气力输送系统基本参数计算知识

合集下载

气力输送计算excel

气力输送计算excel

气力输送计算excel摘要:1.气力输送计算介绍2.气力输送计算方法3.气力输送计算工具——Excel4.使用Excel 进行气力输送计算的步骤5.Excel 在气力输送计算中的应用实例6.结论正文:气力输送计算是一种在工程领域中广泛应用的技术,它通过计算气体或粉粒在管道内的流动情况,以确定输送过程中所需的各种参数。

Excel 作为一款功能强大的表格处理软件,可以方便地进行气力输送计算。

本文将介绍气力输送计算的相关知识,并以Excel 为工具,详细讲解如何进行气力输送计算。

气力输送计算主要包括以下几个方面:1.气体或粉粒的物理性质2.管道的设计参数3.输送过程中的压力变化4.气体或粉粒的速度分布5.设备选型和布置要进行气力输送计算,首先需要了解气力输送的基本原理。

气力输送是利用气体或粉粒在管道内流动时产生的压差,使其在管道内输送的一种方法。

在气力输送过程中,气体或粉粒与管道壁之间会产生摩擦力,从而影响到输送效果。

因此,进行气力输送计算时,需要考虑气体或粉粒的物理性质、管道的设计参数以及输送过程中的压力变化等因素。

在实际应用中,Excel 可以作为一个方便的气力输送计算工具。

使用Excel 进行气力输送计算的步骤如下:1.建立气力输送计算模型:根据实际工程需求,设置相应的计算公式和参数。

2.输入气体或粉粒的物理性质:包括密度、粘度、粒径等。

3.输入管道的设计参数:包括管道长度、直径、壁厚等。

4.输入输送过程中的压力变化:包括进气压力、出口压力等。

5.运行计算:利用Excel 的公式和函数,计算出气体或粉粒在管道内的速度分布、摩擦阻力等参数。

6.分析结果:根据计算结果,对气力输送过程进行优化和调整。

在Excel 中进行气力输送计算的应用实例有很多,例如在水泥、化肥、冶金等行业中,利用Excel 进行气力输送计算,可以有效地优化生产过程,提高生产效率。

总之,气力输送计算在工程领域中具有重要意义,而Excel 作为一款功能强大的工具,可以方便地完成气力输送计算。

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

确定气力输送的主要参数

确定气力输送的主要参数

气力输送最重要的参数:气流速度和输送浓度(气固比)设计一套气力输送系统时气流速度和输送浓度这两个参数并非是能够计算出来的而是依靠经验设定的,最优先的条件就是确定气流速度和输送浓度,这两个参数至关重要,从设计的最初阶段就必须确定这两个参数,他们设定正确的话则气力输送系统已经成功一半了,反之这两个参数不正确的话则气力输送系统完全不可行。

确定气流速度和输送浓度之后即可计算出其他全部的数据。

1,气流速度和输送浓度(物料量)同时变化的情况下水平管道输送状态试验:⑴当管道内气流速度很快远大于悬浮速度,而物料量则相对较少(输送浓度低)时,水平管道内的物料颗粒基本上接近均匀分布,并在气流中呈完全悬浮状态随气流前进。

这就是稀相输送。

⑵气流速度降低同时增加物料量(输送浓度增加)时,气流作用于颗粒上的推力随之减小,颗粒的运行速度相应地减慢,并伴有颗粒之间的相互碰撞。

致使部分较大颗粒趋向于下沉接近管底,水平管道内的物料颗粒分布变得上稀下密,但所有物料仍处于连续前进状态。

这就是密相输送。

2,下面分别对输送浓度和气流速度进行试验:①输送浓度试验:一个动床试验设备,见下图:输送管道的阻力降正比于输送距离而反比于输送物料的浓度,在其他参数相同且气源的输出压力恒定的情况下如果增加输送距离,其阻力也必然相应地增加,使其超出气源的输出额定压力,为了不增加输送管道的阻力就只能降低输送浓度。

换句话说增加输送距离的话就必须降低输送浓度,也就是输送浓度取决于输送距离。

也可以这样理解,针对采用同样输出压力的气源,如果一定浓度的物料能够被输送100米的话,再让其以同等浓度的物料输送200米的话则肯定送不动了,只能降低输送浓度1倍才能送走,因此输送浓度与输送距离有很大关联。

用一个动床试验设备,加入1公斤物料进行吹送30米,大约用30秒将这些物料吹送完毕。

、将管道长度加长一倍则用70秒才能将相同的1公斤物料吹送完毕。

这说明管道长度增加后其输送时间延长了一倍多,这就意味着输送浓度降低了,即输送浓度反比于输送距离。

气力输送计算excel

气力输送计算excel

气力输送计算excel摘要:一、气力输送计算介绍1.气力输送计算的定义2.气力输送计算的重要性二、气力输送计算的方法1.基本计算公式2.计算过程的注意事项三、气力输送计算在工程中的应用1.实际工程案例2.结果分析与讨论四、气力输送计算的局限性与改进方向1.现有方法的局限性2.可能的改进措施正文:气力输送计算是一种通过计算流体在管道中的流速、压力等参数,以确定输送过程中流体的状态和流动特性的方法。

这种计算方法广泛应用于工业生产、环境保护等领域,对于优化生产过程、提高设备性能和降低能耗具有重要意义。

气力输送计算的方法主要包括基本计算公式和计算过程的注意事项。

基本计算公式主要包括伯努利方程、连续性方程等,通过这些方程可以求解流速、压力等参数。

在计算过程中,需要注意的几个问题包括:正确选择计算模型,考虑流体的黏性和管道的粗糙度,以及处理非牛顿流体等问题。

在实际工程中,气力输送计算有着广泛的应用。

例如,在火电厂的粉煤灰输送系统中,通过气力输送计算可以优化输送过程,降低能耗,提高输送效率。

再如,在环保领域的除尘系统中,气力输送计算可以帮助设计人员合理设计系统参数,确保除尘效果。

然而,现有的气力输送计算方法也存在一定的局限性。

例如,对于非牛顿流体和高压、高温等特殊工况,现有的计算方法可能无法准确预测流体的状态和流动特性。

因此,未来的研究重点应该放在改进计算方法,提高计算精度和适用范围上。

这包括发展更精确的计算模型,引入更多的影响因素,以及利用现代计算技术提高计算效率等。

综上所述,气力输送计算是一种重要的工程技术方法,具有广泛的应用前景。

气力输送计算

气力输送计算

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

气力输送计算

气力输送计算
0.016 气体的摩擦系数,无因次系数 1 光滑管:e=1;新焊接管:e=1.3;旧管:e=1.6
19.000 气流平均速度,m/s 0.637 3975 水平转向垂直向上弯头阻力 0.75 理论冲击次数,按表选取-->> 10 水平转向垂直向上弯头数量 2783 垂直转向水平弯头阻力 10 垂直转向水平弯头数量 3299 水平面内弯头阻力
ΔPp=
28525
发送设备压力损失 C=
100 直管吸嘴:C=1-10,Kp=1

旋泵:C=100,Kp=7

Kp=
7 式泵:C=100-200,Kp=7
四、供压力与风量
Q=
P=
6836 风量,m3/h 249989 压力,Pa
五、功率计算
N=
954
Lo=
326601
P1=
101000 空压机进气绝对压力,Pa
垂直管压力损失 分离器压力损失 管道出口压力损失
m3= ΔPv= H= Kv= ΔPsp= ζ= Ui= ΔPcx=
10 水平面内弯头数量 745 垂直管压力损失,Pa
5 垂直管有效高度,m 1.100
310 分离器压力损失,Pa,旋风分离器 10.6 阻力系数,表内选取-->>
8 入口气流速度,m/s 1333
气力输送系统设计计算(黄底部分输入数据)
参数名称
代号 数值
备注
一、空气消耗量
Q=
114 Q=1000G/60μρa,空气消耗量,m3/min
G=
50 物料输送量,t/h
ρa=
0.91 按温度海拔换算当地自由空气的密度,kg/m3
T=
30 当地温度,℃

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)] (kg/kg) (5-20)Gh=ψγhνp (t/仓) (5-21)式中 Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa= Gm/μ (kg/min) (5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算 tm=( Gmchth+ Gacata)/( Gmch+Gaca)(℃) (5-24)式中 Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

气力输送系统基本参数计算知识

气力输送系统基本参数计算知识

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

气力输送计算(催功龙)

气力输送计算(催功龙)

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径)φ=仓泵出料管输出流量q 计算点压力工况下需要输送空输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

气力输送计算

气力输送计算

上引式系统(空气输送):一、计算条件(所有压力均为表压)锅炉额定排灰量qmB=28t/h干灰堆积密度ρh= 电场灰斗数量n=4个灰斗内干灰温 电场的输送单元数量n1=1个当地大气压pa=计算输送单元电场效率η=0.75 当地平均输送几何距离L=800m系统富余系数K=输送总垂直提升高度H=40m二、流态化仓泵技术数据电场灰预设输送单元输送一次的时间间隔Ti=5min(应包括装灰、输送及等待时间)仓泵输送压力p e=0.32MPa 计算流态化仓泵有效仓泵输出灰气混合物温度t e=100℃根据计算选择流态化仓泵有效容计算点压缩空气密度ρe=3.932452kg/m3 仓泵输出灰气比μ1=气灰混合物总量V ah=7.738995m3 仓泵出料管内气灰混合物 流态化仓泵出料管管径Dz=0.081888m 预设仓泵内气灰混合物输出时取仓泵内增压、流化仓泵出料管选用标准无缝管管径为Dn=0.081m (内径) 助吹空气量占总输送空气量百φ=仓泵出料管输出流量q vc=2.163162m3/min 计算点压力工况下需要输送空修正仓泵内气灰混合物输出时间t1=3.577631min 输送仓泵输出气灰混合物流三、输送管道技术参数初定输送管道助吹空气量q'vf= 1.34907m3/min 输送管道起始流输送管道管径Dn'=0.163427m输送管选用标准无缝管输送管道起始段气灰混合物流量qvAah=9.501012m3/min输灰管道输入灰库压力P F=修正助吹空气量q vf=1.413992m3/min输灰管道末端气灰混合物温度tF=计算点输送压缩空气初速度va=6.431367m/s 输送管道末段流输送单元系统需要标况空气量qvn=26.65106Nm3/min输送管道末段管径DF'=0.196481m 输灰管道末段气灰混合物流修正输送管道末速度Vf= 选用标准无缝管管径为Dn F=0.199m (内径)输送管道内平均输送流速v av=气灰混合物在输送管道内输送仓泵输送单元输送一次时间T=5.090984min 不含间隔时间输送管道内的输送灰气比μ= 输送管道末段气灰混合物密度ρFah=25.47775kg/m3 输送管道内干灰平均四、输送管道压力损失(必须先完成上面的计算,分管段计算每段压力损失后再人工相加)计算管段管径Dn=0.199m管道内壁平均粗糙度ε= 计算管段当量长度Leg=340m计算管段标准内径Dn=0.199m空气摩擦阻力系数λa=计算管段末端温度t2=50℃ 计算管段末段空气流量2=计算管段末端压力p2=6KPa 计算管段前段空气流量1=计算管段前端温度t1=65℃ 计算管段前端气灰混合物流量=计算管段末端气灰混合物流量= 计算管段前端压力P1=82.45667KPa 计算管段末端气灰混合物密度ρeah2=计算管段末端速度Vf=15.57656m/s 计算管段压力损计算管段始端速度Va=9.794972m/s干灰堆积密度ρh=0.75t/m3干灰温度te1=110℃当地大气压pa=101.234Kpa地平均气温ta=20℃系统富余系数K= 1.5灰斗采用定期出灰方式运行时 K≥2.0灰斗采用不积灰状态运行时 K=1.2~1.5电场灰量qm'=31.5t/h泵有效容积V=0.875m3有效容积为V= 1.2m3仓泵输出灰气比μ1=35kg/kg 为30~45kg(灰)/kg(气)混合物流速v2=7m/s 一般按6~7.5m/s选取输出时间t1'= 3.5min、流化时间t2=0.3min 一般取0.2~0.5min气量百分比φ=20% 初步设定按15%~20%选取输送空气量qve=1.686337m3/min合物流量qveah=8.08702m3/min起始流速VA'=7.5m/s 按7.0~8.5m/s选取无缝管管径Dn=0.164m (内径)管道输入灰库压力P F=6KPa端气灰混合物温度tF=50℃末段流速Vf'=16m/s 一般控制在20m/s内合物流量qVFah=29.09658m3/min正输送管道末速度Vf=15.57656m/s道内平均输送流速v av=11.53828m/s内输送时间t3=1.213352min道内的输送灰气比μ=22.01908kg(灰)/kg(气)灰平均流速vh=2.922156道内壁平均粗糙度ε=0.0002 无缝钢管为0.0002,焊钢管为0.0003,铸钢管为0.0005空气摩擦阻力系数λa=0.01964气流量qVFa2=27.75491m3/min气流量qVFa1=16.95506m3/min物流量qVFah1=18.29673m3/min物流量qVFah2=29.09658m3/min物密度ρeah2=25.47775kg/m3压力损失△Pe=76.45667Kpa。

正压密相气力输送基本计算1

正压密相气力输送基本计算1

正压密相气力输送基本计算1
正压密相系统基本参数计算
1.输灰管道当量长度Leq
输灰管道的总当量长度为
Leq=L+εH+nND(m)
Leq-----水平管当量长度(把垂直管及弯管换算成水平管当量长度)ε------垂直管相对于水平管的当量系数(一般选择为1.5,具体需实验测得)
H-------垂直管总长度
N-------弯管相当水平管的当量系数(一般选择为2 ,具体需实验测得)
n-------弯管数量
D-------弯管直径
2.管道压力损失△p1
输送管道的压力损失应为水平、垂直、倾斜管道以及管道附件压力损失的总和。

为简化计算,一般可将各部分折合成当量长度的水平管道,则得计算公式如下
△p1={[pe2+19.6 peλa(Lcq/D)(γeνe2/2g)]1/2-pe}(1+Kμ) (Pa)
式中
pe—计算管段终端的绝对压力,Pa,对于最后一段管道,pe即为入库接口处的压力;
λa—计算管段的空气摩擦阻力系数,按式(5-9)计算Leq—计算管段的当量长度,m;
D—计算管段的管道内径,m;
γe—计算管段的终端的空气重度,kgf/m3
νe—计算管段的终端流速,m/s;
μ—灰气混合比,kg(灰)/kg (气);
K—两相流系数,一般可通过试验求得。

从公式我们可以得出:
1.管道直径越大压损越小
2.管道长度越长压损越大
3.输送速度越快压损越大
4.混合比越大压损也越大。

气力输送计算

气力输送计算

气力输送计算
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
气力输送计算
一、设计依据和主要参数确定
1、输送量(G )
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速
度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料。

所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值。

一般输送粮粒的风速为20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情况取υ=4
4、风量(Q ) 根据公式y G Q υ==2
.1410203⨯⨯=4.17×103 m 3/h y —空气的比重取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m 3/h
5、输料管直径D 根据公式=⨯==221058.48.188.183V Q D 271.1
我们进行取整,得输料管直径
D=300mm 。

6、压力损失(P )。

气力输送计算

气力输送计算

垂直管压力损失 分离器压力损失 管道出口压力损失
m3= ΔPv= H= Kv= ΔPsp= ζ= Ui= ΔPcx=

发送设备压力损失
ΔPp= C= Kp=
10 水平面内弯头数量 745 垂直管压力损失,Pa
5 垂直管有效高度,m 1.100
310 分离器压力损失,Pa,旋风分离器 10.6 阻力系数,表内选取-->>
P2=
300000 空压机供气绝对压力,Pa
η=
0.65 等温全效率,0.55-0.75
R/D 0.5 1 2 3 9 20
n
0.75 0.94 1.22 1.67 2.04 3
0.016 气体的摩擦系数,无因次系数 1 光滑管:e=1;新焊接管:e=1.3;旧管:e=1.6
19.000 气流平均速度,m/s 0.637 3975 水平转向垂直向上弯头阻力 0.75 理论冲击次数,按表选取-->> 10 水平转向垂直向上弯头数量 2783 垂直转向水平弯头阻力 10 垂直转向水平弯头数量 3299 水平面内弯头阻力
气力输送系统设计计算(黄底部分输入数据)
参数名称
代号 数值
备注
一、空气消耗量
Q=
114 Q=1000G/60μρa,空气消耗量,m3/min
G=
50 物料输送量,t/h
ρa=
0.91 按温度海拔换算当地自由空气的密度,kg/m3
T=
30 当地温度,℃
P=
0.8456 当地气压,大气压,查表
μ=
8 低压小于49kPa取小于10;高压按表选取->
8 入口气流速度,m/s
1333
28525 100 直管吸嘴:C=1-10,Kp=1 螺旋泵:C=100,Kp=7 7 仓式泵:C=100-200,Kp=7

气力输送计算

气力输送计算

气力输送计算1输送量(G)输送量的大小通常由工艺过程所决定的。

但作为气力输送计算依据的输送量G,应该是输送管在正常工作中可能遇到的最大量。

因此,G应按工艺设计平均物料量再加上一定的储备系数而得,即:G=αG 设式中,G—计算输料量;G—设计工艺输送量,由工艺要求定; 设α—储备系数,一般为1.05,1.2。

2 输送风速(v)输料管中的风速v,必须保证物料能可靠的输送。

输送速度过高,会造成物料的破碎,增大管件的磨损和动力消耗。

输送速度过低,则容易引起掉料、管道堵塞,影响连续生产。

因此恰当的选择输送风速是很重要的。

一般情况下,在保证物料输送稳定可靠的前提下,尽量选取低风速。

输送物料的气流速度主要取决于各种物料的悬浮速度的大小粒度均匀的物料,输送风速大于其悬浮速度的1.5,2.5倍即可保证正常输送。

粒度不均匀的物料,按其分布比例最多的颗粒,输送风速大于其悬浮速度的2倍左右就可以保证物料的正常输送;对于粉状物料,为避免残留附着于管壁或,10倍的输送风速。

另外,其选择的粘结成团的现象,需要采用比悬浮速度大5速度还与管路的复杂程度、水平还是斜置有关,有弯头、管路复杂的要适当取大值。

如果输送气体的质量流量 m(kg,s)已确定,那末可用近似方法求得标准a,状态下的体积流量,(,/s) 。

0,,0.816, ,0仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下: 管道始端的速度:ν =10-12m,s; b前、中段管道末端的速度:ν=15-20m,s; e后段管道末端的速度:ν=15-25 m,s。

e计算管段的实际末端的速度νe可按下式计算ν=0.0212Qe/D2 (m/s) (5-25) e3 Q=(PT/PT).Q (m/s) (5-26) eaeeam3 式中Q—计算管段终端的容积流量, m/min eP—计算管段终端绝对压力,Pa eT—计算管段终端温度,K; eP—当地大气压力,Pa; aT—当地大气平均温度,K aD—输送管道的内径,m。

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式

正压气力输送的基本参数计算公式正压气力输送系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr(m)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[Qmγa(t2+t3)](kg/kg)Gh=ψγhνp(t/仓)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)质量流量Ga=Qaγa=16.67Gm/μ(kg/min)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=(Gmchth+Gacata)/(Gmch+Gaca)(℃)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃),按公式计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃;因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb=10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25m/s。

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全)

气力输送系统基本参数计算(全) System Basic Parameter nThe following paragraphs discuss the ___.1.Equivalent Length of Ash Pipeline (Leg)___ total equivalent length of the ash ___ ___:Leg = L + H + ∑nLr (m) (5-19)2.Ash-to-Air。

(μ)___ using the following formula。

based on the selected air compressor capacity and the output of the storage pump:μ = φGhX103/[Qmγa(t2+t3)](kg/kg) (5-20)Gh = ψγhνp (t/storage) (5-21)The ash-to-air。

depends on the length of the ___。

the μvalue is generally een 7-20kg/kg。

When the distance of n is short。

the upper limit value is used。

when the distance is long。

thelower limit value is used.3.Required Air Volume for Conveying SystemSince both single and double storage pumps work intermittently。

the required air volume for the system should be based on the air n required for each working cycle of the storage pump。

正压密相气力输送基本计算1

正压密相气力输送基本计算1

正压密相气力输送基本计算1
正压密相系统基本参数计算
1.输灰管道当量长度Leq
输灰管道的总当量长度为
Leq=L+εH+nND(m)
Leq-----水平管当量长度(把垂直管及弯管换算成水平管当量长度)ε------垂直管相对于水平管的当量系数(一般选择为1.5,具体需实验测得)
H-------垂直管总长度
N-------弯管相当水平管的当量系数(一般选择为2 ,具体需实验测得)
n-------弯管数量
D-------弯管直径
2.管道压力损失△p1
输送管道的压力损失应为水平、垂直、倾斜管道以及管道附件压力损失的总和。

为简化计算,一般可将各部分折合成当量长度的水平管道,则得计算公式如下
△p1={[pe2+19.6 peλa(Lcq/D)(γeνe2/2g)]1/2-pe}(1+Kμ) (Pa)
式中
pe—计算管段终端的绝对压力,Pa,对于最后一段管道,pe即为入库接口处的压力;
λa—计算管段的空气摩擦阻力系数,按式(5-9)计算Leq—计算管段的当量长度,m;
D—计算管段的管道内径,m;
γe—计算管段的终端的空气重度,kgf/m3
νe—计算管段的终端流速,m/s;
μ—灰气混合比,kg(灰)/kg (气);
K—两相流系数,一般可通过试验求得。

从公式我们可以得出:
1.管道直径越大压损越小
2.管道长度越长压损越大
3.输送速度越快压损越大
4.混合比越大压损也越大。

气力输送计算

气力输送计算

精心整理
气力输送计算
一、设计依据和主要参数确定
1、输送量(G )
输送管在正常工作中最大物料量:20T/H
2、输送风速(V)
气力输送装置中空气在管道中运动要有一个最有利的经济速度,此速度。

风速过高动力消耗过大。

动力消耗几乎与风速的三次方成正比。

风速过低,对物料输送量变化的适应小,工作不稳定易发生堵塞或掉料。

所以应该在保证输送工作稳定可靠的前提下,尽量采用低风速。

通常当物料比重和颗粒愈大、输送浓度越高、或者有弯曲和水平输送时所需风速取大值,反之则取较低数值。

一般输送粮粒的风速为20-25m/s.
我们考虑到我们输送距离短,弯头少等实际情况选择输送风速为22m/s.
3、输送浓度(υ)
输送浓度即气体输送中气体所含输送物料的质量浓度。

我国粮食行业一般输送稻谷等粮粒时取υ=3-5.我们根据实际情况取υ=4
4、风量(Q ) 根据公式y G Q υ==2
.1410203⨯⨯=4.17×103 m 3/h y —空气的比重取1.2Kg/m 3
考虑到系统漏风和储备所需风量为Q=1.1×4.17×103=4.58×103 m 3/h
5、输料管直径D 根据公式=⨯==22
1058.48.188.183V Q D 271.1
精心整理
我们进行取整,得输料管直径D=300mm。

6、压力损失(P)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统基本参数计算更新时间:2005年07月20日系统基本参数计算1.输灰管道当量长度Leg输灰管道的总当量长度为Leg=L+H+∑nLr (m)(5-19)2.灰气比μ根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20)Gh=ψγhνp (t/仓) (5-21)式中Gh—仓泵装灰容量,t/仓。

灰气比的选择取决于管道的长度、灰的性质等因素。

对于输送干灰的系统,μ值一般取7-20 kg/kg。

当输送距离短时,取上限值;当输送距离长时,则取下限值。

3.输送系统所需的空气量因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22)质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23)4.灰气混合物的温度输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24)式中Gm—系统出力,kg/min;ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算th—灰的温度,℃;ca—空气的比热容,一般采用o.24kcal/(kg℃);ta—输送空气的温度,℃。

因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。

根据经验,每100m的温降值一般为6—20℃。

当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。

5.输送速度仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:管道始端的速度:νb =10-12m/s;"前、中段管道末端的速度:νe=15-20m/s;后段管道末端的速度:νe=15-25 m/s。

计算管段的实际末端的速度νe可按下式计算νe=0.0212Qe/D2 (m/s) (5-25)Qe=(paTe/peTa).Qm (m3/s) (5-26)式中Qe—计算管段终端的容积流量, m3/minpe—计算管段终端绝对压力,PaTe—计算管段终端温度,K;pa—当地大气压力,Pa;Ta—当地大气平均温度,KD—输送管道的内径,m。

系统出力Gm计算(一)系统出力Gm气力除灰设备的出力可根据系统的最大输送量(已考虑输送系统和设备维修时间等因素)来确定。

对于仓式泵系统,计算时,根据设计输送量Gms和管道长度,可先初选某一规格的仓泵,然后核算仓泵的系统山力Gm,是否能满足输送要求,即Gm≥Gms。

单仓泵Gm=60ψγhνp/(t1+t2) (t/h)(5-16)双仓泵Gm=60ψγhνp/(t2+t3)(t/h) (5-17)t3=φX(νb/Qm)X[(po-pc)/pa]X[(273+ta)/ (273+t)](min) (5-18)式中ψ—仓泵充满系数,一般取o.8;γh—灰的堆积密度,可近似取o.7~0.8t/m3;νp—仓式泵的几何容积.m3;t1—装满1仓灰所需的时间,与给料设备的形式和出力有关,mint2—吹送1仓灰所需的时间,主要与输送管道的长度有关,mint3—仓泵压力回升时间,min;φ—供气系统漏风系数,一般取1.1-1.2νb—供气系统贮气总容积,m3;Qm—空气压缩机的自由空气流量, m3/minpo—仓泵开始吹灰时的压力,Papc—仓泵停止吹灰时的压力,Papa—当地大气压力,Pa;ta—当地大气平均温度,℃. t—压缩空气供气温度,℃除灰系统的压力损失△p更新时间:2005年07月20日除灰系统的压力损失△p仓泵正压气力除灰系统的压力损失是从整根管道的终端(即排入灰库的接口)向管道始端逐段进行计算的。

正压气力除灰系统的压力损失由以下各部分组成。

1.管道压力损失△p1输送管道的压力损失应为水平、垂直、倾斜管道以及管道附件压力损失的总和。

为简化计算,一般可将各部分折合成当量长度的水平管道,则得计算公式如下△p1={[pe2+19.6 peλa(Lcq/D)(γeνe2/2g)]1/2-pe}(1+Kμ)(Pa)(5-27)式中,pe—计算管段终端的绝对压力,Pa,对于最后一段管道,pe即为入库接口处的压力;λa—计算管段的空气摩擦阻力系数,按式(5-9)计算Leq—计算管段的当量长度,m, 按公式(5-19)和表5—1、表5-2得出;D—计算管段的管道内径,m;γe—计算管段的终端的空气重度,kgf/m3νe—计算管段的终端流速,m/s;μ—灰气混合比,按(5-20)式计算,kg(灰)/kg (气);K—两相流系数,一般可通过试验求得,也可按表5-3所列数据选用。

2.输送设备的压力损失△pp上引式仓泵内的压力损失如表5—5所示,其他形式仓泵内的压力损失可参照选用。

表5—5上引式仓泵内压力损失表仓式泵流量(m3/min )20-40 >40压力损失△pp(Pa) 6000-12000 12000-150003.灰粒加速引起的压力损失△pac在加料处、管道变径处以及弯管之后灰粒起动加速引起的压力损失,可按公式(5—13)计算。

6\0m#T/`4k,[4d)U3h4.入库压力损失△po△po=γeν2e(1+0.64)/2g (Pa)(5—28)式中所有参数均选用灰气混合物入库处的数值,据实测,△po一般为3000-5000 Pa.。

5.布袋收尘霉的压力损失△pi一般可根据制造厂家提供的有关压力损失数据选用。

综合以上所述,可得正压气力除灰系统的压力损失计算公式如下:△p =∑△p1 +△pp +△pac +△p0 +△pi(Pa)(5—29)式中∑△p1一各计算管段管道的压力损失的总和,Pa受灰器负压除灰系统计算之系统出力Gm更新时间:2005年07月20日一、受灰器负压除灰系统计算(一)系统出力Gm能源环保论坛(})n!g;g `#z系统出力可根据锅炉最大连续蒸发量时,每小时的总灰量或总渣量以及系统设备停运进行维护所需要的时间来确定,即Gm=(Gtn/tm)X103(kg/h) (5-1)式中G--锅炉最大连续蒸发量时每小时的总灰量或总渣量,t/h;tn—锅炉每班运行小时数,一般为8h;tm—气力除灰系统每班运行小时数,一般按4h考虑。

物料输送阀负压气力除灰出力Gf的计算更新时间:2005年07月20日物料输送阀负压气力除灰出力Gf的计算在一定的输送距离和浓度条件下,采用除灰控制阀的负压气力除灰系统的出力主要取决于管道的直径,其关系可参照表5-4。

表5-4系统出力与管径关系管径(mm) DN150 DN125 DN150 DN200 DN250系统出力(t/h) 5-8 8-10 10-15 15-40 40-60负压系统的系统出力可按下式计算Gf=(Q/ v1)X[(p1 v1-p2 v2)/(k-1)]X3.6/[(w2/2g+Lf+H+ w2fNπ/2g)Xg](t/h) (5-15)式中f—摩擦系数;g—重力加速度,9.81m/s2H—垂直升高,m;Lf—输送水平距离,m;k—定墒指数,可取1.2N—90°弯头个数,当弯头小于90°时,折算为90°弯头p1—负压设备进口空气压力,Pa(绝对)P2--负压设备出口空气压力,Pa(绝对)Q--负压设备进口空气流量,m3/Sv1—负压设备进口空气比容,m3/kg;v2—负压设备出口空气比容,m3/kg:w—管道平均流速,m/s。

气力输送系统的经济分析更新时间:2005年07月24日在设计气力除灰系统时,首先要保证能完成预期的输送任务,同时,合理地决定所采用的设备种类和容量,以及与此有关的问题,设计时,不能只看设备费用的多少,而更重要的是要综合考虑物料的性质对质量的影响,输送量、输送距离、输送路线的情况,以及运行管理的难易和费用等等,例如对于某些物料,各种设备的条件均适宜于气力输送,但由于物料含有大量的水分、具有粘附性等原因而不能采用气力输送时,即使机械输送设备费用大,也得选取机械输送方式。

也有这样的情况,输送某些物料时,例如,向循环流化床锅炉炉前贮料仓输送石灰石粉时,采用气力输送所需的功率大,乍看起来运行费用较高,但从系统的合理性或生产技术上来看,还是用气力输为好。

究竟在什么样的情况下采用哪一种方式技术经济性比较合理呢,一般来说,在较短距离的输送时,机械输送是有利的;反之,对较长距离的输送,虽然从所需的功率来看,采用气力输送系统是不利的,但在设备费用方面,往往采用气力输送系统是有利的。

设备费用和所需功率及运行费用随周围条件不同,变化很大,所以不能笼统地比较,同时还应注意到随着各种平台支架和附属设备的情况不同,变化幅度也很大。

总之在设计气力除灰系统时,应该根据工程具体条件.综合性地通过技术经济比较后选择最合适的输送系统和相应的设备。

如果系统的输送出力和输送距离已定,则系统的经济性一般取决于输送的灰气混合比,从设备能量消耗来看,压(抽)气设备所需的功率与系统压力和空气流量的乘积成正比。

如果提高灰气混合比,输用的空气量则可减小,在输送速度保持一定的条件下,输送用的空气量与管径的平方成正比,即Q∝D2而系统压力即输送管道的阻力与管内径的平反成反比,即P∝1/D而与灰气比并不是按正比关系增加.因此,提高输送的灰气比,减少空气量,对降低压(抽)气设备的能量消耗是十分有利的:其次,从系统基建费用来看,由于灰气比的提高,设备和输送管道内径、支架及安装费用都可以相应地减小,降低系统基建费用的效果也是显而易见的。

灰气比μ越大,对于增大输送能力来说越有利,显然也将提高经济性。

但是,灰气比过大,则在同样的气流速度下可能产生堵塞,并且输送压力也增高,对负压式和低正压气力输送系统,有可能会超过压气机械所允许的吸气压力或排气压力。

因而,灰气比的数值受到物料的物理性质、输送方式以及输送条件等因素的限制。

特别是对正压气力输送系统,考虑仓式泵本身的尺寸和构造、输料管的内径和长度、弯头数目以及使用的空气量等条件,其灰气比自然更受到制约。

在设计计算时,要考虑输送条件和参考各种实例来选定灰气比的数值一般选取的范围如表5-8所示表5-8灰气比μ的数值输送方式μ负压式低真空小于10高真空10- 20压力式低压<20高压10-40流态化压送40-80从上表也不难看出.在经过综合比较后,有条件时应该尽量选用高浓度的密相气力输送系统。

表5—9为德国公司的一个例子。

相关文档
最新文档