BOOST电路设计与仿真
BOOST电路的设计与仿真
BOOST电路的设计与仿真摘要BOOST 电路又称为升压斩波电路,它在各类电力电子电路中的应用十分广泛,它将低压直流电变为高压直流电,为负载提供了稳定的直流电压。
升压斩波电路的PI和PID调节器的性能对输出的电压影响很大。
由于这种斩波电路工作于开关模式下,是一个强非线形系统。
采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOOST 电路的工作特性。
【关键词】:Boost电路直流电压 matlab仿真1.设计要求(1)输入电压:40v,输出电压:60v—120v(2)根据给定的指标,设计BOOST电路参数。
(3)利用MATLAB软件,对电路进行验证。
(4)通过仿真实验,验证仿真实验,验证电路参数是否正确。
(4)观察电路中主要波形,并记录(仿真,实验)。
2.设计目的(1)熟悉整流和触发电路的基本原理,能够运用所学的理论知识分析设计任务。
(2)掌握基本电路的数据分析、处理;描绘波形并加以判断。
(3)能正确设计电路,画出线路图,分析电路原理。
3. 设计方案和电路图3.1 Boost基本工作原理:假设电路中电感L值很大,电容C值也很大。
当V处于通态时,电源E向电感L 充电,充电电流基本恒定为I1,同时C上的电压向负载R供电,因为C也很大,基本保持输出电压为恒值U0.设V通态时间为ton,此阶段L积蓄能量为 E I1ton。
当V处于断态时E和L共同向C充电,并向负载R提供能量。
设V处于断态时间为toff,则这期间电感L释放能量为(U0-E)I1toff一周期T中,电感L积蓄的能量和释放的能量相等,即EI1ton=(U-E)I1toff(3-1)化简得:U0=T/toffE (3-2)式(3-2)中的T/ toff≥1,输出电压高于电源电压,故称改电路为升压斩波电路。
有的文献中直接采用其英文名称,称之为BOOST变换器。
实验四 Boost电路仿真
实验四Boost电路仿真(升压式变换器仿真与分析)
一. 实验目的
1、熟悉Saber软件的基本操作,掌握元件库中常用模型的功能和参数设置;
2、熟练应用非隔离型斩波电路___Boost型电路的仿真;
3、学会用软件对电路分析,修正。
二. 简述实验原理及目的
1.BooST变换器:也称升压式变换器,是一种输出电压高于输进电压的单管不隔离直流变换器。
Boost变换电路如图1所示,线路由开关S、电感L、电容C、为完成把电压Ui升压到Uo的功能。
假设开关S 的周期为T,开通时间为Ton=D T,关断时间为
t off=(1—D)T,
D为开通占空比。
D=t on/T,
图1 Boost 变换器电路原理图
图1是升压式DC-DC变换器的主电路,它主要由功率开关管VT、储能电感L、滤波电容C和续流二极管VD组成。
电路的工原理是:当控制信号Vi为高电平时,开关管VT导通,能量从输入电源流入,储存于电感L中,由于VT导通时其饱和压降很小,所以二极管D反偏而截止,此时存储在滤波电容C中的能量释放给负载。
当控制信号Vi为低电平时,开关管VT截止,由于电感L中的电流不能突变,它所产生的感应电势将阻止电流的减小,感应电势的极性是左负右正,使二极管D导通,此时存储在电感L中的能量经二极管D对滤波电容C充电,同时提供给负载。
电路各点的工作波形如图2所示。
图2。
完整word版,BOOST电路设计及matlab仿真
Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。
根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。
其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加。
打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
Boost变换器的设计与仿真
目录摘要 (3)第一章绪论 (4)1. 1研究背景 (4)1.2 boost变换器的国外研究现状 (6)1.3 Boost变换器的国内现状 (7)1.4 基于PID对Boost变换器的研究现状 (8)1.5与Boost变换器的控制方法 (10)1.6本文内容安排 (11)第二章DC-DC变换器基础 (11)引言 (11)2.1 Boost变换器的基本原理 (12)2.2 Boost变换器在CCM模式下的工作原理 (13)2.3 Boost变换器在DCM模式下的工作原理 (16)2.4 Boost变换器在CCM/DCM的临界条件 (18)2.5 PID控制的原理与分析 (19)2.6 本章小结 (21)第三章 Boost变换器设计 (23)引言 (23)3.1 Boost变换器性能指标 (23)3.2 Boost电路的参数设计 (23)第四章 Boost变换器的仿真及分析 (28)引言 (28)4.1 建立Boost变换器的仿真模型 (28)4.2 仿真结果 (28)4.3 本章小结 (31)第五章总结与展望 (32)致谢 (33)参考文献 (34)摘要科技在不断地发展,人们的生活水平也在不断地提高,人们的生活已经离不开电子产品。
所以对电源的性能要求也是越来越高。
但是能源危机也时日益严重。
为了解决这一问题,可再生的能源正在不断地发展与利用。
但是,在可以再生的能源中,输出的电压一般都会比较低,大约在20V-50V之间。
而我们用的电压则时在220V左右。
为了解决这一问题,就不得不用到升压变换器。
因此,对Boost 变换器的设计与分析是必不可少的。
本文主要是基于线性PID控制来进行对Boost DC-DC变换器的分析与设计。
通过设计Boost电路的参数,以及对PID的参数进行整定,并用MATLAB进行系统仿真。
从而验证PID控制对Boost变换器设计的可行性。
关键词: Boost变换器, PID控制, MATLAB仿真AbstractWith the continuous development of science and technology, people's living standards are also constantly improving, people's lives have been inseparable from electronic products. Therefore, the performance requirements of power supply are also getting higher and higher. But the energy crisis is getting worse. In order to solve this problem, renewable energy is constantly developing and utilizing. However, in renewable energy sources, the output voltage is generally low, about 20V-50V. The voltage we use is about 220V. In order to solve this problem, boost converter has to be used. Therefore, the design and analysis of Boost converter is indispensable.This paper mainly analyses and designs Boost DC-DC converter based on linear PID control. By designing the parameters of Boost circuit and setting the parameters of PID, the system simulation is carried out with MATLAB. The feasibility of the design of Boost converter based on PID control is verified.Key words: Boost converter, PID control, MATLAB simulation第一章绪论1. 1研究背景现如今,中国经济正在不断蓬勃发展,人们的生活质量与日俱增,在此背景下,多样化科学技术应运而生,使得各种不可再生资源的消耗急剧的增加,关于环境问题日益严重。
BOOST电路设计及仿真
BOOST电路设计及仿真BOOST电路是一种升压电路,在电压电平较低的情况下,能够将输入电压提升到输出电压。
BOOST电路被广泛应用于电力电子领域,如电源、DC-DC转换器、光伏逆变器等。
BOOST电路的设计主要包括两个方面:拓扑结构设计和元件参数选择。
首先应选择合适的拓扑结构,BOOST电路拓扑结构多样,如单端输出、双绕绕制、双端输出等。
这里我们选择单端输出的BOOST电路拓扑结构。
BOOST电路的原理基于电感耦合和开关管的开关原理。
当电感L和二极管D恒定时,开关管S的导通和关闭会使电感L的磁场发生变化,从而使输出电压发生变化。
在导通状态下,能量储存在电感L中。
在关闭状态下,储存在电感L中的能量会传递到输出端,从而提高输出电压。
BOOST电路的关键参数:输入电压Vin:BOOST电路的输入电压是其工作的基础。
在选择拓扑结构时,需要明确输入电压的范围,以便选取合适的器件参数。
输出电压Vout:输出电压是BOOST电路的主要输出参数。
在设计时,需要确定输出电压所需的级数,以及负载电流的大小。
电感L:电感L是BOOST电路的关键元器件,负责储存能量。
在设计时需要选取合适的电感值和电感电流。
注意,电感L的选取也会对电路的效率产生影响。
开关管S:开关管是BOOST电路的关键元器件之一,主要负责电路的开关功能。
在设计时需要选取合适的开关管,考虑其最大电压和最大电流,并选择合适的开关频率。
设计和仿真步骤:1、确定电路参数设计之前首先需要明确电路所需的参数,如输入电压范围、输出电压、电感和电容等。
这些参数需要根据实际需求来确定。
2、选择拓扑结构BOOST电路拓扑结构多样,需要选择适合自己需求的拓扑结构。
选择单端输出的BOOST 电路拓扑结构。
3、选用元器件根据电路参数和选定的拓扑结构,选用合适的元器件,如电感、开关管、二极管、电容等。
4、绘制电路图根据选用的元器件和拓扑结构,绘制BOOST电路的电路图。
5、SIMULINK仿真利用MATLAB软件中的SIMULINK工具箱进行BOOST电路的仿真。
四种软开关BOOST电路的分析与仿真(图清晰)
四种常用BOOST带软开关电路的分析与仿真 (图清晰)软开关的实质是什么?所谓软开关,就是利用电感电流不能突变这个特性,用电感来限制开关管开通过程的电流上升速率,实现零电流开通。
利用电容电压不能突变的特性,用电容来限制开关管关断过程的电压上升速率,实现零电压关断。
并且利用LC谐振回路的电流与电压存在相位差的特性,用电感电流给MOS结电容放电,从而实现零电压开通。
或是在管子关断之前,电流就已经过零,从而实现零电流关断。
软开关的拓扑结构非常多,每种基本的拓扑结构上都可以演变出多种的软开关拓扑。
我们在这里,仅对比较常用的,适用于APFC电路的BOOST结构的软开关作一个简单介绍并作仿真。
我们先看看基本的BOOST电路存在的问题,下图是最典型的BOOST电路:假设电感电流处于连续模式,驱动信号占空比为D。
那么根据稳态时,磁芯的正向励磁伏秒积和反向励磁伏秒积相同这个关系,可以得到下式:VIN×D=(VOUT-VIN)(1-D),那么可以知道:VOUT=VIN/(1-D)那么对于BOOST电路来说,最大的特点就是输出电压比输入电压高,这也就是这个拓扑叫做BOOST电路的原因。
另外,BOOST电路也有另外一个名称:upconverter,此乃题外话,暂且按下不表。
对于传统的BOOST电路,这个电路存在的问题在哪里呢?我们知道,电力电子的功率器件,并不是理想的器件。
在基本的BOOST电路中:1、当MOS管开通时,由于MOS管存在结电容,那么开通的时候,结电容COSS储存的能量几乎完全以热的方式消耗在MOS的导通过程。
其损耗功率为COSSV2fS/2,fS是开关频率。
V为结电容上的电压,在此处V=VOUT。
(注意:结电容与静电容有些不一样,是和MOS 上承受的电压相关的。
)2、当MOS管开通时,升压二极管在由正向导通向反偏截止的过程中,存在一个反向恢复过程,在这个过程中,会有很大的电流尖峰流过二极管与MOS管,从而导致功率损耗。
BOOST电路设计与仿真
BOOST电路设计与仿真BOOST电路是一种直流-直流升压电路,可以将低电压输入转换为高电压输出,被广泛应用于各种电子设备和电源系统中。
BOOST电路的设计与仿真是保证电路性能稳定和有效工作的重要步骤。
本文将介绍BOOST电路的设计原理和流程,并讨论BOOST电路的仿真方法和应用。
BOOST电路的设计原理基于电感储能和开关管的开关控制。
BOOST电路通常由开关管、电感、电容和负载组成。
当开关管导通时,电感储能;当开关管关断时,电感释放储能。
通过周期性的开关控制,可以实现输入电压的升压转换。
1.确定BOOST电路的输入输出要求。
根据实际应用需求,确定输入电压、输出电压和负载电流等参数。
2.选择开关管和电感。
根据输入输出要求和开关频率,选择合适的开关管和电感。
3.计算电容。
根据输出电压波动和负载要求,计算所需的输出电容。
4.设计反馈控制。
BOOST电路通常采用反馈控制来实现稳定的输出电压。
根据输入输出要求和稳定性要求,设计反馈控制电路。
5.仿真和优化。
使用仿真软件对BOOST电路进行模拟仿真,优化电路参数和控制策略,以达到设计要求。
在时间域仿真中,可以通过建立电路模型和开关控制器模型,对BOOST电路进行系统级仿真。
通过输入电压和负载电流变化,分析输出电压和效率等指标,验证电路性能。
在频域仿真中,可以通过建立开关模型和电感电容模型,对BOOST电路进行精确的频率响应分析。
通过频率响应曲线,可以评估BOOST电路的稳定性、带宽和损耗等指标。
除了仿真,BOOST电路的设计还需要考虑一些其他因素,如电路拓扑、器件选择和布局等。
这些因素都会影响电路的性能和可靠性。
最后,BOOST电路在各种电子设备和电源系统中有广泛应用,例如便携式电子设备、通信设备和工业控制系统等。
通过合理的设计与仿真,可以确保BOOST电路的稳定性和高效性,提高整个系统的性能。
BOOST电路设计及仿真
目录一. Boost主电路设计: (2)1.1占空比D计算 (2)1.2临界电感L计算 (2)1.3临界电容C计算(取纹波Vpp<2.2V) (2)1.4输出电阻阻值 (2)二. Boost变换器开环分析 (2)2.1 PSIM仿真 (2)2.2 Matlab仿真频域特性 (2)三. Boost闭环控制设计 (2)3.1闭环控制原理 (2)3.2 补偿网络的设计(使用SISOTOOL确定参数) (2)3.3 计算补偿网络的参数 (2)四.修正后电路PSIM仿真 (2)五.设计体会 (2)Boost变换器性能指标:输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 参考电压Vref=5V输出功率:Pout=5Kw输出电压纹波:Vpp=2.2V Vm=4V电流纹波:0.25A开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一. Boost主电路设计:1.1占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化围。
1.2临界电感L计算选取L>Lc,在此选L=4uH1.3临界电容C计算(取纹波Vpp<2.2V)选取C>Cc,在此选C=100uF1.4输出电阻阻值Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:二. Boost变换器开环分析2.1 PSIM仿真电压仿真波形如下图电压稳定时间大约1.5毫秒,稳定在220V左右电压稳定后的纹波如下图电压稳定后的纹波大约为2.2V电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图2.2 Matlab仿真频域特性设定参考电压为5V,则,系统的开环传递函数为,其中,由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。
系统不稳定,需要加控制电路调整。
BOOST电路设计与仿真
BOOST电路设计与仿真
BOOST电路的基本工作原理是通过控制开关管的导通和截止状态来实现输入电压的升压。
当开关管导通时,电感储能,累积电能;当开关管截止时,电感释放储能,输出电压呈现提升趋势。
BOOST电路的主要构成要素包括开关管、电感、滤波电容以及输出负载。
开关管可以采用MOSFET 或者BJT等器件,电感和滤波电容则用于储能和平滑输出电压,输出负载通常是负载电阻或者电子设备。
在BOOST电路设计中,首先需要确定输入电压和输出电压的范围,以此来选择合适的电感和开关管。
电感的选取应考虑到电流波形的要求,滤波电容的选取则需考虑输出纹波电压的要求。
接下来,需要确定开关管的导通和截止频率,这将决定BOOST电路的工作频率和效率。
较高的开关频率可以减小电感和滤波电容的尺寸,但也会增加开关管的功耗。
最后,需要进行电路的稳定性分析,并设计反馈控制电路来实现输出电压的稳定调节。
BOOST电路的设计可以通过软件仿真来实现,常用的仿真工具有PSpice、Multisim等。
在仿真中,可以通过建立电路的数学模型,输入合适的参数值来观察电路的工作状态,并进行性能评估。
例如,可以观察输出电压的波形和纹波电压,计算电路的效率以及输出电压的稳定性等。
通过仿真,可以优化电路参数,满足系统要求。
总结起来,BOOST电路是一种常用的升压电路,可以将输入电压提升到更高的输出电压,具有广泛的应用。
在设计BOOST电路时,需要考虑输入输出电压范围、选择合适的电感和开关管、确定开关频率以及设计反馈控制电路。
仿真是一种有效的方法,可以帮助设计人员评估BOOST电路的性能,并进行参数优化。
完整word版,BOOST电路设计及matlab仿真
Boost升压电路及MATLAB仿真1. 输入电压(VIN):12V2. 输出电压(VO):18V3. 输出电流(IN):5A4. 电压纹波:0.1V5. 开关频率设置为50KHz 需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A 范围变化时,稳态输出能够保持在18V 。
根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost 电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。
其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
、主电路设计图 1 主电路2.1 Boost 电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS 断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost 升压电路的肖特基二极管主要起隔离作用,即在MOS 开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS 管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加。
打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
设计要求接下来分两部分对 Boost 电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线 代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感 上的电流以一定的比率线性增加, 这个比率跟电感大小有关。
(完整word版)BOOST电路设计及matlab仿真
Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2。
输出电压(VO):18V3.输出电流(IN):5A4。
电压纹波:0。
1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V .根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高.其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加.打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
BOOST电路设计及matlab仿真
Boost升压电路及MATLAB仿真一、设计要求1.输入电压(VIN):12V2.输出电压(VO):18V3.输出电流(IN):5A4.电压纹波:0.1V5.开关频率设置为50KHz需设计一个闭环控制电路,输入电压在10—14V或负载电流在2—5A范围变化时,稳态输出能够保持在18V 。
根据设计要求很显然是要设计一个升压电路即Boost电路。
Boost电路又称为升压型电路,是一种开关直流升压电路,它可以是输出电压比输入电压高。
其工作过程包括电路启动时的瞬态工作过程和电路稳定后的稳态工作过程。
二、主电路设计图1主电路2.1 Boost电路的工作原理Boost升压电路电感的作用:是将电能和磁场能相互转换的能量转换器件,当MOS开关管闭合后,电感将电能转换为磁场能储存起来,当MOS断开后电感将储存的磁场能转换为电场能,且这个能量在和输入电源电压叠加后通过二极管和电容的滤波后得到平滑的直流电压提供给负载,由于这个电压是输入电源电压和电感的磁场能转换为电能的叠加后形成的,所以输出电压高于输入电压,既升压过程的完成。
Boost升压电路的肖特基二极管主要起隔离作用,即在MOS开关管闭合时,肖特基二极管的正极电压比负极的电压低,此时二极管反向截止,使此电感的储能过程不影响输出端电容对负载的正常供电;因在MOS管断开时,两种叠加后的能量通过二极向负载供电,此时二极管正向导通,要求其正向压降越小越好,尽量使更多的能量供给到负载端。
闭合开关会引起通过电感的电流增加。
打开开关会促使电流通过二极管流向输出电容因储存来自电感的电流,多个开关周期以后输出电容的电压升高,结果输出电压高于输入电压。
接下来分两部分对Boost电路作具体介绍即充电过程和放电过程。
充电过程在充电过程中,开关闭合(三极管导通),等效电路如图二,开关(三极管)处用导线代替。
这时,输入电压流过电感。
二极管防止电容对地放电。
由于输入是直流电,所以电感上的电流以一定的比率线性增加,这个比率跟电感大小有关。
BOOST电路设计与仿真
B O O S T电路设计与仿真 Prepared on 24 November 2020目录Boost变换器性能指标: 输入电压:标准直流电压Vin=48V输出电压:直流电压Vo=220V 参考电压 Vref=5V 输出功率:Pout=5Kw输出电压纹波:Vpp= Vm=4V电流纹波:开关频率:fs=100kHz相位裕度:60幅值裕度:10dB一. Boost主电路设计:占空比D计算根据Boost变换器输入输出电压之间的关系求出占空比D的变化范围。
D=U O−U inmaxU O=0.782临界电感L计算Lc=DV o(1−D)22f s i o=1.8μH选取L>Lc,在此选L=4uH临界电容C计算(取纹波Vpp<)C=I O Df s V PP =22.7×0.782100000×2.2=80.6μF选取C>Cc,在此选C=100uF 输出电阻阻值R=U=U×U=9.68Boost主电路传递函数Gvd(s)占空比d(t)到输出电压Vo(t)的传递函数为:G vd(s)=(1−D)V(1−LS(1−D)2R) LCs2+s(L)+(1−D)2G vd(s)=47.96∗(1−8.7×10−6s)4×10s+4.13×10s+0.048二. Boost变换器开环分析 PSIM仿真电压仿真波形如下图电压稳定时间大约毫秒,稳定在220V左右电压稳定后的纹波如下图电压稳定后的纹波大约为电流仿真波形如下图电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图Matlab仿真频域特性设定参考电压为5V,则H(s)=5220=144,G m(s)=1Vm=14系统的开环传递函数为T o(s)=G vd(s)G c(s)H(s)G m(s),其中H(s)=1,G c(s)=1由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度,相位裕度过小,高频段是-20dB/dec。
BOOST电路的设计与仿真
BOOST电路的设计与仿真首先,需要选择BOOST电路的参数。
在设计过程中,需要确定输出电压、输出电流、输入电压范围以及负载变化范围。
这些参数将直接影响到BOOST电路的工作状态和整体性能。
接下来,选择合适的开关元件。
BOOST电路通常使用MOSFET作为开关元件,因为MOSFET具有低导通电阻和高开关速度等优点。
在选择MOSFET时,需要考虑其导通电阻、额定电压和电流能力。
同时还需要考虑开关频率和功率损失等因素。
然后,进行电感的选择。
电感是BOOST电路中一个重要的元件,起到储能和滤波的作用。
选择电感时,需要考虑其感值、电流能力和电阻等参数。
一般情况下,感值越高,效率越高,但体积和成本也会相应增加。
同时,选择合适的电容。
电容在BOOST电路中起到滤波和电荷储存的作用。
选取电容时,需要考虑其额定电压、电容值和ESR等参数。
电容的选择对BOOST电路的稳定性和纹波大小等指标有着重要影响。
最后,进行BOOST电路的仿真。
可以使用电路仿真软件(如PSPICE、Multisim等)进行BOOST电路的仿真分析。
通过仿真,可以验证电路设计的正确性、性能参数的满足程度,以及优化设计方案。
在仿真过程中,应该考虑输入电压变化、负载变化和开关频率等因素,以评估BOOST电路的稳定性、效率和纹波等性能指标。
需要注意的是,设计和仿真过程可能需要多次迭代调整,以达到所需的设计目标。
此外,BOOST电路的稳压控制等高级功能也需要在设计和仿真中进行考虑。
总之,BOOST电路的设计与仿真需要进行参数选择、元件选择、仿真分析等多个方面的工作。
通过合理的设计和仿真分析,可以得到满足设计要求的BOOST电路方案。
Boost电路设计与仿真
2012下学期电力电子电路设计与仿真Boost电路设计与仿真一、设计要求:设计Boost电路,使其输入电压为40V。
输出电压为150V±3V,输出功率150w,选取输出电阻150Ω。
二、设计目的:1、通过对Boost 电路的设计,掌握Boost电路的工作原理,综运用所学知识,进行Boost电路和系统设计的能力。
2、根据给定指标,设计BOOST电路参数。
3、利用MATLAB仿真软件,做出MATLAB模型图及其MATLAB示波器的波形。
三、设计方案和电路图:(1)BOOST电路图:图(1)Boost电路原理图Boost基本工作原理:假设电路中电感L 值很大,电容C 值也很大。
当开关管处于通态时,电源E 向电感L 充电,充电电流基本恒定为i L ,同时C 上的电压向负载R 供电,因为C 也很大,基本保持输出电压为恒值U 0.设开关管通态时间为t on ,此阶段L 积蓄能量为 E i L t on 。
当开关管处于断态时E 和L 共同向C 充电,并向负载R 提供能量。
设开关管处于断态时间为t off ,则这期间电感L 释放能量为(U 0-E )i L t off .一周期T 中,电感L 积蓄的能量和释放的能量相等,即 E i L t on =(U 0-E )i L t off 化简得: U 0=T/ t off E(2)参数计算 (a )占空比计算U 0=T/ t off E……………………………………………………………………………○1 U 0=150U ,E=60U ………………………………………………………………………○2 由○1,○2有D=60% (b )电感参数计算电感的选取应满足公式L=)221(D D ITU S-……………………………………○3 其中L 为电感值,U 0为输出电压,I 0为输出电流,由输出功率150w ,输出电压150v ,可得输出电流A I 10=,T S 为开关管工作周期,开关频率越高,电感器的值就可以越小,体积就可以越小,但开关频率高了会加重开关管的负担,这理选开关频率为100kHzV V Di (min)0(max)min1-==0.58=TS105-L=7758.01(58.0*1*2*150)1025=--μH实际电路中L=1.5*L=116μH 这里选取150μH(c )电容参数计算电容的选取应满足公式VI T D os C ∆=0max…………………………………………○4 式中V 0∆为纹波电压62.01556011maxminmax=-=-=VV Do iC=11**62.0105-=6μF电容取得大滤波效果越好,这里取C=10μf(d )开关管的选择输入端电流Ii有公式IV I V ii**=所以输入电流为2.5A ,开关管导通和关断时的尖峰电流应大于此值,开关管导通时的允许电流应为此值的两倍,即≥Ip5A ,开关管的耐压值应为输出电压和二级管电压之和即150.7v ,开关管关断时漏源极电压为此值的两倍即300v 。
BOOST电路设计与仿真
目录一.Boost主电路设计:........................................................ 错误!未指定书签。
1.1占空比D计算 .......................................................... 错误!未指定书签。
1.2临界电感L计算 ....................................................... 错误!未指定书签。
1.3临界电容C计算(取纹波Vpp<2.2V)................... 错误!未指定书签。
1.4输出电阻阻值........................................................... 错误!未指定书签。
二.Boost变换器开环分析.................................................... 错误!未指定书签。
2.1PSIM仿真 .................................................................. 错误!未指定书签。
2.2Matlab仿真频域特性 ............................................... 错误!未指定书签。
三.Boost闭环控制设计........................................................ 错误!未指定书签。
3.1闭环控制原理........................................................... 错误!未指定书签。
3.2补偿网络的设计(使用SISOTOOL确定参数)...... 错误!未指定书签。
3.3计算补偿网络的参数 ............................................... 错误!未指定书签。
升降压型电路仿真与分析
升降压型电路仿真与分析一、升压型电路升压型电路,也称为Boost型电路,可以将输入电压提升至所需的输出电压水平。
其基本原理是通过储能元件(如电感、电容等)的储能和释能过程,实现对输入电压的升压。
常见的升压型电路拓扑结构有Boost型、SEPIC型和Cuk型等。
其中,Boost型电路是最为常见的一种。
它由一个开关管、一个瞬态电容、一个电感和一个二极管组成。
开关管的通断控制决定了电容和电感在储能和释能的过程中的工作状态,从而实现对输入电压的升压。
在进行升压型电路的仿真与分析时,可以使用一些电路仿真软件,如LTspice、PSpice等。
仿真主要包括以下几个方面的内容:2.设置仿真参数:仿真参数包括仿真时间、仿真步长等。
根据需要设置仿真的时间范围和步长,以便获取准确的仿真结果。
3.设置输入信号:输入信号一般为直流电压或者正弦波等。
可以设置输入电压的大小和变化规律,如设置直流电压为12V,或者设置正弦波的频率和振幅等。
4.运行仿真:完成以上步骤后,点击运行仿真按钮,软件将进行仿真计算并生成仿真结果。
可以通过图形界面查看输出电压的波形和电流的变化规律等。
5.仿真结果分析:根据仿真结果进行分析和验证。
可以通过查看输出电压的稳定性、效率等参数来评估电路的性能。
二、降压型电路降压型电路,也称为Buck型电路,可以将输入电压降低至所需要的输出电压水平。
其基本原理是通过开关管的控制,使电感中的储能元件在储能和释能过程中输出所需的电压。
常见的降压型电路拓扑结构有Buck型、Buck-Boost型和SEPIC型等。
其中,Buck型电路是最为常见的一种。
它由一个开关管、一个电感、一个二极管和一个输出滤波电容组成。
开关管的通断控制决定了电感中的储能和反电动势的产生,从而实现对输入电压的降压。
与升压型电路类似,进行降压型电路的仿真与分析也可以使用相同的方法和软件。
具体步骤包括建立电路模型、设置仿真参数、设置输入信号、运行仿真以及仿真结果分析等。
BOOST电路的PSpice仿真分析与设计
BOOST电路的PSpice仿真分析与设计
BOOST 又称为升压型电路,是一种直流向来流变换电路,其电路结构1所示。
此电路在领域内占有十分重要的地位,长久以来广泛的应用于各种电源设备的设计中。
对它工作过程的理解把握关系到对囫囵开关电源领域各种电路工作过程的理解,然而现有的书本上仅仅给出电路在抱负状况下稳态工作过程的分析,而没有提及电路从启动到稳定之间暂态的工作过程,不利于读者理解电路的囫囵工作过程和升压原理。
本文采纳PSpice分析办法,直观、具体的描述了BOOST电路由启动到达稳态的工作过程,并对其中各种现象举行了细致深化的分析,便于读者真正把握BOOST电路的工作特性。
图1 BOOST 电路的结构
2 电路的工作状态
BOOST 电路的工作模式分为延续工作模式和电感电流断续工作模式。
其中电流延续模式的电路工作状态2(a)和图2(b)所示,电流断续模式的电路工作状态2(a)、(b)、(c)所示,两种工作模式的前两个工作状态相同,电流断续型模式比电流延续型模式多出一个电感电流为零的工作状态。
图2 BOOST 电路的工作状态
3 PSpice建模分析
3.1 PSpice建模
PSpice是一种功能强大的和数字电路混合仿真软件,它可以举行各式各样的电路仿真并给出波形输出和数据输出,无论对哪种器件和哪种电路举行仿真,均可以得到精确的仿真结果。
本文应用基于PSpice的OrCAD9.2软件对BOOST电路建模,模型3所示,其中采纳N 沟道的MOS管IRF640作为开关管,并用一个工作频率为40K 占空比为40%的脉冲源VG控制MOS管的通断来仿真图2中开关S的通断过程,Rs为
第1页共4页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
一. Boost主电路设计: (2)
1.1占空比D计算 (2)
1.2临界电感L计算 (2)
1.3临界电容C计算(取纹波Vpp<2.2V) (3)
1.4输出电阻阻值 (3)
二. Boost变换器开环分析 (4)
2.1 PSIM仿真 (4)
2.2 Matlab仿真频域特性 (6)
三. Boost闭环控制设计 (8)
3.1闭环控制原理 (8)
3.2 补偿网络的设计(使用SISOTOOL确定参数) (9)
3.3 计算补偿网络的参数 (11)
四.修正后电路PSIM仿真 (11)
五.设计体会 (16)
Boost变换器性能指标:
输入电压:标准直流电压Vin=48V
输出电压:直流电压Vo=220V 参考电压Vref=5V
输出功率:Pout=5Kw
输出电压纹波:Vpp=2.2V Vm=4V
电流纹波:0.25A
开关频率:fs=100kHz
相位裕度:60
幅值裕度:10dB
一. Boost主电路设计:
1.1占空比D计算
根据Boost变换器输入输出电压之间的关系求出占空比D的变化范围。
D=U O−U inmax
=0.782
U O
1.2临界电感L计算
Lc=DV o(1−D)2
=1.8μH
2f s i o
选取L>Lc,在此选L=4uH
1.3临界电容C计算(取纹波Vpp<
2.2V)
C=I O D
f s V PP =22.7×0.782
100000×2.2
=80.6μF
选取C>Cc,在此选C=100uF 1.4输出电阻阻值
R=U
I
=
U×U
P
=9.68
Boost主电路传递函数Gvd(s)
占空比d(t)到输出电压Vo(t)的传递函数为:
G vd(s)=(1−D)V(1−LS
(1−D)2R
) LCs2+s(L)+(1−D)2
G vd(s)=47.96∗(1−8.7×10−6s)
4×10s+4.13×10s+0.048
二. Boost变换器开环分析
2.1 PSIM仿真
电压仿真波形如下图
电压稳定时间大约1.5毫秒,稳定在220V左右
电压稳定后的纹波如下图
电压稳定后的纹波大约为2.2V
电流仿真波形如下图
电流稳定时间大约2毫秒,稳定在22A左右电流稳定后的纹波如下图
2.2 Matlab仿真频域特性
设定参考电压为5V,则H(s)=5
220=1
44
,G m(s)=1
V m
=1
4
系统的开环传递函数为T o(s)=G vd(s)G c(s)H(s)G m(s),其中H(s)=1,G c(s)=1
由上图可得,Gvd(s)的低频增益为-60dB,截止频率fc=196KHz,相位裕度--84.4,相位裕度过小,高频段是-20dB/dec。
系统不稳定,需要加控制电路调整。
1、开环传递函数在低频段的增益较小,会导致较大的稳态误差
2、中频段的剪切频率较小会影响系统的响应速度,使调节时间较大。
剪切频率较大则会降低高频抗干扰能力。
3、相角裕度太小会影响系统的稳定性,使单位阶跃响应的超调量较大。
4、高频段是-20dB/dec,抗干扰能力差。
将H(s)=5
220=1
44
,G m(s)=1
V m
=1
4
代到未加补偿器的开环传递函数中。
则G o(s)=
G vd(s)G c(s)H(s)G m(s),其中G c(s)=1未加补偿器的开环传递函数如图
三. Boost闭环控制设计
3.1闭环控制原理
输出电压采样与电压基准送到误差放大器,其输出经过一定的补偿后与PWM调制后控制开关管Q的通断,控制输出电压的稳定,同时还有具有一定的抑制输入和负载扰动的能力。
令PWM的载波幅值等于4,则开环传递函数为F(s)=Gvd(s)*H(s)*Gc(s)
3.2 补偿网络的设计(使用SISOTOOL确定参数)
原始系统主要问题是相位裕度太低、穿越频率太低。
改进的思路是在远低于穿越频率fc处,给补偿网络增加一个零点fZ,开环传递函数就会产生足够的超前相移,保证系统有足够的裕量;在大于零点频率的附近增加一个极点fP,并且为了克服稳态误差大的缺点,可以加入倒置零点fL,为此可以采用如图4所示的PID补偿网络。
根据电路写出的PID补偿网络的传递函数为:
G C(s)=G cm(1+
S
w z)(1+
w l
s)
(1+s
w p
)
式中:G cm=−R f
R iz+R ip ,w z=1
R iz C i
,w l=1
R f C f
,w p=R iz+R ip
R iz R ip C i
在此我们通过使用Matlab中SISOTOOL工具来设计调节器参数,可得: 零点频率 f z=1.53KHz
极点频率 f p=805KHz
倒置零点频率f l=600Hz
直流增益G cm=0.2784
首先确定PID调节器的参数,按设计要求拖动添加零点与极点,所得参数如图
加入PID之后,低频段的增益抬高,稳态误差减小,如图
闭环阶跃响应曲线如下图
幅值裕度为:GM=6.81dB,相角裕度:PM=49.6°,
截止频率:fc=10KHz
高频段f>fp,补偿后的系统回路增益在fc处提升至0dB,且以-40dB/dec的斜率下降,能够有效地抑制高频干扰。
3.3 计算补偿网络的参数
由sisotool得到补偿网络的传递函数为:
G C(s)=2784.7×(1+0.0001s)(1+0.00027s)
s(1+2×10−7s)
由前面可有补偿网络的传递函数为:
G C(s)=G cm (1+S
w z)(1+
w l
s) (1+s
w p
)
对比两式可得,假设补偿网络中Ci=1μF
依据前面的方法计算后,选用Rz=270,Rp=0.2,Rf=75.24,Cf=1.33uF。
四.修正后电路PSIM仿真
(1)额定输入电压,额定负载下的仿真
电压响应如下图
电压稳定时间大约为2毫秒,稳定值为220V,超调量有所减少,峰值电压减小到了260V. 稳定后的电压纹波如下图(电压纹波大约为2.2V)
电流纹波如下(电流纹波大约为0.07A)
验证扰动psim图
(2)额定输入电压下,负载阶跃变化0-3KW-5KW-3KW
电压响应曲线如下图
电压调节时间大约1ms,纹波不变大约为2.2V。
由此可见,输出电压对负载变化的反应速度很快且输出电压稳定。
电流响应曲线如下图
(3)负载不变(3KW),输入电压阶跃变化48-36V 输入电压从48V变到36V时的电压响应如下图
输出电压的局部放大图像如下图
由上图可知,输出电压调节时间大约为1ms,而且稳压效果好。
五.设计体会
通过BOOST变换器的设计,可以看出闭环控制的稳压及抑制干扰的作用。
在设计补偿电路可用sisotool电路特性进行修正,从而得到较为理想的幅值裕度、相角裕度和闭环阶跃响应,从而提高PID的调节性能。