AD8512
AD9852中文资料
AD9852的引脚说明:D7—D0: Pin1—8,并行编程模式下的8位并行数据I/O口.A0-A5: Pin14—19,并行编程模式下的6位并行地址口.其中,Pin 17与串行通信的复位端复用,Pin18与串行数据输出口复用(3线模式),Pin19与串行数据I/O 口复用((2线模式)。
DVDD: Pin9,10,23,24,25,73,74,79,80,数字电路电源端,相对于数字地3.3V供电,3.135V-3.465V可保证设计指标。
DGND:Pinll,12,26,27,28,72,75,76,77,78,数字地。
AVDD: Pin31,32,37,38,44,50,54,60,65,模拟电路电源端,相对于模拟地3.3V供电,3。
135V—3.465V可保证设计指标。
电路设计时,应加强DVDD和AVDD 之间的去藕,以防噪声相互串扰。
AGND:Pin33,34,39,40,41,45,46,47,53,59,62,66,67,模拟地.NC:Pin13,35,57,58,63,内部无连接的引脚,布线时可以悬空。
I/O UD: Pin20,频率更新端口。
要向AD9852寄存器内写数据,先是写到端口的缓冲器里,等工作模式所需的数据写完后,再在此引脚上加一持续至少8个系统时钟周期的高电平,使DDS芯片按照所设置的方式运行.频率更新也可以设置成内部更新模式,这时DDS按照UDC寄存器设置的值定时自动更新频率,同时输出持续8个系统时钟周期高电平的同步信号。
WRB/SCLK:Pin21,并行模式下的读控制端,与串行模式时钟信号输入端复用.RDB/CSB:Pin22,并行模式下的写控制端,与串行模式片选端复用.FSK/BPSK/HOLD:Pin29,多功能复用引脚.FSK工作模式下,低电平选择频率F1,高电平选F2;BPSK模式时,低电平选相位1,高电平选相位2 ;Chirp 模式时,高电平使DDS输出保持当前频率.SHAPED KEYING:Pin30,高电平使DDS输出有一个调幅过程,若电路设计为低电平,DDS将没有输出。
AD9852及在频率线性扫描信号源中的应用
AD9852及在频率线性扫描信号源中的应用作者:柴建军来源:《数字技术与应用》2013年第11期摘要:AD9852是美国AD公司生产的直接数字频率合成器(DDS),具有快速换频(小于1?S)、极佳SFDR性能、高纯度频谱、高集成度等特点,是一款功能强大,使用便捷的芯片。
本文介绍了AD9852的主要技术性能、工作模式以及在线性扫频信号发生器中的应用。
关键词:线性扫频直接数字频率合成器(DDS) AD9852中图分类号:TN74 文献标识码:A 文章编号:1007-9416(2013)11-0089-021 概述AD9852是高度集成化数字直接频率合成器芯片,它应用了DDS先进技术,结合高性能DAC转换器及比较器,非常灵活地实现数字可编程频率综合器功能。
为AD9852提供一个精确的参考频率时钟源时,通过软件控制,AD9852将产生高稳定、可编程频率/相位/幅度的正弦波信号,可广泛应用于频率综合器、无线通信、计量及测试等设备中。
AD9852在线性扫频信号发生器中的应用更显方便。
2 主要技术性能AD9852的主要性能参数如下:(1)内部时钟:300MHz;(2)集成化D/A分辨率:12位;(3)优良的动态杂散性能:在100MHz输出时,SFDR仍达80db;(4)可编程时钟倍乘器:倍频4倍至20倍;(5)集成可编程频率寄存器:双向48位;(6)集成可编程相位寄存器:双向14位;(7)具有可编程AM功能:12位分辨率;(8)具有单引脚FSK及PSK数据接口;(9)具有HOLD引脚控制的线性、非线性FM功能;(10)具有双向扫频功能;(11)具有星格滤波功能;(12)控制接口简单:10MHz两线或三线串行编程接口,100MHz 八位并行编程接口;(13)采用单电源:+3.3V供电;(14)参考时钟输入:单端或差分模式;(15)小型80引脚LQFP表面贴装封装形式。
3 AD9852的工作模式AD9852能够产生多种形式的输出信号,通过外部控制,8位并行数据输入和6位地址参数输入,经过读、写设置程序寄存器,控制其不同的工作模式。
AT8511 8512 用户手册说明书
SHENZHEN LANGPU ELECTRONIC TECH.CO.,LTD深圳市深南中路南光捷佳大厦1402室TEL**************839801588304741583986300FAX**************83047419网址:综合推广网 衡器烘箱网邮箱:***********QQ:374542908MSN:******************FAX**************安全须知当你发现有以下不正常情形发生,请立即终止操作并断开电源线。
立刻与安柏科技销售部联系维修。
否则将会引起火灾或对操作者有潜在的触电危险。
z仪器操作异常。
z操作中仪器产生反常噪音、异味、烟或闪光。
z操作过程中,仪器产生高温或电击。
z电源线、电源开关或电源插座损坏。
z杂质或液体流入仪器。
安全信息为避免可能的电击和人身安全,请遵循以下指南进行操作。
免责声明用户在开始使用仪器前请仔细阅读以下安全信息,对于用户由于未遵守下列条款而造成的人身安全和财产损失,安柏科技将不承担任何责任。
仪器接地 为防止电击危险,请连接好电源地线。
不可在爆炸性气体环境使用仪器 不可在易燃易爆气体、蒸汽或多灰尘的环境下使用仪器。
在此类环境使用任何电子设备,都是对人身安全的冒险。
不可打开仪器外壳 非专业维护人员不可打开仪器外壳,以试图维修仪器。
仪器在关机后一段时间内仍存在未释放干净的电荷,这可能对人身造成电击危险。
不要使用已经损坏的仪器 如果仪器已经损害,其危险将不可预知。
请断开电源线,不可再使用,也不要试图自行维修。
不要使用工作异常的仪器 如果仪器工作不正常,其危险不可预知,请断开电源线,不可再使用,也不要试图自行维修。
不要超出本说明书指定的方式使用仪器超出范围,仪器所提供的保护措施将失效。
声明:!, $, #,安柏标志和文字是常州安柏精密仪器有限公司的商标或注册商标。
Email:***********FAX**************AT8511/8512直流电子负载用 户 手 册User’s Manual简体中文ChineseSimplifiedFEB, 2008第1版Rev.A3@%常州安柏精密仪器有限公司©2005-2009 Applent T echnologies, Inc.有限担保和责任范围常州安柏精密仪器有限公司(以下简称Applent)保证您购买的每一台AT8511/8512在质量和计量上都是完全合格的。
NI8512
Back to TopBack to TopLast Revised: 2014-11-06 07:14:41.0High-Performance NI-XNET Interfaces for CAN, LIN, and FlexRay NI PCI-851x, NI PXI-851x, NI 986xHigh-performance CAN, LIN, and FlexRay interfaces with onboard transceivers and software-selectable terminationNI-XNET driver and API for CAN, LIN, and FlexRay that simplify application development in NI LabVIEW, NI LabWindows™/CVI, and C/C++NI-XNET device-driven DMA engine that minimizes message latency and streams full-bandwidth CAN, LIN, and FlexRay bus dataIntegrated signal databases that automatically translate CAN, LIN, and FlexRayframes to engineering-level signals, including FIBEX, CANdb (.DBC), LIN Description File (LDF), and NI-CAN (.NCD)Hardware synchronization, 1 μs timestamps for integration with NI data acquisition,digitizers, switches, and large systemsIntegrated, onboard transceivers for simpler setup, better reliability, and no hidden costsDedicated per-port processors that manage up to 192 hardware-accelerated frames,reducing host system load and software complexityBundled software: All NI-XNET interfaces include the NI-XNET driver and API,NI-XNET Bus Monitor, and NI-XNET Database EditorOverviewThe NI-XNET platform combines a series of high-performance CAN, LIN, and FlexRay interfaces with the NI-XNET driver and API—a common set of easy-to-use functions for reading and writing CAN, LIN, and FlexRay frames and signals in user-created applications.Requirements and CompatibilityOS InformationPharLap Real-Time OS Windows 7Windows 7 64-bit Windows Vista x64/x86Windows XPDriver InformationNI-CAN NI-XNETSoftware CompatibilityANSI C/C++Borland C++/Builder LabVIEWLabVIEW Real-Time Module LabWindows/CVIApplication and Technology Feature ComparisonModelBus Physical Layer Transceivers Min Baud Rate Max Baud RateExt Sync ConnectorPortsPCI PCI-8511CAN Low-Speed/Fault-Tolerant TJA1054A 40 kbits/s [1]125 kbits/s -1PCI-8511/2CANLow-Speed/Fault-Tolerant 2 x TJA1054A 40 kbits/s [1]125 kbits/s -2PCI-8512CANHigh-Speed/FDTJA104140 kbits/s8 Mbit/s-11Low-speed CAN transceivers operate down to 10 kbits/s in error conditions.CAN FD is the next generation of high-speed CAN communication with evolving standards for higher data rates. NI has enabled speeds up to 8 Mbit/s using the TJA1041 and TJA1043 transceivers through the NI-XNET driver. As transceiver vendors complete qualifications for CAN FD speeds, NI will update our documentation as necessary.NI-XNET High-Performance CAN, LIN, and FlexRay Interfacesand FlexRay interfaces; an optimized driver; easy-to-use APIs; and configuration and debugging utilities. With NI-XNET interfaces, youSupport for industry-standard CAN, LIN, and FlexRay signal database formats, including FIBEX, CANdb (.DBC), LDF, and NI-CAN NCD, simplifies NI-XNET integration intoHardware-in-the-loop simulationRapid control prototypingBus monitoring/replayHigh-throughput bus streamingRest-of-bus simulationAutomation controlIn-vehicle data loggingFigure 1. Simple NI-XNET Example Code for Reading and Writing CAN Signals Figure 2. The Same NI-XNET Code Adapted to Reading and Writing FlexRay Signals byChanging the Session InputsIntegration With NI ProductsMicrosecond-level timestamping, external timebase support, and PXI/RTSI triggering enable NI-XNET interfaces to integrate with hundreds of NI PCI and PXI devices for a wide variety of custom applications, ranging from synchronized data acquisition and bus-level measurements to fault-insertion and large distributed systems.For National Instruments 986x NI-XNET interfaces used in NI CompactDAQ and NI CompactRIO chassis, you achieve triggering and synchronization with other modules through the sharing of the same clock in the hardware backplane.Integrated Signal DatabasesThe NI-XNET API automatically translates CAN, LIN, and FlexRay frames to engineering-level signals, a feature often found only in expensive turnkey applications. With integrated support for industry-standard signal databases including FIBEX, CANdb (.DBC), LDF, and NI-CAN (.NCD), NI-XNET simplifies building custom applications to work with other tools in complex embedded design workflows.Backward CompatibilityNI-XNET interfaces are compatible with most legacy NI-CAN Frame and Channel API applications written for NI Series 2 and USB CAN interfaces. The NI-XNET NI-CAN compatibility layer operates at the driver level, ensuring a drop-in performance boost to established in-house applications without time-consuming code refactoring and recompiling. NI-XNET is not compatible with applications written for USB-LIN.NI Device-Driven DMA EngineThe patent-pending NI-XNET device-driven DMA engine reduces system latency, a common pain point for PC-based CAN interfaces, from milliseconds to microseconds. The engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, freeing host processor time for processing complex models and applications.NI-XNET HardwareNI-XNET interfaces are available for CAN, LIN, and FlexRay in PCI, PXI, NI CompactDAQ, and NI CompactRIO form factors, and in one- and two-port models.PCI/PXI-8511 Low-Speed/Fault-Tolerant (LS) CANPCI/PXI-8512 High-Speed/FD (HS/FD) CANPCI/PXI-8513 Software-Selectable/FD (XS/FD) CANPCI/PXI-8517 FlexRayPCI/PXI-8516 LINNI 9862 High-Speed/FD (HS/FD) CANNI 9861 Low-Speed/Fault-Tolerant (LS) CANNI 9866 LINNI-XNET software-selectable interfaces offer the best flexibility for CAN development with onboard transceivers for high-speed/FD, low-speed/fault-tolerant, and single-wire CAN. All specifications in this document apply equally to 1- and 2-port models unless otherwise specified.NI-XNET SoftwareThe NI-XNET driver software and utilities are included at no additional charge with all NI-XNET CAN, LIN, and FlexRay interfaces.NI-XNET APIThe NI-XNET API provides function calls in LabVIEW, LabWindows/CVI, and C/C++ so you can easily send and receive CAN, LIN, and FlexRay signals and framesto and from your application. You can choose from 12 data transfer modes to optimize the data transfer for a particular application:Single-point signal input and output modes read and write the most recent values received for each signal. These modes are ideal for control and simulationapplications that use up to hundreds of simultaneous signals, which is common for hardware-in-the-loop applications.Waveform signal input and output modes use the time when the signal frame is received to resample the signal data to a waveform at a fixed sample rate. These modes typically are used for synchronizing NI-XNET data with NI-DAQmx analog/digital input channels and plotting waveforms.XY signal input and output modes return exact XY pairs of a signal's timestamp and its value. This is especially useful for knowing to the microsecond when a signal was last updated.Stream input and output modes for frames read or write every frame on the network. These modes are used for analyzing and logging all frame traffic on the network.Queued frame input and output modes read and write frame data from a dedicated queue per frame. These modes enable your application to read a sequence of data specific to a frame (for example, CAN identifier).NI-XNET LabVIEW Project SessionsThe NI-XNET API installs extra support for LabVIEW users to streamline programming on Windows and real-time targets. With NI-XNET sessions, configuration and setup information is stored in the project, which reduces coding and simplifies signal management.Figure 3. NI-XNET SessionFigure 4. NI-XNET Code Without SessionsFigure 5. NI-XNET code with sessions eliminates setup code and reduces clutter for complicated programs.NI-XNET UtilitiesNI-XNET Database EditorFigure 6. NI-XNET Database EditorThe NI-XNET Database Editor is a stand-alone tool for creating and maintaining embedded network databases that contain signals, frames, and network parameters. NI-XNET products use the ASAM FIBEX (FIeld Bus EXchange) standard as the primary database storage format. In addition to FIBEX, the NI-XNET Database Editor can import the .NCD.DBC) and convert themNI-CAN database format () and CANdb format ( to FIBEX.Use the editor toConfigure a basic new network from scratch or import an existing network such as a network from a large projectDefine and modify frames and signals exchanged on the networkAssign frames to corresponding ECUsNI-XNET Bus MonitorMeasure bus load and monitor bus load historyTransmit single and periodic test framesMap frames to database names for easier diagnosticsView CAN, LIN, and FlexRay bus statisticsLog raw frame data to disk as ASCII or binary NI CAN Logfile format (.NCL)Figure 7. NI I/O Trace UtilityThe NI I/O Trace utility monitors function calls to the NI-XNET APIs from user applications to help troubleshoot applications without adding complex and time-consuming debugging code. This tool helps you debug application programming problems, regardless of the programming environment used.NI-CAN Application CompatibilityPCI NI-XNET interfaces feature a RTSI bus connector for synchronization with other PCI NI-XNET interfaces and NI PCI and PCIBack to TopAbility to implement automotive diagnostics in LabVIEW, LabWindows™/CVI, Visual C/C++ 6.0Compatibility with Windows 7/Vista/XP/2000 and LabVIEW Real-TimeKWP2000 (ISO 14230), Diagnostics on CAN (ISO 15765, OBD-II), and Diagnostics over IP (ISO 13400)Transport protocols: ISO Transport Protocol 15765-2 and Volkswagen TP 2.0 Compatible interfaces: NI-XNET CAN, CompactRIO CAN, USB CAN, and Series 2 NI CAN (PXI, PCI, PCMCIA)Examples for KWP2000 and UDS, including a software ECU simulator NI LabVIEW function blocks to create CANopen master applicationsTransmit-and-receive process data objects (PDOs) and service data objects (SDOs)Support for all NI Series 2 high-speed CAN interfacesLabVIEW Real-Time support with Series 2 PXI high-speed CAN interfacesNetwork management, heartbeat, node guarding, and synchronization functions<b>NI does not recommend the NI CANopen LabVIEW Library for use in new designs.</b>NI ECU Measurement and Calibration Toolkit CAN Calibration Protocol (CCP) Version 2.1supportAccess to ECU physical values (DAQ andSTIM lists) for measurement and simulationapplicationsUniversal Measurement and CalibrationProtocol (XCP) master functionality on CANand EthernetAccess to internal ECU characteristics (1D to3D) and support for *.A2L database filesNI LabVIEW Real-TimeModuleDesign deterministic real-time applicationswith LabVIEW graphical programmingDownload to dedicated NI or third-partyhardware for reliable execution and a wideselection of I/OTake advantage of built-in PID control, signalprocessing, and analysis functionsAutomatically take advantage of multicoreCPUs or set processor affinity manuallyCompatibility with all NI PCI, PXI, PCMCIA, USB, and C Series CAN interfaces Included XCP and CCP Master add-on for NI VeriStand Includes real-time OS, development and debugging support, and board support Purchase individually or as part of a LabVIEW suiteSupport - Visit /support to access the NI KnowledgeBase, example programs, and tutorials or to contact our applications engineers who are located in NI sales offices around the world and speak the local language.Discussion Forums - Visit for a diverse set of discussion boards on topics you care about.Online Community - Visit to find, contribute, or collaborate on customer-contributed technical content with users like you.Classroom training in cities worldwide - the most comprehensive hands-on training taught by engineers.On-site training at your facility - an excellent option to train multiple employees at the same time.Online instructor-led training - lower-cost, remote training if classroom or on-site courses are not possible.Course kits - lowest-cost, self-paced training that you can use as reference guides.Training memberships and training credits - to buy now and schedule training later.Low-Speed/Fault-Tolerant CANBus Power RequirementsCAN_H wire interruptedCAN_L wire interruptedCAN_H short-circuited to batteryCAN_L short-circuited to batteryCAN_H short-circuited to VCCCAN_L short-circuited to VCCCAN_H short-circuited to groundCAN_L short-circuited to groundCAN_H and CAN_L mutually short-circuitedHigh-SpeedLow-Speed/Fault-TolerantSingle WirePinouts/Front Panel ConnectionsCAN DB9 pinoutLIN DB9 pinoutFlexRay DB9 pinoutBack to Top©2011 National Instruments. All rights reserved. CompactRIO, CVI, FieldPoint, LabVIEW, National Instruments, National Instruments Alliance Partner, NI, , NI CompactDAQ, and RTSI are trademarks of National Instruments. The mark LabWindows is used under a license from Microsoft Corporation. Windows is a registered trademark of Microsoft Corporation in the United States and other countries. Other product and company names listed are trademarks or trade names of their respective companies. A National Instruments Alliance Partner is a business entity independent from National Instruments and has no agency, partnership, or joint-venture relationship with National Instruments.My Profile RSS Privacy Legal Contact NI© 2014 National Instruments Corporation. All rights reserved.| | | |。
麦博M-200BT有源音箱无声故障检修
麦博M-200BT 有源音箱无声故障检修□赵占营一台麦博M-200BT 有源电脑音箱,上电后播放音乐无声,仅能听到微弱的交流声。
分析检修:机主称因与重低音音箱插座相连的线控器5针插头已松动,所以经常拔插、晃动插 器内设有耳放(耳机放大器的简称)和音频输入电路,如图1所示,实物图如图2所示。
测量该电路 发现U8(78L05)③脚输入端电压为12V,但输出 端①脚电压为0V,且温度异常,判断U8损坏。
因头。
检查发现,5针插头内插针有损坏现象。
经机 主同意,拆除插头直接用导线连接,上电试机,仍无声音。
该机功放电路采用两只立体声D 类音频功率放大器TPA3124D2,分别控制主声道(左、右) 和重低音放大。
该芯片在22V 供电、40负载下,每声道输出功率为15W O 检查开/关机静音电路正 常,将音频信号直接接入线路板上的L 、R 端,声音正常,怀疑线 控器内音量电 位器有问题。
拆开线控器,测量 电位器正常。
该机线控手头没有SOT-89封装的78L05,换用TO92封 装的直插型78L05o 上电试机,故障排除。
劉I2X16VD3 RL2054 gLF1_ *05904 RL205L62U7 S0T89 78L12 kO +5V 接5针插头_ +lOO U①100 u 25V②S0T89_±~*C60 -[C61 -|C634700 u 25VAcer ASPIRE U5-620 AIO 笔记本电脑不开机故障维修口周明武—台 Acer ASPIRE U5-620 AIO 笔记本电脑 (版号:伟创代工13093-1 ),不开机。
分析检修:拆机取出主板,外加稳压电源,测 得主板待机电流为2.043A,偏大。
此机主板采用第4代CPU+HM86桥架构。
首先在路测量公共点供电DCBATOUT 对地电阻为0,这说明该组供电对地短路。
DCBATOUT 主要供给多组PWM 电 路,如图1所示。
依次断开PL4532、PR4631、PL4656等供电电感,再测DCBATOUT 端对地电阻,发现断开PR43后,该端对地不再 短路,看来VCC-CORE供电电路有 短路现象。
MAX8510 MAX8511 MAX8512 极低噪声、低掉电的线性调压器说明说明书
General DescriptionThe MAX8510/MAX8511/MAX8512 ultra-low-noise, low-dropout (LDO) linear regulators are designed to deliver up to 120mA continuous output current. These regulators achieve a low 120mV dropout for 120mA load current. The MAX8510 uses an advanced architecture to achieve ultra-low output voltage noise of 11μV RMS and PSRR of 54dB at 100kHz.The MAX8511 does not require a bypass capacitor, hence achieving the smallest PC board area. The MAX8512’s output voltage can be adjusted with an external divider.The MAX8510/MAX8511 are preset to a variety of voltag-es in the 1.5V to 4.5V range. Designed with a P-channel MOSFET series pass transistor, the MAX8510/MAX8511/MAX8512 maintain very low ground current (40μA).The regulators are designed and optimized to work with low-value, low-cost ceramic capacitors. The MAX8510 requires only 1μF (typ) of output capacitance for stability with any load. When disabled, current consumption drops to below 1μA.Package options include a 5-pin SC70 and a tiny 2mm x 2mm x 0.8mm TDFN package.Applications●Cellular and Cordless Phones ●PDA and Palmtop Computers ●Base Stations●Bluetooth Portable Radios and Accessories ●Wireless LANs ●Digital Cameras ●Personal Stereos●Portable and Battery-Powered EquipmentFeatures●Space-Saving SC70 and TDFN (2mm x 2mm) Packages ●11μV RMS Output Noise at 100Hz to 100kHzBandwidth (MAX8510)●78dB PSRR at 1kHz (MAX8510) ●120mV Dropout at 120mA Load●Stable with 1μF Ceramic Capacitor for Any Load ●Guaranteed 120mA Output●Only Need Input and Output Capacitors (MAX8511) ●Output Voltages: 1.5V, 1.8V, 2.5V, 2.6V, 2.7V, 2.8V,2.85V, 3V,3.3V,4.5V (MAX8510/MAX8511) and Adjustable (MAX8512) ●Low 40μA Ground Current ●Excellent Load/Line Transient●Overcurrent and Thermal Protection19-2732; Rev 5; 5/19Output Voltage Selector Guide appears at end of data sheet.Ordering Information continued at end of data sheet.*xy is the output voltage code (see Output Voltage Selector Guide). Other versions between 1.5V and 4.5V are available in 100mV increments. Contact factory for other versions.+Denotes a lead(Pb)-free/RoHS-compliant package.T = Tape and reel.PART*TEMP RANGE PIN-PACKAGEMAX8510EXKxy+T -40°C to +85°C 5 SC70MAX8510/MAX8511/MAX8512Ultra-Low-Noise, High PSRR,Low-Dropout, 120mA Linear RegulatorsOrdering InformationClick here for production status of specific part numbers.IN to GND ................................................................-0.3V to +7V Output Short-Circuit Duration ...........................................Infinite OUT, SHDN to GND .....................................-0.3V to (IN + 0.3V)FB, BP , N.C. to GND ................................-0.3V to (OUT + 0.3V)Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C) .............0.247W 8-Pin TDFN (derate 11.9mW/°C above = 70°C) .........0.953W Operating Temperature Range ...........................-40°C to +85°CMilitary Operating Temperature Range .............-55°C to +110°C Junction Temperature ......................................................+150°C Storage Temperature Range ............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Lead (Pb)-free packages .................................................+260°C Packages containing lead (Pb) .......................................+240°C(Note 1)SC70Junction-to-Ambient Thermal Resistance (θJA ) ........324°C/W Junction-to-Case Thermal Resistance (θJC ) .............115°C/WTDFNJunction-to-Ambient Thermal Resistance (θJA ) .......83.9°C/W Junction-to-Case Thermal Resistance (θJC ) ...............37°C/W(V IN = V OUT + 0.5V, T A = -40°C to +85°C, unless otherwise noted. C IN = 1μF, C OUT = 1μF, C BP = 10nF. Typical values are at +25°C; the MAX8512 is tested with 2.45V output, unless otherwise noted.) (Note 2)PARAMETER SYMBOL CONDITIONSMIN TYPMAX UNITS Input Voltage Range V IN26VOutput Voltage Accuracy I OUT = 1mA, T A = +25°C-1+1%I OUT = 100µA to 80mA, T A = +25°C -2+2I OUT = 100µA to 80mA-3+3Maximum Output Current I OUT 120mA Current LimitI LIMV OUT = 90% of nominal value 130200300mA Dropout Voltage (Note 3)V OUT ≥ 3V, I OUT = 80mA 80170mVV OUT ≥ 3V, I OUT = 120mA1202.5V ≤ V OUT < 3V, I OUT = 80mA 902002.5V ≤ V OUT < 3V, I OUT = 120mA 1352V ≤ V OUT < 2.5V, I OUT = 80mA 1202502V ≤ V OUT < 2.5V, I OUT = 120mA180Ground Current I Q I OUT = 0.05mA4090µA V IN = V OUT (nom) - 0.1V, I OUT = 0mA 220500Line Regulation V LNR V IN = (V OUT + 0.5V) to 6V, I OUT = 0.1mA 0.001%/V Load RegulationV LDR I OUT = 1mA to 80mA 0.003%/mA Shutdown Supply CurrentI SHDNV SHDN = 0VT A = +25°C 0.0031µAT A = +85°C 0.05Ripple RejectionPSRRf = 1kHz, I OUT = 10mAMAX851078dBMAX8511/MAX851272f = 10kHz, I OUT = 10mA MAX851075MAX8511/MAX851265f = 100kHz, I OUT = 10mAMAX851054MAX8511/ MAX851246MAX8512Low-Dropout, 120mA Linear RegulatorsAbsolute Maximum RatingsStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Electrical CharacteristicsPackage Thermal Characteristics Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layerboard. For detailed information on package thermal considerations, refer to /thermal-tutorial .(V IN = V OUT + 0.5V, T A = -40°C to +85°C, unless otherwise noted. C IN = 1μF, C OUT = 1μF, C BP = 10nF. Typical values are at +25°C; the MAX8512 is tested with 2.45V output, unless otherwise noted.) (Note 2)Note 2: Limits are 100% tested at +25°C. Limits over operating temperature range are guaranteed by design.Note 3: Dropout is defined as V IN - V OUT when V OUT is 100mV below the value of V OUT for V IN = V OUT + 0.5V.Note 4: Time needed for V OUT to reach 90% of final value.(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A = +25°C, unless otherwise noted.)PARAMETER SYMBOLCONDITIONSMINTYP MAXUNITSOutput Noise Voltage (RMS)f = 100Hz to 100kHz, I LOAD = 10mA MAX851011µVMAX8511/MAX8512230f = 100Hz to 100kHz, I LOAD = 80mA MAX851013MAX8511/MAX8512230Shutdown Exit Delay R LOAD = 50Ω (Note 4)300µs SHDN Logic Low Level V IN = 2V to 6V 0.4V SHDN Logic High Level V IN = 2V to 6V 1.5V SHDN Input Bias Current V IN = 6V, V SHDN = 0V or 6VT A = +25°C µA T A = +85°C 0.01FB Input Bias Current (MAX8512)V IN = 6V,V FB = 1.3VT A = +25°C 0.0060.1µA T A = +85°C0.01Thermal Shutdown 160°C Thermal-Shutdown Hysteresis10°C MAX8510OUTPUT VOLTAGE ACCURACYvs. LOAD CURRENTM A X 8510 t o c 02LOAD CURRENT (mA)% D E V I A T I O N (%)10080604020-0.4-0.200.20.40.6-0.60120MAX8510OUTPUT VOLTAGE ACCURACYvs. TEMPERATURETEMPERATURE (°C)% D E V I A T I O N (%)603510-15-0.8-0.6-0.4-0.200.20.40.60.81.0-1.0-4085MAX8510OUTPUT VOLTAGE vs. INPUT VOLTAGEINPUT VOLTAGE (V)O U T P U T V O L T A G E (V )543210.51.01.52.02.53.00.06MAX8512Low-Dropout, 120mA Linear RegulatorsElectrical Characteristics (continued)Typical Operating Characteristics(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A = +25°C, unless otherwise noted.)MAX8510DROPOUT VOLTAGE vs. OUTPUT VOLTAGEOUTPUT (V)D R O P O U T V O L T A G E (m V )3.02.82.62.42.2501001502002502.03.2MAX8510GROUND PIN CURRENT vs. TEMPERATUREM A X 8510 t o c 08TEMPERATURE (°C)G R O U N D P I N C U R R E N T (µA )603510-153540455030-4085MAX8510OUTPUT NOISE400µs/divMAX8510GROUND PIN CURRENT vs. INPUT VOLTAGEINPUT VOLTAGE (V)G R O U N D P I N C U R R E N T (µA )43211502005010025030035005MAX8510PSRR vs. FREQUENCYFREQUENCY (kHz)P S R R (d B )1101000.14050601020307080900.011000MAX8510OUTPUT NOISE SPECTRAL DENSITYvs. FREQUENCYMAX8510 toc12FREQUENCY (kHz)O U T P U T N O I S E D E N S I T Y (n V /H z )0.11101001.E+031.E+021.E+041.E+010.011000MAX8510DROPOUT VOLTAGE vs. LOAD CURRENTLOAD CURRENT (mA)D R O P O U T V O L T A G E (m V )1008060402030609012015000120MAX8510GROUND PIN CURRENT vs. LOAD CURRENTLOAD CURRENT (mA)G R O U N D P I N C U R R E N T (µA )10080604020408012016020024000120MAX8511PSRR vs. FREQUENCYFREQUENCY (kHz)P S R R (d B )0.111010040506010203070809000.011000MAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Characteristics (continued)(V IN = V OUT + 0.5V, C IN = 1μF, C OUT = 1μF, C BP = 10nF, T A= +25°C, unless otherwise noted.)MAX8510LOAD TRANSIENT RESPONSE1ms/div V OUT 10mV/divMAX8510EXITING SHUTDOWN WAVEFORM20µs/divV OUT = 2.85VR LOAD = 47ΩOUTPUT VOLTAGE 2V/divSHUTDOWN VOLTAGEMAX8510LOAD TRANSIENT RESPONSE NEAR DROPOUT1ms/divV OUT 10mV/divMAX8510ENTERING SHUTDOWN DELAY40µs/divC BP = 0.01µFOUTPUT VOLTAGE 2V/divSHUTDOWN VOLTAGEMAX8510REGION OF STABLE C OUT ESRvs. LOAD CURRENTM A X 8510 t o c 20LOAD CURRENT (mA)C O U T E S R (Ω)806040200.11101000.01120100STABLE REGIONMAX8510OUTPUT NOISE vs. BP CAPACITANCEM A X 8510 t o c 13BP CAPACITANCE (nF)O U T P U T N O I S E (µV )1051015202501100MAX8510LINE TRANSIENT RESPONSE200µs/divV IN = 3.5V TO 4VV OUT 2mV/divMAX8510SHUTDOWN EXIT DELAY20µs/divV OUT 1V/divSHUTDOWN VOLTAGEV OUT = 3V C BP = 100nFMAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Characteristics (continued)Detailed DescriptionThe MAX8510/MAX8511/MAX8512 are ultra-low-noise, low-dropout, low-quiescent current linear regulators designed for space-restricted applications. The parts are available with preset output voltages ranging from 1.5V to 4.5V in 100mV increments. These devices can supply loads up to 120mA. As shown in the Functional Diagram , the MAX8510/MAX8511 consist of an innovative bandgap core and noise bypass circuit, error amplifier, P-channel pass transistor, and internal feedback voltage-divider. The MAX8512 allows for adjustable output with an external feedback network.The 1.225V bandgap reference is connected to the error amplifier’s inverting input. The error amplifier compares this reference with the feedback voltage and amplifies the difference. If the feedback voltage is lower than the refer-ence voltage, the pass-transistor gate is pulled low. This allows more current to pass to the output and increases the output voltage. If the feedback voltage is too high, the pass transistor gate is pulled high, allowing less cur-rent to pass to the output. The output voltage is fed back through an internal resistor voltage-divider connected to the OUT pin.An external bypass capacitor connected to BP (MAX8510) reduces noise at the output. Additional blocks include a current limiter, thermal sensor, and shutdown logic.Internal P-Channel Pass TransistorThe MAX8510/MAX8511/MAX8512 feature a 1Ω (typ) P-channel MOSFET pass transistor. This provides sev-eral advantages over similar designs using a PNP pass transistor, including longer battery life. The P-channel MOSFET requires no base drive, which considerably reduces quiescent current. PNP-based regulators waste considerable current in dropout when the pass transistor saturates. They also use high base-drive current under heavy loads. The MAX8510/MAX8511/MAX8512 do not suffer from these problems and consume only 40μA of quiescent current in light load and 220μA in dropout (see the Typical Operating Characteristics ).Output Voltage SelectionThe MAX8510/MAX8511 are supplied with factory-set output voltages from 1.5V to 4.5V, in 100mV increments (see Ordering Information ). The MAX8512 features a user-adjustable output through an external feedback net-work (see the Typical Operating Circuits ).To set the output of the MAX8512, use the following equa-tion:OUT REF V R1R2X -1V=where R2 is chosen to be less than 240kΩ and V REF = 1.225V. Use 1% or better resistors.PINNAMEFUNCTIONMAX8510MAX8511MAX8512SC70TDFN -EP SC70TDFN -EP SC70TDFN -EP 151515IN Unregulated Input Supply 232323GNDGround343434SHDN Shutdown. Pull low to disable the regulator.42————BP Noise Bypass for Low-Noise Operation. Connect a 10nF capacitor from BP to OUT. BP is shorted to OUT in shutdown mode.————42FB Adjustable Output Feedback Point575757OUT Regulated Output Voltage. Bypass with a capacitor to GND. See the Capacitor Selection and Regulator Stability section for more details.—1, 6, 841, 2, 6,—1, 6, 8N.C.No connection. Not internally connected.——————EPExposed Pad (TDFN Only). Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point.MAX8512Low-Dropout, 120mA Linear RegulatorsPin DescriptionShutdownThe MAX8510/MAX8511/MAX8512 feature a low-power shutdown mode that reduces quiescent current less than 1μA. Driving SHDN low disables the voltage reference, error amplifier, gate-drive circuitry, and pass transistor (see the Functional Diagram), and the device output enters a high-impedance state. Connect SHDN to IN for normal operation.Current LimitThe MAX8510/MAX8511/MAX8512 include a current lim-iter, which monitors and controls the pass transistor’s gate voltage, limiting the output current to 200mA. For design purposes, consider the current limit to be 130mA (min) to 300mA (max). The output can be shorted to ground for an indefinite amount of time without damaging the part. Thermal-Overload ProtectionThermal-overload protection limits total power dissipation in the MAX8510/MAX8511/MAX8512. When the junction temperature exceeds T J = +160°C, the thermal sensor signals the shutdown logic, turning off the pass transis-tor and allowing the IC to cool down. The thermal sensor turns the pass transistor on again after the IC’s junction temperature drops by 10°C, resulting in a pulsed output during continuous thermal-overload conditions.Thermal-overload protection is designed to protect the MAX8510/MAX8511/MAX8512 in the event of a fault con-dition. For continual operation, do not exceed the abso-lute maximum junction temperature rating of T J = +150°C. Operating Region and Power DissipationThe MAX8510/MAX8511/MAX8512 maximum power dis-sipation depends on the thermal resistance of the case and circuit board, the temperature difference between the die junction and ambient, and the rate of airflow. The power dissipation across the device is:P = I OUT (V IN - V OUT)The maximum power dissipation is:P MAX = (T J - T A) / (θJC + θCA)where T J - T A is the temperature difference between the MAX8510/MAX8511/MAX8512 die junction and the sur-rounding air, θJC is the thermal resistance of the package, and θCA is the thermal resistance through the PC board, copper traces, and other materials to the surrounding air. The GND pin of the MAX8510/MAX8511/MAX8512 per-forms the dual function of providing an electrical connec-tion to ground and channeling heat away. Connect the GND pin to ground using a large pad or ground plane.Noise ReductionFor the MAX8510, an external 0.01μF bypass capaci-tor between BP and OUT with innovative noise bypass scheme reduces output noises dramatically, exhibiting 11μV RMS of output voltage noise with C BP = 0.01μF and C OUT = 1μF. Startup time is minimized by a poweron cir-cuit that precharges the bypass capacitor. Applications InformationCapacitor Selectionand Regulator StabilityUse a 1μF capacitor on the MAX8510/MAX8511/MAX8512 input and a 1μF capacitor on the output. Larger input capacitor values and lower ESRs provide better noise rejection and line-transient response. Reduce output noise and improve load-transient response, stability, and power-supply rejection by using large output capacitors. Note that some ceramic dielectrics exhibit large capaci-tance and ESR variation with temperature. With dielec-trics such as Z5U and Y5V, it may be necessary to use a 2.2μF or larger output capacitor to ensure stability at temperatures below -10°C. With X7R or X5R dielectrics, 1μF is sufficient at all operating temperatures. A graph of the region of stable C OUT ESR vs. load current is shown in the Typical Operating Characteristics.Use a 0.01μF bypass capacitor at BP (MAX8510) for low-output voltage noise. The leakage current going into the BP pin should be less than 10nA. Increasing the capaci-tance slightly decreases the output noise. Values above 0.1μF and below 0.001μF are not recommended. Noise, PSRR, and Transient ResponseThe MAX8510/MAX8511/MAX8512 are designed to deliv-er ultra-low noise and high PSRR, as well as low dropout and low quiescent currents in battery-powered systems. The MAX8510 power-supply rejection is 78dB at 1kHz and 54dB at 100kHz. The MAX8511/MAX8512 PSRR is 72dB at 1kHz and 46dB at 100kHz (see the Power-Supply Rejection Ratio vs. Frequency graph in the Typical Operating Characteristics).When operating from sources other than batteries, improved supply-noise rejection and transient response can be achieved by increasing the values of the input and output bypass capacitors, and through passive filter-ing techniques. The Typical Operating Characteristics show the MAX8510/MAX8511/MAX8512 line- and load-transient responses.MAX8512Low-Dropout, 120mA Linear RegulatorsDropout VoltageA regulator’s minimum dropout voltage determines the lowest usable supply voltage. In battery-powered sys-tems, this determines the useful end-of-life battery volt-age. Because the MAX8510/MAX8511/MAX8512 use aP-channel MOSFET pass transistor, their dropout voltage is a function of drain-to-source on-resistance (RDS(ON)) multiplied by the load current (see the Typical Operating Characteristics ).MAX8512Low-Dropout, 120mA Linear RegulatorsFunctional Diagram*xy is the output voltage code (see Output Voltage Selector Guide). Other versions between 1.5V and 4.5V are available in 100mV increments. Contact factory for other versions.**EP = Exposed pad.+Denotes a lead(Pb)-free/RoHS-compliant package.T = Tape and reel.(Note: Standard output voltage options, shown in bold , are available. Contact the factory for other output voltages between 1.5V and 4.5V. Minimum order quantity is 15,000 units.)PART*TEMP RANGE PIN-PACKAGE MAX8510MXK33/PR3+-55°C to +110°C 5 SC70MAX8510ETAxy+T -40°C to +85°C 8 TDFN-EP** 2mm x 2mm MAX8511EXKxy+T -40°C to +85°C 5 SC70MAX8511ETAxy+T -40°C to +85°C 8 TDFN-EP** 2mm x 2mm MAX8512EXK+T -40°C to +85°C 5 SC70MAX8512ETA+T-40°C to +85°C8 TDFN-EP** 2mm x 2mmPARTV OUT (V)TOP MARKMAX8510EXK16+T 1.6AEX MAX8510EXK18+T 1.8AEA MAX8510ETA25+T 2.5AAO MAX8510EXK27+T 2.7ATD MAX8510ETA28+T 2.8AAR MAX8510EXK29+T 2.85ADS MAX8510MXK33/PR3+ 3.3AUV MAX8510ETA30+T 3AAS MAX8510ETA33+T 3.3AAT MAX8510ETA45+T 4.5AAU MAX8510MXK33/PR3+ 3.3AUV MAX8511EXK15+T 1.5ADU MAX8511ETA18+T 1.8AAV MAX8511ETA25+T 2.5AAP MAX8511ETA26+T 2.6AAW MAX8511EXK28+T 2.8AFA MAX8511ETA29+T 2.85AAX MAX8511EXK89+T 2.9AEH MAX8511EXK31+T 3.1ARS MAX8511ETA33+T 3.3AAY MAX8511EXK45+T4.5AEJ MAX8512ETA+TAdjustableAAQPACKAGE TYPE PACKAGE CODE OUTLINE ND PATTERN NO.8 TDFN T822+121-016890-00645 SC70X5+121-007690-0188MAX8512Low-Dropout, 120mA Linear RegulatorsTypical Operating Circuits (continued)Ordering Information (continued)Output Voltage Selector GuidePackage InformationFor the latest package outline information and land patterns (footprints), go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.Chip InformationPROCESS: BiCMOSREVISION NUMBERREVISION DATE DESCRIPTIONPAGES CHANGED 48/11Corrected errors and added lead-free packages 1, 2, 3, 6, 955/19Updated Output Voltage Selector Guide9Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.MAX8512Low-Dropout, 120mA Linear RegulatorsRevision HistoryFor pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html.。
AD9952 Evaluation Board Datasheet说明书
功能框图图1.DC/PHASE CORRECTION DC/PHASE CORRECTIONC SS C L KS D I OSERIAL PORT INTERFACE15141323892325262838VPOS_3P3DECL1TO DECL4211119303136273340101VPOS_5VLDO VCOLDO 2.5VRFIN0RFIN12922POLYPHASE FILTERLOIN–REFINLOIN+I+I–Q–Q+QUAD DIVIDERPLL343935547611990-001Rev. ADocument FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However , no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Speci cations subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013–2014 Analog Devices, Inc. All rights reserved. Technical Support 695 MHz 至2700 MHz 正交解调器,集成小数N 分频PLL 和VCOADRF6820产品特性集成小数N 分频PLL 的I/Q 解调器RF 输入频率范围:695 MHz 至2700 MHz 内部LO 频率范围:356.25 MHz 至2850 MHz 输入P1dB :14.5 dBm (1900 MHz RF) 输入IP3:35 dBm (1900 MHz RF) 可编程HD3/IP3调整单刀双掷(SPDT) RF 输入开关RF 数字步进衰减范围:0 dB 至15 dB集成式RF 可调谐巴伦,支持单端50 Ω输入 多核集成式VCO解调1 dB 带宽:600 MHz 4个可选基带增益和带宽模式数字可编程LO 相位失调和直流零点可通过三线式串行端口接口(SPI)进行编程 40引脚、6 mm x 6 mm LFCSP 封装应用蜂窝W-CDMA/GSM/LTE 数字预失真(DPD)接收器 微波点对点无线电概述ADRF6820是一款高度集成的解调器和频率合成器,非常适合用于下一代通信系统中。
ADL5565差分放大器与AD9467 ADC接口电路设计说明书
为窄带、高中频、16位、250 MSPS 接收机前端设计带通滤波器的谐振匹配方法评估和设计支持设计和整合文件原理图、布局文件、物料清单电路功能与优势图1所示的电路是一款16位、250 MSPS 、窄带、高中频接收机前端,其中在ADL5565差分放大器与AD9467 ADC 之间提供最佳接口。
AD9467是一款缓冲输入16位、200 MSPS 或250 MSPS ADC ,具有约75.5 dBFS 的SNR 性能和介于95 dBFS 与98 dBFS 之间的SFDR 性能。
由于具有高输入带宽、低失真和高输出线性度,ADL5565差分放大器适合驱动中频采样ADC 。
本电路笔记介绍了如何设计接口电路和抗混叠滤波器才能在保持高性能的同时确保最低信号损耗的系统化过程。
使用谐振匹配方法来设计最平坦的巴特沃兹四阶带通滤波器,中心频率为200 MHz 。
电路描述使用差分放大器来驱动高速ADC 的优势包括信号增益、隔离和ADC 与源阻抗匹配。
ADL5565允许6 dB 、12 dB 或 15.5 dB 的引脚绑定增益调整。
或者,通过对输入应用两个外部电阻,可在0 dB 至15.5 dB 范围内实现更精细的增益步进。
此外,ADL5565具有高输出线性度、低失真、低噪声和宽输入带宽。
3 dB 带宽为6 GHz ,0.1 dB 平坦度为1 GHz 。
ADL5565能实现大于50 dB 的输出三阶交调截点(OIP3)。
10560-001图1. 使用ADL5565差分放大器和AD9467 ADC 完成窄带高中频应用的谐振滤波器设计电路笔记Rev.0Circuits from the Lab™ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shall Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)One Technology Way, P .O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 /zh Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.为实现ADL5565和AD9467必须提供的最佳性能水平,必须严格遵循各数据手册中指定的设计原则。
TI常用运放芯片型号
CA3130?高输入阻抗运算放大器?Intersil[DA TA]CA3140?高输入阻抗运算放大器CD4573?四可编程运算放大器?MC14573ICL7650?斩波稳零放大器LF347(NS[DA TA])?带宽四运算放大器?KA347LF351?BI-FET单运算放大器?NS[DA TA]LF353?BI-FET双运算放大器?NS[DA TA]LF356?BI-FET单运算放大器?NS[DA TA]LF357?BI-FET单运算放大器?NS[DA TA]LF398?采样保持放大器?NS[DA TA]LF411?BI-FET单运算放大器?NS[DA TA]LF412?BI-FET双运放大器?NS[DATA]LM124?低功耗四运算放大器(军用档)?NS[DA TA]/TI[DATA] LM1458?双运算放大器?NS[DA TA]LM148?四运算放大器?NS[DA TA]LM224J?低功耗四运算放大器(工业档)?NS[DA TA]/TI[DATA] LM2902?四运算放大器?NS[DA TA]/TI[DA TA]LM2904?双运放大器?NS[DA TA]/TI[DA TA]LM301?运算放大器?NS[DA TA]LM308?运算放大器?NS[DA TA]LM308H?运算放大器(金属封装)?NS[DA TA]LM318?高速运算放大器?NS[DATA]LM324(NS[DA TA])?四运算放大器?HA17324,/LM324N(TI)LM348?四运算放大器?NS[DA TA]LM358?NS[DA TA]?通用型双运算放大器?HA17358/LM358P(TI) LM380?音频功率放大器?NS[DATA]LM386-1?NS[DA TA]?音频放大器?NJM386D,UTC386LM386-3?音频放大器?NS[DA TA]LM386-4?音频放大器?NS[DA TA]LM3886?音频大功率放大器?NS[DA TA]LM3900?四运算放大器LM725?高精度运算放大器?NS[DATA]LM733?带宽运算放大器LM741?NS[DA TA]?通用型运算放大器?HA17741MC34119?小功率音频放大器NE5532?高速低噪声双运算放大器?TI[DATA]NE5534?高速低噪声单运算放大器?TI[DATA]NE592?视频放大器OP07-CP?精密运算放大器?TI[DATA]OP07-DP?精密运算放大器?TI[DATA]TBA820M?小功率音频放大器?ST[DA TA]TL061?BI-FET单运算放大器?TI[DA TA]TL062?BI-FET双运算放大器?TI[DA TA]TL064?BI-FET四运算放大器?TI[DA TA]TL072?BI-FET双运算放大器?TI[DA TA]TL074?BI-FET四运算放大器?TI[DA TA]TL081?BI-FET单运算放大器?TI[DA TA]TL082?BI-FET双运算放大器?TI[DA TA]TL084?BI-FET四运算放大器?TI[DA TA]AD824?JFET输入,单电源,低电压,低功耗,精密四运算放大器?MC33171?单电源,低电压,低功耗运算放大器AD826?低功耗,宽带,高速双运算放大器?MC33172?单电源,低电压,低功耗双运算放大器AD827?低功耗,高速双运算放大器?MC33174?单电源,低电压,低功耗四运算放大器AD828?低功耗,宽带,高速双运算放大器?MC33178?大电流,低功耗,低噪音双运算放大器AD844?电流反馈型,宽带,高速运算放大器?MC33179?大电流,低功耗,低噪音四运算放大器AD846?电流反馈型,高速,精密运算放大器?MC33181?JFET输入,低功耗运算放大器AD847?低功耗,高速运算放大器?MC33182?JFET输入,低功耗双运算放大器AD8531?COMS单电源,低功耗,高速运算放大器?MC33184?JFET输入,低功耗四运算放大器AD8532?COMS单电源,低功耗,高速双运算放大器?MC33201?单电源,大电流,低电压运算放大器AD8534?COMS单电源,低功耗,高速四运算放大器?MC33202?单电源,大电流,低电压双运算放大器AD9617?低失真,电流反馈型,宽带,高速,精密运算放大器?MC33204?单电源,大电流,低电压四运算放大器AD9631?低失真,宽带,高速运算放大器?MC33272?单电源,低电压,高速双运算放大器AD9632?低失真,宽带,高速运算放大器?MC33274?单电源,低电压,高速四运算放大器AN6550?低电压双运算放大器?MC33282?JFET输入,宽带,高速双运算放大器AN6567?大电流,单电源双运算放大器?MC33284?JFET输入,宽带,高速四运算放大器AN6568?大电流,单电源双运算放大器?MC33502?BIMOS,单电源,大电流,低电压,双运算放大器BA718?单电源,低功耗双运算放大器?MC34071A?单电源,高速运算放大器BA728?单电源,低功耗双运算放大器?MC34072A?单电源,高速双运算放大器CA5160?BIMOS,单电源,低功耗运算放大器?MC34074A?单电源,高速四运算放大器CA5260?BIMOS,单电源双运算放大器?MC34081?JFET输入,宽带,高速运算放大器CA5420?BIMOS,单电源,低电压,低功耗运算放大器?MC34082?JFET输入,宽带,高速双运算放大器CA5470?BIMOS单电源四运算放大器?MC34084?JFET输入,宽带,高速四运算放大器CLC400?电流反馈型,宽带,高速运算放大器?MC34181?JFET输入,低功耗运算放大器CLC406?电流反馈型,低功耗,宽带,高速运算放大器?MC34182?JFET输入,低功耗双运算放大器CLC410?电流反馈型,高速运算放大器?MC34184?JFET输入,低功耗四运算放大器CLC415?电流反馈型,宽带,高速四运算放大器?MC35071A?单电源,高速运算放大器CLC449?电流反馈型,宽带,高速运算放大器?MC35072A?单电源,高速双运算放大器CLC450?电流反馈型,单电源,低功耗,宽带,高速运算放大器?MC35074A?单电源,高速四运算放大器CLC452?单电源,电流反馈型,大电流,低功耗,宽带,高速运算放大器?MC35081?JFET输入,宽带,高速运算放大器CLC505?电流反馈型,高速运算放大器?MC35082?JFET输入,宽带,高速双运算放大器EL2030?电流反馈型,宽带,高速运算放大器?MC35084?JFET输入,宽带,高速四运算放大器EL2030C?电流反馈型,宽带,高速运算放大器?MC35171?单电源,低电压,低功耗运算放大器EL2044C?单电源,低功耗,高速运算放大器?MC35172?单电源,低电压,低功耗双运算放大器EL2070?电流反馈型,宽带,高速运算放大器?MC35174?单电源,低电压,低功耗四运算放大器EL2070C?电流反馈型,宽带,高速运算放大器?MC35181?JFET输入,低功耗运算放大器EL2071C?电流反馈型,宽带,高速运算放大器?MC35182?JFET输入,低功耗双运算放大器EL2073?宽带,高速运算放大器?MC35184?JFET输入,低功耗四运算放大器EL2073C?宽带,高速运算放大器?MM6558?低电压,低失调电压,精密双运算放大器EL2130C?电流反馈型,宽带,高速运算放大器?MM6559?低电压,低失调电压,精密双运算放大器EL2150C?单电源,宽带,高速运算放大器?MM6560?低电压,低失调电压,精密双运算放大器EL2160C?电流反馈型,宽带,高速运算放大器?MM6561?低功耗,低电压,低失调电压,精密双运算放大器EL2165C?电流反馈型,宽带,高速,精密运算放大器?MM6564?单电源,低电压,低功耗,低失调电压,精密双运算放大器EL2170C?单电源,电流反馈型,低功耗,宽带,高速运算放大器?MM6572?低噪音,低电压,低失调电压,精密双运算放大器EL2175C?电流反馈型,宽带,高速,精密运算放大器?NE5230?单电源,低电压运算放大器EL2180C?单电源,电流反馈型,低功耗,宽带,高速运算放大器?NE5512?通用双运算放大器EL2224?宽带,高速双运算放大器?NE5514?通用四运算放大器EL2224C?宽带,高速双运算放大器?NE5532?低噪音,高速双运算放大器EL2232?电流反馈型,宽带,高速双运算放大器?NE5534?低噪音,高速运算放大器EL2232C?电流反馈型,宽带,高速双运算放大器?NJM2059?通用四运算放大器EL2250C?单电源,宽带,高速双运算放大器?NJM2082?JFET输入,高速双运算放大器EL2260C?电流反馈型,宽带,高速双运算放大器?NJM2107?低电压,通用运算放大器EL2270C?单电源,电流反馈型,低功耗,宽带,高速双运算放大器?NJM2112?低电压,通用四运算放大器EL2280C?单电源,电流反馈型,低功耗,宽带,高速双运算放大器?NJM2114?低噪音双运算放大器EL2424?宽带,高速四运算放大器?NJM2115?低电压,通用双运算放大器EL2424C?宽带,高速四运算放大器?NJM2119?单电源,精密双运算放大器EL2444C?单电源,低功耗,高速四运算放大器?NJM2122?低电压,低噪音双运算放大器EL2450C?单电源,宽带,高速四运算放大器?NJM2130F?低功耗运算放大器EL2460C?电流反馈型,宽带,高速四运算放大器?NJM2132?单电源,低电压,低功耗双运算放大器EL2470C?单电源,电流反馈型,低功耗,宽带,高速四运算放大器?NJM2136?低电压,低功耗,宽带,高速运算放大器EL2480C?单电源,电流反馈型,低功耗,宽带,高速四运算放大器?NJM2137?低电压,低功耗,宽带,高速双运算放大器HA-2640?高耐压运算放大器?NJM2138?低电压,低功耗,宽带,高速四运算放大器HA-2645?高耐压运算放大器?NJM2140?低电压双运算放大器HA-2839?宽带,高速运算放大器?NJM2141?大电流,低电压双运算放大器HA-2840?宽带,高速运算放大器?NJM2147?高耐压,低功耗双运算放大器HA-2841?宽带,高速运算放大器?NJM2162?JFET输入,低功耗,高速双运算放大器HA-2842?宽带,高速运算放大器?NJM2164?JFET输入,低功耗,高速四运算放大器HA-4741?通用四运算放大器?NJM3404A?单电源,通用双运算放大器HA-5020?电流反馈型,宽带,高速运算放大器?NJM3414?单电源,大电流双运算放大器HA-5127?低噪音,低失调电压,精密运算放大器?NJM3415?单电源,大电流双运算放大器HA-5134?低失调电压,精密四运算放大器?NJM3416?单电源,大电流双运算放大器HA-5137?低噪音,低失调电压,高速,精密运算放大器?NJM4556A?大电流双运算放大器HA-5142?单电源,低功耗双运算放大器?NJM4580?低噪音双运算放大器HA-5144?单电源,低功耗四运算放大器?NJU7051?CMOS单电源,低功耗,低电压,低失调电压运算放大器HA-5177?低失调电压,精密运算放大器?NJU7052?CMOS单电源,低功耗,低电压,低失调电压双运算放大器HA-5221?低噪音,精密运算放大器?NJU7054?CMOS单电源,低功耗,低电压,低失调电压四运算放大器HA-5222?低噪音,精密双运算放大器?NJU7061?CMOS单电源,低功耗,低电压,低失调电压运算放大器HA-7712?BIMOS,单电源,低功耗,精密运算放大器?NJU7062?CMOS单电源,低功耗,低电压,低失调电压双运算放大器HA-7713?BIMOS,单电源,低功耗,精密运算放大器?NJU7064?CMOS单电源,低功耗,低电压,低失调电压四运算放大器HA16118?CMOS单电源,低电压,低功耗双运算放大器?NJU7071?CMOS单电源,低功耗,低电压,低失调电压运算放大器AD704?低偏置电流,低功耗,低失调电压,精密四运算放大器?MAX430?CMOS单电源运算放大器AD705?低偏置电流,低功耗,低失调电压,精密运算放大器?MAX432?CMOS单电源运算放大器AD706?低偏置电流,低功耗,低失调电压,精密双运算放大器?MAX4330?单电源,低电压,低功耗运算放大器AD707?低失调电压,精密运算放大器?MAX4332?单电源,低电压,低功耗双运算放大器AD708?低失调电压,精密双运算放大器?MAX4334?单电源,低电压,低功耗四运算放大器AD711?JFET输入,高速,精密运算放大器?MAX473?单电源,低电压,宽带,高速运算放大器AD712?JFET输入,高速,精密双运算放大器?MAX474?单电源,低电压,宽带,高速双运算放大器AD713?JFET输入,高速,精密四运算放大器?MAX475?单电源,低电压,宽带,高速四运算放大器AD744?JFET输入,高速,精密运算放大器?MAX477?宽带,高速运算放大器AD745?JFET输入,低噪音,高速运算放大器?MAX478?单电源,低功耗,精密双运算放大器AD746?JFET输入,高速,精密双运算放大器?MAX478A?单电源,低功耗,精密双运算放大器AD795?JFET输入,低噪音,低功耗,精密运算放大器?MAX479?单电源,低功耗,精密四运算放大器AD797?低噪音运算放大器?MAX479A?单电源,低功耗,精密四运算放大器AD8002?电流反馈型,低功耗,宽带,高速双运算放大器?MAX480?单电源,低功耗,低电压,低失调电压,精密运算放大器AD8005?电流反馈型,低功耗,宽带,高速双运算放大器?MAX492C?单电源,低功耗,低电压,精密双运算放大器AD8011?电流反馈型,低功耗,宽带,高速运算放大器?MAX492E?单电源,低功耗,低电压,精密双运算放大器AD8031?单电源,低功耗,高速运算放大器?MAX492M?单电源,低功耗,低电压,精密双运算放大器AD8032?单电源,低功耗,高速双运算放大器?MAX494C?单电源,低功耗,低电压,精密四运算放大器AD8041?单电源,宽带,高速运算放大器?MAX494E?单电源,低功耗,低电压,精密四运算放大器AD8042?单电源,宽带,高速双运算放大器?MAX494M?单电源,低功耗,低电压,精密四运算放大器AD8044?单电源,宽带,高速四运算放大器?MAX495C?单电源,低功耗,低电压,精密运算放大器AD8047?宽带,高速运算放大器?MAX495E?单电源,低功耗,低电压,精密运算放大器AD8055?低功耗,宽带,高速运算放大器?MAX495M?单电源,低功耗,低电压,精密运算放大器AD8056?低功耗,宽带,高速双运算放大器?MC1458?通用双运算放大器AD8072?电流反馈型,宽带,高速双运算放大器?MC1458C?通用双运算放大器AD812?电流反馈型,低电压,低功耗,高速双运算放大器?MC33071A?单电源,高速运算放大器AD817?低功耗,宽带,高速运算放大器?MC33072A?单电源,高速双运算放大器AD818?低功耗,宽带,高速运算放大器?MC33074A?单电源,高速四运算放大器AD820?JFET输入,单电源,低电压,低功耗,精密运算放大器?MC33078?低噪音双运算放大器AD822?JFET输入,单电源,低电压,低功耗,精密双运算放大器?MC33079?低噪音四运算放大器AD823?JFET输入,单电源,低电压,低功耗,精密,高速双运算放大器?MC33102?低功耗双运算放大器HA16119?CMOS单电源,低电压,低功耗双运算放大器?NJU7072?CMOS单电源,低功耗,低电压,低失调电压双运算放大器HFA1100?电流反馈型,宽带,高速运算放大器?NJU7074?CMOS单电源,低功耗,低电压,低失调电压四运算放大器HFA1120?电流反馈型,宽带,高速运算放大器?OP-07?低漂移,精密运算放大器HFA1205?电流反馈型,低功耗,宽带,高速双运算放大器?OP-113?BICMOS单电源,低噪音,低失调电压,精密运算放大器HFA1245?电流反馈型,低功耗,宽带,高速双运算放大器?OP-150?COMS,单电源,低电压,低功耗ICL7611?CMOS低电压,低功耗运算放大器?OP-160?电流反馈型,高速运算放大器ICL7612?CMOS低电压,低功耗运算放大器?OP-162?单电源,低电压,低功耗,高速,精密运算放大器ICL7621?CMOS低电压,低功耗双运算放大器?OP-177?低失调电压,精密运算放大器ICL7641?CMOS低电压四运算放大器?OP-183?单电源,宽带运算放大器ICL7642?CMOS低电压,低功耗四运算放大器?OP-184?单电源,低电压,高速,精密运算放大器ICL7650S?稳压器?OP-191?单电源,低电压,低功耗运算放大器LA6500?单电源,功率OP放大器?OP-193?单电源,低电压,低功耗,精密运算放大器LA6501?单电源,功率OP放大器?OP-196?单电源,低电压,低功耗运算放大器LA6510?2回路单电源功率OP放大器?OP-200?低功耗,低失调电压,精密双运算放大器"LA6512?高压,功率OP放大器双运算放大器?OP-213?BICMOS单电源,低噪音,低失调电压,精密双运算放大器LA6513?高压,功率OP放大器双运算放大器?OP-250?COMS,单电源,低电压,低功耗双运算放大器LA6520?单电源,功率OP放大器三运算放大器?OP-260?电流反馈型,高速双运算放大器LF356?JFET输入,高速运算放大器?OP-262?单电源,低电压,低功耗,高速,精密双运算放大器LF356A?JFET输入,高速运算放大器?OP-27?低噪音,低失调电压,精密运算放大器LF411?JFET输入,高速运算放大器?OP-270?低噪声,低失调电压,精密双运算放大器LF411A?JFET输入,高速运算放大器?OP-271?精密双运算放大器LF412?JFET输入,高速双运算放大器?OP-275?高速双运算放大器LF412A?JFET输入,高速双运算放大器?OP-279?单电源,大电流双运算放大器LF441?低功耗,JFET输入运算放大器?OP-282?JFET输入,低功耗双运算放大器LF441A?低功耗,JFET输入运算放大器?OP-283?单电源,宽带双运算放大器LF442?低功耗,JFET输入双运算放大器?OP-284?单电源,低电压,高速,精密双运算放大器LF442A?低功耗,JFET输入双运算放大器?OP-290?单电源,低功耗,精密双运算放大器LF444?低功耗,JFET输入四运算放大器?OP-291?单电源,低电压,低功耗双运算放大器LF444A?低功耗,JFET输入四运算放大器?OP-292?BICMOS单电源,通用双运算放大器LM2902?单电源四运算放大器?OP-293?单电源,低电压,低功耗,精密双运算放大器LM2904?单电源双运算放大器?OP-295?BICMOS低功耗,精密双运算放大器LM324?单电源四运算放大器?OP-296?单电源,低电压,低功耗双运算放大器LM358?单电源双运算放大器?OP-297?低电压,低功耗,低漂移,精密双运算放大器LM4250?单程控、低功耗运算放大器?OP-37?低噪音,低失调电压,高速,精密运算放大器LM607?低失调电压,精密运算放大器?OP-400?低功耗,低失调电压,精密四运算放大器LM6118?宽带,高速双运算放大器?OP-413?BICMOS单电源,低噪音,低失调电压,精密四运算放大器。
ADI AD9652 快速入门指南说明书
Quick Start Guide for testing theAD9652 Analog-to-Digital Converter (ADC) Engineering Evaluation Board Using the FPGA based CaptureBoard HSC-ADC-EVALCZFigure 1: AD9652 Evaluation Board with HSC-ADC-EVALCZ Data Capture BoardEquipment Needed►Analog signal source and anti-aliasing filter►Analog Clock Source►PC►USB 2.0 port recommended (USB 1.1-compatible)►AD9652 customer evaluation board with 6VDC, 2A AC adapter.►HSC-ADC-EVALCZ FPGA Based Data Capture Board with 6VDC, 2A AC adapter.Documents Needed►AD9652 Datasheet►VisualAnalog Converter Evaluation Tool User Manual, AN-905►High Speed ADC SPI Control Software User Manual, AN-878►Interfacing to High Speed ADCs via SPI, AN-877Software Needed►VisualAnalog►SPIControllerAll documents and software are available at /fifo.For any questions please send an email to*******************************.Install software from the ADI website1.Download and install VisualAnalog, Rev 1.9.45.21 or later.2.Download and install SPI Control Software, Rev 4.0.4.4031 or later.Setup hardware and software1.Connect the AD9652 Customer evaluation board and the HSC-ADC-EVALCZ boardtogether as shown in Figure 1. (Note these instructions are for Board HSC12048, Rev. C)2.Connect one 6V, 2A AC Adapter to the HSC-ADC-EVALCZ board.3.Connect the HSC-ADC-EVALCZ board to the PC with a USB cable. (Connect to J6)4.Verify Jumpers on the AD9652 evaluation board:a.Place Power supply jumpers: P204, P13, P206, P5, P205, P9, P209, P202b.Disable Amp: P16 and P31, jumper pins 1&2c.P15 jumper pins 2&3d.JP3 jumper should be installed5.Connect power to the AD9652 Evaluation board using the provided 6V switching wall mountAC/DC power supply adaptor.6.On the ADC evaluation board, provide a clean, low jitter clock source to connector J6 at thedesired ADC conversion rate. Note: The AD9652 has an input clock divider circuit which allows generators to drive a higher frequency clock, for this case apply the high frequency clock to J6 and program the proper divide using SPIController when it is used in a later step.The input clock level should be between 10dBm and 16dBm.a.For the AD9652 evaluation board number 12048 Rev C, the Clock Duty Cyclestabilizer should be disabled when using an input clock above 620 MHz.7.Open VisualAnalog on the PC. “AD9652” should be listed in the status bar of the “NewCanvas” window. Select the template that corresponds to the type of testing that you are performing, commonly “Average FFT”.8.If an error occurs during the automatic loading of the FPGA program file, the program can beloaded manually.a.To load the FPGA program manually, select the ADC Data Capture Settings windowand click on the ‘Capture Board’ tab (see the red box in the figure below). In theFPGA box select the program “AD9652_fifo5.bin” to configure the FPGA. Afterselecting the file, click the “Program” button to download the file to the FPGA. The‘DONE’ LED (D6) should illuminate on the HSC-ADC-EVALCZ board indicatingthat the FPGA has been correctly programmed.9.Next open the SPI Controller software. Note that pressing the Read button in the CHIP ID(1)box, the field should report the AD9652 if it is connected properly.Note AD9652in title bar.10.By default the AD9652 is configured for 2.5 Vpp input of 155 MHz or less. The ADCBase 0tabe can be used to change both of these settings.11.On the ADC evaluation board, use a clean signal generator with low phase noise to providean input signal to the analog input at connector J1 (Channel A) and/or J4 (Channel B). Use a1 m, shielded, RG-58, 50 Ω coaxial cable to connect the signal generator. For best results usea narrow-band, band-pass filter with 50 Ω terminations and an appropriate center frequency.(ADI uses TTE, Allen Avionics, and K&L band-pass filters.) In order for the input level to be near the ADC’s full scale, the generator level should be set to around 12dBm; this level depends on the input frequency and any losses in bandpass filters.12.Click the Run button () in VisualAnalog.13.Connect or enable the input signal and adjust the amplitude of the input signal so that thefundamental is at the desired level. (Examine the “Fund Power” reading in the left panel of the VisualAnalog FFT window.)14.If desired, click on File>Save Form as in the FFT window to save the FFT plot.Troubleshooting►The FFT plot appears abnormal...✓If you see a normal noise floor when you disconnect the signal generator from the analog input, be sure you are not overdriving the ADC. Reduce input level ifnecessary.✓In VisualAnalog, Click on the Settings button in the “Input Formatter” block. Check that “Number Format” is set to the correct encoding (2’s compliment by default).►The FFT plot appears normal, but performance is poor.✓Make sure you are using an appropriate filter on the analog input.✓Make sure the signal generators for the clock and the analog input are clean (low phase noise).✓If you are using non-coherent sampling, change the analog input frequency slightly.✓Make sure the SPI config file matches the product being evaluated.►The FFT window remains blank after the Run button is clicked.✓Make sure the evaluation board is securely connected to the HSC-ADC-EVALDZ board✓Disconnect power from both the ADC evaluation board and the HSC-ADC-EVALDZ board, disconnect the USB cable from the HSC-ADC-EVALDZ board and beginagain at Step 1.✓Make sure the FPGA has been programmed by verifying that the ‘CONFIG_DONE’ LED is illuminated on the HSC-ADC-EVALDZ board.✓Make sure the correct FPGA program was installed.►VisualAnalog indicates that the “FIFO capture timed out.”✓Make sure all power and USB connections are secure.✓Double check that the encode clock source is present at connector J505.AD9652 Revision: 0 April 30, 2014。
DAC8532IDGKR中文资料
Load Control 2
Power-Down Control Logic Resistor Network
Control Logic
GND
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
元器件交易网
DAC8532
SBAS246A – DECEMBER 2001 – MAY 2003
Dual Channel, Low Power, 16-Bit, Serial Input DIGITAL-TO-ANALOG CONVERTER
FEATURES
q microPOWER OPERATION: 500µA at 5V q POWER-ON RESET TO ZERO-SCALE q POWER SUPPLY: +2.7V to +5.5V q 16-BIT MONOTONIC OVER TEMPERATURE q SETTLING TIME: 10µs to ±0.003% FSR q ULTRA-LOW AC CROSSTALK: –100dB typ q LOW-POWER SERIAL INTERFACE WITH SCHMITT-TRIGGERED INPUTS q ON-CHIP OUTPUT BUFFER AMPLIFIER WITH RAIL-TO-RAIL OPERATION q DOUBLE BUFFERED INPUT ARCHITECTURE q SIMULTANEOUS OR SEQUENTIAL OUTPUT UPDATE AND POWERDOWN q TINY MSOP-8 PACKAGE
8512a运放引脚参数
8512a运放引脚参数8512A运放引脚参数引言:8512A是一款常用的运算放大器芯片,广泛应用于电子电路中。
本文将对其引脚参数进行详细介绍,包括正常工作状态下的引脚功能及其特点。
1. 引脚1(V+)和引脚5(V-):引脚1和引脚5分别是8512A运放的正负电源引脚。
在应用中,这两个引脚需要连接至电源,以提供工作所需的电源电压。
引脚1连接至正电源,通常为+5V或+12V;引脚5连接至负电源,通常为-5V或-12V。
这样可以为运放提供所需的双电源供电,以确保其正常工作。
2. 引脚2(VIN+)和引脚3(VIN-):引脚2和引脚3是8512A运放的输入引脚。
引脚2为非反相输入引脚,通常连接至输入信号源;引脚3为反相输入引脚,通常连接至反馈电阻。
通过控制这两个输入引脚的电压差,可以调节运放的增益。
引脚2和引脚3之间的电压差越大,输出信号的增益就越大。
3. 引脚4(VOUT):引脚4是8512A运放的输出引脚。
通过这个引脚,运放将输入信号经过放大处理后输出。
输出信号的幅度取决于输入信号的幅度和引脚2和引脚3之间的电压差。
值得注意的是,输出信号的范围通常受到电源电压范围的限制,超出范围可能会导致失真或损坏。
4. 引脚6(VOFFSET):引脚6是8512A运放的偏置调节引脚。
通过控制这个引脚的电压,可以调整运放的偏置电压。
偏置电压是指运放在工作时输出端的直流电压,通常应调整到最小值,以确保输出信号没有任何直流偏置。
5. 引脚7(NC):引脚7是8512A运放的无连接引脚,即无特定功能。
在应用中,可以将其悬空或直接连接至接地,具体取决于实际需求。
需要注意的是,不要将引脚7连接至电源或其他信号源,以避免引发不必要的干扰。
6. 引脚8(VCC):引脚8是8512A运放的电源引脚。
在应用中,这个引脚需要连接至正电源,通常为+5V或+12V。
引脚8提供运放所需的电源电压,以确保其正常工作。
需要注意的是,引脚8和引脚1(V+)之间应该通过合适的电容进行连接,以抑制电源噪声的干扰。
一种应用于温度控制系统的恒流源加热电路
一种应用于温度控制系统的恒流源加热电路蔡璇【摘要】主要介绍了一种应用于温度控制系统的恒流源加热电路,根据负反馈原理以及场效应管恒流原理设计出一种基于场效应管的恒流源加热电路.重点从电路构成、工作原理以及芯片选型等方面对电路作了分析,并对该加热电路进行了调试,将其应用于实际温度控制电路的测量中,得到可靠实验数据.【期刊名称】《山西电子技术》【年(卷),期】2014(000)004【总页数】3页(P7-9)【关键词】恒流源加热;温度控制;场效应管;负反馈【作者】蔡璇【作者单位】中北大学信息探测与处理技术研究所,山西太原030051【正文语种】中文【中图分类】TN702随着科学技术的飞速发展,各种行业对温控系统稳定性要求也越来越严格,温度控制系统一般由温度传感器、控制电路以及加热电路构成一个反馈回路,温度传感器将测量得到的温度信号转化为电压信号以后输入到控制电路,而控制电路的基本原理是通过将测量得到的温度信号与一个标定的温度信号进行比较,如果测量得到的温度信号小于标定的温度信号,则控制电路驱动加热电路对设置于温度传感器上的加热丝进行加热,使温度传感器测量得到的温度信号升高,反之则加热电路停止加热,因此加热电路的好坏对整个控制系统有着重要的作用,本文主要介绍了一种应用于温度控制系统的恒流源加热电路。
1 深度负反馈在恒流源加热电路中应用双运放构成负反馈电路,负反馈是指将输出信号的一部分或者全部通过一定的方式回馈给输入端进行比较,使净输入量减小的反馈。
引入负反馈有很多优势,它可以提高电路增益的稳定性、展宽通频带、减小非线性失真、改变输入电阻和输出电阻。
除此之外负反馈技术还对抑制放大电路内部的温漂、噪声和干扰具有很好的效果[1]。
由于该加热电路主要是根据控制电路反馈回来的电压信号来调节加热丝的功率,在实验过程中不可避免的会有温度的变化,而温度的变化容易引起放大器内晶体管参数和其静态工作点的移动,从而导致放大器的静态输出电压发生缓慢变化的现象,因此引入负反馈电路对此有较好的抑制效果。
AD8552中文资料
OUT A ؊IN A ؉IN A V؉ ؉IN B ؊IN B OUT B 1 14 OUT D ؊IN D ؉IN D V؊ ؉IN C ؊IN C OUT C
14-Lead SOIC (R Suffix)
OUT A 1 ؊IN A 2 +IN A 3 V+ 4 +IN B 5 ؊IN B 6 OUT B
OUT A ؊IN A +IN A V؊ 1 8 V+ OUT B ؊IN B +IN B
8-Lead SOIC (R Suffix)
AD8552
4 5
OUT A 1 ؊IN A 2 +IN A 3 V؊ 4
8 V+
AD8552
7 OUT B 6 ؊IN B 5 +IN B
This new family of amplifiers has ultralow offset, drift and bias current. The AD8551, AD8552 and AD8554 are single, dual and quad amplifiers featuring rail-to-rail input and output swings. All are guaranteed to operate from +2.7 V to +5 V single supply. The AD855x family provides the benefits previously found only in expensive autozeroing or chopper-stabilized amplifiers. Using Analog Devices’ new topology these new zero-drift amplifiers combine low cost with high accuracy. No external capacitors are required. With an offset voltage of only 1 µV and drift of 0.005 µV/° C, the AD8551 is perfectly suited for applications where error sources cannot be tolerated. Temperature, position and pressure sensors, medical equipment and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range. The rail-to-rail input and output swings provided by the AD855x family make both high-side and lowside sensing easy. The AD855x family is specified for the extended industrial/ automotive (–40°C to +125°C) temperature range. The AD8551 single is available in 8-lead MSOP and narrow 8-lead SOIC packages. The AD8552 dual amplifier is available in 8-lead narrow SO and 8-lead TSSOP surface mount packages. The AD8554 quad is available in narrow 14-lead SOIC and 14-lead TSSOP packages.
AD8552pdf,AD8552中文资料,AD8552应用电路
AD8552pdf,AD8552中文资料,AD8552应用电路优势和特点低失调电压:1 µV输入失调漂移:0.005 μV/°C轨到轨输入和输出摆幅5 V/2.7 V单电源供电高增益、高共模抑制比(CMRR)、高电源抑制比(PSRR):130 dB 超低输入偏置电流:20 pA低电源电流:700 μA/运算放大器过载恢复时间:50 μs无需外部电容产品详情此系列放大器具有超低失调、漂移和偏置电流特性。
AD8551、AD8552和AD8554分别是单路、双路和四路放大器,具有轨到轨输入和输出摆幅能力,均保证可采用2.7 V至5 V单电源工作。
AD855x系列可提供以前只有昂贵的自稳零或斩波稳定放大器才具有的特性优势。
这些零漂移放大器采用ADI公司的电路拓扑结构,将低成本与高精度特性融于一体,无需外部电容。
AD855x的失调电压仅为1 μV,漂移为0.005 μV/°C,因而特别适合不容许存在任何误差源的应用。
这些器件在工作温度范围内的漂移接近零,对温度、位置和压力传感器、医疗设备以及应变计放大器应用极为有利。
轨到轨输入和输出摆幅能力则使高端与低端检测均得以轻松实现。
AD855x系列的额定温度范围为-40℃至+125℃扩展工业/汽车应用温度范围。
AD8551单路放大器提供8引脚MSOP和8引脚窄体SOIC两种封装。
AD8552双路放大器提供8引脚窄体SOIC和8引脚TSSOP表面贴装两种封装。
AD8554四路放大器提供14引脚窄体SOIC和14引脚TSSOP两种封装。
应用温度传感器压力传感器精密电流检测应变计放大器医疗仪器热电偶放大器。
AD8512TRZ-EP JFET 操作放大器说明书
AD8512TRZ-EPPrecision, Very Low Noise, Low Input Bias Current,Wide Bandwidth JFET Operational AmplifierEnhanced ProductAD8512-EPRev. 0 Document FeedbackInformation furnished by Analog Devices is believed to be accurate and reliable. However , noresponsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. T rademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2018 Analog Devices, Inc. All rights reserved. Technical Support FEATURESFast settling time: 500 ns to 0.1%Low offset voltage: 1.0 mV maximum at V S = ±15 V Low offset voltage drift: 1.7 µV/°C typicalLow input bias current: 25 pA typical at V S = ±15 V Dual-supply operation: ±5 V to ±15 VLow noise: 8.0 nV/√Hz typical at f = 1 kHz Low distortion: 0.0005% No phase reversal Unity gain stableENHANCED PRODUCT FEATURESSupports defense and aerospace applications (AQEC standard)Military temperature range (−55°C to +125°C) Controlled manufacturing baseline 1 assembly/test site 1 fabrication siteProduct change notificationQualification data available on requestAPPLICATIONSInstrumentation Multipole filtersPrecision current measurementPhotodiode amplifiers Military communication AvionicsPIN CONFIGURATION–IN A +IN A V –V+–IN B+IN B17170-002Figure 1.GENERAL DESCRIPTIONThe AD8512-EP is a dual-precision JFET amplifier that features low offset voltage, input bias current, input voltage noise, and input current noise.The combination of low offsets, low noise, and very low input bias currents makes these amplifiers especially suitable for high impedance sensor amplification and precise currentmeasurements using shunts. The combination of dc precision, low noise, and fast settling time results in superior accuracy in flight instruments, electronic measurement, and aviation equipment. Unlike many competitive amplifiers, the AD8512-EP maintains its fast settling performance even with substantial capacitive loads. Unlike many older JFET amplifiers, the AD8512-EP does not suffer from output phase reversal wheninput voltages exceed the maximum common-mode voltage range.Fast slew rate and great stability with capacitive loads make the AD8512-EP suitable for high performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range of photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the AD8512-EP a great choice for military communication applications. The AD8512-EP is available in an 8-lead narrow SOIC_N package. The AD8512-EP is specified over a military temperature range of −55°C to +125°C. Additional application and technical information can be found in the AD8512 data sheet.AD8512-EPEnhanced ProductRev. 0 | Page 2 of 7TABLE OF CONTENTSFeatures .............................................................................................. 1 Enhanced Product Features ............................................................ 1 Appl ications ....................................................................................... 1 Pin Configuration ............................................................................. 1 General Description ......................................................................... 1 Revision History ............................................................................... 2 Specifications ..................................................................................... 3 Electrical Characteristics . (4)Absolute Maximum Ratings ............................................................5 Thermal Resistance .......................................................................5 ESD Caution...................................................................................5 Typical Performance Characteristics ..............................................6 Outline Dimensions ..........................................................................7 Ordering Guide .. (7)REVISION HISTORY8/2018—Revision 0: Initial VersionEnhanced Product AD8512-EP SPECIFICATIONSV S = ±5 V, V CM = 0 V, T A = 25°C, unless otherwise noted.Table 1.Parameter Symbol Test Conditions/Comments Min Typ Max Unit INPUT CHARACTERISTICSOffset Voltage V OS0.1 0.9 mV−55°C < T A < +125°C 1.8 mVInput Bias Current I B21 75 pA−55°C < T A < +85°C 0.7 nA−55°C < T A < +125°C 7.5 nAInput Offset Current I OS 5 50 pA−55°C < T A < +85°C 0.3 nA−55°C < T A < +125°C 0.5 nAInput CapacitanceDifferential 12.5 pF Common Mode 11.5 pFInput Voltage Range −2.0 +2.5 V Common-Mode Rejection Ratio CMRR V CM = −2.0 V to +2.5 V 86 100 dBLarge-Signal Voltage Gain A VO R L = 2 kΩ, V O = −3 V to +3 V 65 107 V/mV Offset Voltage Drift (T C V OS) ΔV OS/ΔT 1.7 12 µV/°C OUTPUT CHARACTERISTICSOutput Voltage High V OH R L = 10 kΩ 4.1 4.3 VR L = 2 kΩ 3.9 4.2 VR L = 600 Ω 3.7 4.1 VOutput Voltage Low V OL R L = 10 kΩ, −55°C < T A < +125°C −4.9 −4.7 VR L = 2 kΩ, −55°C < T A < +125°C −4.9 −4.5 VR L = 600 Ω, −55°C < T A < +125°C −4.8 −4.2 VOutput Current I OUT ±40 ±54 mA POWER SUPPLYPower Supply Rejection Ratio PSRR V S = ±4.5 V to ±18 V 86 130 dB Supply Current/Amplifier I SY V O = 0 V 2.0 2.3 mA−55°C < T A < +125°C 2.5 mA DYNAMIC PERFORMANCESlew Rate SR R L = 2 kΩ 20 V/µs Gain Bandwidth Product GBP 8 MHz Settling Time t S To 0.1%, 0 V to 4 V step, G = +1 0.4 µsTotal Harmonic Distortion (THD) + Noise THD + N 1 kHz, G = +1, R L = 2 kΩ 0.0005 % Phase Margin φM 44.5 Degrees NOISE PERFORMANCEVoltage Noise Density e n f = 10 Hz 34 nV/√Hzf = 100 Hz 12 nV/√Hzf = 1 kHz 8.0 10 nV/√Hzf = 10 kHz 7.6 nV/√Hz Peak-to-Peak Voltage Noise e n p-p 0.1 Hz to 10 Hz bandwidth 2.4 5.2 µV p-pRev. 0 | Page 3 of 7AD8512-EPEnhanced ProductRev. 0 | Page 4 of 7ELECTRICAL CHARACTERISTICSV S = ±15 V , V CM = 0 V , T A = 25°C, unless otherwise noted. Table 2.ParameterSymbol Test Conditions/Comments Min Typ Max Unit INPUT CHARACTERISTICS Offset Voltage V OS0.1 1.0 mV−55°C < T A < +125°C 1.8 mV Input Bias Current I B25 80 pA −55°C < T A < +85°C 0.7 nA−55°C < T A < +125°C 10 nA Input Offset Current I OS6 75 pA −55°C < T A < +85°C 0.3 nA−55°C < T A < +125°C 0.5 nA Input Capacitance Differential 12.5 pF Common Mode11.5pF Input Voltage Range−13.5 +13.0 V Common-Mode Rejection Ratio CMRR V CM = −12.5 V to +12.5 V 86 108 dB Large-Signal Voltage Gain A VO R L = 2 kΩ, V CM = 0 V, V O = −13.5 V to +13.5 V 115 196 V/mV Offset Voltage DriftΔV OS /ΔT 1.7 12 µV/°C OUTPUT CHARACTERISTICSOutput Voltage High V OH R L = 10 kΩ 14.0 14.2 V R L = 2 kΩ 13.8 14.1 V R L = 600 Ω13.5 13.9 VR L = 600 Ω, −55°C < T A < +125°C 11.4V Output Voltage Low V OL R L = 10 kΩ, −55°C < T A < +125°C −14.9 −14.6 V R L = 2 kΩ, −55°C < T A < +125°C –14.8 −14.5 V R L = 600 Ω−14.3 −13.8 VR L = 600 Ω, −55°C < T A < +125°C −12.1 V Output Current I OUT ±70 mA POWER SUPPLYPower Supply Rejection Ratio PSRR V S = ±4.5 V to ±18 V 86 dB Supply Current/Amplifier I SY V O = 0 V2.2 2.5 mA−55°C < T A < +125°C 2.6 mA DYNAMIC PERFORMANCESlew RateSR R L = 2 kΩ 20 V/µs Gain Bandwidth Product GBP8 MHz Settling Time t S To 0.1%, 0 V to 10 V step, G = +1 0.5 µsTo 0.01%, 0 V to 10 V step, G = +1 0.9 µs Total Harmonic Distortion (THD) + Noise THD + N 1 kHz, G = +1, R L = 2 kΩ 0.0005 %Phase MarginφM 52 Degrees NOISE PERFORMANCEVoltage Noise Density e n f = 10 Hz 34 nV/√Hz f = 100 Hz 12 nV/√Hz f = 1 kHz 8.0 10 nV/√Hzf = 10 kHz7.6 nV/√Hz Peak-to-Peak Voltage Noisee n p-p0.1 Hz to 10 Hz bandwidth2.45.2µV p-pEnhanced ProductAD8512-EPRev. 0 | Page 5 of 7ABSOLUTE MAXIMUM RATINGSTable 3.Parameter Rating Supply Voltage ±18 V Input Voltage ±V SPower DissipationSee Figure 2 Storage Temperature Range −65°C to +150°C Operating Temperature Range −55°C to +125°C Junction Temperature Range−65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Electrostatic Discharge (Human Body Model)2000 VStresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.THERMAL RESISTANCEThermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.θJA is the natural convection junction to ambient thermalresistance measured in a one cubic foot sealed enclosure. θJC is the junction to case thermal resistance. Table 4. Thermal ResistancePackage Type 1 θJA θJC Unit R-8158 43 °C/W1Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD-51.1.000.10.20.30.40.50.60.70.80.9–55–35–15525456585105125M A X I M U M P O W E R D I S SI P A T I O N (W )AMBIENT TEMPERATURE (°C)17170-040Figure 2. Maximum Power Dissipation vs. Ambient TemperatureESD CAUTIONAD8512-EPEnhanced ProductRev. 0 | Page 6 of 7TYPICAL PERFORMANCE CHARACTERISTICST C V OS (µV/°C )N U M B E R O F A M P L I F I E R S10151.032.03.04.05.00.5 1.5 2.5 3.5 4.5 5.56.017170-009Figure 3. T C V OS DistributionTEMPERATURE (°C )I N P U T B I AS C U R R E N T (p A )–551101001k–3510k100k–1552545658510512517170-010Figure 4. Input Bias Current vs. TemperatureTEMPERATURE (°C )I N P U T O FF S E T C U R R E N T (p A )–550.010.1110–351001k–1552545658510512517170-011Figure 5. Input Offset Current vs. TemperatureTEMPERATURE (°C )S U P P L Y CU R R E N T P E R A M P L I F I E R (m A )–551.00–352.502.252.001.751.501.25–1552545658510512517170-015Figure 6. Supply Current per Amplifier vs. TemperatureEnhanced ProductAD8512-EPRev. 0 | Page 7 of 7OUTLINE DIMENSIONSCONTROLLING DIMENSIONS ARE I N MILLIMETERS;INCH DIMENSIONS (IN PARENTHESES)ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.COMPLIANT TO JEDEC STANDARDS MS-012-AA012407-A0.25(0.0098)0.17(0.0067)0.40(0.0157)45°Figure 7. 8-Lead Standard Small Outline Package [SOIC_N]Narrow Body (R-8)Dimensions shown in millimeters and (inches)ORDERING GUIDEModel 1Temperature Range Package DescriptionPackage Option Marking Code AD8512TRZ-EP −55°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 DNL AD8512TRZ-EP-R7−55°C to +125°C 8-Lead Standard Small Outline Package [SOIC_N] R-8 DNL1Z = RoHS Compliant Part©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17170-0-8/18(0)AD8512TRZ-EP。
LIS8512_Datasheet
版权© 莱士电子科技有限公司
莱士电子科技有限公司
7/7
LIS-DS-8512-V1.1
A uA V V V V
MHz KHz KHz
%
ns mV ms
oC us ms
V电子科技有限公司
莱士电子科技有限公司
4/7
LIS-DS-8512-V1.1
LIS8512
两绕组-初级侧控制 LED 驱动开关
典型工作特性曲线
图1
由于不受辅助线圈供电限制,并且具有宽范围的工 作频率,即使系统输出在 4 颗灯至 7 颗灯的额定电 压情况下,仍能保证良好的恒流特性,为设计系列 机种提供良好基础。
输出开路,短路保护功能 过温保护功能 优化的恒流精度 优化的线电压及负载调整率 优化的电流温度系数 优化的系统成本 内置700V高压MOS SOP-8封装
概述
LIS8512 是一款专用于 LED 恒流驱动的控制芯 片,通过采用专有的初级侧 LED 恒流控制技术, 使得系统架构得到了最大程度的精简。它不但省 去了传统二次侧控制所需的光耦和 431 等反馈器 件,而且还进一步省去传统初级侧控制架构中用 于实现反馈的辅助绕组,反馈电阻以及为 IC 供电 的整流二极管等无源器件,使系统成本得到极大 程度的降低。由于采用高压直接供电,LIS8512 系统的输出电压范围得到极大的拓宽,同一驱动 系统可以驱动 4~7 颗串联 LED,方便系列机种应 用。右图示出了这种芯片的典型应用。LIS8512 还集成了完善的保护功能,包括输入电流的逐周 期过流保护,电流检测管脚的开路保护,IC 过温 保护,以及输出端的开路和短路保护等。
功能描述
启动和供电 LIS8512 是通过启动电阻从线电压直接供电。通过 图 2 可以了解到,当采用这种供电方式启动时,芯 片 VDD 的供电电容 C1 首先通过启动电阻 R1 由线电 压充电,当其上的电压达到阈值 UVLO(off)后,芯 片启动,并开始输出脉冲驱动内部功率开关,由于 IC 的耗电极小,当 R1 取值适当时,VDD 电压便可 维持在某一值上,保证 IC 正常工作,采用这种供 电方式,图 2 虚线框中变压器的辅助绕组和芯片供 电整流二极管 D1 可以去除。
广州市天河双龙电子 用ATMEGA8515替换AT90S8515 说明书
清零发生在第一次比较匹配
h 表示该输出比较标志/引脚将被置1 注释: 1 配后 TCNTn=OCR1x=2
清零发生在最后一次比较匹
预分频 输出比较时的设置引脚电平/标志 定时/计数器1 设置引脚电平/标志和定时器/计数器1内部计数之间的关系改变了 AT90S8515 的输出比较在内部计数与比较值第一次匹配时执行 而ATMEGA8515的输出比较在内 部计数与比较值最后一次匹配时执行 图3和图4是图例说明 示例: OCR1x = 0x02 (预分频器使能 8 分频) 图 3. 设置输出比较标志/Pin for AT90S8515
注释: 1.
h
表示该输出比较标志/引脚将被置1
图 4. 设置输出比较标志/Pin for ATmega8515
注释: 1.
h
表示该输出比较标志/引脚将被置1
PWM模式下写OCR1x 切换到正常模式 OCR1x在最大值处被更新 读 OCR1x 按照数据手册中描述 写入到OCR1x的值在寄存器到达最大值时被更新 所以 在PWM模式下写OCR1x时 数值先存储在临时缓冲中 当定时器/计数器计数到最大 值时才由临时缓冲传输到真正的输出比较寄存器 如果临时缓冲被写后仍处于 PWM 模式下 在真正的输出比较寄存器更新前读OCR1x ATMEGA8515和AT90S8515是不同 的 ATMEGA8515 如果OCR1x寄存器在更新前被读取 读取的是OCR1x的实际值而不是临时缓冲 AT90S8515 如果OCR1x寄存器在更新前被读取 读取的是临时缓冲而不是OCR1x的实际值
三
修正了原来AT90S8515中的一些错误
AT90S8515 勘误表中的下列各项不适用于 ATMEGA8515 请参考AT90S8515 勘 误表以获取更详细的说明 注意 其中一些错误在最后一批 AT90S8515中得到更正 但这些仍要指出来 以便使基于 AT90S8515 的设计转换时更容易 读写外部 RAM 时 LDS/STS LDS 和 STS 不会破坏 ATMEGA8515 中的任何寄存器的内容 读写 EEPROM 时 STS STS 可以在 ATMEGA8515 中启动 EEPROM 写操作(EECR 中的 EEWE) 无任何不良影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AD8510/AD8512/AD8513
TABLE OF CONTENTS
Specifications............................................................................................ 3
Electrical Characteristics ............................................................. 4
APPLICATIONS
Instrumentation Multipole filters Precision current measurement Photodiode amplifiers Sensors Audio
GENERAL DESCRIPTION
The AD8510, AD8512, AD8513 are single-, dual-, and quadprecision JFET amplifiers that feature low offset voltage, input bias current, input voltage noise, and input current noise.
+IN B 5 (Not to Scale) 10 +IN C
–IN B 6
9 –IN C
OUT B 7
8 OUT C
Figure 5. 14-Lead SOIC (R Suffix)
02729-D-005
Figure 4. 8-Lead SOIC (R Suffix)
OUT A –IN A +IN A V+ +IN B –IN B
Typical Performance Characteristics ....................................................7
General Application Information........................................................13
The combination of low offsets, low noise, and very low input bias currents makes these amplifiers especially suitable for high impedance sensor amplification and precise current measurements using shunts. The combination of dc precision, low noise, and fast settling time results in superior accuracy in medical instruments, electronic measurement, and automated test equipment. Unlike many competitive amplifiers, the AD8510/ AD8512/AD8513 maintain their fast settling performance even with substantial capacitive loads. Unlike many older JFET amplifiers, the AD8510/AD8512/ AD8513 do not suffer from output phase reversal when input voltages exceed the maximum common-mode voltage range.
OUT B
1
14
AD8513
TOP VIEW (Not to Scale)
7
8
OUT D –IN D +IN D V– +IN C –IN C OUT C
02729-D-006
Figure 6. 14-Lead TSSOP (RU Suffix)
Fast slew rate and great stability with capacitive loads make the AD8510/AD8512/AD8513 a perfect fit for high performance filters. Low input bias currents, low offset, and low noise result in a wide dynamic range of photodiode amplifier circuits. Low noise and distortion, high output current, and excellent speed make the AD8510/AD8512/AD8513 a great choice for audio applications.
The AD8510/AD8512/AD8513 are specified over the –40°C to +125°C extended industrial temperature range.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
AD8510/AD8512/AD8513
FEATURES
Fast settling time: 500 ns to 0.1% Low offset voltage: 400 µV max Low TCVOS: 1 µV/°C typ Low input bias current: 25 pA typ Dual-supply operation: ±5 V to ±15 V Low noise: 8 nV/√Hz Low distortion: 0.0005% No phase reversal Unity gain stable
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
02729-D-002
OUT A –IN A +IN A V–
PIN CONFIGURATIONS
1
8
AD8512
TOP VIEW (Not to Scale)
4
5
V+ OUT B –IN B +IN B
OUT A –IN A +IN A V–
AD8512
TOP VIEW (Not to Scale)
AD8510
V+
+IN
TOP VIEW
OUTБайду номын сангаас
(Not to Scale)
V–
NC
02729-D-004
02729-D-003
Figure 3. 8-Lead MSOP (RM Suffix)
OUT A 1
14 OUT D
–IN A 2
13 –IN D
+IN A 3 AD8513 12 +IN D
V+ 4 TOP VIEW 11 V–
10/03—Data Sheet Changed from Rev. C to Rev. D Added AD8513 Model ......................................................Universal Changes to Specifications ................................................................ 3 Added Figures 36 through 40........................................................ 10 Added new Figures 55 and 57....................................................... 17 Changes to Ordering Guide .......................................................... 20
Input Overvoltage Protection ................................................... 13