生物化学实验问答题
生物化学问答题
1、试述碱基,核苷酸和核酸在结构上的关系答:核酸的组成单元是核苷酸,(1分)核苷酸是由核苷和磷酸组成(2分),而核苷又是由核糖和碱基组成(2分),碱基分为嘌呤和嘧啶(2分),共有A、G、C、T、U五种(3分)。
3、论述tRNA的二级结构特征答:tRNA的二级结构特征是三叶草结构(1分),主要特征是四环四臂,包括是反密码子环、额外环、TΨC环、二氢尿嘧啶环(4分),四臂是反密码子臂、TΨC臂、二氢尿嘧啶臂、氨基臂(4分)。
4、写出EMP途径的限速酶及所催化的反应?答:EMP途径的限速酶及所催化的反应有三步(2分),第一步:葡萄糖在已糖激酶催化下生成6-磷酸葡萄糖,消耗1分子ATP(2分);第二步:6-磷酸果糖在磷酸果糖激酶催化下生成1,6-二磷酸果糖,消耗1分子ATP(2分);第三步:磷酸烯醇式丙酮酸在丙酮酸激酸催化下生成丙酮酸,生成1分子ATP(2分)。
5、试述一分子十八碳硬脂酸彻底氧化成CO2和H2O的化学过程,并计算产生多少ATP答:十八碳软脂酸彻底氧化成CO2和H2O的化学过程包括二部分,即β氧化,三羧酸循环:1、 β氧化过程:1、脂肪酸的活化:脂肪酸在ATP供能下活化生成酯酰辅酶A,消耗两分子ATP;2、脱氢:酯酰辅酶A在酯酰辅酶A脱氢酶催化下生成反烯酯酰辅酶A,同时生成一分子FADH;3、水化:反烯酯酰辅酶A在水化酶催化下生成β羟脂酰辅酶A;4、脱氢:β羟脂酰辅酶A在β羟脂酰辅酶A脱氢酶变成β酮脂酰辅酶A生成一分子NADH;5、硫脂解:β酮脂酰辅酶A与辅酶A进行硫解成乙酰辅酶A和少两个碳的脂酰辅酶A。
2、 三羧酸循环:1、乙酰辅酶A与草酰乙酸在柠檬酸合成酸催化合成柠檬酸;2、柠檬酸在柠檬酸异构酶生成异柠檬酸。
3、异柠檬酸在异柠檬脱氢酶催化下生成α酮戊二酸并生一分子NADH;4、α酮戊二酸在α酮戊二酸脱氢酶催化下琥珀酰辅酶A并生一分子NADH;5、琥珀酰辅酶A生成琥珀酸,并生成一分子GTP。
生物化学问答题
生物化学问答题(1)试举例比较蛋白质、核酸各自结构与其功能的相互关系。
血红蛋白由4个亚基(多肽链)组成,每个亚基都有一个血红素基。
血红蛋白以两种可以相互转化的构象态存在,称t(紧张态)和(r松弛)态。
t态是通过几个盐桥稳定的,无氧结合时达到最稳定。
氧的结合促进t态转变为r态。
氧与血红蛋白的结合是别构结合行为的一个典型例证。
t态和r态之间的构象变化是由亚基—亚基相互作用所介导的,它导致血红蛋白出现别构现象。
hb呈现出3种别构效应。
第一,血红蛋白的氧融合曲线就是s形的,这意味著氧的融合就是协同性的。
氧与一个血红素融合有利于氧与同一分子中的其他血红素融合。
第二,h+和co2促进o2从血红蛋白中释放,这是生理上的一个重要效应,它提高o2在代谢活跃的组织如肌肉中的释放。
相反地,o2促进h+和co2在肺泡毛细血管中的释放。
h+、co2和o2的结合之间的别构联系称为bohr效应。
第三,血红蛋白对o2的亲和力还受到2、3-二磷酸甘油酸(dpg)调节,dpg就是一个负电荷密度很高的小分子。
bpg能够与回去氧血红蛋白融合,但无法与氧合血红蛋白融合。
因此,bpg就是减少血红蛋白对氧的亲和力的。
氧的s形曲线融合,波尔效应以及dpg效应物的调节使血红蛋白的品轩能力达至最低效应。
同时由于能够在狭窄的氧分压范围内顺利完成品轩功能,因此并使肌体的氧水平不致存有非常大的曲折。
此外血红蛋白并使肌体内的ph也保持在一个较平衡的水平。
血红蛋白的别构效应充份地充分反映了它的生物学适应性、结构与功能的高度统一性。
(2)试述g蛋白信号转导系统的作用机理g蛋白即gtp融合蛋白,亦称核苷酸调节蛋白(n蛋白),就是一种与膜受体偶联的异三聚体融合蛋白,其具备与gtp融合并催化剂gtp水解成gdp的能力,由α、β、γ三个亚基共同组成,当好细胞膜上受体和靶酶之间的信号传达体。
另外还辨认出一种分子量较小的“大g蛋白(smallgtp-blindingprotein)”,其特点就是它们都就是单体,存有于相同的细胞部位,在细胞信号传达中也扮演着关键角色。
生物化学实验试题答案
生物化学实验试题答案一、选择题1. 生物化学中,下列哪项是蛋白质合成的主要场所?A. 线粒体B. 核糖体C. 内质网D. 高尔基体答案:B2. 酶的活性中心通常包含哪种化学基团?A. 磷酸基团B. 硫醇基团C. 氨基基团D. 羧基答案:B3. 在生物体内,三羧酸循环的主要功能是什么?A. 产生能量B. 合成蛋白质C. 合成核酸D. 合成脂类答案:A4. DNA复制过程中,哪个酶负责连接Okazaki片段?A. DNA聚合酶IB. DNA聚合酶IIIC. DNA连接酶D. DNA酶I答案:C5. 细胞呼吸的最终电子受体是什么?A. NAD+B. FADH2C. 氧气D. 二氧化碳答案:C二、填空题1. 蛋白质是由___________、___________、___________和___________四种氨基酸构成的20种标准氨基酸通过肽键连接而成的生物大分子。
答案:必需氨基酸、非必需氨基酸、编码氨基酸、非编码氨基酸2. 核酸可以分为两大类:一类是含有核糖的___________,一类是含有脱氧核糖的___________。
答案:RNA、DNA3. 糖酵解过程中,一分子葡萄糖分解成两个分子的___________,最终产生___________分子ATP(不考虑后期氧化过程)。
答案:丙酮酸、44. 生物体内的信号传导通常通过一系列的级联反应实现,这种级联反应被称为___________。
答案:信号转导途径5. 脂肪酸的β-氧化过程中,每次循环会释放一个___________分子,并缩短脂肪酸链两个碳原子。
答案:乙酰辅酶A三、简答题1. 请简述酶的动力学特性及其影响因素。
答:酶的动力学特性通常通过Michaelis-Menten动力学来描述,包括最大速率(Vmax)和Michaelis常数(Km)。
Vmax表示在饱和底物浓度下酶催化反应的最大速率,Km则是底物浓度在Vmax一半时的值。
酶活性受多种因素影响,包括温度、pH值、底物浓度、酶浓度、抑制剂和激活剂的存在等。
生物化学试题及答案 (6)
生物化学试题及答案一、选择题1.生物大分子的共有特点是() A. 构成元素多为C、H、O、N、P等B. 构成元素多为C、H、O、N等C. 构成元素多为O、N等D. 构成元素多为C、O、N等2.氨基酸的结构中不包括()A. α-氨基酸B. β-氨基酸C. γ-氨基酸D. δ-氨基酸3.下列哪种生物分子不属于多聚体() A. DNA B. RNA C. 蛋白质 D. 糖类4.下列那种氨基酸在生物体内不能合成() A. 丝氨酸 B. 色氨酸 C. 酪氨酸 D. 酸性氨基酸5.下列哪种物质不属于核酸的组成单元() A. 核苷 B. 核苷酸 C. 核甘酸D. 核小体二、填空题6.生物大分子的特点是多_______。
7.表示核酸单体的单位是_______。
8.蛋白质由_______大分子组成。
9.糖类可以通过_______反应形成聚合物。
10._______酸性氨基酸在生物体内不能合成。
三、简答题11.生物大分子的共有特点是什么?(回答不少于50字)答:生物大分子的共有特点是构成元素多为碳、氢、氧、氮、磷等元素。
这些元素构成了生物大分子的主体骨架,赋予生物大分子特殊的结构和性质。
12.请简要说明氨基酸的结构组成。
(回答不少于50字)答:氨基酸的结构组成包括氨基(-NH2)、羧基(-COOH)以及一个R基团。
其中,氨基和羧基是氨基酸的功能团,而R基团则决定了氨基酸的种类。
氨基酸通过R基团的不同而具有不同的性质和功能。
13.请简要说明生物大分子和非生物大分子的区别(回答不少于50字)答:生物大分子和非生物大分子的区别主要体现在构成元素和结构特点上。
生物大分子的构成元素多为碳、氢、氧、氮、磷等元素,而非生物大分子的构成元素较为简单。
此外,生物大分子的结构特点复杂多样,能够发挥多种生物功能,而非生物大分子的结构相对简单,功能有限。
四、问答题14.请分别列举DNA和RNA的结构特点并比较它们之间的区别。
(回答不少于100字)答:DNA(脱氧核糖核酸)是生物体内存储遗传信息的分子。
生物化学习题集及答案
生物化学习题集及答案
1. 问题:细胞膜的主要组成成分是什么?
答案:细胞膜的主要组成成分是磷脂双分子层。
2. 问题:DNA是由哪些基本组成单元构成的?
答案:DNA由核苷酸组成,核苷酸由糖、碱基和磷酸组成。
3. 问题:什么是酶?它在生物化学中的作用是什么?
答案:酶是一种催化剂,它能够加速化学反应的速率。
它在生物化学中起到调节代谢和合成物质的作用。
4. 问题:光合作用是什么过程?它发生在哪个细胞器中?
答案:光合作用是植物和一些微生物利用光能将二氧化碳和水转化为有机物和氧气的过程。
它发生在叶绿体中。
5. 问题:ATP是什么分子?它在细胞中的作用是什么?
答案:ATP是腺苷三磷酸,它是一种细胞内常见的能量储存和传递的分子。
它在细胞中用于能量供应和驱动各种生化过程。
以上是本份生物化研究题集及答案的一部分。
希望对您的研究有所帮助!如需更多题,请继续阅读下一页。
请注意:
本文档中的内容仅供参考,如有需要,请自行查证相关资料确认。
(880)生物化学及生物化学实验简单复习资料(问答题+填空题)
问答题•构象(conformation)和构型(configuration)有何区别?•简述什么是生物膜,其主要生理功能有哪些?•试述生物膜的两侧不对称性。
•简述细胞膜流动嵌壤模型及其特点。
•什么是生物膜的流动性?请从生物膜的化学组成上说明为什么生物膜会具有流动性,并说明生物膜的流动性对生物体的重要意义。
•为什么说生物膜是生命系统中最容易发生脂质过氧化的场所,会导致什么样的后果?•哪一种氨基酸在血液保持pH稳定方面起重要的缓冲作用,为什么?(血液pH= 7.35~7.45)•简述从氨基酸混合物中分离鉴定氨基酸的方法。
•常用强酸性阳离子交换树脂分离氨基酸混合物,为什么洗脱时要逐步提高洗脱液的pH 和离子强度?•肝炎患者谷丙转氨酶为何升高?•在凯氏定氮法中:蛋白质的含量=样品中含氮量*6.25。
请说明6.25的来历。
•蛋白质的氨基酸排列顺序和核酸的排列顺序以及生物功能有怎么样的关系?简述蛋白质的氨基酸顺序和它们的立体结构之间有什么关系。
•蛋白质的结构有何特点?•简述胰岛素的结构特征,并估算一下其大致的分子量,简单说明理由。
•蛋白质化学研究中常用如下一些试剂:CNBr,尿素,β巯基乙醇,胰蛋白酶,过甲酸,丹磺酰氯,6M HCl,茚三酮,异硫氰酸苯酯和胰凝乳蛋白酶等。
为完成下列试验,请选择最适宜的试剂。
实验:1. 一个小肽的氨基酸序列测定;2. 多肽链的氨基末端确定;3. 无二硫键的蛋白可逆变性;4. 芳香族氨基酸残基的羧基一侧肽键的水解;5.甲硫氨酸的羧基一侧肽键的裂解;6.通过氧化途径将二硫键打开。
•如何根据跨膜蛋白计算膜厚?•什么是蛋白质的二级结构,它主要有哪几种形式?•为什么多聚谷氨酸在pH<3.0时呈α螺旋状态,而在pH>5.0时却为松散的β折叠状态?•什么是蛋白质的复性与变性?引起蛋白质变性的因素是什么?在变性的过程中,往往有哪些现象出现?蛋白质变性之后性质有哪些改变?•蛋白质变性后为什么容易凝聚沉降?•蛋白质变性沉降与在等电点处沉降有何不同?•蛋白质折叠与复性有何异同?•蛋白质折叠与β-折叠有何区别?•测定蛋白质的二硫键位置,需要什么方法?请简述之。
医学资料:生物化学问答题汇总
生物化学问答题汇总第二章蛋白质1、组成蛋白质的基本单位是什么?结构有何特点?氨基酸是组成蛋白质的基本单位。
结构特点:①组成蛋白质的氨基酸仅有20种,且均为α-氨基酸②除甘氨酸外,其Cα均为不对称碳原子③组成蛋白质的氨基酸都是L-a-氨基酸2、氨基酸是如何分类的?按其侧链基团结构及其在水溶液中的性质可分为四类①非极性疏水性氨基酸7种②极性中性氨基酸8种③酸性氨基酸2种④碱性氨基酸3种3、简述蛋白质的分子组成。
蛋白质是由氨基酸聚合而成的高分子化合物,氨基酸之间通过肽键相连。
肽键是由一个氨基酸的a-羧基和另一个氨基酸的a-氨基脱水缩合形成的酰胺键。
4、蛋白质变性的本质是什么?哪些因素可以引起蛋白质的变性?蛋白质特定空间结构的改变或破坏。
化学因素(酸、碱、有机溶剂、尿素、表面活性剂、生物碱试剂、重金属离子等)和物理因素(加热、紫外线、X射线、超声波、高压、振荡等)可引起蛋白质的变性。
5、简述蛋白质的理化性质。
①两性解离-酸碱性质②高分子性质③胶体性质④紫外吸收性质⑤呈色反应6、蛋白质中的氨基酸根据侧链基团结构及其在水溶液中的性质可分为哪几类?各举2-3例。
①非极性疏水性氨基酸7种:蛋氨酸,脯氨酸,缬氨酸②极性中性氨基酸8种:丝氨酸,酪氨酸,色氨酸③酸性氨基酸2种:天冬氨酸,谷氨酸④碱性氨基酸3种:赖氨酸,精氨酸,组氨酸第三章核酸1、简述DNA双螺旋结构模型的要点。
①两股链是反向平行的互补双链,呈右手双螺旋结构②每个螺旋含10bp,螺距3.4nm,直径2.0nm。
每个碱基平面之间的距离为0.34nm,并形成大沟和小沟——为蛋白质与DNA相互作用的基础③脱氧核糖和磷酸构成链的骨架,位于双螺旋外侧④碱基对位于双螺旋内侧,碱基平面与双螺旋的长轴垂直;两条链位于同一平面的碱基以氢键相连,满足碱基互补配对原则:A=T,GºC⑤双螺旋的稳定:横向—氢键,纵向—碱基堆积力⑥DNA双螺旋的互补双链预示DNA的复制是半保留复制2、从组成、结构和功能方面说明DNA和RNA的不同。
生物化学问答题(附答案)
生物化学解答题(一档在手万考不愁)整理:机密下载有淀粉酶制剂1g,用水溶解成1000ml酶液,测定其蛋白质含量和粉酶活力。
结果表明,该酶液的蛋白质浓度为0.1mg/ml;其1ml的酶液每5min 分解0.25g淀粉,计算该酶制剂所含的淀粉酶总活力单位数和比酶活(淀粉酶活力单位规定为:在最适条件下,每小时分解1克淀粉的酶量为一个活力单位)。
答案要点:①1ml的酶液的活力单位是×(2分)酶总活力单位数是3×1000=3000U(1分)②总蛋白是0.1×1000=100mg(1分),比活力是(1分)。
请列举细胞内乙酰CoA的代谢去向。
(5分)答案要点:三羧酸循环;乙醛酸循环;从头合成脂肪酸;酮体代谢;合成胆固醇等。
(各1分)酿酒业是我国传统轻工业的重要产业之一,其生化机制是在酿酒酵母等微生物的作用下从葡萄糖代谢为乙醇的过程。
请写出在细胞内葡萄糖转化为乙醇的代谢途径。
答案要点:在某些酵母和某些微生物中,丙酮酸可以由丙酮酸脱羧酶催化脱羧变成乙醛,该酶需要硫胺素焦磷酸为辅酶。
乙醛继而在乙醇脱氢酶的催化下被NADH 还原形成乙醇。
葡萄糖+2Pi+2ADP+2H+生成2乙醇+2CO2+2ATP+2H2O(6分)脱氢反应的酶:3-磷酸甘油醛脱氢酶(NAD+),醇脱氢酶(NADH+H+)(2分)底物水平磷酸化反应的酶:磷酸甘油酸激酶,丙酮酸激酶(Mg2+或K+)(2分)试述mRNA、tRNA和rRNA在蛋白质合成中的作用。
答案要点:①mRNA是遗传信息的传递者,是蛋白质生物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
(4分)③.rRNA与蛋白质结合组成的核糖体是蛋白质生物合成的场所(3分)。
物合成过程中直接指令氨基酸掺入的模板。
(3分)②.tRNA在蛋白质合成中不但为每个三联体密码子译成氨基酸提供接合体,还为准确无误地将所需氨基酸运送到核糖体上提供运送载体。
生物化学问答题
生物化学问答题生物化学问答题3000字生物化学是研究生物体内各种生物分子的结构、特性、功能以及代谢过程等问题的一门综合性学科。
通过对生物体内的生物分子进行深入的研究,我们可以更好地了解生命的起源、发展和维持,为医学、农业、生物工程等领域的发展提供重要的理论基础。
下面将对生物化学的相关知识进行问答,以帮助大家更好地理解这一学科。
1. 什么是生物分子?生物分子是组成生物体的各种化合物,在生物体内发挥着重要的生理功能。
生物分子主要包括碳水化合物、脂类、蛋白质和核酸等。
这些生物分子在生物体内相互作用,共同维持生命活动的正常进行。
2. 什么是碳水化合物?碳水化合物是由碳、氢、氧三种元素组成的一类常见有机化合物,主要包括单糖、双糖和多糖三类。
碳水化合物是生物体内最主要的能量来源,也是细胞结构的重要组成部分。
3. 什么是脂类?脂类是一类疏水性有机分子,主要包括脂肪酸、甘油与磷脂等多种化合物。
脂类在生物体内主要用于能量储存、细胞膜的构建和信号传导等功能。
4. 什么是蛋白质?蛋白质是由氨基酸通过肽键连接而成的大分子,是生物体内最基本的生物大分子之一。
蛋白质在生命活动中扮演重要的角色,包括酶、激素、抗体等多种功能。
5. 什么是核酸?核酸是由核苷酸通过磷酸二脱水缩合形成的生物大分子,主要包括DNA和RNA两类。
核酸是生命起源和遗传信息传递的重要载体,对细胞的正常功能具有重要的影响。
6. DNA和RNA的结构有何不同?DNA(脱氧核糖核酸)和RNA(核糖核酸)在结构上有几点不同。
首先,DNA是由脱氧核糖、磷酸和碱基组成的双螺旋结构,而RNA是由核糖、磷酸和碱基构成的单链结构。
其次,DNA的碱基包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C),而RNA中胸腺嘧啶(T)被尿嘧啶(U)替代。
此外,DNA主要存在于细胞核中,而RNA在细胞质中发挥功能。
7. 生物体内的代谢过程包括哪几类?生物体内的代谢过程主要包括两类:合成代谢和分解代谢。
生物化学考试问答题
生物化学考试问答题1、何谓三羧酸循环?它有何特点和生物学意义?特点。
1。
乙酰CoA进入三羧酸循环后,是六碳三羧酸反应2。
在整个循环中消耗2分子水,1分子用于合成柠檬酸,一份子用于延胡索酸的水和作用。
3在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。
所以每循环一次,净结果为1个乙酰基通过两次脱羧而被消耗。
循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。
4在三羧酸循环中,共有4次脱氢反应,脱下的氢原子以NADH+H+和FADH2的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成ATP。
5三羧酸循环严格需要氧气6。
琥珀CoA生成琥珀酸伴随着底物磷酸化水平生成一分子GTP,能量来自琥珀酰CoA的高能硫酯键意义。
1三羧酸循环是机体将糖或者其他物质氧化而获得能量的最有效方式2,三羧酸循环是糖,脂和蛋白质3大类物质代谢和转化的枢纽。
2、磷酸戊糖途径有何特点?其生物学意义何在?特点:无ATP生成,不是机体产能的方式。
1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3 - 磷酸甘油醛和6-磷酸果糖经基团转移反应生成。
2)提供NADPHa.NADPH是供氢体,参加各种生物合成反应,如从乙酰辅酶A合成脂酸、胆固醇;α-酮戊二酸与NADPH及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。
b.NADPH是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。
c.NADPH参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。
物学意义1,产生大量的NADPH,为细胞的各种合成反应提供还原力2,1 产生NADPH(注意:不是NADH!NADPH不参与呼吸链)2 生成磷酸核糖,为核酸代谢做物质准备3 分解戊糖意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。
生物化学问答题
⽣物化学问答题第⼆章蛋⽩质化学1、举例说明蛋⽩质的⼀级结构、空间结构与功能的关系。
答:⼀级结构是空间结构和功能的基础。
⼀级结构相似其功能也相似,例如不同哺乳动物的胰岛素⼀级结构相似,仅有个别氨基酸差异,故它们都具有胰岛素的⽣物学功能;⼀级结构不同,其功能也不同;⼀级结构发⽣改变,则蛋⽩质功能也发⽣改变,例如⾎红蛋⽩由两条α链和两条β链组成,正常⼈β链的第六位⾕氨酸换成了缬氨酸,就导致分⼦病--镰⼑状红细胞贫⾎的发⽣,患者红细胞带氧能⼒下降,易出⾎。
空间结构与功能的关系也很密切,空间结构改变,其理化性质与⽣物学活性也改变。
如核糖核酸酶变性或复性时,随之空间结构破坏或恢复,⽣理功能也丧失或恢复。
变构效应也说明空间结构改变,功能改变。
2、什么是多肽链的N末端和C末端?如何测定N末端?答:c端是羧基端,n端是氨基端。
测定N末端可⽤2,4-⼆硝基氟苯法、丹磺酰氯法和Edman降解法。
3、维持蛋⽩质溶液稳定的因素是什么?实验中常⽤来沉淀蛋⽩质的⽅法有哪些?答:1)蛋⽩质的⽔化作⽤(⽔膜或⽔化层)2)蛋⽩质颗粒在⾮等电点时带有相同电荷沉淀蛋⽩质的主要⽅法有:1、加⾼浓度中性盐(盐析)2、重⾦属盐沉淀蛋⽩质3、⽣物碱试剂和某些酸类沉淀蛋⽩质4、有机溶剂沉淀蛋⽩质5、加热凝固4、什么是蛋⽩质的变性作⽤和复性作⽤?蛋⽩质变性后哪些性质会发⽣改变?答:蛋⽩质的变性作⽤是指在某些因素的影响下,蛋⽩质分⼦的空间构象被破坏,并导致其性质和⽣物活性改变的现象。
除去变性因素,某些蛋⽩质变性后在适当条件下可恢复其原来的三维结构和⽣物活性,这个过程称为蛋⽩质的复性。
变性发⽣的改变:①⽣物活性丧失②理化性质改变,包括:溶解度降低,结晶能⼒丧失,光学性质改变③⽣物化学性质改变,分⼦结构伸展松散,易被蛋⽩酶分解5、试⽐较蛋⽩质的⼀、⼆、三、四级结构及维持其稳定的化学键。
答:(1)多肽链中氨基酸的数⽬、排列顺序和连接⽅式称为蛋⽩质的⼀级结构,维系蛋⽩质⼀级结构中的主要化学键是肽键,有些蛋⽩质还包含⼆硫键。
生物化学问答题(含答案)
蛋白质化学1.蛋白质:是一类生物大分子,有一条或多条肽链构成,每条肽链都有一定数量的氨基酸按一定的序列以肽键连接形成。
蛋白质是生命的物质基础,是一切细胞和组织的重要组成成分。
2.标准氨基酸:是可以用于合成蛋白质的20种氨基酸。
7.氨基酸的等电点:氨基酸在溶液中的解离程度受PH值的影响,在某一PH值条件下,氨基酸解离成阳离子和阴离子的程度相等,在溶液中的氨基酸以间性离子形式存在,且净电荷为0,此时溶液的PH值成为该氨基酸的等电点9.缀合蛋白质:含有非氨基酸成分的蛋白质10.蛋白质的辅基:缀合蛋白所含有的非氨基酸成分12.肽键:存在与蛋白质和肽分子中,是有一个氨基酸的ɑ-羧基与另外一个氨基酸的ɑ-氨基缩合时形成的化学键14.肽:是指由2个或多个氨基酸通过肽键连接而成的分子15.氨基酸残基:肽和蛋白质中的氨基酸是不完整的,氨基失去了氢,羧基失去了羟基,因而称为氨基酸残基16.多肽:由10个以上氨基酸通过肽键连接而成的肽18.生物活性肽:是指具有特殊生理功能的肽类物质,它们多为蛋白质多肽链的一个片段,当被降解释放之后就会表现出活性,例如参与代谢调节、神经传导。
食物蛋白质的消化产物也有生物活性肽,它们可以被直接吸收。
20.蛋白质的一级结构:通常叙述为蛋白质多肽链种氨基酸的链接顺序,简称为氨基酸序列,蛋白质的一级结构反应蛋白质分子的共价键结构21.蛋白质的二级结构:是指蛋白质多肽链局部片段的构象,该片段的氨基酸序列式连续的,主链构象通常是规则的23.蛋白质的超二级结构:又称模体基序,是指几个二级结构单元进一步聚合和结合形成的特定构象单元,如ɑɑ、βɑβ、ββ、螺旋-转角-螺旋、亮氨酸拉链等24.蛋白质的三级结构:是指蛋白质分子整条肽链的空间结构,描述其所有原子的空间分布,蛋白质三级结构的形成是肽链在二级结构的基础上进一步折叠的结果。
26.蛋白质的亚基:许多蛋白质分子可以用物理方法分离成不止一个结构单位,每个结构单位可以有不止一条肽链构成,但都有特定且相对独立的三级结构,且是由一个共价键连接的整体,该结构单位称为该蛋白质的一个亚基27.蛋白质的四级结构:多亚基蛋白的亚基与亚基通过非共价键结合,形成特定的空间结构,这一结构层次称为该蛋白质的四级结构35.变构蛋白:具有下列特性蛋白质的统称:它们有两种或多种构象,有两个或多个配体结合位点,配体与其中一个结合位点结合导致蛋白质变构,及从一种构象转换成另一种构象,这种变构影响到其他配体结合位点与配体的结合36.变构剂:导致变构蛋白变构的物质,多为小分子42.蛋白质的等电点:蛋白质是两性的电解质其解离状态受溶液的PH值影响,在某一PH值条件下,蛋白质的净电荷为0,该PH值称为该蛋白质的等电点44.蛋白质变性:由于稳定蛋白质构象的化学键被破坏,造成其四级结构三级结构甚至二级结构被破坏,结果其天然构象部分或全部改变,变性导致蛋白质理化性质改变,生物活性丧失。
生物化学问答题
第一章蛋白质化学1、参与维持蛋白质空间结构的力有哪些?答:氢键、二硫键、疏水作用、范德华力、盐键、配位键。
2、球状蛋白质在PH=7时的水溶液中折叠成一定空间构象。
这时通常非极性氨基酸残基侧链位于分子内部形成疏水核,极性氨基酸残基位于分子表面形成亲水面。
请问缬氨酸Val、脯氨酸Pro 、苯丙氨酸Phe、天冬氨酸Asp、赖氨酸Lys、异亮氨酸Ile、和组氨酸His中哪些氨基酸侧链位于分子内部?哪些氨基酸侧链位于分子外部?答:V al、Pro、Phe和Ile是非极性氨基酸,它们的侧链一般位于分子的内部。
Asp、Lys和His是极性氨基酸,它们的侧链一般位于分子的表面。
第二章核酸化学1、简述DNA双螺旋结构特点。
答:(1)DNA分子为两条多核苷酸链以相同的螺旋轴为中心,盘绕成右旋,反向平行的双螺旋;(2)以磷酸和戊糖组成的骨架位于螺旋外侧,碱基位于螺旋的内部,并按照碱基互补的原则,碱基之间通过氢键形成碱基对,A—T之间形成两个氢键,G—C之间形成三个氢键;(3)双螺旋的直径为20nm,每10个碱基对旋转一周,螺距为3.4nm,所有的碱基平面都与中心轴垂直;(4)维持双螺旋的力是碱基堆积力和氢键。
2、简述tRNA二级结构的组成特点及其每一部分的功能。
答:tRNA的二级结构为三叶草结构。
结构特点:(1)由四臂四环组成。
已配对的片段为臂,未配对的片段为环;(2)叶柄为氨基酸臂,其上含有CCA—OH3ˊ,此结构是接受氨基酸的位置;(3)氨基酸臂对面是反密码子环,在它的中部含有三个相邻碱基组成的反密码子,反密码子可与mRNA上的密码子相互识别;(4)左环是二氢尿嘧啶环(D环),它与氨基酰tRNA合成酶的结合有关;(5)右环是假尿嘧啶环(TψC环),它与核糖体的结合有关;(6)在反密码子环和TψC环之间有一可变环,它的大小决定着tRNA分子的大小。
第七章新陈代谢与生物氧化1、常见的呼吸链电子传递抑制剂有哪些?它们的作用机制是什么?1答:呼吸链抑制剂(电子传递抑制剂):使氧化受阻则偶联的磷酸化也无法进行。
生物化学问答题和计算题;;
问答题和计算题:1、 试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。
2、参与维持蛋白质空间结构的力有哪些?蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的)3、计算下列溶液的pH值:0.2 mol/L Gly 溶液与 0.1mol/L HCL溶液等体积混合的混合液。
(Gly的PK1=2.34 PK2=9.60)4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。
1.测定蛋白质分子中多肽链的数目。
通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。
2.多肽链的拆分几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基).3.二硫键的断裂几条多肽链通过二硫键交联在一起。
可在用8mol/L尿素或6mol/L盐酸胍存在下,用过量的β-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。
4.测定每条多肽链的氨基酸组成水解,氨基酸分析仪5.分析多肽链的N-末端和C-末端多肽链端基氨基酸分为两类:N-端氨基酸和C-端氨基酸。
在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。
6.多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。
7.分离肽段测定每个肽段的氨基酸顺序。
8.确定肽段在多肽链中的次序。
9.确定原多肽链中二硫键的位置。
1、 用图示说明米氏酶促反应速度与底物浓度的关系曲线,并扼要说明其含义。
(1)当[S]很低时,υ与[S]成正比,表现一级反应。
(2)随[S]的增加,υ也随[S]的增加而增加,但不成正比。
(3)当[S]很大时,υ达到最大值Vm,[S]增加υ不再增加,表现零级反应。
生物化学问答题和计算题;;
问答题和计算题:1、试举例说明蛋白质结构与功能的关系(包括一级结构、高级结构与功能的关系)。
2、参与维持蛋白质空间结构的力有哪些?蛋白质的空间结构主要是靠氨基酸侧链之间的疏水键,氢键,范德华力和盐键维持的(盐键又称离子健,是蛋白质分子中正、负电荷的侧链基团互相接近,通过静电吸引而形成的)3、计算下列溶液的pH值:0.2 mol/L Gly 溶液与0.1mol/L HCL溶液等体积混合的混合液。
(Gly的PK1=2.34 PK2=9.60)4、试述蛋白质多肽链的氨基酸排列顺序测定的一般步骤。
1.测定蛋白质分子中多肽链的数目。
通过测定末端氨基酸残基的摩尔数与蛋白质分子量之间的关系,即可确定多肽链的数目。
2.多肽链的拆分几条多肽链借助非共价键连接在一起,称为寡聚蛋白质,如,血红蛋白为四聚体,烯醇化酶为二聚体;可用8mol/L尿素或6mol/L盐酸胍处理,即可分开多肽链(亚基).3.二硫键的断裂几条多肽链通过二硫键交联在一起。
可在用8mol/L尿素或6mol/L盐酸胍存在下,用过量的β-巯基乙醇处理,使二硫键还原为巯基,然后用烷基化试剂保护生成的巯基,以防止它重新被氧化。
4.测定每条多肽链的氨基酸组成水解,氨基酸分析仪5.分析多肽链的N-末端和C-末端多肽链端基氨基酸分为两类:N-端氨基酸和C-端氨基酸。
在肽链氨基酸顺序分析中,最重要的是N-端氨基酸分析法。
6.多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成两套或多套肽段或肽碎片,并将其分离开来。
7.分离肽段测定每个肽段的氨基酸顺序。
8.确定肽段在多肽链中的次序。
9.确定原多肽链中二硫键的位置。
1、用图示说明米氏酶促反应速度与底物浓度的关系曲线,并扼要说明其含义。
(1)当[S]很低时,υ与[S]成正比,表现一级反应。
(2)随[S]的增加,υ也随[S]的增加而增加,但不成正比。
(3)当[S]很大时,υ达到最大值Vm,[S]增加υ不再增加,表现零级反应。
生物化学 问答题
1、请阐述蛋白质二级结构α-螺旋、β-折叠的结构特征。
(重要)α-螺旋(1)多肽链主链围绕中心轴有规律的螺旋式上升,形成右手螺旋;(2)氨基酸侧链伸向螺旋外侧;(3)每3.6个氨基酸残基螺旋上升一周,螺距为0.54nm;(4)靠氢键维持稳定,氢键的方向和螺旋轴平行。
β-折叠(1)主链骨架伸展成锯齿状;(2)氨基酸侧链依次伸向折叠的上下两端;(3)由若干条肽段或肽链平行或反平行排列组成片状结构;(4)相邻两条β-折叠靠氢键维持稳定,氢键的方向和肽链方向垂直。
2、试述DNA与RNA的异同点(重要)(1)从分子组成上看:DNA分子的戊糖为脱氧核糖,碱基为A、T、G、C;RNA分子的戊糖为核糖,碱基为A、U、G、C。
(2)从结构上看:DNA一级结构是由脱氧核糖核苷酸通过磷酸二酯键相连,二级结构是双螺旋;RNA一级结构是由核糖核苷酸通过磷酸二酯键相连,二级结构以单链为主,也有少量局部双螺旋结构。
(3)从功能方面看:DNA为遗传物质基础,含有大量的遗传信息;RNA的功能多样化,mRNA是蛋白质生物合成的直接模板;tRNA的功能是转运氨基酸;rRNA主要构成蛋白质的合成场所;snmRNAs参与基因表达的调控。
(4)从存在部位看:DNA主要存在于细胞核,少量存在于线粒体;RNA存在于细胞核,细胞质和线粒体中。
3、简述B-DNA双螺旋结构模型的要点。
(重要)(1)DNA是反向平行的互补双链结构。
在双链结构中,亲水的脱氧核糖基和磷酸骨架位于双链外侧,碱基位于内侧,碱基之间互补配对,以氢键结合,其中腺嘌呤与胸腺嘧啶配对,形成两个氢键,鸟嘌呤与胞嘧啶配对,形成三个氢键。
由于核苷酸连接过程中严格的方向性和碱基结构对氢键形成的限制,两条多聚核苷酸链的走向呈反向平行。
(2)DNA双链是右手螺旋结构。
螺旋直径为2nm,每旋转一周包含10.5对碱基,螺距为3.54nm。
(3)碱基间的氢键维系横向稳定性,碱基平面间的疏水性堆积力维持纵向稳定性,碱基堆积力对于双螺旋的稳定性更为重要。
生物化学考试题及答案
生物化学考试题及答案
1. 问题:什么是生物化学?
答案:生物化学是研究生物体中分子和化学反应的科学领域。
2. 问题:生物体中最常见的有机分子是什么?
答案:蛋白质是生物体中最常见的有机分子之一。
3. 问题:什么是酶?
答案:酶是一种催化剂,可以加速化学反应的速度。
4. 问题:DNA是什么?
答案:DNA是一种储存遗传信息的分子。
5. 问题:ATP在细胞中的作用是什么?
答案:ATP在细胞中作为能量分子,用于驱动各种代谢过程。
6. 问题:什么是氧化还原反应?
答案:氧化还原反应是电子的转移过程,其中一种物质(氧化剂)失去电子,另一种物质(还原剂)获得电子。
7. 问题:什么是光合作用?
答案:光合作用是植物利用光能将二氧化碳和水转化为有机物质的过程。
8. 问题:DNA复制是什么过程?
答案:DNA复制是指将一个DNA分子复制成两个完全相同的DNA分子的过程,发生在细胞分裂前。
9. 问题:什么是脂质?
答案:脂质是一类生物分子,具有较高的疏水性,包括脂肪、脂肪酸和磷脂等。
10. 问题:什么是核酸?
答案:核酸是一类生物分子,包括DNA和RNA,它们在细胞中承担遗传信息传递和蛋白质合成的功能。
以上是一些常见的生物化学考试题及答案。
希望对你的学习有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.双倒数法测定米氏常数的实验中,决定实验成败的因数有哪些?
答:1)实验应在初速度时间范围内进行;2)配置不同浓度的底物溶液浓度时应该用同一母液进行稀释,以保证底物浓度的准确性;3)各种试剂的加入时间,加入量应非常精确;4)要严格控制酶促反应时间做到准确无误;5)要将酶液稀释到恰当的浓度;6)作图要准确。
1.为什么提取酶液应该在0-4°C下进行?测定酶活力时为什么要在40-45°C条件下水解淀粉?
答:应为在0-4°C环境下酶能保持其活性。因为酶的最适温度区间是40-45°C,此时酶的活性最高,测得的酶活力是真正的酶活力。
2.小麦萌发过程中淀粉酶活性升高的原因和意义是什么?
答:温度与空气湿度使酶活力上升。意义:种子萌发产生酶使淀粉水解产生葡萄糖提供能量。
9.测定酶活力应该在酶促反应进程曲线的哪段时间范围内进行?为什么?
答:在初速度范围内进行。因为此时酶表现出最大活力,最能反映出酶的最大活力。
10.空白管中为什么最后才加酶液?你还可以设计出另一种空白管吗?
答:避免酶催化底物反应生成产物。可以先加酶液,再加Na2CO3(aq),Folin-酚稀释溶液,最后再加磷酸苯二纳溶液。
答:说明其反应速率不断减慢。原因:1)随时间增加,酶活力降低。2)底物的量不断减少,减慢反应速率。3)产物浓度增加导致其反应增大。
6.加入Na2CO3的作用什么?
答:1)酶活力失去活性终止反应。2)为后面显色反应营造碱性环境。
7.为什么要用双倒数作图法而不是直接用米氏曲线来求米氏常数?
答:1)用米氏曲线作图所得Vmax为近似值,所得的Km为近似值不够准确。用双倒数做法作图可以准确计算出Vmax和Km的值;2取消其它试剂对实验结果的影响。
4.在研钵中将豆芽彻底研碎起什么作用?离心管中的沉淀物可能是哪些成分?
答:彻底研碎是为了将细胞破碎释放酸性磷酸酯酶。沉淀可能是细胞壁、细胞碎片、植物纤维、石英砂。
5.随着反应时间的延长,酶促反应进程曲线不断下降,说明什么?其原因又是什么?