人教版高中数学必修三第一章单元测试(一)- Word版含答案
人教A版高中数学必修三练习:第一章 算法初步 单元质量评估 Word版含答案
温馨提示:单元质量评估(12019 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( B )A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很大,否则无法实施2.在程序框图中,算法中间要处理数据或计算,可以分别写在不同的( A )A.处理框内B.判断框内C.输入、输出框内D.起、止框内3.早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个过程.从下列选项中选出最好的一种算法( C )A.第一步,洗脸刷牙.第二步,刷水壶.第三步,烧水.第四步,泡面.第五步,吃饭.第六步,听广播B.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭.第五步,听广播C.第一步,刷水壶.第二步,烧水同时洗脸刷牙.第三步,泡面.第四步,吃饭同时听广播D.第一步,吃饭同时听广播.第二步,泡面.第三步,烧水同时洗脸刷牙.第四步,刷水壶4.将51化为二进制数得( C )A.11001(2)B.101001(2)C.110011(2)D.10111(2)5.下列是流程图中的一部分,表示恰当的是( A )6.如图所示的程序框图,下列说法正确的是( D )A.该框图只含有顺序结构、条件结构B.该框图只含有顺序结构、循环结构C.该框图只含有条件结构、循环结构D.该框图包含顺序结构、条件结构、循环结构7.如图所示的程序框图,其功能是 ( C )A.输入a,b的值,按从小到大的顺序输出它们的值B.输入a,b的值,按从大到小的顺序输出它们的值C.求a,b的最大值D.求a,b的最小值8.(2018·哈尔滨高二检测)程序框图如图所示,若输入p=200,则输出结果是 ( B )A.9B.8C.7D.69.如图所示的程序框图的算法思路源于世界数学名题“3x+1问题”.执行该程序框图,若输入的N=3,则输出的i= ( C )A.6B.7C.8D.910.下面的程序运行后的输出结果为( C )A.17B.19C.21D.2311.我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n= ( A )A.4B.5C.2D.312.执行如图所示的程序框图,若输出的结果为43,则判断框内应填入的条件是 ( A )A.z≤42?B.z≤20?C.z≤50?D.z≤52?二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.程序框图如图所示.若输出结果为15,则①处的执行框内应填的是x=3.14.如图所示的程序框图所表示的算法,输出的结果是2.15.如图程序执行后输出的结果是990.16.用秦九韶算法求多项式f(x)=x6+2x5+3x4+4x3+5x2+6x,当x=2时f(x)的值为240.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)10x1(2)=y02(3),求数字x,y的值.【解析】因为10x1(2)=1×20+x×21+0×22+1×23=9+2x,y02(3)=2×30+y×32=9y+2,所以9+2x=9y+2且x∈{0,1},y∈{0,1,2},所以x=1,y=1. 18.(12分)分别用辗转相除法和更相减损术求779与209的最大公约数.【解析】(1)辗转相除法:779=209×3+152,209=152×1+57,152=57×2+38,57=38×1+19,38=19×2.所以779与209的最大公约数为19.(2)更相减损术:779-209=570,570-209=361,361-209=152,209-152=57,152-57=95,95-57=38,57-38=19,38-19=19.所以779和209的最大公约数为19.19.(12分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.【解析】算法如下:第一步,a1=1.第二步,i=9.第三步,a0=2×(a1+1).第四步,a1=a0.第五步,i=i-1.第六步,若i=0,执行第七步,否则执行第三步.第七步,输出a0的值.程序框图和程序如图所示:20.(12分)设计程序框图,求出××××…×的值. 【解析】程序框图如图所示:21.(12分)给出30个数:1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3……以此类推,要计算这30个数的和,现在已知该问题的算法的程序框图如图所示.(1)请在图中判断框和处理框内填上合适的语句,使之能实现该题的算法功能.(2)根据程序框图写出程序.【解析】(1)该算法使用了当型循环结构,因为是求30个数的和,所以循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为“i≤30?”.算法中的变量p实质是表示参与求和的数,由于它也是变化的,且满足第i个数比其前一个数大i-1,第i+1个数比其前一个数大i,故处理框内应为p=p+i.故①处应填i≤30?;②处应填p=p+i.(2)根据程序框图,可设计如下程序:22.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.【解析】(1)由程序框图知,当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x,y)的组数为1 009.(3)程序框图的程序语句如下:关闭Word文档返回原板块第- 11 -页共11页。
(典型题)高中数学必修三第一章《统计》检测卷(含答案解析)(1)
一、选择题1.为了解某社区居民的家庭年收入和年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中0.78b ∧=,a y b x ∧∧=-元,据此估计,该社区一户收入为16万元家庭年支出为( ) A .12.68万元B .13.88万元C .12.78万元D .14.28万元2.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件3.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e4.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生5.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:销售量y (件)3 5 8 910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.76.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-. A .①②③ B .①③④C .①②④D .②③④7.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元C .12.0万元D .12.2万元8.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和929.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,...,960,分组后某组抽到的号码为41.抽到的32人中,编号落入区间[]401,755 的人数为( ) A .10B .11C .12D .1310.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.211.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .1112.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.已知数据1x ,2x ,…,10x 的方差为1,且()()()222123222x x x -+-+-()2102170x ++-=,则数据1x ,2x ,…,10x 的平均数是________.14.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 15.如图,这是某校高一年级一名学生七次数学测试成绩(满分100分)的茎叶图. 去掉一个最高分和一个最低分后,所剩数据的方差是 _____16.为调查某校学生每天用于课外阅读的时间,现从该校3000名学生中随机抽取100名学生进行问卷调查,所得数据均在区间[50,100]上,其频率分布直方图如图所示,则估计该校学生中每天用于阅读的时间在[70,80)(单位:分钟)内的学生人数为____.17.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______. 18.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.19.一组样本数据按从小到大的顺序排列为:1-,0,4,x ,y ,14,已知这组数据的平均数与中位数均为5,则其方差为__________.20.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.三、解答题21.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm 到195cm 之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.22.某微商对某种产品每天的销售量(单位:件)进行为期一个月(按30天计算)的数据统计分析,并得出了这种产品该月销售量的频率分布直方图(如图).假设用直方图中所得的频率来估计相应事件发生的概率.(Ⅰ)求频率分布直方图中a 的值;(Ⅱ)若微商在一天的销售量不低于25件,则上级商企会给微商赠送100元的礼金,估计该微商在一年内获得的礼金数.23.假设关于某设备的使用年限x 和所支出的维修费用y (万元),有如下的统计资料:x2 3 4 5 6 y 2.23.85.56.57.0若由资料可知y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?(参考:1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-)24.2018年,依托用户碎片化时间的娱乐需求、分享需求以及视频态的信息负载力,短视频快速崛起;与此同时,移动阅读方兴未艾,从侧面反应了人们对精神富足的一种追求,在习惯了大众娱乐所带来的短暂愉悦后,部分用户依旧对有着传统文学底蕴的严肃阅读青睐有加.某读书APP 抽样调查了非一线城市M 和一线城市N 各100名用户的日使用时长(单位:分钟),绘制成频率分布直方图如下,其中日使用时长不低于60分钟的用户记为“活跃用户”.(1)请填写以下22⨯列联表,并判断是否有99.5%的把握认为用户活跃与否与所在城市有关?活跃用户 不活跃用户 合计城市M 城市N 合计(2)以频率估计概率,从城市M 中任选2名用户,从城市N 中任选1名用户,设这3名用户中活跃用户的人数为ξ,求ξ的分布列和数学期望.(3)该读书APP 还统计了2018年4个季度的用户使用时长y (单位:百万小时),发现y 与季度(x )线性相关,得到回归直线为ˆ4ˆyx a =+,已知这4个季度的用户平均使用时长为12.3百万小时,试以此回归方程估计2019年第一季度(5x =)该读书APP 用户使用时长约为多少百万小时. 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.025 0.010 0.005 0.00125.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑ 26.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的列联表,并根据列联表,判断是否有多少的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由已知求得 x , y ,进一步求得 a ,得到线性回归方程,取16x =求得y 值即可. 【详解】8.38.69.911.1512.1 10x +++=+=, 5.97.88.18.49.858y ++++==.又 0.78b =,∴ 80.78100.2a y bx --⨯===. ∴ 0.780.2y x =+.取16x =,得 0.78160.212.68y ⨯+==万元,故选A . 【点睛】本题主要考查线性回归方程的求法,考查了学生的计算能力,属于中档题.2.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.3.D解析:D 【分析】由已知求得x 与z 的值,代入线性回归方程求得a ,再由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,结合z lny =,得z lnc kx =+,则109lnc =,由此求得【详解】 解:1617181917.54x +++==,50344131394z +++==. 代入4z x a =-+,得39417.5a =-⨯+,则109a =.∴4109z x =-+,由kxy ce =,得()kx kx lny ln ce lnc lne lnc kx ==+=+,令z lny =,则z lnc kx =+,109lnc ∴=,则109c e =. 故选:D . 【点睛】本题考查回归方程的求法,考查数学转化思想方法,考查计算能力,属于中档题.4.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.5.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C .本题主要考查线性回归方程的性质及其应用,属于中等题.6.C解析:C【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可.【详解】①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的线性回归方程为y∧=0.85x﹣85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg,正确;②关于x的方程x2﹣mx+1=0(m>2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确;③设定圆C的方程为(x﹣a)2+(x﹣b)2=r2,其上定点A(x0,y0),设B(a+r cosθ,b+r sinθ),P(x,y),由12OP =(OA OB+)得22x a rcosxy b rsinyθθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x﹣x0﹣a)2+(2y﹣y0﹣b)2=r2,即动点P的轨迹为圆,∴故③不正确;④由22143x y+=,得a2=4,b2=3,∴1c==.则F(﹣1,0),如图:过F作垂直于x轴的直线,交椭圆于A(x轴上方),则x A=﹣1,代入椭圆方程可得32Ay=.当P为椭圆上顶点时,P(0FPk=32OAk=-,∴当直线FP时,直线OP的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,.当P为椭圆下顶点时,P(0,∴当直线FP时,直线OP,32),综上,直线OP(O为原点)的斜率的取值范围是32⎛⎫-∞-⎪⎝⎭,∪(8,32).故选C【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.7.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.8.A解析:A 【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.59.C解析:C 【分析】由题意可得抽到的号码构成以11为首项、以30为公差的等差数列,求得此等差数列的通项公式为a n =30n ﹣19,由401≤30n ﹣21≤755,求得正整数n 的个数,即可得出结论. 【详解】∵960÷32=30,∴每组30人,∴由题意可得抽到的号码构成以30为公差的等差数列, 又某组抽到的号码为41,可知第一组抽到的号码为11,∴由题意可得抽到的号码构成以11为首项、以30为公差的等差数列, ∴等差数列的通项公式为a n =11+(n ﹣1)30=30n ﹣19, 由401≤30n ﹣19≤755,n 为正整数可得14≤n ≤25, ∴做问卷C 的人数为25﹣14+1=12, 故选C . 【点睛】本题主要考查等差数列的通项公式,系统抽样的定义和方法,根据系统抽样的定义转化为等差数列是解决本题的关键,比较基础.10.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n =++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.12.C解析:C 【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的. 故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.或6【分析】由数据…的方差为1且把所给的式子进行整理两式相减得到关于数据的平均数的一元二次方程解方程即可【详解】数据…的方差为1①②将②-①得解得或故答案为:或6【点睛】本题主要考查一组数据的平均数解析:2-或6. 【分析】由数据1x ,2x ,…,10x 的方差为1,且()()()()2222123102222170x x x x -+-+-++-=,把所给的式子进行整理,两式相减,得到关于数据的平均数的一元二次方程,解方程即可. 【详解】数据1x ,2x ,…,10x 的方差为1,()()()()22221231010x x x x x x x x∴-+-+-++-=,()()22221210121010210x x x x x x x x ∴++++-+++=,()222212101010x x x x ∴+++-=,①()()()()2222123102222170x x x x -+-+-++-=, ()()22212101210440170x x x x x x ∴+++-++++=,()22212104040170x x x x ∴+++-+=,②将②-①得24120x x --=,解得2x =-,或6x =, 故答案为:2-或6. 【点睛】本题主要考查一组数据的平均数的求法,解题时要熟练掌握方差的计算公式的灵活运用,属于中档题.14.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④ 【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解. 【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确; 根据相关指数的概念,可得2R 越大说明拟合效果越好,所以③不正确;若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间负相关,且线性相关性强,所以④正确;故答案为:①②④. 【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.15.或【分析】利用平均数与方差公式直接求解即可【详解】由题去掉最高与最低分后的测试成绩为8284848689则平均数方差故答案为:或【点睛】本题考查茎叶图考查平均数与方差的计算是基础题解析:5.6或285【分析】利用平均数与方差公式直接求解即可 【详解】由题去掉最高与最低分后的测试成绩为82,84,84,86,89,则平均数8284848689855x ++++==方差()()()()()2222221288582858485848586858955s ⎡⎤=-+-+-+-+-=⎣⎦ 故答案为:5.6或285【点睛】本题考查茎叶图,考查平均数与方差的计算,是基础题16.【分析】利用频率分布直方图中频率和为1求a 值根据7080)的频率求出在此区间的人数即可【详解】由1﹣005﹣035﹣02﹣01=03故a =003故阅读的时间在7080)(单位:分钟)内的学生人数为: 解析:900【分析】利用频率分布直方图中频率和为1求a 值,根据[70,80)的频率求出在此区间的人数即可. 【详解】由1﹣0.05﹣0.35﹣0.2﹣0.1=0.3, 故a =0.03,故阅读的时间在[70,80)(单位:分钟)内的学生人数为:0.3×3000=900, 故答案为900. 【点睛】本题考查频率分布直方图中的有关性质的应用,考查直方图中频率和频数的求法.17.【解析】【分析】由题意求得样本中心点代入回归直线方程即可求出的值【详解】由已知代入回归直线方程可得:解得故答案为【点睛】本题考查了线性回归方程求出横坐标和纵坐标的平均数写出样本中心点将其代入线性回归解析:16-【解析】 【分析】由题意求得样本中心点,代入回归直线方程即可求出b 的值 【详解】 由已知,()12101210330x x x y y y +++=+++=()12101310x x x x ∴=⨯+++= ()12101110y y y y =⨯+++=代入回归直线方程可得:3132b =+ 解得16b =-故答案为16- 【点睛】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果18.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.19.【解析】分析:根据中位数为求出是代入平均数公式可求出从而可得出平均数代入方差公式得到方差详解中位数为这组数据的平均数是可得这组数据的方差是故答案为点睛:本题主要考查平均数与方差属于中档题样本数据的算 解析:743【解析】分析:根据1,0,4,,,14x y -中位数为5,,求出x 是6 ,代入平均数公式,可求出7y =,从而可得出平均数,代入方差公式,得到方差. 详解1,0,4,,7,14x -中位数为45,52x+∴=,6x ∴=,∴这组数据的平均数是10461456y -+++++=,7y =可得这组数据的方差是()17436251148163+++++=,故答案为743. 点睛:本题主要考查平均数与方差,属于中档题.样本数据的算术平均数公式为12n 1(x +x +...+x )x n=.样本方差2222121[()()...()]n s x x x x x x n =-+-++-,标准差222121[()()...()]n s x x x x x x n=-+-++-. 20.【解析】 三、解答题21.(1)见解析;(2)174.5cm ;(3)0.3. 【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为.22.(Ⅰ)0.02;(Ⅱ)10800元. 【分析】(Ⅰ)由频率分布直方图中小矩形面积和为1能求出a .(Ⅱ)根据频率分布直方图,日销售量不低于25件的天数为(0.040.02)5309+⨯⨯=,一个月可获得的奖励为900元,由此可以估计一年内获得的礼金数. 【详解】(Ⅰ)由题意可得1[1(0.010.060.070.04)5]0.025a =-+++⨯=. (Ⅱ)根据频率分布直方图知,日销售量不低于25件的天数为:()0.040.025309+⨯⨯=(天),一个月可获得的礼金数为9100900⨯=(元),依此可以估计该微商一年内获得的礼金数为9001210800⨯=元. 【点睛】本题考查频率的求法,考查频率分布直方图的性质等基础知识,考查样本估计总体以及运算求解能力、数形结合思想的应用,是基础题.23.(1) 1.2308ˆ.0yx =+;(2)12.38万元.. 【分析】(1)由已知表格中的数据,易计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.(2)把使用年限10代入回归直线方程,即可估算出维修费用的值. 【详解】 (1)4x =,5y=,52190ii x==∑,51112.3i i i x y ==∑,12215 1.235ni ii nii x yxyb xx ==-==-∑∑,0.08a y bx =-=, 所以回归直线方程为 1.2308ˆ.0yx =+; (2) 1.23100.0812.3ˆ8y=⨯+=, 即估计用10年时维修费约为12.38万元. 【点评】本题考查回归直线的方程求解,关键是要求出回归直线方程的系数,由已知的变量x ,y 的值,我们计算出变量x ,y 的平均数,及2i x ,i i x y 的累加值,代入回归直线系数公式1221ni ii nii x ynxyb xnx ==-=-∑∑,a y bx =-,即可求出回归直线的系数,进而求出回归直线方程.属于中等题.24.(1)见解析;(2)见解析;(3) 22.3百万小时 【分析】(1)根据频率分布直方图求数据填入对应表格,再根据卡方公式求2K ,最后对照数据作判断,(2)先确定随机变量取法,再判断从M 城市中任选的2名用户中活跃用户数服从二项分布,从N 城市中任选的1名用户中活跃用户数服从两点分布,进而求得对应概率,列表得分布列,最后根据数学期望公式得期望,(3)先求均值,解得ˆa,再估计5x =对应函数值. 【详解】(1)由已知可得以下22⨯列联表:计算()2220060208040200K 9.5247.8791001001406021⨯⨯-⨯==≈>⨯⨯⨯ , 所以有99.5%的把握认为用户是否活跃与所在城市有关. (2)由统计数据可知,城市M 中活跃用户占35,城市N 中活跃用户占45,设从M 城市中任选的2名用户中活跃用户数为X ,则3~2,5X B ⎛⎫ ⎪⎝⎭设从N 城市中任选的1名用户中活跃用户数为Y ,则Y 服从两点分布,其中()415P Y ==. 故0,1,2,3ξ=,()()()20221400055125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭; ()()()()()2012224321*********555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅+⋅⋅⋅=⎪⎝⎭;()()()()()2122223431572112055555125P P X P Y P X P Y C C ξ⎛⎫===⋅=+=⋅==⋅⋅+⋅⋅= ⎪⎝⎭;()()()222343632155125P P X P Y C ξ⎛⎫===⋅==⋅= ⎪⎝⎭. 故所求ξ的分布列为()428573601232125125125125E ξ=⨯+⨯+⨯+⨯=. (3)由已知可得 2.5x =,又12.3y =,可得12.34ˆ2.5a=⨯+,所以ˆ 2.3a =,所以4 2.3ˆy x =+. 以5x =代入可得ˆ22.3y=(百万小时), 即2019年第一季度该读书APP 用户使用时长约为22.3百万小时. 【点睛】本题考查频率分布直方图、回归直线方程以及分布列和数学期望,考查基本分析求解能力,属中档题.25.(1)见解析(2) 1.1.7ˆ0yx =+(3)9.5百万元 【解析】试题分析:(1)根据表格中的数据,在坐标系中描出点,将点连起来,就画出了散点图;(2)根据题目中的数据计算出 1.1,0.ˆˆ7ba ==,代入平均值3,4x y ==,即可得到回归方程;(3)将8x =,代入回归方程即可得到预测值. (1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i ii x y==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑,根据公式,可求得2715341.1,4 1.130.ˆˆ75553ba-⨯⨯===-⨯=-⨯, 故所求回归直线的方程为 1.1.7ˆ0y x =+; (3)令8x =,得到预测值 1.1809.5ˆ.7y=⨯+=(百万元) 答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元. 26.(1)概率分别为:43100,27100,21100,9100;(2)350;(3)填表见解析;有95%的把握认为锻炼的人次与该市的空气质量有关.【分析】(1)用频率估计概率,从而得到估计该市一天的空气质量等级为1,2,3,4的概率; (2)利用频率分布直方图估计样本平均值的方法可得得答案; (3)完善列联表,由公式计算卡方的值,从而查表即可, 【详解】解:(1)该市一天的空气质量等级为1的概率为:2162543100100++=;该市一天的空气质量等级为2的概率为:5101227100100++=;该市一天的空气质量等级为3的概率为:67821100100++=;该市一天的空气质量等级为4的概率为:7209100100++=; (2)由题意可得:一天中到该公园锻炼的平均人次的估计值为:1000.203000.355000.45350x =⨯+⨯+⨯=;(3)根据所给数据,可得下面的22⨯列联表,由表中数据可得:2 5.820 3.841()()()()70305545K a b c d a c b d ==≈>++++⨯⨯⨯, 所以有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查了独立性检验与频率估计概率,估计平均值的求法,属于中档题.。
新人教版高中数学必修3全册同步测试题及解析答案.doc
新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
高一数学必修3第一章测试题及答案(K12教育文档)
高一数学必修3第一章测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修3第一章测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修3第一章测试题及答案(word版可编辑修改)的全部内容。
高一数学必修3第一章测试题姓名____________班级___________学号_______(时间120分钟,满分150分) 一、选择题(5×10=50分)1。
下面对算法描述正确的一项是:( )A .算法只能用自然语言来描述B .算法只能用图形方式来表示C .同一问题可以有不同的算法D .同一问题的算法不同,结果必然不同 2.在下图中,直到型循环结构为 ( )A .B .C . D3.算法 S1 m=aS2 若b 〈m ,则m=b S3 若c 〈m ,则m=c S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a,b ,c ,d 中最大值B .a ,b,c ,d 中最小值C .将a ,b,c,d 由小到大排序D .将a,b ,c,d 由大到小排序 4.右图输出的是A .2005B .65C .64D .63循环体 满足条件?是否循环体满足条件?否是满足条件?循环体是否满足条件?循环体否是i=11 s=1 DOs= s * i i = i -1n=5 s=0WHILE s<15 S=s + nn=n -1WEND PRINT n 5.下列给出的赋值语句中正确的是( )A 。
5 = M B. x =-x (第4题)C. B=A=3D. x +y = 06.右边程序的输出结果为 ( )A . 3,4B . 7,7C . 7,8D . 7,117.右图给出的是计算0101614121+⋅⋅⋅+++的值的一个程序框图,其中判断框内应填入的条件是 ( )A . i 〈=100B .i 〉100C .i>50D .i<=50 8.如果右边程序执行后输出的结果是990, 那么在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C 。
人教版数学高三第一章解三角形单元测试精选(含答案)1
(1)求 BC 边长; (2)求 AB 边上中线 CD 的长.
【来源】北京 101 中学 2018-2019 学年下学期高一年级期中考试数学试卷
【答案】(1) 3 2 ;(2) 13 .
33.ABC 中,角 A,B,C 所对的边分别为 a,b,c,已知 a 3, cos A 6 , B A ,
【答案】C
3.在 ABC 中,若 a b cb c a 3bc ,则 A ( )
A. 90
B. 60
C.135
D.150
【来源】2015-2016 学年江西省金溪一中高一下期中数学试卷(带解析)
【答案】B
4.设在 ABC 中,角 A,B,C 所对的边分别为 a,b, c , 若 b cos C c cos B a sin A ,
【答案】C
21.设 ABC 的内角 A, B,C 所对边的长分别为 a, b, c ,若 b c 2a, 3sin A 5sin B ,
则角 C =( )
A.
3 3
C.
4
2
B.
3 5
D.
6
【来源】2013 年全国普通高等学校招生统一考试文科数学(安徽卷带解析)
【答案】B
22.在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若 a2 b2 c2 tanB 3ac ,
A.3 6
B.9 6
C.3
D.6
【来源】福建省晋江市季延中学 2017-2018 学年高一下学期期末考试数学试题
【答案】A
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且cc−−ba=sinCsi+nAsinB,则 B= (
)
A.π
6
高中数学(人教版A版必修三)配套单元检测:第一章 单元检测 AB卷 Word版含答案
第一章算法初步(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.()A.算法的起始与结束B.算法输入和输出信息C.计算、赋值D.判断条件是否成立2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.条件结构C.循环结构D.以上都用3.已知变量a,b已被赋值,要交换a、b的值,采用的算法是()A.a=b,b=a B.a=c,b=a,c=bC.a=c,b=a,c=a D.c=a,a=b,b=c4.阅读下图所示的程序框图,运行相应的程序,输出的结果是()A.1 B.2C.3 D.45.给出程序如下图所示,若该程序执行的结果是3,则输入的x值是()INPUT xIF x>=0THENy=xELSEy=-xEND IFPRINT yENDA.3 B.-3C.3或-3 D.06.下列给出的输入语句、输出语句和赋值语句:(1)输出语句INPUT a,b,c(2)输入语句INPUT x=3(3)赋值语句3=A(4)赋值语句A=B=C则其中正确的个数是()A.0个B.1个C.2个D.3个7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构8.阅读下面的程序框图,则输出的S等于()A.14 B.20C.30 D.559.将二进制数110 101(2)转化为十进制数为()A.106 B.53C.55 D.10810.两个整数1 908和4 187的最大公约数是()A.51 B.43C.53 D.6711.运行下面的程序时,WHILE循环语句的执行次数是()N=0WHILE N<20N=N+1N=N*NWENDPRINT NENDA.3 B.4 C.15 D.1912.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是()A.i>5 B.i≤4二、填空题(本大题共4小题,每小题5分,共20分)13.如果a=123,那么在执行b=a/10-a\10后,b的值是________.14.给出一个算法:根据以上算法,可求得f(-1)+f(2)=________.15.把89化为五进制数是________.16.执行下边的程序框图,输出的T=________.三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数f (x )=⎩⎨⎧x 2-1 (x ≥0),2x 2-5(x <0),对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f (x )=2x 4+3x 3+5x -4在x =2时的值.21.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f (x )=x 2-5,写出求方程f (x )=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.第一章 算法初步(A)1.B 2.D3.D [由赋值语句知选D.]4.D [初值,S =2,n =1.执行第一次后,S =-1,n =2,执行第二次后,S =12,n =3, 执行第三次后,S =2,n =4.此时符合条件,输出n =4.]5.C [该算法对应的函数为y =|x |,已知y =3,则x =±3.]6.A [(1)中输出语句应使用PRINT ;(2)中输入语句不符合格式INPUT “提示内容”;变量;(3)中赋值语句应为A =3;(4)中赋值语句出现两个赋值号是错误的.]7.B [条件结构就是处理遇到的一些条件判断.算法的流程根据条件是否成立,有不同流向,而循环结构中一定包含条件结构.]8.C [由题意知:S =12+22+…+i 2,当i =4时循环程序终止,故S =12+22+32+42=30.]9.B [110 101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.]10.C [4 187=1 908×2+371,1 908=371×5+53,371=53×7,从而,最大公约数为53.]11.A [解读程序时,可采用一一列举的形式:第一次时,N =0+1=1;N =1×1=1;第二次时,N =1+1=2;N =2×2=4;第三次时,N =4+1=5;N =5×5=25.故选A.]12.C [S =1×24+1×23+1×22+1×21+1=(((2×1+1)×2+1)×2+1)×2+1(秦九韶算法).循环体需执行4次后跳出,故选C.]13.0.3解析 ∵a =123,∴a /10=12.3又∵a \10表示a 除以10的商,∴a \10=12.∴b =a /10-a \10=12.3-12=0.3.14.0解析 f (x )=⎩⎪⎨⎪⎧4x , x ≤0,2x , x >0, ∴f (-1)+f (2)=-4+22=0.15.324(5)16.30解析 按照程序框图依次执行为S =5,n =2,T =2;S =10,n =4,T =2+4=6;S =15,n =6,T =6+6=12;S =20,n =8,T =12+8=20;S =25,n =10,T =20+10=30>S ,输出T =30.17.解 辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94.18.解程序框图如下图:程序:S=i=1WHILE i<=999S=S+i∧2i=i+2WENDPRINT SEND19.解程序框图:程序为:20.解f(x)改写为f(x)=(((2x+3)x+0)x+5)x-4,∴v0=2,v1=2×2+3=7,v2=7×2+0=14,v3=14×2+5=33,v4=33×2-4=62,∴f(2)=62.21.解程序如下:程序框图如下图:S =0M =0i =1DOINPUT xIF x>90 THENM =M +1 S =S +xEND IFLOOP UNTIL i>54P =S/MPRINT PEND22.解 本题可用二分法来解决,设x 1=2,x 2=3,m =x 1+x 22. 算法如下:第一步:x 1=2,x 2=3;第二步:m =(x 1+x 2)/2;第三步:计算f(m),如果f(m)=0,则输出m ;如果f(m)>0,则x 2=m ,否则x 1=m ;第四步:若|x 2-x 1|<0.001,输出m ,否则返回第二步.程序框图如图所示:第一章 算法初步(B) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.将两个数a =8,b =17交换,使a =17,b =8,下面语句正确一组是()2.运行如下的程序,输出结果为()A.32 B.33 C.61 D.633.表达算法的基本逻辑结构不包括()A.顺序结构B.条件结构C.循环结构D.计算结构4.设计一个计算1×2×3×…×10的值的算法时,下面说法正确的是() A.只需一个累乘变量和一个计数变量B.累乘变量初始值设为0C.计数变量的值不能为1D.画程序框图只需循环结构即可5.阅读下边的程序框图,运行相应的程序,则输出s的值为()A.-1 B.0C.1 D.3 6.,输出的结果是()a=1b=3A C.0,0 D.6,07.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……依此类推,要计算这30个数的和,现已知给出了该问题的程序框图如图所示.那么框图中判断框①处和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤29?;p=p+i-1C.i≤31?;p=p+i D.i≤30?;p=p+i8.当x=5,y=-20时,下面程序运行后输出的结果为()A.22,-22 B.22,22C.12,-12 D.-12,129.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.1610.时,则输入的x值的取值范围是()A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,0)∪(0,+∞)11.用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.5112.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个13.读程序本程序输出的结果是________.14.人怕机械重复,如计算1+2+3+…+100,十岁的高斯就想到类似于梯形面积的求法:其和S =1+1002×100=5 050,而不是算99次加法,但计算机不怕重复,使用________来做完99步计算,也是瞬间的事,编写这个程序可用________,______两种语句结构.15.某工厂2010年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%.为了求年生产总值超过300万元的最早年份,有人设计了解决此问题的程序框图(如图),请在空白判断框内填上一个适当的式子应为________________.16.如图是一个程序框图,则输出的S 的值是________________________________.三、解答题(本大题共6小题,共70分)17.(10分)把“五进制”数1234(5)转化为“十进制”数,再把它转化为“八进制”数.18.(12分)设计一个可以输入圆柱的底面半径r和高h,再计算出圆柱的体积和表面积的算法,画出程序框图.19.(12分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f (x )的算法的程序框图.20.(12分)如图所示,利用所学过的算法语句编写相应的程序.21.(12分)编写程序,对于函数y =⎩⎪⎨⎪⎧ (x +3)3, (x <0)10, (x =0)(x -3)3. (x >0)要求输入x 值,输出相应的y 值.22.(12分)在边长为4的正方形ABCD 的边上有一点P ,在折线BCDA 中,由点B (起点)向A (终点)运动,设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式,画出程序框图,写出程序.第一章 算法初步(B )1.B [先把b 的值赋给中间变量c ,这样c =17,再把a 的值赋给变量b ,这样b =8,把c 的值赋给变量a ,这样a =17.]2.D [本程序实现的是:求满足1+3+5+…+n>1 000的最小的整数n.当n =61时,1+3+…+61=31(1+61)2=312=961<1 000; 当n =63时,1+3+…+63=32(1+63)2=322=1 024>1 000.] 3.D 4.A5.B [当i =1时,s =1×(3-1)+1=3;当i =2时,s =3×(3-2)+1=4;当i =3时,s =4×(3-3)+1=1;当i =4时,s =1×(3-4)+1=0;紧接着i =5,满足条件i>4,跳出循环,输出s 的值为0.]6.B [把1赋给变量a ,把3赋给变量b ,把4赋给变量a ,把1赋给变量b ,输出a ,b.]7.D8.A [具体运行如下:(x ,y)→(5,-20)→(5,-17)∴x -y =22,y -x =-22.]9.C [本小题考查的是程序框图中的循环结构,循环体中两个变量S 、n 其值对应变化,执行时,S 与n故S =2时,输出n =8.]10.C [由程序可得y =⎩⎪⎨⎪⎧x (x>0)⎝⎛⎭⎫12x -1 (x ≤0), ∵y>1,∴①当x ≤0时,⎝⎛⎭⎫12x -1>1,即2-x >2,∴-x>1,∴x<-1.②当x>0时,x>1,即x>1,故输入的x值的范围为(-∞,-1)∪(1,+∞).]11.D[459=357×1+102,357=102×3+51,102=51×2,51是102和51的最大公约数,也就是459和357的最大公约数.]12.C13.33解析由题意知V=34×2×2×3=3 3.14.循环语句WHILE型UNTIL型15.a>300?16.63解析当n=1时,S=1+21=3;当n=2时,S=3+22=7;当n=3时,S=7+23=15;当n=4时,S=15+24=31;当n=5时,S=31+25=63>33.故S=63.17.解1234(5)=1×53+2×52+3×51+4×50=194,∴194=302(8)18.解算法如下:第一步:输入半径r和高h.第二步:计算底面积S=πr2.第三步:计算体积V=hS.第四步:计算侧面积C=2πrh.第五步:计算表面积B=2S+C.第六步:输出V和B.程序框图如右图.19.解程序框图如下图所示:20.解程序如下:INPUT x ,n m =0N =0i =0WHILE i <nN =x *10^i +N m =m +N i =i +1WENDPRINT mEND21.解 程序如下: INPUT xIF x =0 THEN y =10ELSEIF x >0 THEN y =(x -3)^3 ELSE y =(x +3)^3 END IFEND IFPRINTyEND22.解 y =⎩⎪⎨⎪⎧ 2x , 0≤x ≤4,8, 4<x ≤8,2(12-x ), 8<x ≤12.程序框图如下图.程序如下:。
高一数学必修3第一章测试题及答案-人教版(A汇编
高一数学必修3第一章测试题及答案-人教版(A)数学第一章测试题一.选择题1.下面的结论正确的是 ( )A .一个程序的算法步骤是可逆的B 、一个算法可以无止境地运算下去的C 、完成一件事情的算法有且只有一种D 、设计算法要本着简单方便的原则2、早上从起床到出门需要洗脸刷牙(5 min)、刷水壶(2 min)、烧水(8 min)、泡面(3 min)、吃饭(10 min)、听广播(8 min)几个步骤、从下列选项中选最好的一种算法 ( )A 、 S1 洗脸刷牙、S2刷水壶、S3 烧水、S4 泡面、S5 吃饭、S6 听广播B 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5 听广播C 、 S 1刷水壶 、S2烧水同时洗脸刷牙、S3泡面、S4吃饭 同时 听广播D 、 S1吃饭 同时 听广播、S2泡面、S3烧水同时洗脸刷牙、S4刷水壶 3.算法 S1 m=aS2 若b<m ,则m=b S3 若c<m ,则m=c S4 若d<m ,则 m=dS5 输出m ,则输出m 表示 ( ) A .a ,b ,c ,d 中最大值B .a ,b ,c ,d 中最小值C .将a ,b ,c ,d 由小到大排序D .将a ,b ,c ,d 由大到小排序 4.右图输出的是A .2005B .65C .64D .63 5、下列给出的赋值语句中正确的是( )A. 5 = MB. x =-x (第4题)C. B=A=3D. x +y = 06、下列选项那个是正确的( )A 、INPUT A;B B. INPUT B=3 C. PRINT y=2*x+1 D. PRINT 4*x 7、以下给出的各数中不可能是八进制数的是( ) A.123 B.10 110 C.4724 D.7 8578、如果右边程序执行后输出的结果是990,那么 在程序until 后面的“条件”应为( ) A.i > 10 B. i <8 C. i <=9 D.i<9 9.读程序 甲: i=1 乙: i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i 一1 WEND Loop UNTIL i<1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是 ( )A .程序不同结果不同B .程序不同,结果相同C .程序相同结果不同D .程序相同,结果相同 10.在上题条件下,假定能将甲、乙两程序“定格”在i=500,即能输出i=500 时一个值,则输出结果 ( )A .甲大乙小B .甲乙相同C .甲小乙大D .不能判断 二.填空题.11、有如下程序框图(如右图所示),则该程序框图表示的算法的功能是( 第12题)12、上面是求解一元二次方程)0(02≠=++a c bx ax 的流程图,根据题意填写: (1) ;(2) ;(3) 。
高中数学人教A版必修三 第一章 算法初步 学业分层测评1 Word版含答案
学业分层测评(一) 算法的概念(建议用时:45分钟)[学业达标]一、选择题1.下列四种自然语言叙述中,能称作算法的是( )A .在家里一般是妈妈做饭B .做米饭需要刷锅、淘米、添水、加热这些步骤C .在野外做饭叫野炊D .做饭必须要有米【解析】 算法是做一件事情或解决一类问题的程序或步骤,故选B.【答案】 B2.下列问题中,不可以设计一个算法求解的是( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性【解析】 A 、B 、C 选项中的问题都可以设计算法解决,D 选项中的问题由于x 在R 上取值无穷尽,所以不能设计一个算法求解.【答案】 D3.(2016·东营高一检测)一个算法步骤如下:S 1,S 取值0,i 取值1;S2,如果i≤10,则执行S3,否则执行S6;S3,计算S+i并将结果代替S;S4,用i+2的值代替i;S5,转去执行S2;S6,输出S.运行以上步骤后输出的结果S=()A.16B.25C.36 D.以上均不对【解析】由以上计算可知S=1+3+5+7+9=25.【答案】 B4.有如下算法:第一步,输入不小于2的正整数n.第二步,判断n是否为2.若n=2,则n满足条件;若n>2,则执行第三步.第三步,依次从2到n-1检验能不能整除n,若不能整除,则n 满足条件.则上述算法满足条件的n是()A.质数B.奇数C.偶数D.约数【解析】根据质数、奇数、偶数、约数的定义可知,满足条件的n是质数.【答案】 A5.下列各式中T 的值不能用算法求解的是( )A .T =12+22+32+42+…+1002B .T =12+13+14+15+…+150C .T =1+2+3+4+5+…D .T =1-2+3-4+5-6+…+99-100【解析】 根据算法的有限性知C 不能用算法求解.【答案】 C二、填空题6.求过P (a 1,b 1),Q (a 2,b 2)两点的直线斜率有如下的算法,请将算法补充完整:第一步,令x 1=a 1,y 1=b 1,x 2=a 2,y 2=b 2.第二步,若x 1=x 2,则输出斜率不存在,结束算法;否则,________. 第三步,输出结果k .【答案】 k =y 1-y 2x 1-x 27.给出下列算法:第一步,输入x 的值.第二步,当x >4时,计算y =x +2;否则执行下一步.第三步,计算y =4-x .第四步,输出y .当输入x =0时,输出y =________.【解析】 因为0<4,执行第三步,所以y =4-0=2.【答案】 28.如下算法:第一步,输入x 的值.第二步,若x ≥0成立,则y =x ;否则执行下一步.第三步,计算y =x 2.第四步,输出y 的值.若输入x =-2,则输出y =________.【解析】 输入x =-2后,x =-2≥0不成立,则计算y =x 2=(-2)2=4,则输出y =4.【答案】 4三、解答题9.已知某梯形的底边长AB =a ,CD =b ,高为h ,写出一个求这个梯形面积S 的算法.【解】 算法如下:第一步,输入梯形的底边长a 和b ,以及高h .第二步,计算a +b 的值.第三步,计算(a +b )×h 的值.第四步,计算S =(a +b )×h 2的值. 第五步,输出结果S .10.设计一个解方程x 2-2x -3=0的算法.【解】 算法如下:第一步,移项,得x 2-2x =3. ①第二步,①式两边加1,并配方得(x-1)2=4. ②第三步,②式两边开方,得x-1=±2. ③第四步,解③得x=3或x=-1.第五步,输出结果x=3或x=-1.[能力提升]1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用的分钟数为() A.13 B.14C.15 D.23【解析】①洗锅盛水2分钟,②用锅把水烧开10分钟(同时②洗菜6分钟,③准备面条及佐料2分钟),⑤煮面条3分钟,共为15分钟.【答案】 C2.已知一个算法如下:第一步,令m=a.第二步,如果b<m,则m=b.第三步,如果c<m,则m=c.第四步,输出m.如果a=3,b=6,c=2,则执行这个算法的结果是________.【解析】这个算法是求a,b,c三个数中的最小值,故这个算法的结果是2.【答案】 23.鸡兔同笼问题:鸡和兔各若干只,数腿共100条,数头共30只,试设计一个算法,求鸡和兔各有多少只. 【导学号:28750002】【解】 第一步,设有x 只鸡,y 只兔,列方程组⎩⎪⎨⎪⎧x +y =30,①2x +4y =100.②第二步,②÷2-①,得y =20.第三步,把y =20代入①,得x =10.第四步,得到方程组的解⎩⎪⎨⎪⎧x =10,y =20.第五步,输出结果,鸡10只,兔20只.4.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?【解】 法一 算法如下:第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.法二 算法如下:第一步,把9枚银元平均分成3组,每组3枚.第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.。
最新人教版高中数学必修3第一章《算法初步》单元测试(第一章算法初步测评)
本章测评(时间90分钟,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1关于算法的描述正确的是()A.只有数学问题才会有算法B.算法过程要一步一步执行,每一步的操作都是明确的C.有的算法可能无结果D.一个算法执行了一年后才得出结果2下列框图符号中,表示判断框的是()3下列程序语句中,正确的是()A.x=3 B.3=xC.x-3=0 D.3-x=04840和1764的最大公约数是()A.84 B.12 C.168 D.2525用二分法求方程x2-2=0的近似根的算法中要用哪种算法结构()A.顺序结构B.条件分支结构C.循环结构D.以上都用6已知变量a,b已被赋值,要交换a,b的值,应采用下面________的算法()A.a=b,b=a B.a=c,b=a,c=bC.a=c,b=a,c=a D.c=a,a=b,b=c7用秦九韶算法求多项式f(x)=5x4-7x3+x+2当x=2的值时,需要______次乘法运算,______次加法运算.()A.4、2 B.4、3 C.4、4 D.5、38下图是一个算法的程序框图,该算法所输出的结果是…()A.12B.23C.34D.459运行下面程序后,输出数的个数为( )i =1while i <10i =i +1i =i*iprint iendA .1B .10C .9D .1110(2009辽宁高考,理10)某店一个月的收入和支出总共记录了N 个数据a 1,a 2,…,a N ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V .那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A.A>0,V=S-T B.A<0,V=S-TC.A>0,V=S+T D.A<0,V=S+T二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11三个数72,120,168的最大公约数是______.12如图是输出4 000以内的能被3和5整除的所有正整数的算法流程图,则(1)处应填________.13用秦九韶算法求多项式f(x)=2+0.35x+1.8x2-3x3+6x4-5x5+x6在x=-1的值时,令v0=a6,v1=v0x+a5,…,v6=v5x+a0.则v3的值是______.14下列程序的输出结果为________.i=1;while i<8i=i+2;S=2]i=i-1;endS15(2009广东高考,理9)随机抽取某产品n 件,测得其长度分别为a 1,a 2,…,a n .则下图所示的程序框图输出的s =________,s 表示的样本的数字特征是________.(注:框图中的赋值符号“=”也可以写成“←”或“:=”)三、解答题(本大题共4小题,共40分.解答时应写出文字说明、证明过程或演算步骤) 16(本小题满分9分)用“等值算法”(更相减损之术),求下列两数的最大公约数.(1)225,135;(2)98,280.17(本小题满分10分)设计算法求11×2+12×3+13×4+…+199×100的值,要求画出程序框图,写出用基本语句编写的程序.18(本小题满分10分)有一列数1,2,5,26,…,你能找出它的规律吗?下面的程序框图所示是输出这个数列的前10项,并求和的算法,试将框图补充完整,并写出相应的程序.19(本小题满分11分)用分期付款的方式购买价格为1150元的冰箱,如果购买时先付150元,以后每月付50元,加入欠款的利息,若一个月后付第一个月的分期付款,月利率为1%,购冰箱钱全部付清后,实际共付出款额多少元?写出计算的程序,并画出程序框图.参考答案1解析:算法具有确定性、有穷性、可行性、输入、输出的特性,它必须在有限的时间内完成,并输出结果.D 项无实用价值,不具备可行性.答案:B2解析:A 选项为处理框,B 选项为起止框,D 选项为输入、输出框.答案:C3解析:赋值号左边只能是变量名,左右不能对换,故选A.答案:A4答案:B5解析:任何一个算法都有顺序结构,循环结构一定包含条件分支结构,二分法用到循环结构.答案:D6解析:先把a 的值赋给中间变量c ,再把b 的值赋给a ,最后把c 的值赋给b . 答案:D7解析:多项式可表示为f (x )=(((5x -7)x )x +1)x +2,需4次乘法,3次加法运算. 答案:B8解析:利用变量更新法i =2,m =1,n =12;i =3,m =2,n =12+16;i =4,m =3,n =12+16+112循环结束,输出n . 答案:C9解析:由于输出语句print i 在循环体内,故每循环一次输出一个数,又条件i <10,当i =10即停止循环不再输出,所以共输出9个数.答案:C10解析:月总收入S 应当为本月的各项收入之和,故需满足A >0,净盈利应当为月总收入减去本月的各项支出.综合T <0,故V =S +T .答案:C11解析:利用辗转相除法:120=72×1+48,72=48×1+24,48=24×2,168=24×7.答案:2412解析:能被3和5整除的正整数为15的倍数,所以a =15i .答案:a =15i13解析:f (x )=(((((x -5)x +6)x -3)x +1.8)x +0.35)x +2v 0=1,v 1=v 0x -5=-6,v 2=v 1x +6=6×(-1)+6=12,v 3=v 2x -3=-15.答案: -1514解析:当i =3,S =6+3=9,i =2;i =4,S =8+3=11,i =3;i =5,S =10+3=13,i =4;i =6,S =12+3=15,i =5;i =7,S =14+3=17,i =6;i =8,S =16+3=19,i =7;i =9,S =18+3=21,i =8,所以此时输出21.答案:2115解析:当i =1时,s =a 1,当i =2时,s =a 1+a 22, 当i =3时,s =2(a 1+a 22)+a 33=a 1+a 2+a 33, …当i =n 时,s =a 1+a 2+…+a n n答案:a 1+a 2+…+a n n平均数 16分析:根据更相减损之术的操作步骤,依次作差、替换,直到两数相等为止,即可求出最大公约数.解:(1)(225,135)→(90,135)→(90,45)→(45,45).∴最大公约数为45.(2)(98,280)→(182,98)→(98,84)→(84,14)→(70,14)→(56,14)→(42,14)→(28,14)→(14,14).∴最大公约数为14.17分析:这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.解:程序框图如下.程序如下:S=0;for i=1:1:99S=S+1/(i*(i+1));endS18分析:这列数的规律是从第2项起每个数是前一个数的平方加1.设变量m,用m=m*m+1实现递推.解:①m=m*m+1;②i=i+1程序:S=0;m=0;for i=1:1:10m=m*m+1;print mS=S+mendS19分析:第1个月的利息为1 000×1%=10元,所以应还款60元;第2个月的利息为950×1%=9.5元,所以应还款59.5元;……第20个月的利息为50×1%=0.5元,所以应还款50.5元.所以本题是求S=60+59.5+…+50.5的和.解:程序:m=60S=0i=1w hile i<=20S=S+mm=m-0.5i=i+1endprint(%io(2),S)程序框图如图所示:所以S=1225元.答:实际共付出款额1225元.。
中学人教版高中数学必修三同步练习:第一章算法初步单元测评(附答案)
单元测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.算法有三种基本逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能包含一种基本逻辑结构B.一个算法最多可以包含两种基本逻辑结构C.一个算法必须包含三种基本逻辑结构D.一个算法可能包含三种基本逻辑结构2.389化成的四进制数的末位是()A.1 B.2C.3 D.03.关于终端框的说法正确的是()A.表示一个算法的起始和结束,图形符号是B.表示一个算法输入和输出的信息,图形符号是C.表示一个算法的起始和结束,图形符号是D.表示一个算法输入和输出的信息,图形符号是4.执行图C11所示的程序框图,若输出的结果为11,则M处可填入的条件为()图C11A.k≥31 B.k≥15C.k>31 D.k>155.用秦九韶算法求多项式f(x)=12+35x+9x3+5x5+3x6当x=-1时的值,有如下说法:①要用到6次乘法;②要用到6次加法和15次乘法;③v0=12;④v3=11.其中说法正确的是()A.①③B.①④C.②④D.①③④6.执行图C12所示的程序框图,若输入x=-2,h=0.5,则输出的各个数的和等于()图C12A.3 B.3.5C.4 D.4.57.由辗转相除法得三个数720,120,168的最大公约数是()A.24 B.30 C.120 D.688.执行图C13所示的程序框图,若输出的S值为16,则输入的自然数n的最小值等于()图C13A.7 B.8 C.9 D.109.执行下面程序,若输出y的值为1,则输入x的值为()A.0 B.1 C.0或1 D.-1,0或110.如果下面程序执行后输出的结果是990,那么在程序中①处应为()A.i>10 B.i<8C.i<=9 D.i<911.某店一个月的收入或支出为a1,a2,…,a N,其中收入记为正数,支出记为负数.该店用如图C14所示的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中应分别填入()图C14A.A>0,V=S-TB.A<0,V=S-TC.A>0,V=S+TD.A<0,V=S+T12.计算机中常用到的十六进制采用数字0~9和字母A~F共16个计数符号,各符号与十进制的对应关系如下表:例如用十六进制表示有D+E=1B,则A×B=()A.6E B.7C C.5F D.B0请将选择题答案填入下表:第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若输入8,则执行下列程序后输出的结果是________.14.将二进制数101101(2)化为十进制数,结果为________;再将这个十进制数化为八进制数,结果为________.15.按如图C15所示的程序框图运算,若输入的x 的值为8,则输出的k 等于________.图C1516.阅读下面的程序,该算法的功能是______________________________________.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥0),2x 2-5(x <0), 每输入一个x 值,都得到相应的函数值,画出程序框图并写出程序.18.(12分)图C16所示的程序框图表示了一个什么样的算法?试用当型循环写出它的算法并画出相应的程序框图.图C16 19.(12分)用秦九韶算法求多项式f(x)=x5+x3+x2+x+1当x=3时的值.20.(12分)(1)用更相减损术求184,253的最大公约数;(2)用辗转相除法求98,280的最大公约数.21.(12分)设计算法求11×2+ 12×3+ 13×4+…+ 199×100的值,要求画出程序框图,并用基本的算法语句编写程序.22.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧3x -2,x ≥2,-2,x <2 的值的程序框图如图C17所示.(1)指出程序框图中的错误之处并写出正确的算法步骤. (2)重新绘制程序框图,并回答下面提出的问题. ①要使输出的值为7,则输入的x 的值应为多少? ②要使输出的值为正数,则输入的x 应满足什么条件?图C17单元测评(一)1.D2.A [解析] 将389化成四进制数是12011(4).3.C [解析] 终端框表示一个算法的起始和结束,图形符号是.4.B [解析] 依题意k =1,S =0,进入循环,循环过程依次为:S =0+1=1,k =2×1+1=3;S =1+3=4,k =2×3+1=7;S =4+7=11,k =2×7+1=15,终止循环,输出S =11.结合选项知,M 处可填k ≥15.5.B [解析] 因为x 的最高次数为6,所以①正确,②错误;v 0=3,故③错误;v 1=v 0x +5=2,v 2=v 1x +0=-2,v 3=v 2x +9=11,故④正确.6.B [解析] 按照程序框图依次执行为x =-2,h =0.5,输出y =0;x =-1.5,h =0.5,输出y =0;x =-1,h =0.5,输出y =0;x =-0.5,h =0.5,输出y =0;x =0,h =0.5,输出y =0;x =0.5,h =0.5,输出y =0.5;x =1,h =0.5,输出y =1;x =1.5,h =0.5,输出y =1;x =2,h =0.5,输出y =1,结束循环.故输出的各个数的和为3.5,选B.7.A [解析] 由辗转相除法得120和168的最大公约数是24,再由辗转相除法得24和720的最大公约数是24.故选A.8.C [解析] 根据程序框图可知i =2,k =1,S =1,进入循环后,循环次数与S ,i ,k 的值的变化如下表:第3次循环后,S =8,i =8,应满足条件“i <n ”,故自然数n ≥9;第4次循环后,S =16,i =10,应退出循环,不满足条件“i <n ”,故自然数n ≤10.所以9≤n ≤10,因此自然数n 的最小值等于9.9.C [解析] 由题意得⎩⎪⎨⎪⎧x ≥1,1=x 2 或⎩⎪⎨⎪⎧x <1,1=-x 2+1,解得x =1或x =0,故选C. 10.D [解析] 由程序易知①处为“i<9”.11.C [解析] 月总收入S 应当为本月的各项收入之和,故需满足A >0.月净盈利应当为月总收入减去本月各项支出的和,又T <0,所以V =S +T .因此,判断框内应填“A >0”,处理框内应填“V =S +T ”.12.A[解析] A×B对应的十进制数是110,所以用十六进制表示有A×B=6E.13.0.7[解析] 这是一个利用条件结构编写的程序,当输入t=8时,执行c=0.2+0.1×(t-3),得c=0.7.14.4555(8)[解析] 101101(2)=1×25+0×24+1×23+1×22+0×21+1×20=45,∴化为十进制数为45.又45=8×5+5,∴45=55(8).15.3[解析] 第一次循环x=88,k=1,通过判断得,需要继续循环;第二次循环x =888,k=2,通过判断得,需要继续循环;第三次循环x=8888,k=3,通过判断,结束循环,输出k=3.故最后输出的k值为3.16.求S=1+2+3+…+20和t=1×2×3×…×20的值17.解:程序框图和程序如下.18.解:这是一个计算10个数的平均数的算法.当型循环的算法如下:第一步,S=0.第二步,I=1.第三步,如果I小于等于10,执行第四步;否则,转第七步.第四步,输入G.第五步,S=S+G.第六步,I=I+1,返回第三步.第七步,A=S10. 第八步,输出A. 程序框图如图.19.解:f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1.当x=3时,v0=1,v1=1×3+0=3,v2=3×3+1=10,v3=10×3+1=31,v4=31×3+1=94,v5=94×3+1=283,∴f(3)=283.20.解:(1)用更相减损术,得253-184=69,184-69=115,115-69=46,69-46=23,46-23=23,∴184与253的最大公约数是23.(2)用辗转相除法,得280=98×2+84,98=84×1+14,84=14×6,∴98与280的最大公约数是14.21.解:程序框图和程序如下.22.解:(1)函数y =⎩⎪⎨⎪⎧3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2. 第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.。
人教版高中数学必修三第一章《算法初步》单元检测精选(含答案解析)
人教版高中数学必修三第一章《算法初步》单元检测精选(含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是()2.运行如下的程序,输出结果为()A.32 B.33 C.61 D.633.表达算法的基本逻辑结构不包括()A.顺序结构B.条件结构C.循环结构D.计算结构4.设计一个计算1×2×3×…×10的值的算法时,下面说法正确的是()A.只需一个累乘变量和一个计数变量B.累乘变量初始值设为0C.计数变量的值不能为1D.画程序框图只需循环结构即可5.阅读下边的程序框图,运行相应的程序,则输出s的值为()A.-1 B.0C.1 D.36.,输出的结果是()A C.0,0 D.6,07.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……依此类推,要计算这30个数的和,现已知给出了该问题的程序框图如图所示.那么框图中判断框①处和执行框②处应分别填入()A.i≤30?;p=p+i-1 B.i≤29?;p=p+i-1C.i≤31?;p=p+i D.i≤30?;p=p+i8.当x=5,y=-20时,下面程序运行后输出的结果为()A.22,-22 B.22,22C.12,-12 D.-12,129.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.2 B.4 C.8 D.1610.时,则输入的x值的取值范围是()A.(-∞,-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,0)∪(0,+∞)11.用“辗转相除法”求得459和357的最大公约数是()A.3 B.9 C.17 D.5112.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()A.1个B.2个13.读程序本程序输出的结果是________.14.人怕机械重复,如计算1+2+3+…+100,十岁的高斯就想到类似于梯形面积的求法:其和S =1+1002×100=5 050,而不是算99次加法,但计算机不怕重复,使用________来做完99步计算,也是瞬间的事,编写这个程序可用________,______两种语句结构.15.某工厂2010年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%.为了求年生产总值超过300万元的最早年份,有人设计了解决此问题的程序框图(如图),请在空白判断框内填上一个适当的式子应为________________.16.如图是一个程序框图,则输出的S 的值是________________________________.三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数f (x )=⎩⎨⎧x 2-1 (x ≥0),2x 2-5(x <0),对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f (x )=2x 4+3x 3+5x -4在x =2时的值.21.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f (x )=x 2-5,写出求方程f (x )=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.参考答案与解析1.B [先把b 的值赋给中间变量c ,这样c =17,再把a 的值赋给变量b ,这样b =8,把c 的值赋给变量a ,这样a =17.]2.D [本程序实现的是:求满足1+3+5+…+n>1 000的最小的整数n.当n =61时,1+3+…+61=31(1+61)2=312=961<1 000; 当n =63时,1+3+…+63=32(1+63)2=322=1 024>1 000.] 3.D 4.A5.B [当i =1时,s =1×(3-1)+1=3;当i =2时,s =3×(3-2)+1=4;当i =3时,s =4×(3-3)+1=1;当i =4时,s =1×(3-4)+1=0;紧接着i =5,满足条件i>4,跳出循环,输出s 的值为0.]6.B [把1赋给变量a ,把3赋给变量b ,把4赋给变量a ,把1赋给变量b ,输出a ,b.]7.D8.A [具体运行如下:(x ,y)→(5,-20)→(5,-17)∴x -y =22,y -x =-22.]9.C [本小题考查的是程序框图中的循环结构,循环体中两个变量S 、n 其值对应变化,执行时,S 与n故S =2时,输出n =8.]10.C [由程序可得y =⎩⎪⎨⎪⎧x (x>0)⎝⎛⎭⎫12x -1 (x ≤0), ∵y>1,∴①当x ≤0时,⎝⎛⎭⎫12x -1>1,即2-x >2,∴-x>1,∴x<-1.②当x>0时,x>1,即x>1,故输入的x 值的范围为(-∞,-1)∪(1,+∞).]11.D [459=357×1+102,357=102×3+51,102=51×2,51是102和51的最大公约数,也就是459和357的最大公约数.] 12.C13.33解析由题意知V=34×2×2×3=3 3.14.循环语句WHILE型UNTIL型15.a>300?16.63解析当n=1时,S=1+21=3;当n=2时,S=3+22=7;当n=3时,S=7+23=15;当n=4时,S=15+24=31;当n=5时,S=31+25=63>33.故S=63. 17.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94. 18.解程序框图如下图:程序:S =0i=1WHILE i<=999S=S+i∧2i=i+2WENDPRINT SEND19.解程序框图:程序为:20.解 f(x)改写为f(x)=(((2x +3)x +0)x +5)x -4,∴v 0=2,v 1=2×2+3=7,v 2=7×2+0=14,v 3=14×2+5=33,v 4=33×2-4=62,∴f(2)=62.21.解 程序如下: 程序框图如下图:S =0M =0i =1DOINPUT xIF x>90 THENM =M +1 S =S +xEND IFLOOP UNTIL i>54P =S/MPRINT PEND22.解 本题可用二分法来解决,设x 1=2,x 2=3,m =x 1+x 22. 算法如下:第一步:x 1=2,x 2=3;第二步:m=(x1+x2)/2;第三步:计算f(m),如果f(m)=0,则输出m;如果f(m)>0,则x2=m,否则x1=m;第四步:若|x2-x1|<0.001,输出m,否则返回第二步.程序框图如图所示:。
人教A版高中数学必修三试卷第一章测试.doc
第一章测试(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的) 1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可能含有上述三种逻辑结构解析通读四个选项知,答案D最为合理,应选D.答案 D2.下列赋值语句正确的是()A.M=a+1 B.a+1=MC.M-1=a D.M-a=1解析根据赋值语句的功能知,A正确.答案 A3.学了算法你的收获有两点,一方面了解我国古代数学家的杰出成就,另一方面,数学的机械化,能做许多我们用笔和纸不敢做的有很大计算量的问题,这主要归功于算法语句的()A.输出语句B.赋值语句C.条件语句D.循环语句解析由题意知,应选D.答案 D4.读程序其中输入甲中i=1,乙中i=1000,输出结果判断正确的是() A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同解析图甲中用的是当型循环结构,输出结果是S=1+2+3+ (1000)而图乙中用的是直到型循环结构,输出结果是S=1000+999+…+3+2+1.可见这两图的程序不同,但输出结果相同,故选B.答案B5.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()A.m=0? B.x=0?C.x=1? D.m=1?解析阅读程序易知,判断框内应填m=1?,应选D.答案D6.840和1764的最大公约数是()A.84 B.12C.168 D.252解析∵1764=840×2+84,840=84×10,∴1764与840的最大公约数是84.答案A7.用秦九韶算法求多项式:f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4的值时,v4的值为()A.-57 B.220C.-845 D.3392解析f(x)=(((((3x+5)x+6)x+79)x-8)x+35)x+12 当x=-4时,v0=3;∴v1=3×(-4)+5=-7;v2=-7×(-4)+6=34,v3=34×(-4)+79=-57;v4=-57×(-4)-8=220.答案B8.1001101(2)与下列哪个值相等()A.115(8)B.113(8)C.114(8)D.116(8)解析先化为十进制:1001101(2)=1×26+23+22+20=77,再化为八进制.∴77=115(8),∴100110(2)=115(8).答案A9.下面程序输出的结果为()A.17 B.19 C.21 D.23解析当i=9时,S=2×9+3=21,判断条件9>=8成立,跳出循环,输出S.答案 C10.(2010·福建)阅读如图所示的程序框图,运行相应的程序,输出的i值等于()A.2 B.3C.4 D.5解析当i=1时,a=1×2=2,S=0+2=2,i=1+1=2;由于2>11不成立,故a=2×22=8,S=2+8=10,i=2+1=3;由于10>11不成立,故a=3×23=24,S=10+24=34,i=3+1=4;由于34>11成立,故输出i=4.答案 C11.以下求方程x5+x3+x2-1=0在[0,1]之间近似根的算法是()A.辗转相除法B.更相减损术C.秦九韶算法D.二分法解析该算法是用二分法求方程近似根的程序表示.答案 D12.某店一个月的收入和支出总共记录了N个数据a1,a2,…,a N,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V.那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()A.A>0?,V=S-T B.A<0?,V=S-TC.A>0?,V=S+T D.A<0?,V=S+T解析月总收入S应当为本月的各项收入之和,故需满足A>0,又月净盈利应当为月总收入减去本月各项支出的和,又T<0,所以V =S+T,因此,第一空应填A>0?,处理框应填V=S+T.答案 C二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上)13.将二进制数101101(2)化为十进制数,结果为________;再将结果化为8进制数,结果为________.解析101101(2)=1×25+0×24+1×23+1×22+0×2+1×20=45,∴化为十进制数为45;又45=8×5+5,∴45=55(8)答案4555(8)14.若输入8,则下列程序执行后输出的结果是______.解析这是一个利用条件结构编写的程序,当输入t=8时,执行c=0.2+0.1*(t-3),∴c=0.7答案0.715.根据条件填空,把程序框图补充完整,求1~1000内所有偶数的和.①________,②________答案S=S+i i=i+216.阅读下面程序,说明该算法的处理功能________________ ________________________________________________________.答案求S=1+2+3+…+20和t=1×2×3×…×20三、解答题(本大题共6小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)画出函数y =⎩⎪⎨⎪⎧ π2x -5,(x >0),0,(x =0),π2x +3,(x <0)的流程图.解 流程图如图所示.18.(12分)用“更相减损术”求(1)中两数的最大公约数;用“辗转相除法”求(2)中两数的最大公约数.(1)72,168;(2)98,280.解 (1)用“更相减损术”168-72=96,96-72=24,72-24=48,48-24=24.∴72与168的最大公约数是24.(2)用“辗转相除法”280=98×2+84,98=84×1+14,84=14×6.∴98与280的最大公约数是14.19.(12分)下列语句是求S=2+3+4+…+99的一个程序,请回答问题:i=1S=0DOS=i+Si=i+1LOOP UNTIL i>=99PRINT SEND(1)程序中是否有错误?请加以改正;(2)把程序改写成另一种类型的循环语句.解析(1)错误有两处:一处:语句i=1应改为i=2.二处:语句LOOP UNIIL i>=99应改为LOOP UNTIL i>99.LOOP UNTIL i>99.(2)改为当型语句为:i=2S=0WHILE i<=99S=S+ii=i+1WENDPRINT SEND20.(12分)用秦九韶算法求函数f(x)=x5+x3+x2+x+1,当x=3时的函数值.解f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1.当x=3时的值:v0=1,v1=1×3+0=3,v2=3×3+1=10,v3=10×3+1=31,v4=31×3+1=94,v5=94×3+1=283.∴当x=3时,f(3)=283.21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写的程序.解程序框图如下.程序如下. S =0k =1DOS =S +1/(k *(k +1)) k =k +1LOOP UNTIL k >99PRINT SEND22.(12分)求函数y =⎩⎪⎨⎪⎧3x -2,x ≥2,-2,x<2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出算法;(2)重新绘制解决该问题的程序框图,且回答下面提出的问题: 问题1,要使输出的值为7,输入的x 的值应为多少?问题2,要使输出的值为正数,输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧3x -2,(x ≥2),-2,(x<2)是分段函数,其程序框图中应该有判断框,应用条件结构,不应该是顺序结构.正确的算法步骤如下:第一步,输入x.第二步,若x ≥2,则y =3x -2,否则y =-2.第三步,输出y.(2)根据(1)中的算法步骤,可以画出程序框图如下.问题1,要使输出的值为7,则3x -2=7,∴x =3.即输入的x 的值应为3.问题2,要使输出的值为正数,则3x -2>0,∴x>23.又x ≥2,∴x ≥2.故当输入的x ≥2时,输出的值为正数.。
高一数学必修3第一章测试题和答案
.. .. ..高一数学必修 3 第一章试题一、选择题 : (每题 5 分,共 60 分)1. 算法的三种基本构造是 ( )A. 次序构造、模块构造、条件构造B. 次序构造、循环构造、模块结构C. 次序构造、条件构造、循环构造D. 模块构造、条件构造、循环结构2. 将两个数 a=8,b=17 互换 ,使 a=17,b=8, 下边语句正确一组是()A.a=b B. c=b C. b=a D. a=cb=ab=a a=b c=ba=c b=a3.给出以下四个问题 ,①输入一个数 x,输出它的相反数 .②求面积为 6 的正方形的周长 .x 1. x0③求三个数 a,b,c 中的最大数 .④求函数f (x) {x 2. x0 的函数值. 此中不需要用条件语句来描绘其算法的有 ( )A.1 个B.2 个C.3个D.4 个4. 下边为一个求 20 个数的均匀数的程序 ,在横线上应填补的语句为 ( )S=0i=1A. i>20DOINPUT xS=S+xi=i+1B. i<20LOOP UNTIL _____.. .. ..C. i>=20D. i<=205. 下边的程序运转后的输出结果为 ( )A .17B .19C .21D .236. 将 389 化成四进位制数的末位是 ( )A. 1B. 2C. 3D. 07. 以下各数中最小的数是()A. 85( 9)B. 210 (6 )1000 (4 )D.111111 (2 )C.8. 用秦九韶算法计算多项式 f ( ) 3 x 64 x5 5 x 46 x 37 x 28 x 1当 x 0.4x时的值时 ,需要做乘法和加法的次数分别是( )......A.6,6B.5,6C.5,5D.6,59. 用秦九韶算法计算多项式f ( x) 12 35x 8x 2 79x3 6x4 5x5 3x 6在x4时的值时 ,V3的值为 ()A. -845B. 220C. -57D. 3411. 履行下边的程序框图,输出的 S= ( )A.25 B.9 C.17 D.2012. 如下图,程序框图 (算法流程图 )的输出结果是( ).A. 3 B. 4 C. 5 D .8二.填空题 .(每题 2 分,共 10 分)13. 下左程序运转后输出的结果为_________________________.x=5y=- 20IF x<0 THENx=y - 3ELSEy=y+3END IFPRINT x- y , y- xEND第13题14. 1001011(2)= ( 10)三.解答题 : (2 小题 ,共 30 分.注意 :解答题一定要写出必需的文字说明或步骤 )15.用展转相除法求 324 、 243 、135 的最大条约数x 2 1, x 116. (15 分) 已知函数 yx 1, 1 x 1 编写一程序求函数值 .3x 3 , x 1高一数学必修 3 第一章试题答案一.选择题:CBBAC ADAC CB二. 填空题 :13: 22 ,-2214:75三. 解答题 :15. 解: 324=243 ×1+ 81243=81 ×3+0 则 324 与 243 的最大条约数为 81......又 135=81 ×1+5481=54 ×1 + 2754=27 ×2 + 0则81与135的最大条约数为27 因此 ,三个数 324 、 243 、135 的最大条约数为27.16. 解:INPUT “x= ”; xIF x<- 1 THENy=x^2-1ELSEIF x>1 THENy=SQR(3*x)+3ELSEy=ABS(x)+1END IFEND IFPRINT “y= ”; yEND......。
高一数学人教a版必修三练习:第一章_算法初步1_章末高效整合_word版含解析
(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同解析:算法的特点:有穷性、确定性、顺序性、正确性、不唯一性与普遍性.答案: C2.如图是某算法流程图的一部分,其算法的逻辑结构为()A.顺序结构B.判断结构C.条件结构D.循环结构解析:条件结构是处理逻辑判断并根据判断结果进行不同处理的结构,由算法流程图知,该算法的逻辑结构为条件结构,故选C.答案: C3.下面的程序:a=1WHILE a<100a=a+1WEND执行完毕后a的值为()A.99B.100C.101D.102解析:a=99+1=100.答案: B4.下列语句中:①m=x3-x2②T=T×I③32=A④A=A+2⑤a=b=4,其中是赋值语句的个数为()A.5B.4C.3D.2解析:①m=x3-x2为赋值语句;②T=T×I为赋值语句;③32=A,因为左侧为数字,故不是赋值语句;④A=A+2为赋值语句;⑤a=b=4,因为是连等,故不是赋值语句.故赋值语句个数为3,故选C.答案: C5.阅读下列程序:A的值为()A.5B.6C.15D.120解析:执行赋值语句后A的值依次为2,6,24,120,故最后A的值为120.答案: D6.执行如图的程序框图,如果输入的n是4,则输出的p是()A.8B.5C.3D.2解析:运行过程如下:n=4,s=0,t=1,k=1,p=1,k=1<n,p=0+1=1,s=1,t=1,k=1+1=2<n,p=1+1=2,s=1,t=2,k=2+1=3<n,p=1+2=3,s=2,t=4,k=3+1=4<n不成立,所以输出p=3.答案: C7.4 830与3 289的最大公约数是()A.13B.35C.12D.23解析:用辗转相除法,4 830=3 289×1+1 541,3 289=1 541×2+207,1 541=207×7+92,207=92×2+23,92=23×4,所以23是4 830与3 289的最大公约数.答案: D8.下面进位制之间转化错误的是()A.101(2)=5(10)B.27(8)=212(3)C.119(10)=315(6)D.31(4)=62(2)解析:101(2)=1×22+0×2+1=5,故A对;27(8)=2×8+7=23,212(3)=2×32+1×3+2=23,故B对;315(6)=3×62+1×6+5=119,故C对;31(4)=3×4+1=13,62(2)=6×2+2=14,故D错.答案: D9.某程序框图如图所示,若输出结果是126,则判断框中可以是()A.i>6?B.i>7?C.i≥6?D.i≥5?解析:根据程序框图可知,该程序执行的是2+22+23+24+25+26,所以判断框中应该填i>6?.答案: A10.给出30个数:1,2,4,7,11,…,其规律是第一个数是1,第二个数比第一个数大1,第三个数比第二个数大2,第四个数比第三个数大3,……以此类推,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入()A.i≤30;p=p+i-1B.i≤29;p=p+i+1C.i≤31;p=p+iD.i≤30;p=p+i解析:将p=p+i-1,p=p+i+1,p=p+i依次代入执行框②处验证可知只有p=p+i符合给定的前五项,判断框①处代入i≤30验证正好符合30个数求和.答案: D二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.204与85的最大公因数是W.解析:∵204÷85=2……34,85÷34=2……17,34÷17=2,204与85的最大公因数是17,故答案为17.答案:1712.已知多项式p(x)=3x5+9x4+x3+kx2+4x+11,当x=3时值为1 616,则k=W.解析:由秦九韶算法,得p(x)=((((3x+9)x+1)x+k)x+4)x+11.则当x=3时,p(3)=(((54+1)×3+k)×3+4)×3+11.=(495+3k+4)×3+11=9k+1 508=1 616,所以k=12.答案:1213.用秦九韶算法求多项式f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8当x=5时的值的过程中v3=W.解析:∵f(x)=5x5+2x4+3.5x3-2.6x2+1.7x-0.8=((((5x+2)x+3.5)x-2.6)x+1.7)x-0.8,∴v3=((5x+2)x+3.5)x-2.6将x=5代入得v3=((5×5+2)×5+3.5)×5-2.6=689.9.答案:689.914.对任意非零实数a ,b ,若a ⊗b 的运算原理如下图所示,则log 28⊗⎝⎛⎭⎫12-2= W.解析: log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1. 答案: 1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么? (2)根据框图用当型循环语句编写程序. 解析: (1)①k <101?(k ≤100?) ②s =s +1k(2)16.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧x 2-1,x <-1,|x |+1,-1≤x ≤1,3x +3,x >1,编写一个程序求函数值.解析: 程序如下:f (x )=2x 4+3x 3+5x -4在x =2时的值. 解析: f (x )改写为f (x )=(((2x +3)x +0)x +5)x -4, ∴v 0=2, v 1=2×2+3=7, v 2=7×2+0=14, v 3=14×2+5=33, v 4=33×2-4=62, ∴f (2)=62.18.(本小题满分14分)有一堆桃子不知数目,猴子第一天吃掉一半,觉得不过瘾,又多吃了一个.第二天照此办法,吃掉剩下桃子的一半另加一个.天天如此,到第十天早上,猴子发现只剩一个桃子了.问这堆桃子原来有多少个?请写出算法步骤、程序框图和程序.解析: 算法如下:第一步,a 1=1. 第二步,i =9.第三步,a 0=2×(a 1+1). 第四步,a 1=a 0. 第五步,i =i -1.第六步,若i =0,执行第七步,否则执行第三步. 第七步,输出a 0的值. 流程图和程序如下:。
(好题)高中数学必修三第一章《统计》测试卷(答案解析)(1)
一、选择题1.某商场为了了解毛衣的月销售量y(件)与月平均气温x(C︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:︒171382月平均气温x C月销售量y(件)24334055由表中数据算出线性回归方程y bx a=+中的2b=-,气象部门预测下个月的平均气温为6C︒,据此估计该商场下个月毛衣销售量约为()A.58件B.40件C.38件D.46件2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量3.已知某样本的容量为50,平均数为70,方差为75.现发现在收集这些数据时,其中的两个数据记录有误,一个错将80记录为60,另一个错将70记录为90.在对错误的数据进行更正后,重新求得样本的平均数为x ,方差为2s ,则( ) A .270,75x s =< B .270,75x s => C .270,75x s ><D .270,75x s <>4.已知变量x ,y 的关系可以用模型kx y ce =拟合,设ln z y =,其变换后得到一组数据下:x 16 17 18 19 z50344131由上表可得线性回归方程4z x a =-+,则( ) A .4-B .4e -C .109D .109e5.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A .40B .50C .80D .1006.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.57. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日8.某班有50名学生,在一次考试中统计出平均分数为70,方差为75,后来发现有2名学生的成绩统计有误,学生甲实际得分是80分却误记为60分,学生乙实际得分是70分却误记为90分,更正后的平均分数和方差分别是( ) A .70和50B .70和67C .75和50D .75和679.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,410.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .1611.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( ).A.s1>s2B.s1=s2C.s1<s2D.不确定12.某校为了提高学生身体素质,决定组建学校足球队,学校为了解报名学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如右图),已知图中从左到右3个小组的频率之比为1:2:3,其中第2小组的频数为12,则该校报名学生总人数()A.40 B.45 C.48 D.50二、填空题13.某社会爱心组织面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3组抽取__________名志愿者.14.如图是甲、乙两人在10天中每天加工零件个数的茎叶图,若这10天甲加工零件个数+=______.的中位数为a,乙加工零件个数的平均数为b,则a b15.对具有线性相关关系的变量,x y ,有一组观测数据(,)i i x y (1,2,3,,10i =),其回归直线方程是3ˆ2ˆybx =+,且121012103()30x x x y y y +++=+++=,则b =______.16.某学校高一年级男生人数占该年级学生人数的45%,在一次考试中,男、女生平均分数依次为72、74,则这次考试该年级学生的平均分数为__________.17.某高中有高一学生320人,高二学生400人,高三学生360人.现采用分层抽样调查学生的视力情况.已知从高一学生中抽取了8人,则三个年级一共抽取了__________人。
最新人教版高中数学必修3第一章单元检测(附答案)
数学人教A 版必修3第一章算法初步单元检测(时间:90分钟 满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列程序框中表示处理框的是()2.下列关于算法的描述正确的是( )A .只有解决数学问题才有算法B .算法过程要一步一步执行,每一步的操作都是明确的C .有的算法可能无结果D .算法的三种基本逻辑结构是模块结构、条件结构、循环结构3.已知函数y =lg(1),0,1,0,x x x x +⎧⎨+<⎩≥输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构4.编写程序,计算1×2×3×…×n (n ∈N *)的值时,需用到的基本算法语句是( )A .输入语句、输出语句、赋值语句B .赋值语句、条件语句、输出语句C .输出语句、循环语句、赋值语句D .输入语句、输出语句、赋值语句、条件语句、循环语句5.下列赋值语句错误的是( )A .i =i -1B .m =m 2+1C .k =1k -D .x +y =a6.用秦九韶算法求当x =1.032时多项式f (x )=3x 2+2x +3的值时,需要乘法运算和加法运算的次数分别为( )A .3 2B .4 3C .2 2D .2 37.根据下面的算法,可知输出的结果S 为( )第一步,i =1.第二步,判断i <10是否成立,若成立,则i =i +2,S =2i +3,重复第二步,否则执行下一步.第三步,输出S .A .19B .21C .25D .278.如图是求x 1,x 2,…,x 10的乘积S 的程序框图,图中空白框中应填入的内容为( )A .S =S ×(n +1)B .S =S ×x n +1C .S =S ×nD .S =S ×x n9.(2011·北京海淀一模,理4)执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为( )A .0B .1C .2D .1110.某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )A .f (x )=x 2B .f (x )=1xC .f (x )=e xD .f (x )=sin x二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.用辗转相除法求两个正整数a ,b (a >b )的最大公约数时,得到表达式a =nb +r (n∈N),这里r的取值范围是________.12.459与357的最大公约数是________.13.将258化成四进制数是__________.14.如图所示的流程图,若输入的x=-9.5,则输出的结果为__________.15.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若x1,x2,x3,x4分别为1,1.5,1.5,2,则输出的结果s为__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.画出程序框图描述汇款额为x元时,银行收取手续费y元的过程.17.(本小题满分15分)有如下算法:第一步,使x=3,S=0.第二步,使x=x+2.第三步,使S=S+x.第四步,若x≥2 008,则执行第五步;否则,返回第二步继续执行.第五步,打印x,算法结束.那么由第五步打印出的数值是多少?并画出程序框图.参考答案1.答案:A2.答案:B3.答案:C4.答案:D5.答案:D6.答案:C f(x)=(3x+2)x+3,则需2次乘法,2次加法运算.7.答案:C该算法的运行过程是:i=1i=1<10成立i=1+2=3S=2×3+3=9i=3<10成立i=3+2=5S=2×5+3=13i=5<10成立i=5+2=7S=2×7+3=17i=7<10成立i=7+2=9S=2×9+3=21i=9<10成立i=9+2=11S=2×11+3=25i=11<10不成立输出S=25.8.答案:D由于是求输入的10个数的积,所以图中空白框中应填入的内容为S=S×x n.9.答案:C设输入x的值为m,该程序框图的运行过程是:x=m,n=1n=1≤3成立x=2m+1n=1+1=2n=2≤3成立x=2(2m+1)+1=4m+3n=2+1=3n=3≤3成立x=2(4m+3)+1=8m+7n=3+1=4n=4≤3不成立输出x=8m+7,则有8m+7=23,解得m=2,即输入的x值为2.10.答案:D该程序框图的功能是输出的函数为奇函数且存在零点,A项中,函数f(x)=x2不是奇函数;B项中,函数f(x)=1x没有零点;C项中,函数f(x)=e x不是奇函数,D项中,函数f(x)=sin x为奇函数且有零点,所以D项符合题意.11.答案:[0,b)12.答案:51459=357×1+102357=102×3+51102=51×2所以459与357的最大公约数是51.13. 答案:10 002(4)利用除4取余法来化.则258=10 002(4).14.答案:1输入的x=-9.5,该流程图的运行过程是:x=-9.5>0不成立x=-9.5+2=-7.5x=-7.5>0不成立x=-7.5+2=-5.5x=-5.5>0不成立x=-5.5+2=-3.5x=-3.5>0不成立x=-3.5+2=-1.5x=-1.5>0不成立x=-1.5+2=0.5x=0.5>0成立c=2x=2×0.5=1输出1.15.答案:324位居民的月均用水量分别为1,1.5,1.5,2,该程序框图的运行过程是:x1=1,x2=1.5,x3=1.5,x4=2 s1=0,i=1i=1≤4成立s1=0+1=1s=11×1=1i=1+1=2 i=2≤4成立s1=1+1.5=5 2s=12×52=54i=2+1=3i =3≤4成立s 1=52+1.5=4 s =13×4=43 i =3+1=4i =4≤4成立s 1=4+2=6s =14×6=32i =4+1=5i =5≤4不成立输出s =3216. 分析:这是一个实际问题,故应先建立数学模型,找出函数解析式y =1,0100,0.01,1005000,50,50001000000.x x x x <⎧⎪<⎨⎪<⎩≤≤≤由此看出,求手续费时,需先判断x 的取值范围,故应用条件结构描述.解:程序框图如图所示.17. 解:由第五步打印出的数值是89.程序框图如图所示.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年必修三第一章训练卷算法初步(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.小明中午放学回家自己煮面条吃,有下面几道工序:①洗锅盛水2分钟;②洗菜6分钟;③准备面条及佐料2分钟;④用锅把水烧开10分钟;⑤煮面条和菜共3分钟.以上各道工序,除了④之外,一次只能进行一道工序.小明要将面条煮好,最少要用( ) A .13分钟B .14分钟C .15分钟D .23分钟2.如图给出了一个程序框图,其作用是输入x 值,输出相应的y 值,若要使输入的x 值与输出的y 值相等,则这样的x 值有( )A .1个B .2个C .3个D .4个3.已知变量a ,b 已被赋值,要交换a 、b 的值,采用的算法是( )A .a =b ,b =aB .a =c ,b =a ,c =bC .a =c ,b =a ,c =aD .c =a ,a =b ,b =c4.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .1B .2C .3D .45.给出程序如下图所示,若该程序执行的结果是3,则输入的x 值是( )INPUT IF THEN =ELSE =END IF PRINT ENDxx y x y x y >0-A .3B .-3C .3或-3D .06.下列给出的输入语句、输出语句和赋值语句: (1)输出语句INPUT a ,b ,c (2)输入语句INPUT x =3 (3)赋值语句3=A (4)赋值语句A =B =C 则其中正确的个数是( ) A .0个B .1个C .2个D .3个7.执行如图所示的程序框图,若输入的a 为2,则输出的a 值是( )此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .2B .1C D .1-8.阅读下面的程序框图,则输出的S 等于( )A .14B .20C .30D .559.将二进制数110101(2)转化为十进制数为( ) A .106B .53C .55D .10810.两个整数1908和4187的最大公约数是( ) A .51B .43C .53D .6711.运行下面的程序时,WHILE 循环语句的执行次数是( )N=WHILE N 20N=N +1N=N *NWEND PRINT N END< A .3B .4C .15D .1912.下图是把二进制数11111(2)化成十进制数的一个程序框图,判断框内应填入的条件是( )A .i 5>B .i 4≤C .i 4>D .i 5≤二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.如果a =123,那么在执行b =a /10-a \10后,b 的值是________. 14.给出一个算法:根据以上算法,可求得f (-1)+f (2)=________.15.把89化为五进制数是________.16.执行下边的程序框图,输出的T =________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.18.(12分)画出计算12+32+52+…+9992的程序框图,并编写相应的程序.19.(12分)已知函数()2210250x x f x x x ⎧-≥⎪⎨-<⎪⎩=对每输入的一个x 值,都得到相应的函数值.画出程序框图并写出程序.20.(12分)用秦九韶算法计算f (x )=2x 4+3x 3+5x -4在x =2时的值.21.(12分)高一(2)班共有54名同学参加数学竞赛,现已有这54名同学的竞赛分数,请设计一个将竞赛成绩优秀同学的平均分输出的程序(规定90分以上为优秀),并画出程序框图.22.(12分)已知函数f(x)=x2-5,写出求方程f(x)=0在[2,3]上的近似解(精确到0.001)的算法并画出程序框图.2018-2019学年必修三第一章训练卷算法初步(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】(1)洗锅盛水2分钟;(2)用锅把水烧开10分钟,期间可以洗菜6分钟,准备面条及佐料2分钟, 共10分钟;(3)煮面条和菜3分钟.共15分钟.故选C . 2.【答案】C【解析】由题意可得212232 5 5x x y x x xx -⎧≤⎪=-<≤⎨⎪>⎩, ∵输入的x 值与输出的y 值相等,当2x ≤时,2x x =,解得0x =或1x =, 当25x <≤时,23x x =-,解得3x =,当5x >时,1x x -=,解得1x =或1x =-,不符合,舍去, 故满足条件的x 值共有3个,故选C . 3.【答案】D【解析】由赋值语句知选D . 4.【答案】D【解析】初值,S =2,n =1. 执行第一次后,S =-1,n =2, 执行第二次后,S =12,n =3, 执行第三次后,S =2,n =4, 此时符合条件,输出n =4.故选D . 5.【答案】C【解析】该算法对应的函数为y =|x |,已知y =3,则x =±3.故选C . 6.【答案】A【解析】(1)中输出语句应使用PRINT ;(2)中输入语句不符合格式INPUT“提示内容”;变量; (3)中赋值语句应为A =3;(4)中赋值语句出现两个赋值号是错误的.故选A . 7.【答案】A【解析】输入2a =,0k =,11a ==-,5k < 011k =+=,112k =+=,3k =时,1a =-,4k =时, 当5k =时,2a =,当6k =时,输出2a =,故选A . 8.【答案】C【解析】由题意知:S =12+22+…+2i ,当i =4时循环程序终止,故S =12+22+32+42=30.故选C . 9.【答案】B【解析】110101(2)=1×25+1×24+0×23+1×22+0×2+1×20=53.故选B . 10.【答案】C【解析】4187=1908×2+371,1908=371×5+53,371=53×7,从而,最大公约数为53.故选C . 11.【答案】A【解析】解读程序时,可采用一一列举的形式: 第一次时,N =0+1=1;N =1×1=1; 第二次时,N =1+1=2;N =2×2=4;第三次时,N =4+1=5;N =5×5=25.故选A . 12.【答案】C【解析】S =1×24+1×23+1×22+1×21+1=[]{}()211212121⨯+⨯+⨯+⨯+(秦九韶算法).循环体需执行4次后跳出,故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】0.3【解析】∵a=123,∴a/10=12.3,又∵a\10表示a除以10的商,∴a\10=12.∴b=a/10-a\10=12.3-12=0.3.14.【答案】0【解析】()40 20 xfxxxx≤⎧⎪⎨>⎪⎩=,∴f(-1)+f(2)=-4+22=0.15.【答案】324(5)16.【答案】30【解析】按照程序框图依次执行为S=5,n=2,T=2;S=10,n=4,T=2+4=6;S=15,n=6,T=6+6=12;S=20,n=8,T=12+8=20;S=25,n=10,T=20+10=30>S,输出T=30.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】94,94.【解析】辗转相除法:470=1×282+188,282=1×188+94,188=2×94,∴282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.∴235-141=94,141-94=47,94-47=47,∴470与282的最大公约数为47×2=94.18.【答案】见解析.【解析】程序框图如下图:程序:Si1WHILE i=999S=S+i2i=i+2WENDPRINT SEND∧=0=<19.【答案】见解析.【解析】程序框图:程序为:20.【答案】62.【解析】()f x改写为()[]{}2)4(305f x x x x x-=+++,∴v=2,1v=2×2+3=7,2v=7×2+0=14,3v=14×2+5=33,4v=33×2-4=62,∴()262f=.21.【答案】见解析.【解析】程序如下:程序框图如下图:S M i 1DOINPUT IF 90THEN M =M +1S =S +END IFLOOP UNTIL i 54P =S /M PRINT P ENDxx x =0=0=>>22.【答案】见解析.【解析】本题可用二分法来解决,设1x =2,2x =3,122x x m +=.算法如下: 第一步:1x =2,2x =3; 第二步:122x x m +=; 第三步:计算()f m ,如果()f m =0,则输出m ; 如果()0f m >,则2x m =,否则1x m =;第四步:若21||0.001x x <-,输出m ,否则返回第二步. 程序框图如图所示:。