数字电路实验 晶体管
9-1数字电路的特点及分析方法9-2晶体管的开关特性
题新课端,VD导通,它呈现的正向压降很小,相当于开关的接通状态。
端,VD截止,它呈现的反向电阻很大,相当于开关的断开状态。
当二极管的正向电阻和反相电阻有很大差别时,二极管即可作为开关使用。
二极管开关的应用限幅电路又称削波电路。
削波就是指将输入波形中不需要的部分去掉。
)串联型上限幅电路电路及限幅波形如图所示。
② 工作过程1v ≥G V →VD 截止→I O v v = 1v < G V →VD 导通→G O V v =它是限幅电平为G V 的下限幅度电路,又因二极管与负载电阻并联,所以电路全称为“限幅电平为G V 的并联型下限幅电路”。
(3)结论串联型限幅电路是利用二极管截止起限幅作用;而并联限幅电路是利用二极管导通起限幅作用。
2.钳位电路 (1)电路组成把输入信号的底部或顶部钳制在规定电平上的电路称为钳位电路。
顶部电位在零电平的钳位电路如图所示。
(1)三极管的饱和条件条件:基极电流足够大,即BS B I I >>。
BS I 为临界饱和基极电流。
也可表示为:B I ≥cCCBS R V I β=(2)特点三极管处于饱和导通状态相当于开关的接通状态。
2.截止条件及其特点 (1)三极管的截止条件为输入为低电位时,即V 0I =v 时,三极管V 截止,输出为高电位,输入为高电位时,即V 3I =v 时,三极管V 饱和导通,输出为低电位,1R 的两端并联一个适量的电容器S C ,就可达到提高开关速度的V新课 当决定一件事情的几个条件完全具备之后,这件事情才能发生,否则不发生。
能实现与逻辑功能的电路称为与门电路。
两输入端均为高电平时,二极管1VD 、2VD 导通,两输入端均为低电平,或有一个输入端为低电平时,与低电平相连接的二0 V )。
出1 出0Y = A ·B当决定一件事情的几个条件中,只要有一个条件得到满足,这件事情就会发生。
两输入端均为低电平时,二极管1VD 、2VD 截止,两输入端有一个输入端为高电平,或全为高电平时,与高电平相连接的二就高电平(3 V )。
北邮电子电路简易晶体管图示仪报告
电子电路综合实验报告课题名称:简易晶体管图示仪的设计与实现专业:信息工程班级:学号:姓名:班内序号:指导老师:张君毅课题名称:简易晶体管图示仪的设计与实现一、摘要本报告主要介绍了通过主要通过数字器件实现的简易晶体管图示仪的设计方法与实现过程。
并且分模块给出了仿真框图以及仿真的结果。
给出了示波器上的一些实验数据,并且总结了在实验过程中遇到的问题以及解决的方法。
二、关键词方波,三角波,阶梯波,输出特性曲线三、设计任务要求1、基本要求:①设计一个阶梯波发生器, f≥500Hz ,Uopp≥3V ,阶数 N=6;。
②设计一个三角波发生器,三角波Vopp≥2V;③设计保护电路,实现对三极管输出特性的测试;2、提高要求:①可以识别NPN,PNP 管,并正确测试不同性质三极管;②设计阶数可调的阶梯波发生器。
四、设计思路本试验要求用示波器稳定显示晶体管输出特性曲线。
我的设计思路是先用NE555时基振荡器产生符合条件的方波。
然后将产生的方波一方面作为计数器74LS169的时钟信号,74LS169是模16的同步二进制计数器,可以通过四位二进制输出来计时钟沿的个数,实验中利用它的三位输出为多路开关CD4051提供地址。
CD4051是一个数据选择器,根据16进制计数器74LS169给出的地址进行选择性的输出,来输出阶梯波,接入基极。
另一方面将方波输入双运放LF353,第一级运放作为积分器产生三角波,第二级运放作为放大器产生符合条件的三角波,最后将符合要求的三角波作为集电极输入到三极管集电极,通过示波器如图连接即可观察到输出特性曲线五、分块电路和总体设计5.1:通过NE555产生方波,电路图如下:仿真阶梯波效果图:5.2:阶梯波的产生利用74LS169N和CD4051实现阶梯波的产生。
将产生的方波输入74LS169N中,让其统计时钟沿个数,作为地址输入到CD4051,然后作为译码器产生阶梯波电路图如下,因为multisim没有CD4051所以用ADG508来代替阶梯波波形:5.3:方波的产生将产生的方波输入双运算放大器LF353中,利用其第一个运放作为积分器产生三角波,利用第二级运放作为放大器,产生符合要求的三角波:电路图:波形图:5.4:晶体管输出特性曲线的显示晶体管的输出特性曲线指在基级输入电流Ib一定的时候,Ic和Uce的关系。
数字集成电路设计实验报告
哈尔滨理工大学数字集成电路设计实验报告学院:应用科学学院专业班级:电科12 - 1班学号:1207010132姓名:周龙指导教师:刘倩2015年5月20日实验一、反相器版图设计1.实验目的1)、熟悉mos晶体管版图结构及绘制步骤;2)、熟悉反相器版图结构及版图仿真;2. 实验内容1)绘制PMOS布局图;2)绘制NMOS布局图;3)绘制反相器布局图并仿真;3. 实验步骤1、绘制PMOS布局图:(1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层;(4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层;(7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察;2、绘制NMOS布局图:(1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览;3、绘制反相器布局图:(1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟;4. 实验结果4.1 nmos版图4.2 pmos版图4.3反相器的版图4.4反相器的spice文件4.5反相器的仿真曲线5.实验结论通过对仿真曲线的分析,当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
《模拟电子线路实验》实验二 晶体管共射极单管放大器
模拟电子线路实验实验二晶体管共射极单管放大器【实验名称】晶体管共射极单管放大器【实验目的】1.学习单管放大器静态工作点的测量方法。
2.学习单管放大电路交流放大倍数的测量方法。
3.了解放大电路的静态工作点对动态特性的影响。
4.熟悉常用电子仪器及电子技术实验台的使用。
【预习要点】1.复习课件中有关单管放大电路工作点稳定问题的内容。
2.放大电路输出信号波形在哪些情况下可能产生失真?应如何消除失真?【实验仪器设备】【实验原理】实验电路图如图2-1所示。
温度的变化会导致三极管的性能发生变化,致使放大器的工作点发生变化,R和射极电阻影响放大器的正常工作。
图2-1所示电路中通过增加下偏置电阻B2R来改善直流工作点的稳定性,其工作原理如下:E图2-1 分压偏置共射极放大电路①利用B1R 和B2R 的分压作用固定基极电压V B 。
当B1R 、B2R 选择适当,满足I B1>> I B 时,有B2B CC B1B2R V V R R =+式中B1R 、B2R 和CC V 都是固定的,不随温度变化,所以基极电位V B 基本上为一定值。
②通过E R 的负反馈作用,限制C I 的改变,使工作点保持稳定。
具体稳定过程如下:CT ︒I电容C 1、C 2有隔直通交的作用,C 1滤除输入信号的直流成份,C 2滤除输出信号的直流成份。
射极电容C E 在静态时稳定工作点;动态时短路R E ,增大放大倍数。
当流过偏置电阻B1R (b1R 和电位器W R 的阻值和)的电流I B1远大于晶体管的基极电流B I (一般5~10倍),基极电压V B 远大于V BE 时,它的静态工作点可用下式估算B1B CC B1B2R V V R R =+B BEC E E=V V I I R ≈- CE CC C C E =(+)V V I R R -当放大器的输入端加交流输入信号i v 后,基极回路便有交流输入b i 产生,经过放大在集电极回路产生β倍的c i ,同时在负载输出o c L 'v i R =,从而实现了电压放大。
普通化学实验b 门电路
普通化学实验b 门电路
普通化学实验b 门电路是一种常见的逻辑门电路,用于控制数字信号的流动。
在这篇文章中,我们将详细介绍普通化学实验b 门电路的工作原理、组成部分和应用场景。
首先,让我们了解一下普通化学实验b 门电路的工作原理。
B 门电路是一种基本的逻辑门电路,其主要功能是根据输入信号的逻辑状态来产生输出信号。
B 门电路有两个输入端和一个输出端,当两个输入端的信号都为高电平时,输出端才会产生高电平信号;否则,输出端产生低电平信号。
这种逻辑关系可以用布尔代数的方式来描述,即输出信号等于输入信号的逻辑与运算。
普通化学实验b 门电路的组成部分主要包括晶体管、电阻和电容等元件。
晶体管是电路中的核心部件,其作用是放大和控制电流的流动。
电阻用来限制电流的大小,电容则用来存储电荷和平滑电流信号。
这些元件共同协作,实现了B 门电路的逻辑功能。
普通化学实验b 门电路在数字电路中有着广泛的应用。
它可以用来实现逻辑运算、信号选择、数据存储等功能。
在计算机系统中,B 门电路是构建逻辑电路的基础,通过连接多个B 门电路可以实现复杂的逻辑功能,从而实现计算和控制的目的。
此外,B 门电路还可以用来设计时序电路、触发器和计数器等电路,为数字系统的设计提供了重要的支持。
总的来说,普通化学实验b 门电路是一种基本的逻辑门电路,具有重要的意义和广泛的应用。
通过深入了解其工作原理和组成部分,我们可以更好地理解数字电路的工作原理,为电子技术的发展和应用提供支持。
希望本文的介绍能够帮助读者更好地理解普通化学实验b 门电路的相关知识,进一步拓展电子技术领域的应用和发展。
实验一 三极管直流特性测试1
实验一 三极管直流特性测试
一、实验目的
1. 理解晶体管参数和特性曲线的物理意义
2. 掌握测试晶体管直流参数的方法 二、实验仪器
1、数字电路实验箱
2、数字万用表 三、实验内容
晶体三极管是电子电路中最常见的器件之一,其性能参数可以从特性曲线上加以判断。
本次实验通过对晶体管特性测试与描绘,加深对晶体管特性的理解。
1. 输入特性曲线测试
图1 输入特性曲线 图2 测试电路
保持CE U 为定值(5V),调节BB V 使BE U 其按下表示数变化,并分别测出对应的Rb U 的值,计算出B I 的值,在坐标纸上描绘对应的输入特性曲线。
2. 输出特性曲线测试
图1 输出特性曲线 图2 测试电路
保持B I 为定值(=V 1/104mA=V 1/10μA),逐点改变CE U (V 2←V CC ),测出对应的C I =V 3/3×103mA ,根据测量数据描绘一条输出特性曲线。
改变B I 的值,重复以上步骤,即可得到一组输出特性曲线。
根据测量数据在坐标纸上绘出输出特性曲线。
表2:1V 对应值与C I 的各值
3. 根据测量结果计算出该三极管的电流放大倍数。
常数=∆∆=
CE B
C
U I I β 四、实验报告
整理实验数据,绘出晶体管的特性曲线,并计算出实验用三极管的电流放大倍数。
ttl逻辑门实验报告
ttl逻辑门实验报告TTL逻辑门实验报告引言:逻辑门是数字电路中最基础的组成部分,它们通过处理和操作逻辑信号来实现各种逻辑功能。
TTL(Transistor-Transistor Logic)逻辑门是一种常见的数字逻辑门家族,它由晶体管和电阻器等离散元件组成。
本文将介绍TTL逻辑门的原理、实验过程和结果,以及对实验结果的分析和讨论。
一、实验目的本次实验的目的是通过搭建TTL逻辑门电路,观察和分析逻辑门的输入输出关系,验证逻辑门的功能和特性。
二、实验材料和设备1. 电源:提供适当的电压和电流给电路。
2. 逻辑门芯片:使用74LS00、74LS02、74LS04等常见的TTL逻辑门芯片。
3. 连接线:用于连接电路中的各个元件和芯片。
4. 电阻器:用于限制电流和调整电压。
5. 开关:用于控制逻辑门的输入信号。
三、实验步骤1. 准备工作:将所需的逻辑门芯片、电源、电阻器、开关等准备好,并确认它们的工作状态良好。
2. 搭建电路:根据实验要求,按照逻辑门的真值表和电路图,将逻辑门芯片、电源、电阻器、开关等连接起来。
3. 测试输入输出:将逻辑门的输入信号设置为不同的状态,观察和记录逻辑门的输出信号。
4. 分析和记录:根据实验结果,整理和分析逻辑门的输入输出关系,记录实验数据和观察现象。
5. 实验总结:根据实验结果和分析,总结逻辑门的功能和特性,思考实验中可能存在的问题和改进方法。
四、实验结果与分析在实验中,我们搭建了几个常见的TTL逻辑门电路,包括与门、或门和非门。
通过设置不同的输入信号,我们观察到了逻辑门的输出信号变化。
实验结果表明,逻辑门能够根据输入信号的逻辑关系产生相应的输出信号。
以与门为例,当输入信号A和B同时为高电平(逻辑1)时,与门的输出信号为高电平(逻辑1);而当输入信号A和B中任意一个或两个同时为低电平(逻辑0)时,与门的输出信号为低电平(逻辑0)。
这符合与门的逻辑功能定义,即只有当所有输入信号都为高电平时,与门的输出才为高电平。
实验三-MOS管参数仿真及Spice学习
实验三-MOS管参数仿真及Spice学习一、实验介绍本次实验的主要内容是对MOS管参数进行仿真,并通过Spice软件进行电路模拟,掌握MOS管参数和Spice软件的使用方法。
本实验主要包括以下内容:1.MOS管参数的基本概念和理论知识2.PSpice软件的使用方法3.MOS管参数的仿真实验二、MOS管参数的基本概念和理论知识MOSFET(金属氧化物半导体场效应晶体管)是一种常用的半导体器件,广泛应用于数字电路、模拟电路和功率电子器件等领域。
MOS管中最常用的参数有场效应迁移率,漏极电阻,漏极导纳,截止电压等。
下面分别介绍这些参数的定义和作用。
1.1 场效应迁移率场效应迁移率是描述MOS管输出特性的重要参数,通常用符号μ表示,单位为cm2/Vs,是指电子在沟道中移动的速度与电场强度之比。
MOS管的场效应迁移率与沟道电阻、沟道长度、衬底材料等因素有关,一般情况下,迁移率越高,MOS管的性能越好,但也需要考虑其他因素的影响。
1.2 漏极电阻漏极电阻是指当MOS管工作在 saturation 区时,漏极电压变化时引起的漏极电流变化的比值,通常用符号rds表示,单位为欧姆。
MOS管的漏极电阻直接影响其输出电压的变化范围,漏极电阻越大,输出信号的电压变化范围就越小,反之亦然。
1.3 漏极导纳漏极导纳是指MOS管漏极电阻的导纳值,通常用符号Gds表示,单位为S (西门子)。
MOS管的漏极导纳与漏极电阻成反比,漏极电阻越小,漏极导纳越大,输出信号的电压变化范围也就越大。
1.4 截止电压截止电压是指当MOS管工作在截止区时,栅源电压达到的最大值,超过这个值后MOS管就会进入饱和状态,通常用符号VGS(off)表示,单位为伏特。
MOS管的截止电压与其工作状态有关,在设计电路时需要合理选择MOS管的截止电压,以确保电路的正常工作。
以上是MOS管常用的几个参数,这些参数的选择和设计对电路的性能和稳定性都有很大的影响,需要仔细考虑。
晶体管共射极单管放大器实验报告10页
晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。
而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。
2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。
3.低成本:CE放大器成本低,是很多电路应用的实用设计。
二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。
2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。
3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。
4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。
5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。
三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。
2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。
3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。
四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。
ttl集成与非门电路实验原理
ttl集成与非门电路实验原理TTL(Transistor-Transistor Logic,双晶体管逻辑)集成与非门电路实验原理非门电路是数字电子电路中常用的逻辑门之一,它的功能是将输入信号取反输出。
在本篇文章中,我们将重点介绍TTL集成与非门电路的实验原理。
TTL集成与非门电路是基于双晶体管的逻辑门电路设计。
该电路采用两个双晶体管的输入端分别连接到两个输入信号源,输出端通过一个电阻连接到电源正极,同时连接到一个输出信号源。
通过这种连接方式,实现了输入信号取反输出的功能。
实验中,我们需要准备以下材料:TTL集成电路、电阻、电源和信号源。
首先,将TTL集成电路插入实验板中的相应位置,确保连接正确。
然后,将两个输入信号源分别连接到TTL电路的输入端,连接过程中要注意极性。
接下来,将一个电阻连接到TTL电路输出端,并连接到电源正极,以及连接到输出信号源。
最后,连接电源并打开电源开关。
在实验过程中,通过改变输入信号源的电平,我们可以观察到输出信号源的变化。
当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
这符合非门电路的逻辑功能:将输入信号取反输出。
TTL集成与非门电路的实验原理基于双晶体管的运作方式。
当两个输入信号都为低电平时,双晶体管截止,电流无法通过,输出信号为高电平。
而当任何一个输入信号为高电平时,对应的双晶体管饱和,输出信号为低电平。
通过这种方式,实现了非门电路的逻辑功能。
总结一下,TTL集成与非门电路是一种常用的逻辑门电路,可以将输入信号取反输出。
通过实验可以验证其原理,并观察到输入信号和输出信号之间的逻辑关系。
这种电路设计简单,广泛应用于数字电子电路中。
请注意,本文仅用于技术参考,切勿在未经专业指导的情况下进行电路实验。
场效应晶体管的研究与应用
场效应晶体管的研究与应用场效应晶体管技术是电子学领域中最重要的技术之一。
它的出现改变了传统电子学器件中的主动元件现象,使得电学性能无限接近于模拟器件中理论极限。
在当今的电子技术领域中,场效应晶体管享有极高的地位,它是集成电路的基础,被广泛应用于数字和模拟信号电路中。
本文将从场效应晶体管的历史和结构、性能特点、当前的研究进展和应用方面进行论述。
一、场效应晶体管的历史和结构场效应晶体管(Field Effect Transistor,FET)是由美国贝尔实验室的肖克利及其学生发明的。
1954年,肖克利发明了第一台晶体管,这一发明引领了整个信息时代的诞生。
场效应晶体管的结构体现了其名称的特性,即晶体管中有一个控制电场,使其电阻受到控制。
与双极晶体管的“加流控电”原理不同,场效应晶体管的导通和断开都在控制电极的电场下进行。
因此,它是一种三电极器件,由栅(Gate)、漏(Drain)和源(Source)三个电极构成。
场效应晶体管的结构主要由半导体材料、绝缘材料和金属材料组成。
它所包含的半导体材料还包括P型、N型和金属氧化物场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)等类型。
P型和N型场效应晶体管的结构类型不同,相对而言,P型场效应晶体管的电荷载流子由空穴构成,形成的晶体管电路称为P型场效应晶体管电路;N型场效应晶体管的电荷载流子由电子构成,形成的晶体管电路称为N型场效应晶体管电路。
二、场效应晶体管的性能特点场效应晶体管具有许多优点,如电路中具有高的输入阻抗,高的增益,低的噪声和低的功耗等。
同时,它还具有高速开关、小型化和方便集成等特点。
这些特性使它成为数字和模拟电路中广泛使用的主动器件。
(一) 高的输入阻抗场效应晶体管的栅极与源极之间的金属绝缘层中没有电池磁场存在,因此,该部分区域内的载流子是通过扩展电场实现的。
当栅极的电压变化时,形成的电场作用于绝缘层表面的电子和空穴,造成载流子的积累或被排斥。
实验三--晶体管共射极单管放大器
实验三 晶体管共射极单管放大器一、实验目的1. 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响2. 掌握放大器电压放大倍数A V 、输入电阻R i 、输出电阻R O 及最大不失真输出电压的测试方法。
3. 熟悉常用电子仪器及模拟电路实验仪的使用方法。
二、实验原理晶体管单级放大电路有三种基本接法,即共射电路、共集电路、共基电路。
三种基本接法的特点分别为:1. 共射电路既能放大电流又能放大电压,输入电阻在三种电路中居中,输出电阻大,频带较窄;常做为低频电压放大电路的单元电路。
2. 共集电路只能放大电流不能放大电压,是三种接法中输入电阻最大、输出电阻最小的电路,具有电压跟随的特点。
常用于电压放大电路的输入级和输出级,在功率放大电路中也常采用射极输出的形式。
3. 共基电路只能放大电压不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,但频率特性是三种接法中最好的电路,常用于宽频带放大器。
放大电路的主要性能指标有:放大倍数、输入电阻、输出电阻、通频带等。
而保证基本放大电路处于线性工作状态(不产生非线性失真)的必要条件是设置合适的静态工作点Q ,Q 点不但影响电路输出是否失真,而且直接影响放大器的动态参数。
本实验所采用的放大电路为电阻分压式工作点稳定的单管放大电路(图3-1)。
它的偏置电路采用R B1和R B2组成分压电路,因此基极电位U B 几乎仅决定于R B1与R B2对V CC 的分压,而与环境温度的变化无关;同时三极管的发射极中接有电阻R E ,它将输出电流I C 的变化引回到输入回路来影响输入量U BE ,以达到稳定静态工作点的目的。
当放大器的输入端加入输入信号u i 后,在放大器的输出端便可以得到一个与u i 相位相反,幅值被放大了的输出信号u O ,从而实现了电压放大。
图3-1电路的静态工作点可用下式估算:CC 2B 1B 1B B R +R R ≈U V C EBEB E I ≈R U U I -=)R R (I V ≈U E C C CC CE +-而电压放大倍数、输入电阻、输出电阻分别为: beLC V r R //R A β-= be 2B 1B i r //R //R =RC O R ≈R 注意:测量放大器的静态工作点时,应在输入信号u i =0的条件下进行。
单级晶体管放大电路实验报告
竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。
(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。
(3)测量放大器的放大倍数,输入电阻和输出电阻。
二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。
为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。
若工作点选的太高会饱和失真;选的太低会截止失真。
静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。
本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。
当搭接好电路,在输入端引入正弦信号,用示波器输出。
静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。
当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。
去点信号源,测量此时的VcQ,就得到了静态工作点。
2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。
放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。
在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。
通常取与Ri为同一数量级比较合适。
模拟电路应用实验—晶体管单级放大电路实验报告
1 实验二晶体管单级放大电路实验一、实验目的1、熟悉分压式偏置共射极单管放大电路和射极输出器的组成。
2、掌握放大电路静态工作点的调试方法,加深静态工作点对放大电路性能的影响。
3、进一步熟悉常用电子仪器的使用方法。
二、预习要求1、熟悉分压式偏置共射极单管放大电路的构成。
2、熟悉共射放大电路静态工作点及调试方法。
3、什么是信号源电压u s ?什么是放大器的输入信号u i ?什么是放大器的输出信号u o ?如何用示波器和交流毫伏表测量这些信号?4、如何通过动态指标的测量求出放大器的电压放大倍数A V 、输入电阻R i 和输出电阻R o ?5、了解负载变化对放大器的放大倍数的影响。
6、观察静态工作点选择得不合适或输入信号u i 过大所造成的失真现象,从而掌握放大器不失真的条件。
三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。
四、实验内容及步骤1、连线如图1.1所示的分压式偏置共射放大电路。
2、共射放大电路静态工作点的测量图1.1 三极管共射放大电路接通电源V CC ,调节电位器RP1RP1,使发射极电位,使发射极电位U E =2.6V 2.6V,用直流电压表测量,用直流电压表测量U B 、U C 以及电阻R C1上的电压U Rc 的值,填入表1.1中。
中。
表1.1 静态直流工作点参数测量测 量 值 (V ) 计 算 值U E U B U C U Rc I E (mA ) I C (mA ) U CE (V )共射放大电路交流参数测量共射放大电路交流参数测量维持已调好的静态工作点不变,在输入端加入f =1kHz 1kHz、、u s =100mVrms 的正弦波信号,分别用交流毫伏表和双踪示波器测量u s 、u i 、u o 的值,并观察输入、输出波形及其相位,将结果填入表1.2中。
中。
表1.2 动态交流参数测量条件条件 测量值(mV ) 计 算 值 波 形R L u su iu oA V A VS R i R o 输入(u i ) 输出(u o )∞2k Ω输入电阻和输出电阻的计算方法如下:∵ s s i ii u R R R u += ∴ is i s i u u u R R -=∵ L Lo oo o R R R u u +=∴ L o o oo o R u u u R -=式中:式中:u u oo 为R L =∞时的输出开路电压,=∞时的输出开路电压,u u o =2k Ω时的输出负载电压。
电工电子实验报告
电工电子实验报告电工电子实验报告电工电子实验是电子工程学生必修的实验之一,通过实验可以加深对电子学原理的理解,提高实验能力和动手能力。
以下是三个电工电子实验案例的报告。
案例一:二极管特性实验实验目的:通过实验了解二极管的基本结构和特性。
实验器材:示波器、可变电阻器、半导体二极管、直流电源。
实验步骤:1、将二极管连接好,接入直流电源。
2、使用示波器观察二极管的正向和反向电压的变化。
3、随着正向电压升高,可以观察到二极管的电流也随之升高,但是反向电压升高时,二极管处于截止状态。
实验结论:通过实验可以知道,二极管是一种可以实现正向导电,反向截止的半导体器件。
在实际中,二极管常被用于整流、放大、开关等电路中。
案例二:晶体管放大电路实验实验目的:通过实验了解晶体管放大电路的基本原理和特性。
实验器材:示波器、晶体管、电阻、直流电源。
实验步骤:1、按照电路原理图连接好晶体管放大电路。
2、接入直流电源,使用示波器观察输入和输出信号的变化。
3、调节电位器使输出信号的幅度尽量大。
实验结论:通过实验可以知道,晶体管是一种可以进行信号放大的半导体器件。
在实际中,晶体管常被用于放大、开关、振荡等电路中。
案例三:555计时器实验实验目的:通过实验了解555计时器的基本原理和工作特性。
实验器材:可变电阻、电解电容、LED灯、555计时器、直流电源。
实验步骤:1、按照电路原理图连接好555计时器电路。
2、调节可变电阻和电解电容的值,改变输出信号的频率和占空比。
3、将LED灯连接到输出端口,观察LED灯的闪烁情况。
实验结论:通过实验可以知道,555计时器是一种可以进行频率调节、占空比调节的定时器器件。
在实际中,555计时器常被用于脉冲调制、计时、振荡等电路中。
综上所述,电工电子实验对于电子工程学生来说是非常重要的,通过实验可以更加深入地了解电子学原理,提高实验能力和动手能力。
以上三个案例是电工电子实验中较为常见的实验内容,希望可以帮助其他同学更好地完成实验任务。
cmos实验报告
cmos实验报告CMOS 实验报告一、实验目的本次实验的主要目的是深入了解互补金属氧化物半导体(CMOS)的工作原理和特性,通过实际操作和测量,掌握 CMOS 电路的基本性能参数和测试方法,为今后在电子电路设计和应用方面打下坚实的基础。
二、实验原理(一)CMOS 简介CMOS 是一种集成电路制造工艺,它由 P 型和 N 型 MOS 晶体管组成。
CMOS 电路具有低功耗、高集成度、抗干扰能力强等优点,广泛应用于数字电路、模拟电路和混合信号电路中。
(二)CMOS 反相器CMOS 反相器是 CMOS 电路中最基本的单元,它由一个 P 型 MOS 晶体管(PMOS)和一个 N 型 MOS 晶体管(NMOS)组成。
当输入为高电平时,NMOS 导通,PMOS 截止,输出为低电平;当输入为低电平时,PMOS 导通,NMOS 截止,输出为高电平。
(三)CMOS 传输门CMOS 传输门由一个PMOS 晶体管和一个NMOS 晶体管并联组成。
当控制信号为高电平时,传输门导通,信号可以通过;当控制信号为低电平时,传输门截止,信号无法通过。
三、实验设备与材料(一)实验设备1、数字示波器2、直流电源3、信号发生器4、逻辑分析仪5、面包板6、万用表(二)实验材料1、 CD4007 芯片(包含多个 CMOS 器件)2、电阻、电容等分立元件四、实验内容与步骤(一)CMOS 反相器的测试1、在面包板上搭建 CMOS 反相器电路,使用 CD4007 芯片中的PMOS 和 NMOS 晶体管。
2、将直流电源连接到电路,设置输入电压分别为 0V 和 5V,使用万用表测量输出电压。
3、使用信号发生器产生频率为 1kHz 的方波信号作为输入,用示波器观察输入和输出信号的波形,记录上升时间和下降时间。
(二)CMOS 传输门的测试1、按照电路原理图在面包板上搭建 CMOS 传输门电路。
2、用直流电源提供控制信号和输入信号,分别设置控制信号为 0V 和 5V,测量输出信号的电压。
门电路实验报告
门电路实验报告门电路是数字电路中的基础组成部分,它们被广泛用于数字计算和逻辑运算中。
门电路可以由多种元器件来实现,如晶体管、场效应晶体管、集成电路等等。
本报告将介绍门电路的基本概念、设计原则和实验过程。
一、门电路基本概念门电路是由逻辑门组成的数字电路,可以实现基本的逻辑功能,例如“与”、“或”、“非”、“异或”等。
逻辑门主要有以下几类:1. 与门,也称作“AND”门。
AND门有两个或多个输入、一个输出,只有当所有输入都为逻辑1时,输出才为1,否则,输出为逻辑0。
2. 或门,也称作“OR”门。
OR门有两个或多个输入、一个输出,只要其中一个或多个输入为逻辑1时,输出即为1。
3. 非门,也称作“NOT”门。
NOT门有一个输入、一个输出,输出是输入的反相。
当输入为逻辑1时,输出为逻辑0;反之,输出为逻辑1。
4. 异或门,也称作“XOR”门。
XOR门有两个输入、一个输出。
当两个输入的逻辑值不相输出为1,否则,输出为0。
门电路具有高度的可靠性和精度,广泛应用于计算机、通信、自动控制和数字电子等领域。
二、门电路设计原则门电路的设计原则包括以下几个方面:1. 电路正确性设计原则。
电路必须按照逻辑规则进行设计,保证电路输出与输入之间存在确定的逻辑关系。
2. 电路简化设计原则。
电路应使用尽量少的元器件,并采用逻辑公式化简的方法,以减少电路复杂度和成本。
3. 电路优化设计原则。
电路应能够满足高速和高精度的要求,同时具有低功耗和抗干扰等特性。
三、门电路实验过程1. 实验器材本实验需要的器材包括:示波器、数字电压表、元器件(晶体管、电阻、开关等)、面包板、电源等。
2. 实验过程(1) 准备元器件将所需元器件准备好,包括晶体管、电阻、开关等,根据设计要求选择相应的参数。
(2) 连接电路按照门电路的设计要求,将元器件和面包板连接起来。
门电路的连接方式较为简单,需要连接的元器件较少。
(3) 接通电源将实验用的电源接通,并进行电压检测,以确保电压稳定和符合要求。
实验三-单结晶体管触发电路
实验三 晶闸管触发电路——单结晶体管触发电路一、实验目的:1、 掌握单结晶体管触发电路的工作原理;2、 学会使用示波器测量单结晶体管触发电路的个点电压波形;一、实验仪器设备:1、 ZEC-410型实验台2、 EM-11实验挂箱3、 双踪示波器一台4、 万用表一块、一字型螺丝刀一把(调节RP1用)三、实验原理:单结晶体管触发电路,是利用单结晶体管(双基极二极管)的负阻特性和RC 的充放电特性,构成频率可调的自激振荡电路,如图3-1所示0%R1R2R3R4R5R6D1D2VST1VST2C1V1V2C2T123456T2K GV3RP1图3-1 单结晶体管触发电路由同步变压器T1副边输出的交流同步电压,经D1半波整流,再由稳压管VST1,VST2进行削波,而得到梯形波电压,其过零点与晶闸管阳极电压的过零点一致,梯形波通过R5,V2向电容C2充电,当充电电压达到单结晶体管的峰点电压时,单结晶体管V3导通,从而通过脉冲变压器T2输出脉冲。
同时C2经V3和T2原边放电,由于时间常数很小,U c2很快下降至单结晶体管的谷点电压,V3重新关断,C2再次充电。
每个梯形波周期,V3可能导通,关断多次,但只有第一个输出脉冲起作用。
电容C2的充电时间常数由R7和V2的等效电阻等决定,调节RP1的滑动触点可改变V1的基极电压,使V1,V2都工作在放大区,即等效电阻可由RP1来调节,也就是说一个梯形波周期内的第一个脉冲出现时候(控制角)可由RP1来调节,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。
四、实验内容及步骤:1、将控制台左上角的交流数字电压表(如图3-2所示)切换到300V档,用专用连接线将图3-2 数字交流电压表(左)及数字交流电流表(右)数字交流电压表接到单、三相可调交流电源输出的“U”孔和“N”孔中,如图3-3所示图3-3 单、三相可调交流电源调节“交流电源输出调节”旋钮,使电压表读数为200V;2、将连接交流电压表的两根连线改接到EM-11挂箱的“同步交流电压输入”端,并打开EM-11挂箱右下角的电源开关,T1原边同步交流电压信号已在内部接好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一晶体管开关特性、限幅器与钳位器
一、实验目的
1、观察晶体二极管的开关特性,了解外电路参数变化对晶体管开关特性的影响。
2、掌握限幅器和箝位器的基本工作原理。
二、实验原理
1、晶体二极管的开关特性
由于晶体二极管具有单向导电性,故
其开夫特性表现在正向导通与反向截止
两种不同状态的转换过程。
如图l电路,输人端施加一方波激励
信号Vi,由于二极管结电容的存在,因而
有充电、放电和存贮电荷的建立与消散的
过程。
因此当加在二极管上的电压突然由
正向偏置+V1变为反向偏置-V2,二极管并
不立即截止,而是出现一个较大的反向电
流- V2/R,并维持一段时问ts(称为存贮
时间))后,电流才开始减小,再经tr(称
为下降时间)后,反向电流才等于静态特
性上的反向电流I0,将 trr=ts + tr称
反向恢复时间,trr与二极管的结构有关,
PN结面积小,结电容小,存贮电荷就少,
ts就短。
2、晶体三极管的开关特性
晶体三极管的开关特性是指它从截
止到饱和导通,或从饱和导通到截止的转
换过程特性,而且这种转换都需要一定的时间才能完成。
如图2电路的输入端,施加一个足够幅度(在-V2和+V1之间变化)的矩形脉冲电压Vi激励信号。
就能使晶体管从截止状态进入饱和导通,再从饱和进入截止。
可见晶体管T的集电极电流ic和输出电压V0的波形己不是一个理想的矩形波,其起始部分和平顶部分都延迟了一段时间,其上升沿和下降沿都变得缓慢了,如图1—2波形所示,从Vi开始跃升所对应的ic上升到0.1I CS需时间定义为延迟时间td,ic从0.1I CS增长到0.9I CS的时间为上升时间tr,从Vi开始下降所对应的ic从I CS下降到0.9I CS的时间为存贮时间 ts, ic从0.9I CS下降到0.1I CS的时间为下降时间tf.通常称ton=td + tr为三极管开关的“接通时间”,toff=ts + tf称为“断开时间”,形成上述开关特性的主要原因是晶体管结电容之故。
改善晶体三极管开关特性的方法是采用
加速电容Cb和在晶体管的集电极加二管D箝
位,如图3所示。
Cb是一个近百PF的小电
容,当vi正跃变期间,由于Cb的存在,Rb1
相当于被短路,vi几乎全部加到基极上,使T
迅速进入饱和,td和tr大大缩短。
当Vi负
跃变时,Rb1再次被短路,使T迅速截止,也
大大缩短了ts和tf,可见Cb仅在瞬态过程
中才起作用,稳态时相当于开路,对电路没有
影响。
Cb既加速了晶体管的接通过程又加速了断开过程,故称之为加速电容,这是一种经济有效的方法,在脉冲电路中得到广泛应用。
箝位二极管D的作用是当T由饱和进入截止时,随着电源对分布电容和负载电容的充电,V0逐渐上升。
因为Vcc
>Ec ,当V 0超过Ec 后,二极管D 导通,使V 0的最高值被箝位在Ec ,从而缩短V 0波形的上升边沿,而且上升边的起始部分也比较陡,所以大大缩短了输出波形的上升时间tr 。
3、利用二极管与三极管的非线性特性,可构成限幅器和箝位器。
它们均是一种波形变换电路,有广泛的应用。
二极管限幅器是利用二极管导通时和截止时呈现的阻抗不同来实现限幅,其限幅电平由外接偏压决定。
三极管则利用其截止和饱和特性实现限幅。
箝位的目的是将脉冲波形的顶部或底部箝位在一定的电平上。
三、实验设备与器件
正负3V 可调、正15V 直流电源;双踪示波器;方波和正弦信号源;直流数字电压表; IN4007、2AK2(或1N4148)各1个;电阻1K 、 300欧、10K 各 1个;电容0.1微法1个。
四、实验内容(斜体字为参考实验数据)。
先预置示波器:按下示波器的以下按键:CH1、CH2、自动、常态、“触发源”的CH1,其余按键要全在抬起位置。
l 、二极管开关特性
按图 4接线,E 为偏置电压(0~2V 可调 )
(1)输入信号Vi 为频率 f =100KHz 、峰峰值V PP = 3V 的方波信号,E 调至最低(0.16V 左右)。
将示波器的SEC/DIV 的中心细调顺时针拧到头,粗调拧到1µS(表示每大格对应横向扫描时间为1微秒),用双踪示波器观察和记录输入信号Vi 和输出V 0的波形,并读出存储时间t s 和下降时间t r 对应的大格的值。
将数据记入下表中:
(2)改变偏置电压 E 为
0.3、0.5V,观察输出波形V 0
的 ts 和 tr 的变化规律,记
录结果与右表并分析规律。
(3)改变偏置电压 E 为
0.16--0.6V,定性观察输出波形V 0的 t s 和t r 的变化规律,记录结果于右表并分析规律。
(4)减小方波信号源的电压幅度从3V 缓慢地变到1V ,定性地看ts 及tr 的减小情况。
2、二极管限幅器
按图 6接线,输入V i 为 f =10KH Z ,Vpp =5V 的正弦波信号,令 E =2V , 1V ,OV ,-1V (对调插接电源的两个插线头即可),观察输出波形V 0,并列表记录波形(E 越低,波形的上消顶宽度越宽,也即限幅越深;E 超过1.94V 则无消顶限幅)。
3、二极管箝位器
在图6基础上改装成图7,Vi 为10KHz 方波信 号,令E=1V 、O.2V 、一1V (把
E 电源极性反插过来就成负的了)、一3V ,观察输出波形,并记录实验现象(E 越
高,波形V 0越往上平移但形状和幅度不变;E 越低,波形V 0越往下平移)。
4、三极管限幅器(选作内容,如时间不够可不做)
按图 8接线(实际可利用仪器面板上的第一个单级放大器成品电路做该实
验,原来的电容等都可带着),Vi 为正弦波,f =10KHz ,Vpp 在0~5V 范围连续可
调,在逐渐增加输入信号幅度下,观察输出波形V 0的变化情况,并记录实验现象
(正负半周都出现了限幅)。
5、将实验观测到的波形画出,并对各
自进行分析和讨论。
六、问题
1、开关特性好的二极管或三极管,
在物理结构上具有何特征?。