概率模型的参数。
在 GMM 中,EM 算法被广泛应用于估计模型的参数。
EM 算法的基本思想是通过迭代优化两步来逐步改进参数估计:E 步(Expectation Step )和 M 步(Maximization Step )。
E 步(Expectation Step )在 E 步中,我们根据当前参数的估计值,计算每个样本属于每个高斯分布的后验概率。
这些后验概率被称为责任(responsibility )。
γ(z nk )=πk ⋅N (x n |μk ,Σk )∑πj K j=1⋅N(x n |μj ,Σj )其中 z nk 表示第 n 个样本属于第 k 个高斯分布的责任。
M 步(Maximization Step)在 M 步中,我们使用 E 步中计算得到的责任,重新估计模型的参数。
概率图:高斯混合模型(GMM)
概率图:⾼斯混合模型(GMM)⾼斯混合模型(Gaussian Mixture model)来源:B站up主:shuhuai008,板书问题:“⾼斯”?,“混合”?可从两个⾓度理解⼀、从⼏何⾓度看:⾼斯混合模型就是若⼲个⾼斯模型的“加权平均”。
混合⾼斯分布的公式此处的x(⼩写)可以指代任意⼀个样本xi,利⽤公式(3)可以求解出xi的概率密度函数。
⼆、从“⽣成”/“混合”的⾓度看【个⼈理解:“混合”体现在⾼斯分布的叠加,也体现在“隐变量”和观测变量的引⼊】GMM模型的概率图表⽰,及相关概念⽰意图z是“隐变量”,x是观测变量,由隐变量⽣成观测变量的过程就是混合⾼斯模型的⽣成过程。
x在概率图中⽤阴影表⽰可观测。
N表⽰有N个样本{x1,x2...xN},对应的也就有N个隐变量{z1,z2,...zN}。
z1表⽰第⼀个样本的隐变量,z1是⼀个离散的随机变量,z1的概率密度函数如下所⽰。
z1中,p(c1)=p1,p(c2)=p2,...p(ck)=p k;所以将pz1表⽰成p={p1,p2,...p k},找出pz1中最⼤的概率,假如max{p1,p2,...p k}=p4,那么z1=c4 ,表⽰z1属于第4个⾼斯分布的概率最⼤=>x1服从于第四个⾼斯分布,写作x1~N(u4,Σ4)。
其实z1就相当于⼀个指⽰变量。
其中c1,c2,...ck分别是各个⾼斯分布的中⼼点(c1..ck和x1,...xN的向量维度相同,此处可类⽐聚类算法中的聚类中⼼)。
离散随机变量Z理解:“离散”指的是z1的值域是离散的数值{c1,c2...ck},只能从这⼏个中选,⽐较形象的说就是z1可以在y轴⽅向上⼀个⽹格或多个⽹格的”跳动“。
“随机”指的是z1取c1,c2,...ck等数值的概率是确定的,但是在某⼀个样本的观测中具体取哪个c是随机的。
【个⼈理解】观测变量x理解:观测变量x可以是连续的,也可以是离散的,x服从于某个特定的⾼斯分布。
高斯混合模型原理
高斯混合模型原理高斯混合模型(Gaussian Mixture Model,GMM)是一种常用的概率模型,它在模式识别、数据挖掘和机器学习等领域有着广泛的应用。
其原理基于对数据的聚类和分类,通过对数据进行概率密度估计,找到最可能的数据分布情况。
下面将详细介绍高斯混合模型的原理。
首先,高斯混合模型假设数据是由多个高斯分布混合而成的。
假设有K个高斯分布,每个高斯分布对应一个类别,数据点的生成过程如下:首先根据先验概率选择一个高斯分布,然后根据选择的高斯分布生成一个数据点。
重复这个过程直到生成所有的数据点。
因此,高斯混合模型可以表示为:\[ p(x) = \sum_{k=1}^{K} \pi_k N(x|\mu_k,\Sigma_k) \]其中,\( \pi_k \) 表示选择第k个高斯分布的概率,满足\( 0 \leq \pi_k \leq 1 \)且\( \sum_{k=1}^{K} \pi_k = 1 \);\( N(x|\mu_k,\Sigma_k) \)表示第k个高斯分布的概率密度函数,其中\( \mu_k \)和\( \Sigma_k \)分别表示第k个高斯分布的均值和协方差矩阵。
在实际应用中,通常采用最大似然估计或者EM算法来估计模型参数。
最大似然估计的思想是找到模型参数,使得观测数据出现的概率最大。
而EM算法是一种迭代算法,通过交替进行E步(Expectation)和M步(Maximization),来估计模型参数。
在E步中,计算每个数据点属于每个高斯分布的概率,而在M步中,更新模型参数。
通过不断迭代,最终得到模型参数的估计值。
高斯混合模型在实际应用中有着广泛的应用,比如图像分割、语音识别、异常检测等。
在图像分割中,可以将图像中的像素看作是数据点,通过高斯混合模型对像素进行聚类,从而实现图像的分割。
在语音识别中,可以将语音特征看作是数据点,通过高斯混合模型对语音进行建模,从而实现语音的识别。
高斯混合模型推导
高斯混合模型推导高斯混合模型(Gaussian Mixture Model,GMM)是一种概率模型,它假设所有数据点都是由固定数量的高斯分布生成的。
在高斯混合模型中,每个高斯分布都被称为一个“组件”,并且每个组件都有自己的均值和协方差矩阵。
高斯混合模型的推导可以分为以下几个步骤:1. 定义高斯分布:首先,我们需要定义高斯分布的概率密度函数。
对于一个D维的数据点x,其高斯分布的概率密度函数为:p(x|μ, Σ) = (1/(2π)^(D/2)|Σ|^(1/2)) * exp(-1/2 * (x-μ)^T * Σ^(-1) * (x-μ))其中,μ是均值向量,Σ是协方差矩阵。
2. 定义混合模型:在高斯混合模型中,我们假设数据点是由K个不同的高斯分布生成的。
因此,整个数据集的概率密度函数可以表示为这K个高斯分布的加权和:p(x|θ) = Σ(k=1 to K) αk * p(x|μk, Σk)其中,αk是第k个高斯分布的权重,满足Σ(k=1 to K) αk = 1。
θ是所有参数的集合,包括每个高斯分布的均值、协方差矩阵和权重。
3. 估计参数:为了使用高斯混合模型对数据进行建模,我们需要估计模型的参数θ。
这通常是通过最大化数据的似然函数来实现的。
给定一个包含N个数据点的数据集X,其似然函数为:L(θ|X) = Π(n=1 to N) p(xn|θ)我们的目标是找到一组参数θ,使得似然函数L(θ|X)最大化。
这通常是通过迭代算法(如EM算法)来实现的。
4. 使用模型:一旦我们估计了高斯混合模型的参数,就可以使用该模型对数据进行各种操作,如聚类、分类、异常检测等。
以上是高斯混合模型的基本推导过程。
在实际应用中,还需要考虑一些问题,如如何选择合适的组件数量K、如何处理缺失数据和异常值等。
高斯混合模型(GMM)
⽂章⽬录⾼斯混合模型(GMM ) 将以前写的⾼斯混合模型的博客重新修改,主要是将图⽚的公式改成latex 形式,更加美观,以后也更加好修改。
1. ⾼斯模型简介 ⾸先介绍⼀下单⾼斯模型(GSM)和⾼斯混合模型(GMM)的⼤概思想。
1.1. 单⾼斯模型 如题,就是单个⾼斯分布模型 or 正态分布模型。
想必⼤家都知道正态分布,这⼀分布反映了⾃然界普遍存在的有关变量的⼀种统计规律,例如⾝⾼,考试成绩等;⽽且有很好的数学性质,具有各阶导数,变量频数分布由 µ、σ 完全决定等等,在许多领域得到⼴泛应⽤。
在这⾥简单介绍下⾼斯分布的概率密度分布函数:ϕ(y ∣θ)=1√2πσexp−(y −µ)22σ2其中θ=(µ,σ2)1.2. ⾼斯混合模型 注:在介绍GMM 的时候,注意跟K-means 的相似点 K 个GSM 混合成⼀个GMM ,每个GSM 称为GMM 的⼀个component ,也就是分为K 个类,与K-means ⼀样,K 的取值需要事先确定,具体的形式化定义如下:P (y ∣θ)=K∑k =1αk ϕ(y ∣θk )其中,αk 是样本集合中 k 类被选中的概率:αk =P (z =k |θ),其中 z =k 指的是样本属于 k 类,那么 ϕ(y ∣θk ) 可以表⽰为 ϕ(y ∣θk )=P (y |z =k ,θ,很显然 αk ≥0,∑K k =1αk =1 y 是观测数据。
这⾥如果我们事先知道每个样本的分类情况,那么求解GMM 的参数⾮常直观,如下表⽰:假设 有K 个类,样本数量分别为 N 1,N 2,…,N k 且 N 1+N 2+…+N k =N ,即有观测数据 y 1,y 2,…,y k ,第 k 个分类的样本集合表⽰为 S (k ),那么公式 (2) 中的三个参数可以表⽰为:αk =N k /Nµk =1N k ∑y ∈S (k )yσk =1N k ∑y ∈S (k )(y −µk )2 这样是理想情况,例如给你⼀堆⼈类的⾝⾼的数据,以及对应的性别,那么这个就是估计两个分量的⾼斯混合模型,需要学习⾄少5个参数(事实是6个,另外⼀个可以有 1−α 得出)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
10
8
11
9
12
• 混合權重值wi
4/12=0.3334
• 平均向量 i
1 T xt T t 1
5.5 6.5 7.5
估算初始參數值
• 共變異矩陣 i
E[( X E[ x])(X E[ X ])T ] E[( X 1 1 )( X 1 1 )T ] E[( X 1 1 )( X 2 2 )T ] E[( X 1 1 )( X n n )T ] T T T E [( X )( X ) ] E [( X )( X ) ] E [( X )( X ) ] 2 2 1 1 2 2 2 2 2 2 n n T T E[( X n n )( X n n ) ] E[( X n n )( X 1 1 ) ]
பைடு நூலகம்
辨識
• 將每個樣本與待測的語音進行最大相似估算,機率值最大 的,即為答案
ˆ arg max p( X | ) S k
1k S
ˆ S arg max log p( xt | k )
1 k S t 1
T
高斯混合模型
• 用一個高斯混合模型來表示一位語者
高斯混合模型
• 高斯混合密度為M個高斯密度的權重加總,其公式為:
M p( x | ) wi bi ( x ) i 1
其中 x 為特徵向量, bi ( x) 為高斯機率密度值, wi 為混合權重值
• 混合權重必須符合
w
i 1
2.667 2.667 2.667 2.667
EM演算法
• 取得第i個混和的事後機率值
p(i | xt , ) wi bi ( xt )
w b ( x k 1 k k t )
M
第1個特徵參數 第2個特徵參數 第3個特徵參數 第4個特徵參數
w1b1 w2b2 w3b3
M
i
1 之條件
• 基本密度是D維的高斯函數
bi ( x )
1 1 T 1 exp{ ( x i ) i ( x i )} D/2 1/ 2 (2 ) | i | 2
其中 i 為平均向量,i 為共變異矩陣,D為特徵向量的維度
演算法流程
LBG演算法
高斯混合模型 (Gaussian Mixture Model)
高斯分布
其中μ為平均值 (Mean),σ為標準差(Standard Deviation)
高斯混合模型
利用高斯模型的平均值描述特徵參數的分佈位置,共 變異矩陣來描述分型形狀的變化,因此高斯混合模型 可以很平滑的描述聲音的特徵分佈
高斯混合模型(10個高斯成分)表示圖
T t 1
EM演算法
• 進行最大相似估算
T p( X | ) p( xt | ) log p( xt | ) t 1 t 1 T
M p ( x | ) w b ( x 其中 i i t) t i 1
• 收斂條件
p( X | ( k 1) ) p( X | ( k ) ) 收斂門檻
EM演算法
• 對各參數進行重新估算
1 T wi p(i | xt , ) T t 1
p(i | xt , ) xt t 1 i T p ( i | x t 1 t , )
T
T 1 t 1 p(i | xt , )(xt i ) ( xt i ) i T D p(i | xt , )
( D D' ) D
其中,D’為前一回合的總距離值
• 重複之前的步驟,直到分裂到所設定的數目
EM演算法
估算初始參數值
• 假設有12個特徵參數(音框),分群後的其中一個A群聚由 特徵參數1 、 4、7和8四個特徵參數所組成,如下:
特徵參數1 特徵參數4 特徵參數7 特徵參數8
1 4 2 5 3 6
估算初始參數值
• 假設有三組特徵參數分別為 X 1 [1 2] X 2 [3 4] X 3 [5 6],
1 平均值為3 3 5 2 4 6 平均值為4
則
1 2 1 1 3 1 3 5 3( 3 3) 3 1 3 5 3( 4 4) 5 6 1 2 1 2 4 6 4( 3 3) 1 2 4 6 4( 4 4) 3 3 5 6
D2 D1 Dtotal = D1 + D2
LBG演算法
• 計算整體平均向量
1 T xt T t 1
• 進行分裂:
m m (1 )
m (1 )
m
• 將分裂後的平均向量進行分類,並計算出新群集的平均向 量
LBG演算法
• 計算平均向量與特徵參數的距離總和,使得總體距離和獲 得最小,也就是當更新率小於δ時即停止