高一上数学知识点总结

合集下载

数学高一上册的知识点总结

数学高一上册的知识点总结

数学高一上册的知识点总结高一上册数学知识点总结在高一上册的数学学习中,我们接触了很多重要的数学知识点。

本文将对这些知识点进行总结和回顾,以加深对数学的理解和记忆。

一、函数与导数1. 函数的定义与性质:函数的定义域、值域、单调性、奇偶性等。

2. 一次函数与二次函数:二次函数的图像、顶点坐标、轴对称性等。

3. 导数的概念与性质:导数存在的条件、导数的几何意义、尺规作图等。

4. 导数与函数的关系:导数与函数的单调性、极值、凹凸性等。

二、三角函数1. 弧度制与角度制:弧度制与角度制的相互转换,常见角的弧度值。

2. 三角函数的定义及性质:正弦函数、余弦函数、正切函数的定义域、值域、周期等。

3. 三角函数的图像与性质:三角函数图像的变换规律、奇偶性、周期性等。

4. 三角函数的求值:常用角的三角函数值、三角恒等式的运用等。

三、数列与数列的表示方法1. 数列及其表示方法:数列的概念、通项公式、递推公式等。

2. 等差数列:等差数列的性质、前n项和的公式、特殊的等差数列。

3. 等比数列:等比数列的性质、前n项和的公式、特殊的等比数列。

4. 数列求和:数列求和的基本方法、特殊数列求和公式的运用。

四、平面向量1. 平面向量的概念与运算:平面向量的定义、向量的线性运算、数量积与夹角等。

2. 向量的数量积:向量的模长、向量的夹角、向量的投影等概念与性质。

3. 向量的运算与应用:向量的加减、数量积的运算律、平面向量在几何证明中的应用。

五、立体几何1. 空间几何体与投影:空间几何体的分类、平行投影与中心投影等概念。

2. 空间直线与平面:直线与平面的相交关系、直线与平面的位置关系等。

3. 立体几何体的表面积与体积:立方体、棱柱、棱锥、棱台、球的表面积与体积公式。

总结:通过高一上册数学的学习,我们对函数与导数、三角函数、数列与数列的表示方法、平面向量以及立体几何等知识点有了更加深入的了解。

这些知识点是我们后续学习数学的基础,也是应用数学解决实际问题的重要工具。

高一上学期数学知识点归纳

高一上学期数学知识点归纳

新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。

高一数学知识点总结

高一数学知识点总结

高一数学知识点总结
1. 数与代数
1.1 整数与有理数
- 整数:自然数、0和负整数的集合。

- 有理数:可以表示为两个整数的比值。

1.2 代数式与方程
- 代数式:由数字、变量和运算符号组成的数学表达式。

- 方程:含有等号的代数式,表示两个量的相等关系。

2. 几何与图形
2.1 点、线、面与体
- 点:没有具体大小,只有位置的概念。

- 线:由无数个点按一定顺序连接而成,没有宽度,长度无限。

- 面:由无数个线按一定方式连接而成,有形状和面积。

- 体:由无数个面按一定方式连接而成,有形状和体积。

2.2 常见图形与特殊线段
- 三角形:有三条边和三个内角的图形。

- 长方形:有四条边,且相对的边是相等且平行的图形。

- 正方形:有四条边,且所有边相等且平行的图形。

- 圆:由一个圆心和一条半径组成,半径是从圆心到圆上任一
点的距离。

3. 函数与方程
3.1 函数的概念与性质
- 函数:将一个变量的值映射到另一个变量的值的规则。

- 定义域:函数输入的所有可能值的集合。

- 值域:函数输出的所有可能值的集合。

3.2 一次函数与二次函数
- 一次函数:表示成 y = kx + b 的函数形式,其中 k 和 b 是常数。

- 二次函数:表示成 y = ax^2 + bx + c 的函数形式,其中 a、b
和 c 是常数。

以上是高一数学的一些主要知识点总结,希望对你有帮助!。

数学高一上各章知识点梳理

数学高一上各章知识点梳理

数学高一上各章知识点梳理高一上学期的数学课程主要包括数与式、函数与方程、平面向量、几何与变换这四个章节。

下面将对这四个章节的知识点进行梳理和总结。

一、数与式1. 实数与有理数:- 实数的分类和性质,有理数的概念和性质。

2. 幂与根:- 幂的运算法则,指数幂的乘法与除法,根式的概念和性质。

3. 整式与分式:- 整式的加减乘除运算,多项式的因式分解,分式的概念和性质。

4. 一元二次方程:- 一元二次方程的概念和性质,一元二次方程的解法及其应用。

二、函数与方程1. 函数的概念:- 定义域、值域、对应关系、函数的表示与性质。

2. 一次函数与二次函数:- 一次函数的概念和性质,二次函数的概念、图像和性质。

3. 不等式与线性规划:- 不等式的解集,线性规划的概念和解法。

4. 概率与统计:- 随机事件的概念和性质,概率的计算与性质,统计的基本概念和方法。

三、平面向量1. 向量的概念与表示:- 向量的定义和性质,向量的表示方法。

2. 向量的运算:- 向量的加法、减法,数量积与向量积的概念与计算。

3. 线性相关与线性无关:- 向量的线性相关与线性无关的概念和判定方法。

4. 平面解析几何:- 平面上的点的坐标表示,直线的方程表示,圆的方程表示。

四、几何与变换1. 平面向量的应用:- 向量共线与垂直的判定,向量的几何应用。

2. 直线与圆:- 直线的性质和方程,圆的性质和方程。

3. 三角函数与解三角形:- 三角函数的定义和性质,三角形的解法和性质。

4. 变换与坐标系:- 平移、旋转、对称等变换的定义和性质,坐标系的建立和应用。

通过对以上各章知识点的梳理,我们可以清晰地了解高一上学期数学的内容与重点。

这四个章节涵盖了数与式、函数与方程、平面向量、几何与变换的基本概念、性质和解题方法。

在学习这些知识点时,应注重理论与实践的结合,加强练习和应用,从而提高数学的应用能力和解题能力。

高一数学上 全部知识点

高一数学上 全部知识点

高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。

高一上册数学必考知识点

高一上册数学必考知识点

高一上册数学必考知识点一、函数与方程1. 函数的定义与性质函数是一种特殊的关系,它将一个集合的元素与另一个集合的元素按照某种规律一一对应起来。

函数的定义域、值域、图像等是必须掌握的概念。

2. 一次函数与二次函数学习二次函数的图像特征,顶点坐标、对称轴、开口方向等,以及一次函数的斜率、截距等概念。

掌握求解一次方程和二次方程的方法。

3. 不等式理解不等式的意义,掌握解不等式的基本方法。

注意特殊不等式的处理,如绝对值不等式和含有分式的不等式。

二、三角函数1. 三角比的定义与性质学习正弦、余弦、正切等三角比的定义,并掌握它们的性质与关系。

能够应用三角比解决与角度相关的问题。

2. 三角函数的图像与性质对于三角函数的图像特征进行研究,理解正弦函数和余弦函数在不同角度上的变化规律。

3. 三角函数的逆运算学习反正弦函数、反余弦函数和反正切函数的定义及其性质。

熟练运用逆三角函数解决实际问题。

三、数列与数列的和1. 等差数列与等差数列的和学习等差数列的定义、通项公式及其性质,能够求解等差数列的前n项和。

2. 等比数列与等比数列的和掌握等比数列的定义、通项公式及其性质,能够求解等比数列的前n项和。

3. 等差数列与等比数列的应用了解等差数列和等比数列在实际问题中的应用,如利润计算、利息计算等。

四、空间几何与向量1. 空间中的点、直线与平面理解空间几何中的基本概念,如点、直线、平面等,并能够在空间中进行简单的位置关系判断。

2. 向量的基本概念与运算学习向量的概念、向量的加法与减法,以及向量的数乘等基本运算。

能够求解向量的模长、单位向量等问题。

3. 空间几何中的应用问题掌握空间几何在实际问题中的应用,如距离计算、投影计算等。

五、概率与统计1. 概率的基本概念与计算学习概率的定义、性质以及概率的计算方法,包括排列组合、事件间的关系等。

2. 统计分析与抽样了解统计学中的基本概念,如样本、总体、频数等,并能够进行简单的统计分析。

最全面高一上册数学知识点归纳总结

最全面高一上册数学知识点归纳总结

最全面高一上册数学知识点归纳总结高一上册数学知识点总结:1.集合:一个数学概念,用于描述具有共同特征的对象的数学概念。

集合的基本操作包括:并,交,差和补集。

2.函数:一种关系,它将集合 A 中的每个元素映射到集合 B的唯一元素。

3.相似:两个物体的形状和尺寸非常相似,但可能不完全相同。

4.等腰三角形:两个角或两边相等的三角形。

5.平行四边形:一对对边平行的四边形。

6.等比数列:一个数列,其中每个项与其前一个项之比相等。

7.直线和角度:直线和角度是高中数学的基本概念。

8.常见几何图形:常见几何图形包括三角形、矩形、正方形、圆等。

9.函数的性质:函数的性质包括奇偶性、单调性、周期性等。

10.三角函数:三角函数包括正弦、余弦和正切函数。

11.三角恒等式:三角恒等式描述了三角函数之间的关系。

12.概率:概率是一个数学概念,描述某件事情发生的可能性。

13.排列与组合:排列和组合是数学中用于处理有序和无序的对象的概念。

14.向量:向量是用来表示大小和方向的二维或三维量。

15.平面几何:平面几何是研究平面图形和它们的性质和关系的分支。

16.圆锥曲线:圆锥曲线是一类由圆锥截面产生的曲线,包括圆、椭圆、双曲线和抛物线等。

17.球体几何:球体几何是研究球体和球体上的图形和属性的数学分支。

18.立体几何:立体几何是研究三维空间中对象的数学分支,包括立体图形的属性和相互关系。

19.三角形:三角形是多边形的一种,由三个顶点和三个边组成。

20.直角三角形:一个角为90度的三角形。

21.平行四边形对角线定理:在平行四边形中,对角线交点之间的距离等于平行四边形的两个相邻边的长度之差的绝对值。

22.余弦定理:余弦定理指出,在任何三角形中,余弦值等于两个已知边之间夹角的余弦值。

23.相关系数:相关系数描述两个变量之间的关系的强度和方向。

24.正弦定理:正弦定理指出,在任何三角形中,对于任何一个角,其对应的边长于正弦的比例都是相等的。

高一数学上期知识点归纳总结

高一数学上期知识点归纳总结

高一数学上期知识点归纳总结一、直线与平面1. 平行线和垂直线的性质- 平行线的判定条件- 垂直线的判定条件- 平行线和垂直线之间的关系2. 直线与平面的位置关系- 直线与平面的交点情况- 直线和平面的夹角- 直线和平面的垂直关系3. 平面与平面的位置关系- 平面与平面的交线- 平面与平面的夹角二、向量与立体几何1. 向量的基本概念- 向量的定义- 向量的运算法则- 向量的数量积和夹角2. 空间图形的投影- 点在直线上的投影- 点在平面上的投影- 空间直线在平面上的投影 - 空间曲线在平面上的投影3. 空间中的距离和角- 点到直线的距离- 点到平面的距离- 直线与直线的距离- 直线与平面的角度三、函数与方程1. 函数的概念与性质- 函数的定义- 函数的初等变换- 函数的增减性和奇偶性2. 一次函数与二次函数- 一次函数的图像与性质- 二次函数的图像与性质- 一次函数与二次函数方程的求解3. 指数函数与对数函数- 指数函数的图像与性质- 对数函数的图像与性质- 指数方程和对数方程的求解四、几何证明与应用1. 几何证明的基本方法- 直接证明法- 反证法- 数学归纳法2. 几何应用题- 尺规作图- 三角形的性质与判定- 圆的性质与判定3. 合理利用几何知识解决实际问题- 模型的建立与问题的分析- 利用几何知识解决实际问题的步骤总结:高一数学上期的知识点归纳了直线与平面、向量与立体几何、函数与方程以及几何证明与应用等方面的内容。

通过深入理解和掌握这些知识点,我们能够更好地应对数学学习中的各种问题和应用题。

在下一学期,我们将进一步拓展数学知识,继续提升数学能力。

(完整版)高一数学必修一知识点汇总

(完整版)高一数学必修一知识点汇总

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R 1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

⊆/B 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊇/A或B2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.值域: 先考虑其定义域(1)观察法(2)配方法(3)代换法3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射。

高一数学知识点归纳总结上册

高一数学知识点归纳总结上册

高一数学知识点归纳总结上册一、集合论1. 集合的基本概念- 元素、空集与非空集、集合的相等、包含与不包含关系2. 集合的表示方法- 列举法、描述法、定理法3. 集合间的关系及运算- 并集、交集、差集、补集、集合的运算律4. 集合的特性- 子集关系、相等关系、空集与全集的关系二、不等式与不等式组1. 不等式的解集表示- 区间表示法、解集图2. 一元一次不等式- 不等式的性质、解不等式、解不等式组3. 一元二次不等式- 不等式的性质、解不等式、解不等式组4. 绝对值不等式- 绝对值不等式的性质、解绝对值不等式5. 有理不等式- 有理不等式的性质、解有理不等式三、函数与方程1. 函数基本概念- 自变量与因变量、定义域与值域、函数的表示方式2. 一次函数- 函数方程的形式、函数图像特征、函数性质3. 二次函数- 函数方程的形式、函数图像特征、函数性质4. 反函数与复合函数- 反函数的性质、复合函数的性质5. 一元二次方程与不等式- 解一元二次方程、解一元二次不等式四、数列与数列的应用1. 数列基本概念- 数列的定义、通项公式、前n项和2. 等差数列- 等差数列的定义、通项公式、前n项和、性质与特征3. 等比数列- 等比数列的定义、通项公式、前n项和、性质与特征4. 递推数列- 递推数列的定义、通项公式、前n项和、性质与特征五、平面向量1. 向量的基本概念- 向量的定义、向量的表示、向量的共线与相等关系2. 向量的运算- 向量的加法、数乘、线性运算、模长与单位向量3. 向量的坐标表示- 向量的坐标表示方式、向量的共线与相等关系4. 向量的数量积与投影- 向量的数量积、数量积的性质、向量的投影、向量的垂直关系六、解析几何1. 平面与空间直角坐标系- 平面直角坐标系的定义、平面上的点与坐标、空间直角坐标系的定义、空间中的点与坐标2. 二次曲线- 圆的方程与性质、椭圆的方程与性质、双曲线的方程与性质、抛物线的方程与性质3. 空间中的直线与平面- 直线的方程与性质、平面的方程与性质、直线与平面的位置关系4. 空间中的距离与角度- 点到直线的距离、点到平面的距离、直线与直线的距离、直线与平面的夹角综上所述,高一上学期的数学知识点主要涵盖了集合论、不等式与不等式组、函数与方程、数列与数列的应用、平面向量以及解析几何等内容。

高一上数学知识点归纳

高一上数学知识点归纳

高一上数学知识点归纳一、集合与函数集合:包含若干个元素的整体,用大写字母表示。

常见的集合有自然数集合N、整数集合Z、有理数集合Q等。

函数:对于每一个自变量,只有一个确定的函数值与之对应。

函数的表示可以是映射图、公式或者表格形式。

二、数列与数列的通项公式数列:按照一定顺序排列的数的序列,可以是等差数列、等比数列、斐波那契数列等。

数列的通项公式:表示数列中任意一项与项数n之间的关系式,可以用来求解数列中任意一项的值。

三、函数与方程线性函数:函数图像为一条直线。

一次函数:函数图像为直线,且形式为y=kx+b,k为斜率,b为截距。

二次函数:函数图像为抛物线,且形式为y=ax^2+bx+c,a不为0。

指数函数:函数图像为开口向上或向下的曲线,且形式为y=a^x,a为底数。

对数函数:函数图像为开口向下的曲线,且形式为y=loga(x),a为底数。

四、三角函数与三角恒等式正弦函数:y=sin(x)余弦函数:y=cos(x)正切函数:y=tan(x)割函数:y=sec(x)余割函数:y=csc(x)余切函数:y=cot(x)三角恒等式:用于推导三角函数之间的关系和性质,常见的有和差化积公式、倍角公式等。

五、概率与统计概率:表示某一事件发生的可能性大小,用0到1之间的数表示。

样本空间:包含一个随机试验所有可能结果的全体。

事件:由样本空间的子集组成,表示试验可能出现的结果。

频率:事件发生的次数与试验重复次数之比,用来估计概率。

条件概率:表示在已知其他相关事件发生条件下的某一事件发生的概率。

统计:通过收集、整理、分析数据,从中得到结论或进行预测。

六、数学推理与证明条件命题:由条件和结论构成的命题,形式为“If A, then B”。

充分条件:如果A成立,则B成立。

必要条件:如果B成立,则A成立。

数学归纳法:证明命题对所有自然数n都成立的一种证明方法。

直接证明:根据已知条件逐步推理,得出结论。

间接证明:采用反证法进行证明,假设结论不成立,推导出矛盾的命题。

高一上册数学所有知识点

高一上册数学所有知识点

高一上册数学所有知识点一、数与代数1. 自然数、整数、有理数、实数、复数的定义和性质2. 数轴、反比例函数、绝对值函数、分段函数的概念和图像特征3. 代数式的定义、运算及其性质4. 代数方程:一元一次方程、一元二次方程的定义、解法及其应用5. 数列与数列的通项公式6. 不等式的概念、解法及其应用二、函数与图像1. 函数的概念、定义域、值域、图像及其性质2. 基本初等函数:幂函数、指数函数、对数函数、三角函数的定义、图像及其性质3. 函数间的运算:四则运算、复合函数、反函数的概念及其性质4. 二次函数:顶点与轴、图像的平移、伸缩等变化规律5. 一次函数与线性规划三、空间与图形1. 空间坐标系:直角坐标系、球坐标系的建立与应用2. 点、线、面的定义与性质3. 四边形与平行四边形的定义、判定、性质与应用4. 直线与平面的位置关系:平行、垂直、相交、重合等性质与判断方法5. 三角形的定义、判定、性质与应用6. 角的度量与弧度制7. 圆的定义、性质与判定8. 圆锥曲线:椭圆、抛物线和双曲线的定义、图像特征与应用四、导数与微分1. 导数的定义与计算方法:函数导数、常数函数、多项式函数、三角函数的导数2. 导数的几何意义与物理意义3. 微分的定义与性质:微分形式、微分近似与误差估计4. 导数与函数图像:单调性、极值与凹凸性5. 函数的极限:数列极限、函数极限与连续性的关系五、统计与概率1. 统计数据的收集、整理与表示方法2. 统计数据的分析与应用:平均值、中位数、众数、标准差3. 概率的定义:样本空间、随机事件、事件的概率计算4. 概率的计算:加法定理、乘法定理、条件概率与贝叶斯定理的应用总结:本文对高一上册数学的所有知识点进行了整理和归纳。

分别从数与代数、函数与图像、空间与图形、导数与微分以及统计与概率五个方面进行了详细的介绍,并包括了相关概念、性质、计算方法和应用等内容。

通过学习这些数学知识点,同学们将能够更好地理解和应用数学,提高数学解题和问题解决能力。

高一数学上册知识点全总结

高一数学上册知识点全总结

高一数学上册知识点全总结在高中一年级的数学课程中,学生们将会接触到一系列的知识点,这些知识点既是基础,也是建立后续数学学习的基石。

下文将对高一数学上册的知识点进行全面总结。

一、集合与函数1. 集合的基本概念与表示方法:集合的元素、空集、全集、子集等。

2. 集合的运算:交集、并集、补集、差集等。

3. 函数的定义与表示:自变量、因变量、函数值、函数关系等。

4. 函数的表示方法:映射图、箭头图、集合映射法等。

5. 函数的性质:单射、满射、双射等。

6. 复合函数与反函数:函数的复合、反函数的定义与性质。

二、二次函数1. 二次函数的基本形态:一般式、标准式等。

2. 二次函数的图像与性质:顶点、对称轴、最值、增减性等。

3. 二次函数的平移与反转:平移、垂直翻转、水平翻转等。

4. 二次函数与二次方程:二次函数图像与二次方程解的关系。

三、不等式与线性规划1. 一元一次不等式:不等式的基本性质、解集的表示方法。

2. 线性规划的基本概念:目标函数、约束条件等。

3. 线性规划的解法:图形法、单纯形法等。

4. 整数规划与混合规划:整数规划问题、混合规划问题的解法。

四、平面向量1. 平面向量的定义与表示:向量的概念、零向量、单位向量等。

2. 向量的运算:向量的加法、减法、数量积、夹角余弦等。

3. 向量的共线与垂直:向量共线的判定、向量垂直的判定等。

4. 平面向量与平面图形:向量的平行、垂直判定等。

五、三角函数1. 弧度制与角度制:弧度与角度的互换、弧度制的定义与性质等。

2. 三角函数的定义与性质:正弦函数、余弦函数、正切函数等。

3. 三角函数的图像与性质:图像的周期、对称性、增减性等。

4. 三角函数的基本关系:正切函数与余切函数等。

六、平面解析几何1. 坐标系与平面方程:直角坐标系、极坐标系、平面方程的基本形式等。

2. 点、直线、圆的方程:点的坐标、直线的一般式、圆的标准式等。

3. 直线与圆的位置关系:相离、相交、切线等。

高一上数学知识点总结

高一上数学知识点总结

高一上数学知识点总结一、集合与函数的概念1. 集合的基本概念- 集合的定义- 集合的表示方法:列举法、描述法- 集合之间的关系:子集、并集、交集、补集2. 函数的定义与性质- 函数的定义- 函数的表示方法:解析式、图象、表格- 函数的基本概念:定义域、值域、映射3. 函数的运算- 函数的加法、减法、乘法、除法- 复合函数- 反函数二、不等式与不等式组1. 不等式的基本性质- 不等式的定义- 不等式的性质:加法、乘法、倒数、传递性2. 解一元一次不等式- 不等式的解集- 求解一元一次不等式3. 解一元二次不等式- 一元二次不等式的解法 - 判别式的应用4. 不等式组的解法- 线性不等式组的解集 - 求解线性不等式组三、函数的图像与性质1. 函数的图像- 函数图像的绘制- 常见函数图像的特点2. 函数的性质- 单调性- 奇偶性- 周期性3. 函数的极限与连续性- 极限的概念- 函数的连续性四、指数与对数1. 指数函数- 指数的定义- 指数函数的性质- 指数函数的图像2. 对数函数- 对数的定义- 对数函数的性质- 对数函数的图像3. 指数与对数的应用- 指数方程的解法- 对数方程的解法五、三角函数1. 三角函数的基本概念- 角度与弧度- 三角函数的定义2. 三角函数的基本关系- 三角函数的乘积关系- 三角函数的商关系3. 三角函数的图像与性质- 正弦函数、余弦函数的图像 - 正切函数、余切函数的图像 - 三角函数的周期性、单调性六、平面向量1. 向量的基本概念- 向量的定义- 向量的加法、数乘2. 向量的坐标表示- 向量的坐标运算- 向量的模与方向3. 向量的数量积- 数量积的定义- 数量积的计算七、解析几何1. 直线的方程- 直线的斜截式、点斜式、一般式- 两直线的位置关系2. 圆的方程- 圆的标准方程- 圆的一般方程八、立体几何1. 空间几何体- 棱柱、棱锥、圆柱、圆锥、球的体积与表面积2. 空间直线与平面- 空间直线与平面的位置关系- 空间向量在立体几何中的应用九、概率与统计1. 随机事件与概率- 随机事件的定义- 概率的计算2. 统计的基本概念- 数据的收集与整理- 统计图表的绘制与解读请将以上内容复制到Word文档中,并根据实际需要进行格式设置,如标题加粗、分点符号的使用、段落缩进等,以确保文档的专业性和可读性。

高一数学知识点总结(7篇)

高一数学知识点总结(7篇)

高一数学知识点总结(7篇)高一数学学问点总结篇1立体几何初步1、柱、锥、台、球的构造特征(1)棱柱:定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部。

分类:以底面多边形的边数作为分类的标准分为三棱台、四棱台、五棱台等。

表示:用各顶点字母,如五棱台几何特征:①上下底面是相像的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面绽开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面绽开图是一个扇形。

(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面绽开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

高一数学知识点总结模板(6篇)

高一数学知识点总结模板(6篇)

高一数学知识点总结模板一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈____.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicale____ponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,____分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(e____ponential),其中____是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质【函数的应用】1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学知识点总结模板(二)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

高一上数学重点知识点

高一上数学重点知识点

高一上数学重点知识点一、函数与方程1. 函数定义与性质函数的概念奇偶函数与周期函数函数的图像与性质2. 一次函数与二次函数一次函数的特征与图像二次函数的性质与图像二次函数的最值与根的判别3. 指数函数与对数函数指数函数的定义与性质对数函数的定义与性质指数函数与对数函数的运算性质4. 三角函数三角函数的概念与周期性常用三角函数的图像与性质三角函数的和差化积、积化和差公式5. 线性方程与二次方程一元一次方程与二元一次方程二次方程的性质与求根公式四则运算与方程的应用问题二、几何与三角学1. 解直角三角形相似三角形及其应用线段比例定理与角平分线定理正弦、余弦与正切定理2. 圆的性质与判定圆的定义与性质圆的切线与切点圆内接四边形与圆外切四边形3. 平面向量向量的定义与性质向量的线性运算平面向量与几何应用4. 解三角形三角形的面积与海伦公式正弦定理与余弦定理三角形的高线与中线5. 空间几何空间直线与平面的交点平行与垂直关系空间几何中的应用问题三、概率与统计1. 概率基础随机事件与样本空间概率的定义与性质条件概率与乘法定理2. 排列与组合排列与组合的基本概念排列与组合的计算方法常见应用问题的解决方法3. 统计分析数据的收集与整理统计图表的绘制与分析数据的描述与解读4. 概率分布离散型与连续型随机变量二项分布与正态分布概率分布的应用问题四、三角函数与解析几何1. 指数与对数函数的复习指数函数与对数函数的性质指数与对数方程的求解指数与对数函数的应用问题2. 三角函数的复习三角函数的性质与图像三角函数的基本公式三角函数的复合与反函数3. 解析几何基础坐标系与平面方程直线与曲线的方程曲线的参数方程4. 空间几何的复习直线与平面的位置关系直线与平面的方程空间几何中的应用问题五、导数与微分1. 导数的定义与计算法函数的极限与连续性导数的定义与性质基本导数与导数的计算法则2. 函数的图像与性质函数的单调性与凹凸性函数的极大值与极小值函数的图像与一阶导数3. 求导法与应用高阶导数与隐函数求导函数求导的应用问题曲线的切线与法线4. 微分与微分中值定理微分的定义与性质连续函数の增量与最值问题微分中值定理及其应用以上为高一上数学的重点知识点,掌握了这些知识,能够为后续的学习打下坚实的基础。

数学高一上知识点归纳总结

数学高一上知识点归纳总结

数学高一上知识点归纳总结一、集合与函数1. 集合- 集合的概念和表示方法- 集合的运算:并、交、差、补- 集合恒等式的证明2. 函数- 函数的定义与性质- 函数的表示法与常用函数- 函数的运算:复合函数、反函数- 一次函数与二次函数二、方程与不等式1. 一元二次方程- 一元二次方程的定义与解法- 一元二次方程的应用2. 不等式- 不等式的性质与图像表示- 不等式的解法与应用三、三角函数1. 角度与弧度- 角度与弧度的定义与转换- 弧度的应用:弧长与扇形面积2. 三角函数的基本关系- 正弦、余弦、正切的定义与性质 - 三角函数的图像与性质3. 三角函数的诱导公式- 三角函数的诱导公式的推导- 诱导公式的应用与证明四、数列与数列的运算1. 数列的概念与表示- 数列的定义与性质- 等差数列与等比数列的特性2. 数列的通项与求和- 数列通项的求解方法- 等差数列与等比数列的求和公式五、平面解析几何1. 直线与曲线- 直线的方程表示与性质- 圆的方程表示与性质2. 平面坐标系- 平面直角坐标系的建立与运用 - 不同坐标系之间的转换3. 线性方程组- 线性方程组的解法与应用- 线性方程组的矩阵表示六、概率统计1. 概率的基本概念- 随机事件、样本空间与概率- 概率的性质与计算方法2. 概率的应用- 概率问题的解决思路与方法- 排列与组合的计算3. 统计与抽样- 统计数据的收集与整理- 抽样调查与统计推断以上是高一上学期数学知识点的归纳总结,通过学好这些知识,可以夯实数学基础,为接下来的学习打下坚实的基础。

希望对你的学习有所帮助!。

高一上数学必背知识点

高一上数学必背知识点

高一上数学必背知识点数学是一门基础学科,对于学习者来说,掌握数学的基本知识点是非常重要的。

尤其对于高中一年级的学生而言,这些知识点对于其后续学习和提高数学能力起到了决定性的作用。

以下是高一上数学必背的一些重要知识点。

一、代数基础1.函数概念:函数是一个或多个变量之间的关系,通过一个或多个输入值得到一个唯一的输出值。

2.坐标系:平面坐标系是由横纵坐标轴和原点构成的,用于表示平面上的点的位置。

3.函数的表示方法:函数可以用解析式、图像、数据集合和问题背景来表示。

4.多项式的运算:包括多项式的加减乘除、整式的乘法公式、平方差公式等。

二、平面几何1.平面几何基础概念:点、线、面、角、相似、等角、全等等。

2.三角形基础性质:三角形的内角和为180度、角平分线性质、三角形的外角性质等。

3.圆的性质:包括圆的周长、面积、圆内接四边形、正六边形、正多边形等。

4.相似三角形:相似三角形的性质、两个相似三角形的对应边成比例等。

三、解析几何1.坐标系与直线:笛卡尔坐标系中直线的方程、直线的斜率、直线之间的关系等。

2.平移、旋转、镜像:包括二维图形的平移、旋转、镜像的性质与方法。

3.直线与圆的位置关系:点到直线的距离、点在直线上的投影等。

四、数列与数列求和1.等差数列:包括等差数列的概念、通项公式、前n项和等。

2.等比数列:包括等比数列的概念、通项公式、前n项和等。

3.算术级数与几何级数:包括算术级数与几何级数的求和公式等。

五、函数与方程1.一次函数与一元一次方程:包括一次函数的图像、一元一次方程的概念、解一元一次方程的方法等。

2.二次函数与一元二次方程:包括二次函数的图像、一元二次方程的概念、求解一元二次方程的方法等。

3.函数的性质与应用:奇偶性、单调性、周期性、线性规划等。

六、三角函数1.三角函数定义:正弦函数、余弦函数、正切函数、余切函数等。

2.三角函数的性质:周期性、奇偶性、单调性等。

3.三角函数的应用:解三角方程、求角度、求边长、三角恒等式等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版高中数学知识点总结高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M,或者a M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集( ).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号子A B集(或B A)真A B子(或B A)集集合A B意义A中的任一元素都属于BA B,且B中至少有一元素不属于AA中的任一元素都属于B,性质示意图(1)A A(2)AA(B)BA(3)若A B且B C,则A C或(4)若A B且B A,则A B(1)A(A为非空子集)(2)若A B且B C,则A C B A(1)A BA(B)相等B中的任一元(2)B A素都属于A(7)已知集合A有n(n1)个元素,则它有2n个子集,它有2n1个真子集,它有2n1个非空子集,它有2n2非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集名称记号 意义性质 示意图( 1)AAA ( 2)A交集AB{x|xA,且xB}A B(3)A BAA B B(1)AA A(2)AA并集 A B{x|xA,或xB}(3)A B AABA B B(1) AC U A补集C u A{x|xU,且xA}(2) AC U AU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0) {x|axa}|x|a(a0)x|xa 或xa}把axb 看成一个整体,化成|x| a ,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式b 2 4ac二次函数y ax 2 bx c(a0)O的图象一元二次方程bb24ac2x1,22ax 1x 2bax bx c 0(a0)无实根2a的根(其中x 1x 2)ax 2 bx c 0(a0)b }{x|xx 1或xx 2}{x|xR的解集2aax 2 bx c 0(a0){x|x 1 x x 2}的解集〖 1.2〗函数及其表示【 1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:A B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且a b,满足a x b的实数x的集合叫做闭区间,记做[a,b];满足a x b的实数x的集合叫做开区间,记做(a,b);满足a x b,或a x b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,x a,x b,x b的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|a x b}与区间(a,b),前者a可以大于或等于b,而后者必须a b.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤y tanx中,x k(k Z).2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式 a g(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2b(y)x c(y) 0,则在a(y)0时,由于x,y为实数,故必须有b2(y) 4a(y)c(y)0,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:A B.②给定一个集合A到集合B的映射,且a A,b B.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的定义性质如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1<x2...时,都有f(x1)<f(x2),那么........就说f(x)在这个区间上是增函数.函数的...单调性如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1<x2...时,都有f(x1)>f(x2),那么........就说f(x)在这个区间上是减函数....图象yy=f(X)f(x2)f(x1)ox1x2y y=f(X)f(x1)f(x2)o x1x2判定方法(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)x(4)利用复合函数(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)x(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y f[g(x)],令u g(x),若y f(u)为增,u g(x)为增,则y f[g(x)]为增;若y f(u)为减,u g(x)为减,则y f[g(x)]为增;若y f(u)为增,u g(x)为减,则y f[g(x)]为减;若y f(u)为减,u g(x)为增,则y f[g(x)]为减.f(x)x a(a0)的图象与性质(2)打“√”函数xf(x)分别在(,a]、[a,)上为增函数,分别在[a,0)、(0,a]上为减函数.yo x(3)最大(小)值定义①一般地,设函数y f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x I,都有f(x) M;(2)存在x0I,使得f(x0) M.那么,我们称M是函数f(x)的最大值,记作f max(x) M.②一般地,设函数y f(x)的定义域为I,如果存在实数m满足:(1)对于任意的x I,都有f(x)m;(2)存在x0I,使得f(x0) m.那么,我们称m是函数f(x)的最小值,记作f max(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数f(x)定义(1)利用定义(要先判断域内任意一个x,都有定义域是否关于原点对称)f(-x)=-f(x),那么函数(2)利用图象(图象关于.........函数的f(x)叫做奇函数.原点对称)...奇偶性如果对于函数f(x)定义(1)利用定义(要先判断域内任意一个x,都有定义域是否关于原点对称)f(-x)=f(x),那么函数f(x)(2)利用图象(图象关于........叫做偶函数.y轴对称)...②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换yf(x)h0,左移h个单位yf(xh)yf(x)k0,上移k个单位yf(x)k h0,右移|h|个单位k0,下移|k|个单位②伸缩变换yf(x)01,伸yf(x)yf(x)0A1,缩yAf(x) 1,缩A1,伸③对称变换y f(x)x轴f(x)y f(x)y轴f(x) y yy f(x)原点f(x)y f(x)直线yxy1 y f(x)y f(x)去掉y轴左边图象y f(|x|)保留y轴右边图象,并作其关于y轴对称图象y f(x)保留x轴上方图象y|f(x)|将x轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果x n a,a R,x R,n 1,且n N ,那么x 叫做a 的n 次方根.当n 是奇数时,a的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n次方根用符号na 表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,a0.③根式的性质:(n a)na ;当n 为奇数时,n a na ;当n 为偶数时,a (a 0) n a n|a|(a.a 0)(2)分数指数幂的概念mn a m(a①正数的正分数指数幂的意义是:a n0,m,nN,且n1).0的正分数指数幂等于0.mm②正数的负分数指数幂的意义是:a n( 1)n n (1 )m (a 0,m,nN,且n1).0的aa负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①a r a sa rs (a0,r,s R)②(a r )sa rs (a 0,r,s R)③(ab)ra rb r (a0,b 0,r R)【2.1.2】指数函数及其性质(4)指数函数函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况a变化对图象的影响指数函数函数y a x(a0且a1)叫做指数函数a10a1y y a x ya x yy1y1(0,1)(0,1)O x O xR(0,)图象过定点(0,1),即当x0时,y1.非奇非偶在R上是增函数在R上是减函数a x1(x0)a x1(x0)a x1(x0)a x1(x0)a x1(x0)a x1(x0)在第一象限内,a越大图象越高;在第二象限内,a越大图象越低.〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a x N(a 0,且a1),则x叫做以a为底N的对数,记作x log a N,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:x log a N a x N(a0,a1,N0).(2)几个重要的对数恒等式log a10,log a a1,log a a b b.(3)常用对数与自然对数常用对数:lgN,即log10N;自然对数:lnN,即log e N(其中e 2.71828⋯).(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:log a M log a N log a(MN)②减法:log a M log a N log aMN③数乘:nlog a M log a M n(n R)④a log a N N⑤log a b M n nM(b0,n R)⑥换底公式:log alog b Nlog a N(b0,且b1) b log b a【2.2.2】对数函数及其性质(5)对数函数函数名称定义图象定义域值域过定点奇偶性单调性函数值的变化情况a变化对图象的影响(6)反函数的概念对数函数函数y ogl a(xa0且a1)叫做对数函数a10a1x1yx1y ogl axyogl a x y(1,0)O(1,0)O xx(0, )R图象过定点1,0)(,即当x1时,y0.非奇非偶在(0,)上是增函数在(0,)上是减函数ogl a x0(1)x ogl a x0(1)xogl a x0(1)x ogl a x0(1)xogl a x0(01)x ogl a x0(01)x在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.设函数y f(x)的定义域为A,值域为C,从式子y f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x(y),x在A中都有唯一确定的值和它对应,那么式子x(y)表示x是y的函数,函数x(y)叫做函数y f(x)的反函数,记作x f1(y),习惯上改写成y f1(x).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y f(x)中反解出x f1(y);③将x f1(y)改写成y f1(x),并注明反函数的定义域.(8)反函数的性质①原函数y f(x)与反函数y f1(x)的图象关于直线y x对称.②函数y f(x)的定义域、值域分别是其反函数y f1(x)的值域、定义域.③若P(a,b)在原函数y f(x)的图象上,则P'(b,a)在反函数y f1(x)的图象上.④一般地,函数y f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x叫做幂函数,其中x为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).③单调性:如果0,则幂函数的图象过原点,并且在[0,)上为增函数.如果0,则幂函数的图象在(0,)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当q(其pq中p,q互质,p和q Z),若p为奇数q为奇数时,则y x p是奇函数,若p为奇数q为偶数q q时,则y x p是偶函数,若p为偶数q为奇数时,则y x p是非奇非偶函数.⑤图象特征:幂函数y x,x(0,),当1时,若0x1,其图象在直线yx下方,若x1,其图象在直线y x上方,当1时,若0x1,其图象在直线yx上方,若x1,其图象在直线yx下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x) ax2bx c(a 0)②顶点式:f(x) a(x h)2k(a0)③两根式:f(x) a(x x1)(x x2)(a0)(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.(3)二次函数图象的性质①二次函数f(x)ax2bx c(a0)的图象是一条抛物线,对称轴方程为x b,顶点坐标是2a(b,4acb2).2a4a②当a0时,抛物线开口向上,函数在(,b]上递减,在[b,)上递增,当xb时,2a2a2af min(x)4ac b2;当a0时,抛物线开口向下,函数在(,b]上递增,在[b,)上递4a2a2a减,当x b时,f max(x)4acb2.2a4a③二次函数f(x)ax2bx c(a0)当b24ac0时,图象与x轴有两个交点M1(x1,0),M2(x2,0),|M1M2||x1x2|.|a|( 4)一元二次方程ax 2bxc0(a0)根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及, 但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程ax 2bx c 0(a 0)的两实根为x 1,x 2,且x 1 x 2.令f(x)ax 2 bx c ,从以b下四个方面来分析此类问题:①开口方向:a ②对称轴位置:x2a③判别式: ④端点函数值符号.①k <x 1≤x 2yyb f(k)0ax2ak x 1OkOx 2xx 1x 2xxb f(k)a02a② x 1≤x 2<kyyb a0 f(k)0x2aOx 2kOkx 1xxx 2x1b a0f(k)0x2a③x 1<k <x 2 af(k)<0y ya 0f(k) 0 O kx1x2x x1Ok x2xf(k) 0a 0④k1<x1≤x2<k2y a0yxbf(k1)0f(k2)0x1x2k1O k1k2x O x1bf(k1)x2a2ak2x2xf(k2)0a 0⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合ya0yf(k1)0f(k1)0x1k2Ox1k2Ok1x2x k1x 2xf(k2)0a0f(k2)0⑥k<x<k≤p<x<p2此结论可直接由⑤推出.11212(5)二次函数f(x)ax2bx c(a0)在闭区间[p,q]上的最值设f(x)在区间[p,q]上的最大值为M,最小值为m,令x01 (pq).2(Ⅰ)当a0时(开口向上)①若b p,则mf(p)②若p b q,则m f(b)③若b q,则mf(q)2a2a2a2aa b bf f 2af2a f(q)(p)(p)(q)O xO x O xb b bbx0,则M f(q)②b,则M f(p)①若x02a2ab b2a2a ff(p)x0x0(q)Ox O xf f(bf)b(q)2af((p))2a(Ⅱ)当a0时(开口向下)①若b p,则M f(p)②若p b q,则Mf(b)2a2a2a③若bq,则M f(q)2ab)b)f f(b) f(f(2a 2af f2a(q)(p)(p)O x O x O xfb f b f b(q)(q)(p)2ab2a b2a①若,则mf(q)②,则mf(p).x0x02a2af(b)0f f(b)f2a2a(q)(p)x0x0O x O xffbb(q)(p)a2a第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y f(x)(x D),把使f(x) 0成立的实数x叫做函数y f(x)(x D)的零点。

相关文档
最新文档