八年级数学上学期期末试题(B5版)

合集下载

八年级上数学期末试卷【含答案】

八年级上数学期末试卷【含答案】

八年级上数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. -3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2是偶数。

()2. 1是质数。

()3. 三角形的内角和是180度。

()4. 0除以任何数都等于0。

()5. 1千米等于1000米。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。

2. 如果一个数的平方是16,那么这个数可能是______或______。

3. 5的立方是______。

4. 如果一个圆的半径是3,那么它的面积是______。

5. 1千米等于______米。

四、简答题(每题2分,共10分)1. 请解释什么是偶数。

2. 请解释什么是质数。

3. 请解释什么是三角形。

4. 请解释什么是正方形。

5. 请解释什么是圆。

五、应用题(每题2分,共10分)1. 一个长方形的长是5,宽是3,请计算它的面积。

2. 如果一个数的平方是25,那么这个数是多少?3. 一个圆的半径是4,请计算它的面积。

4. 如果一个三角形的两边分别是5和12,那么第三边的长度可能是多少?5. 一个正方形的边长是6,请计算它的对角线长度。

六、分析题(每题5分,共10分)1. 请分析偶数和奇数的区别。

2. 请分析质数和合数的区别。

七、实践操作题(每题5分,共10分)1. 请画出一个边长为4的正方形,并计算它的面积。

2. 请画出一个半径为3的圆,并计算它的面积。

八、专业设计题(每题2分,共10分)1. 设计一个面积为20平方米的长方形,并给出其长和宽的值。

八年级上学期数学期末试卷(含答案)

八年级上学期数学期末试卷(含答案)

..八年级上学期数学期末试卷一、选一选, 比比谁细心(本大题共 12 小题, 每小题 3 分, 共 36 分, 在每小题给出的四个选项中, 只有一项是符合题目要求的)1. 计算 4 的结果是()A.2B.±2C.-2D.42.计算 (ab 2 )3 的结果是()A. ab 5B. ab 6C. a 3b 5D. a 3b 63.若式子 x - 5 在实数范围内有意义,则 x 的取值范围是()A.x >5B.x ≥5C.x ≠5D.x ≥0△4.如图所示,在下列条件中,不能判断 ABD ≌△BAC 的条件是()A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD=280°,则∠AFC+∠BCF 的大小是()A.80°B.140° AFEC.160°D.180°BCD6.下列图象中,以方程 y - 2 x - 2 = 0 的解为坐标的点组成的图象是()yyyy22 2 21-1 O1 2x1-1 O1 2x1-1 O1 2x1-1 O1 2x-1 -2-1 -2-1 -2-1 -2A .B .C .D . 7.任意给定一个非零实数,按下列程序计算,最后输出的结果是( )3 D.3A.mB.m+1C.m-1D.m2 8.已知一次函数y=(a-1)x+b的图象如图所示,那么a的取值范围是()A.a>1B.a<1C.a>0D.a<09.若a>0且a x=2,a y=3,则a x-y的值为()A.-1B.1C.22△10.如图,已知ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.6B.23C.5D.4(第10题图)(第11题图)11.如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是()米.A.504B.432C.324D.72012.直线y=kx+2过点(1,-2),则k的值是()A.4B.-4C.-8D.8二、填一填,看看谁仔细(本大题共10小题,每小题3分,共30分,请你将最简答案填在“”上)13.一个等腰三角形的一个底角为40°,则它的顶角的度数是.14.观察下列各式:(x-1)(x+1)=x2-1;(x-1)(x2+x+1)=x3-1;(x-1)(x3+x2+x+1)=x4-1;……(根据前面各式的规律可得到 ( x - 1)(x n + x n -1 + x n -2 + … + x + 1) =.15.计算: -28x 4y 2÷7x 3y =16.如图所示,观察规律并填空:17.若a 4²a y =a 19,则 y=_____________..18.计算:( 2 5)2008³(- )2009³(-1)2007=_____________.5 219.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________.20. 2- 2 的相反数是,绝对值是 .21. 0.01 的平方根是_____,-27 的立方根是______,1 - 2 的相反数是__.22. 16 的平方根为_________.三、解一解,试试谁更棒(本大题共 9 小题,共 72 分.)17.(本题 4 分)计算: ( x - 8 y )( x - y ) .18.(本题 5 分)分解因式: x 3 - 6 x 2 + 9 x .19.(本题 5 分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.ABDC E20.(4)先化简在求值, y ( x + y ) + ( x + y )( x - y ) - x 2,其中 x = -2,y =1 2.21. 本题 5 分)2008 年 6 月 1 日起,我国实施“限塑令”,开始有偿使用环保购物袋.为了满足市场需求,某厂家生产 A ,B 两种款式的布质环保购物袋,每天共生产 4500 个,两种购物袋的成本和售价如下表,设每天生产A种购物袋x个,每天共获利y元.成本(元/个)售价(元/个)A B 232.33.5(1)求出y与x的函数关系式;(2)如果该厂每天最多投入成本10000元,那么每天最多获利多少元?23.(本题10分)如图,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P'的坐标为;参考答案及评分标准一、选一选,比比谁细心(每小题3分,共36分)题号123456789101112在△BAC 和△DAE 中 ⎨∠BAC = ∠DAE ⎦答案A DBC B C B A CD A D二、填一填, 看看谁仔细(每小题 3 分,共 12 分)13. 100°.14. x n +1 - 1. 15. x >-2 . 16.105°三、 解一解, 试试谁更棒(本大题共 9 小题,共 72 分)17.解: ( x - 8 y )( x - y )= x 2 - xy - 8xy + 8 y 2……………………………4 分= x 2 - 9 x y + 8 y 2……………………………6 分18.解: x 3 - 6 x 2 + 9 x= x ( x 2 - 6 x + 9)……………………………3分= x ( x - 3)2……………………………6分19.证明:∵∠BAD=∠CAE∴∠BAC=∠DAE……………………………1分⎧ BA = DA⎪⎪ ⎩AC = AE∴△BAC ≌△DAE…………………………………………………………4分∴BC=DE…………………………………………………………………6分20.解:原式 = ⎡⎣ x 2 - 2 xy + y 2 + x 2 - y 2 ⎤ ÷ x= ⎡⎣2 x 2 - 2 xy ⎤⎦ ÷ x= 2 x - 2 y………………………………………………5 分当 x = -1, y = 1 2,原式=-3 ………………………………………………7 分521.解:⑴ S = - x + 15 (0 < x < 6) ………………………………………4 分2 5⑵由 - x + 15 = 10 ,得 x=22∴P 点坐标为(2,4)…………………………………………………8 分∴ ⎨ 得 ⎨ ⎪ B F = EC , 则 ⎨⎧k = -2,由 ⎨ ⎧ x = -2,△ 在 ABF 和 △DEC 中, ⎨∠ABF = ∠DEC , 22.解:(1)根据题意得: y =(2.3-2)x + (3.5 - 3)(4500 - x )= - 0.2 x +2250 ………………………………4 分(2)根据题意得: 2 x + 3(4500 - x ) ≤ 10000解得 x ≥ 3500 元k = -0.2 < 0 ,∴ y 随 x 增大而减小∴ 当 x = 3500 时, y = -0.2 ⨯ 3500 + 2250 = 1550答:该厂每天至多获利 1550 元.………………………………………8 分23.解:(1)如图: B '(3,5) , C '(5, - 2)…………………………………2 分(2)(n,m)………………………………………………………………3 分(3)由(2)得,D(0,-3) 关于直线 l 的对称点 D ' 的坐标为(-3,0),连接 D ' E 交直线l 于点 Q ,此时点 Q 到 D 、E 两点的距离之和最小 …………………4 分设过 D ' (-3,0) 、E(-1,-4)的设直线的解析式为 y = kx + b ,⎧-3k + b = 0,⎩-k + b = -4.⎩b = -6.∴ y = -2 x - 6 .⎧ y = -2 x -6, ⎩ y = x . ⎩ y = -2.∴所求 Q 点的坐标为(-2,-2)………………………………………9 分24.解:⑴ ∠AFD = ∠DCA (或相等)……………………………………2 分(2) ∠AFD = ∠DCA (或成立) ……………………………………3 分理由如下:由△ABC ≌△DEF∴ AB = DE ,BC = EF , ∠ABC = ∠DEF ,∠BAC = ∠EDF∴∠ ABC - ∠FBC = ∠DEF - ∠CBF∴∠ ABF = ∠DEC⎧ A B = DE ,⎪⎩F O在△MAO 和△BON 中 ⎨ ∠AMO = ∠BNO ≥?ABF ≌△ D EC ,∠BAF = ∠EDC∴∠ BAC - ∠BAF = ∠EDF - ∠EDC ,∠FAC = ∠CDF∠AOD = ∠FAC + ∠AFD = ∠CDF + ∠DCA∴∠ AFD = ∠DCA ………………………………………………………8 分(3)如图, BO ⊥ AD . …………………………………………………9 分AB (E )CG………………………………………………10 分D25.解:⑴等腰直角三角形………………………………………………1 分∵ a 2 - 2ab + b 2 = 0∴ (a - b )2 = 0 ∴ a = b∵∠AOB=90°∴△AOB 为等腰直角三角形 …………………4 分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90°∴∠MAO=∠MOB∵AM ⊥OQ ,BN ⊥OQ∴∠AMO=∠BNO=90°⎧∠MA O = ∠MOB ⎪ ⎪⎩OA = OB∴△MAO ≌△NOB∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5……………………………………8 分⑶PO=PD 且 PO ⊥PD如图,延长 DP 到点 C ,使 DP=PC,连结 OP 、OD 、OC 、BC在△DEP 和△CBP ⎨∠DPE = ∠CPB 在△OAD 和△OBC ⎨∠DAO = ∠CBO ∴△ OAD ≌△OBC⎧ DP = PC ⎪⎪ ⎩PE = PB∴△DEP ≌△CBP∴CB=DE=DA,∠DEP=∠CBP=135°⎧ DA = CB⎪⎪ ⎩OA = OB∴OD=OC,∠AOD=∠COB∴△DOC 为等腰直角三角形∴PO=PD ,且 PO ⊥PD. ……………………………………………12 分。

八年级数学(上册)期末试卷(附答案)

八年级数学(上册)期末试卷(附答案)

八年级数学(上册)期末试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .15.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或 7.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2B 2C .2D .4 8.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1010.如图,在平行四边形ABCD 中,∠ABC 的平分线交AD 于E ,∠BED=150°,则∠A 的大小为( )A .150°B .130°C .120°D .100°二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.若式子x 1x +有意义,则x 的取值范围是__________. 3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图所示的网格是正方形网格,则PAB PBA ∠∠+=________°(点A ,B ,P 是网格线交点).5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD 于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=1.2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值.4.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:甲型乙型丙型价格(元/台)1000800500销售获利(元/台)260190120(1)购买丙型设备台(用含,x y的代数式表示) ;(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、D5、D6、C7、C8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、x 1≥-且x 0≠3、如果两条直线平行于同一条直线,那么这两条直线平行.4、45.5、26、32三、解答题(本大题共6小题,共72分)1、x=12、x+2;当1x =-时,原式=1.3、(1)-4;(2)m=34、(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.5、略.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案) 一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC = B .BE CE = C .AC DB =D .A D ∠=∠3.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒ 4.下列无理数中,在﹣1与2之间的是( )A .﹣3B .﹣2C .2D .5 5.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .6.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =3c =7.人的眼睛可以看见的红光的波长约为5810cm -⨯,近似数5810-⨯精确到( ) A .0.001cm B .0.0001cm C .0.00001cm D .0.000001cm8.在平面直角坐标系中,把直线34y x =-+沿x 轴向左平移2个单位长度后,得到的直线函数表达式为( )A .31y x =-+B .32y x =-+C .31y x =--D .32y x =--9.下列关于10的说法中,错误的是( )A .10是无理数B .3104<<C .10的平方根是10D .10是10的算术平方根10.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL二、填空题11.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.12.计算:32()x y -=__________.13.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.14.如图,已知直线3y x b =+与2y ax =-的交点的横坐标为-2,则关于x 的不等式32x b ax +>-的解集为______.15.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.16.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).17.如图,已知直线l 1:y=kx+4交x 轴、y 轴分别于点A (4,0)、点B (0,4),点C 为x 轴负半轴上一点,过点C 的直线l 2:12y x n =+经过AB 的中点P ,点Q (t ,0)是x 轴上一动点,过点Q 作QM ⊥x 轴,分别交l 1、l 2于点M 、N ,当MN=2MQ 时,t 的值为_____.18.小明体重约为62.36千克,如果精确到0.1千克,其结果为____千克.19.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题21.如图所示,在ABC ∆中,BAC ∠的平分线AD 交BC 于点D ,DE 垂直平分AC ,垂足为点E .求证:BAD C ∠=∠.22.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程; (2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?23.如图,直角坐标系xOy 中,一次函数y=﹣12x+5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.24.定义:到一个三角形三个顶点的距离相等的点叫做该三角形的外心.(1)如图①,小海同学在作△ABC 的外心时,只作出两边BC ,AC 的垂直平分线得到交点O ,就认定点O 是△ABC 的外心,你觉得有道理吗?为什么?(2)如图②,在等边三角形ABC 的三边上,分别取点D ,E ,F ,使AD =BE =CF ,连接DE ,EF ,DF ,得到△DEF .若点O 为△ABC 的外心,求证:点O 也是△DEF 的外心.25.如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.四、压轴题26.如图,直线11 2y x b=-+分别与x轴、y轴交于A,B两点,与直线26y kx=-交于点()C4,2.(1)b= ;k= ;点B坐标为;(2)在线段AB上有一动点E,过点E作y轴的平行线交直线y2于点F,设点E的横坐标为m,当m为何值时,以O、B、E、F为顶点的四边形是平行四边形;(3)若点P为x轴上一点,则在平面直角坐标系中是否存在一点Q,使得P,Q,A,B四个点能构成一个菱形.若存在,直接写出所有符合条件的Q点坐标;若不存在,请说明理由.27.在平面直角坐标系中点A(m−3,3m+3),点 B(m,m+4)和 D(0,−5),且点 B 在第二象限.(1)点B 向平移单位,再向下平移(用含m 的式子表达)单位可以与点A 重合;(2)若点B 向下移动 3 个单位,则移动后的点B 和点A 的纵坐标相等,且有点 C(m−2,0).①则此时点A、B、C 坐标分别为、、.②将线段AB 沿y 轴负方向平移n 个单位,若平移后的线段AB 与线段CD 有公共点,求n 的取值范围.③当m<−1 式,连接AD,若线段AD 沿直线AB 方向平移得到线段BE,连接DE 与直线y=−2 交于点F,则点F 坐标为.(用含m 的式子表达)28.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ的度数.29.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.30.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.C解析:C【解析】【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.3.C解析:C【分析】根据垂直平分线的性质,可以得到∠C=∠ABC ,再根据角平分线的性质,得到∠ABC 的度数,最后利用三角形内角和即可解决.【详解】∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.4.C解析:C【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C .【考点】估算无理数的大小.5.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.6.B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键.7.C解析:C【解析】【分析】把数还原后,再看首数8的最后一位数字8所在的位数是十万分位,即精确到十万分位.【详解】∵5⨯=0.00008,810-∴近似数5⨯是精确到十万分位,即0.00001.810-故选:C.【点睛】此题主要考查了科学记数法与有效数字,正确还原数据是解题关键.8.D解析:D【解析】【分析】求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化.上下平移时只需让b的值加减即可.【详解】y=-3x+4的k=-3,b=4,沿x轴向左平移2个单位后,新直线解析式为:y=-3(x+2)+4=-3x-2.故选:D.【点睛】本题考查了一次函数的平移变换,属于基础题,关键掌握将直线上下平移时k的值不变,只有b发生变化.9.C解析:C【解析】试题解析:A是无理数,说法正确;B、3<4,说法正确;C、10,故原题说法错误;D是10的算术平方根,说法正确;故选C.10.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.二、填空题11.8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长AB===10米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本解析:8【解析】【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路,故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.12.【解析】【分析】根据积的乘方法则进行计算.【详解】故答案为:【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.解析:62x y【解析】【分析】根据积的乘方法则进行计算.【详解】()2323262()x y x y x y-=-=故答案为:62x y【点睛】考核知识点:积的乘方.理解积的乘方法则是关键.13.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+ PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB 根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键.14.x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解析:x>−2【解析】【分析】直线y=3x+b与y=ax−2的交点的横坐标为−2,求不等式3x+b>ax−2的解集,就是看函数在什么范围内y=3x+b的图象在函数y=ax−2的图象上方.【详解】解:从图象得到,当x>−2时,y=3x+b的图象在y=ax−2的图象上方,∴不等式3x+b>ax−2的解集为:x>−2.故答案为x>−2.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴2222345,CD CE DE=+=+=∴点P从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.16.【解析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的解析:1548x+【解析】【分析】设AB的中点为D,过D作AB的垂直平分线EF,通过待定系数法求出直线AB的函数表达式,根据EF AB⊥可以得到直线EF的k值,再求出AB中点坐标,用待定系数法求出直线EF的函数表达式即可.【详解】解:设AB的中点为D,过D作AB的垂直平分线EF∵A(1,3),B(2,-1)设直线AB的解析式为11y k x b=+,把点A和B代入得:321k bk b+=⎧⎨+=-⎩解得:1147kb=-⎧⎨=⎩∴47y x=-+∵D为AB中点,即D(122+,312-)∴D(32,1)设直线EF的解析式为22y k x b=+∵EF AB⊥∴121k k=-∴214k=∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b =∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.17.10或【解析】【分析】先求出的值,确定的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;解析:10或227 【解析】【分析】先求出k n ,的值,确定12l l ,的关系式,然后根据一次函数图象上点的坐标特征求得点M 、N 的坐标,由两点间的距离公式求得MN ,MQ 的代数式,由已知条件,列出方程,借助于方程求得t 的值即可;【详解】解:把()40A ,代入到4y kx =+中得:440k +=,解得:1k =-, ∴1l 的关系式为:4y x =-+,∵P 为AB 的中点,()40A ,,()0,4B ∴由中点坐标公式得:()2,2P ,把()2,2P 代入到12y x n =+中得:1222n ⨯+=,解得:1n =, ∴2l 的关系式为:112y x =+,∵QM x ⊥轴,分别交直线1l ,2l 于点M N 、,()0Q t ,, ∴(),4M t t -+,1,12N t t ⎛⎫+ ⎪⎝⎭,∴()1341322MN t t t ⎛⎫=-+-+=- ⎪⎝⎭,44MQ t t =-+=-, ∵2MN MQ =, ∴33242t t -=-, 分情况讨论得:①当4t ≥时,去绝对值得:()33=242t t --, 解得:10t =;②当24t ≤<时,去绝对值得:()33=242t t --, 解得:227t =; ③当2t <时,去绝对值得:()33=242t t --, 解得:102t =>,故舍去;综上所述:10t =或227t =; 故答案为:10或227. 【点睛】本题属于一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,两点间的距离公式等知识点,能够表示出线段的长度表达式,合理的使用分类讨论思想是解决本题的关键,有一定的难度.18.4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.本题考查了近似数和有效数字:近似数与精确数的解析:4.【解析】【分析】把百分位上的数字6进行四舍五入即可.【详解】62.36千克精确到0.1千克为62.4千克.故答案为:62.4.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.19.68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.20.75【解析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题21.见解析【解析】【分析】利用角平分线的定义得到BAD DAE ∠=∠,然后利用垂直平分线的性质得到DA DC =,则DAE C ∠=∠,从而使问题得解.【详解】解:∵AD 平分BAC ∠∴BAD DAE ∠=∠,∵DE 垂直平分AC ,∴DA DC =,∴DAE C ∠=∠,∴BAD C ∠=∠【点睛】本题考查角平分线的定义和垂直平分线的性质,掌握相关性质正确推理论证是本题的解题关键.22.(1)0x =;(2)原分式方程中“?”代表的数是-1.【解析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x -得()5321x +-=-解得 0x =经检验,0x =是原分式方程的解.(2)设?为m ,方程两边同时乘以()2x -得()321m x +-=-由于2x =是原分式方程的增根,所以把2x =代入上面的等式得()3221m +-=-1m =-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程; ②把增根代入整式方程即可求得相关字母的值.23.(1)m=2,l 2的解析式为y=2x ;(2)S △AOC ﹣S △BOC =15;(3)k 的值为32或2或﹣12. 【解析】【分析】(1)先求得点C 的坐标,再运用待定系数法即可得到l 2的解析式;(2)过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,再根据A (10,0),B (0,5),可得AO=10,BO=5,进而得出S △AOC ﹣S △BOC 的值;(3)分三种情况:当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12. 【详解】(1)把C (m ,4)代入一次函数y=﹣12x+5,可得 4=﹣12m+5, 解得m=2,∴C (2,4),设l 2的解析式为y=ax ,则4=2a ,解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10, ∴A (10,0),B (0,5),∴AO=10,BO=5, ∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32; 当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12; 故k 的值为32或2或﹣12. 【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.24.(1)定点O 是△ABC 的外心有道理,理由见解析;(2)见解析【解析】【分析】(1)连接OA 、OB 、OC ,如图①,根据线段垂直平分线的性质得到OB OC =,OC OA =,则OA OB OC ==,从而根据三角形的外心的定义判断点O 是ABC ∆的外心;(2)连接OA 、OD 、OC 、OF ,如图②,利用等边三角形的性质得到OA OC =,2120AOC B ∠=∠=︒,再计算出30OAD OCF OAD ∠=∠=∠=︒,接着证明AOD COF ∆≅∆得到OD OC =,同理可得OD OE =,所以OD OE OF ==,然后根据三角形外心的定义得到点O 是DEF ∆的外心.【详解】(1)解:定点O是ABC∆的外心有道理.理由如下:连接OA、OB、OC,如图①,BC,AC的垂直平分线得到交点O,OB OC∴=,OC OA=,OA OB OC∴==,∴点O是ABC∆的外心;(2)证明:连接OA、OD、OC、OF,如图②,点O为等边ABC∆的外心,OA OC∴=,2120AOC B∠=∠=︒,30OAD OCF∴∠=∠=︒,30OAD∴∠=︒,在AOD∆和COF∆中OA OCOAD OCFAD CF=⎧⎪∠=∠⎨⎪=⎩,()AOD COF SAS∴∆≅∆,OD OC∴=,同理可得OD OE=,OD OE OF∴==,∴点O是DEF∆的外心.【点睛】本题考查了线段垂直平分线性质和全等三角形的判定、等边三角形的性质.掌握线段垂直平分线性质和构造三角形全等是解题关键.25.(1)B(6,0);(2)12【解析】【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B的坐标;(2)令x=0,求得C的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y=kx+6经过点A(4,2),∴2=4k+6,解得k=﹣1∴直线为y=﹣x+6令y=0,则﹣x+6=0,解得x=6,∴B(6,0);(2)令x=0,则y=6,∴C(0,6),∴CO=6,∴△OAC的面积=162⨯×4=12.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握.四、压轴题26.(1)4;2;(0,4);(2)125m=或285m=;(3)存在.Q点坐标为()-,()4,()0,4-或()5,4.【解析】【分析】(1)根据待定系数法,将点C(4,2)代入解析式可求解;(2)设点E(m,142m+),F(m,2m-6),得()154261022EF m m m=-+--=-,由平行四边形的性质可得BO=EF=4,列出方程即可求解;(3)分两种情况讨论,由菱形的性质按照点平移的坐标规律,先确定P点坐标,再确定O 点坐标即可求解.【详解】解:(1)(1)∵直线y2=kx-6交于点C(4,2),∴2=4k-6,∴k=2,∵直线212y x b =-+过点C (4,2), ∴2=-2+b ,∴b =4, ∴直线解析式为:212y x b =-+,直线解析式为y 2=2x -6, ∵直线212y x b =-+分别与x 轴、y 轴交于A ,B 两点, ∴当x =0时,y =4,当y =0时,x =8,∴点B (0,4),点A (8,0),故答案为:4;2;(0,4)(2)∵点E 在线段AB 上,点E 的横坐标为m ,∴1,42E m m ⎛⎫-+ ⎪⎝⎭,(),26F m m -, ∴()154261022EF m m m =-+--=-. ∵四边形OBEF 是平行四边形,∴EF BO =,∴51042m -=, 解得:125m =或285m =时, ∴当125m =或285m =时,四边形OBEF 是平行四边形. (3)存在.此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.理由如下:假设存在.以P ,Q ,A ,B 为顶点的菱形分两种情况:①以AB 为边,如图1所示.因为点()8,0A ,()0,4B ,所以45AB =.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以AP AB =或BP BA =.当AP AB =时,点()845,0P -或()845,0+;当BP BA =时,点()8,0P -. 当()845,0P -时,()8458,04Q --+,即()45,4-; 当()845,0P +时,()8458,04Q +-+,即()45,4; 当()8,0P -时,()880,004Q -+-+-,即()0,4-.②以AB 为对角线,对角线的交点为M ,如图2所示.可得5AP =,点P 坐标为()3,0.因为以P ,Q ,A ,B 为顶点的四边形为菱形,所以点Q 坐标为()5,4.综上可知:若点P 为x 轴上一点,则在平面直角坐标系中存在一点Q ,使得P ,Q ,A ,B 四个点能构成一个菱形,此时Q 点坐标为()45,4-,()45,4,()0,4-或()5,4.【点睛】本题是一次函数综合题,利用待定系数法求解析式,平行四边形的性质,菱形的性质,利用分类讨论思想解决问题是本题的关键.27.(1)左;3;(1-2m );(2)①(-4,0);(-1,0)(-3,0); ②当平移后的线段 AB 与线段 CD 有公共点时,1913n ≤≤;③ F 9(,2)12m--. 【解析】【分析】(1)根据平面直角坐标系中点的平移计算方法即可得解(2)①根据B 点向下平移后,点B 和点A 的纵坐标相等得到等量关系,可求出m 的值,从而求出A 、B 、C 三点坐标;②过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设出K 点坐标,作 KH ⊥BM 与 H 点,表示出H 点坐标,然后利用面积关系ABM AKM BKM S S S ∆∆∆=+求出距离;当 B '在线段 CD 上时,BB '交 x 轴于 M 点,过 B '做B 'E ⊥OD ,利用S △COD = S △OB'C + S △OB'D ,求出n 的值,从而求出n 的取值范围;③通过坐标平移法用m 表示出E 点的坐标,利用D 、E 两点坐标表示出直线DE 的函数关系式,令y=﹣2,求出x 的值即可求出F 点坐标.【详解】解:(1)根据平移规律可得:B 向左平移;m -(m -1)=3,所以平移3个单位;m+4-(3m+3)=1-2m ,所以再向下平移(1-2m )个单位;故答案为:左;3;(1-2m )(2)①点 B 向下移动 3 个单位得:B (m ,m+1)∵移动后的点 B 和点 A 的纵坐标相等∴m+1=3m+3∴m=﹣1∴A (-4,0);B (-1,0);C (-3,0);②如图 1,过 C 作 CK 垂直 x 轴交 AB 于 K 点过 B 做 BM 垂直 x 轴于 M 点,设 K 点坐标为(-3,a )M 点坐标为(-1,0)作 KH ⊥BM 与 H 点,H 点坐标为(-1,a )AM=3,BM=3,KC=a,KH=2∵ABM AKM BKM S S S ∆∆∆=+ ∴222AM BM KC AM KH BM ⨯⨯⨯=+ ∴33323222a ⨯⨯⨯=+ 解得:1a =,∴当线段 AB 向下平移 1 个单位时,线段 AB 和 CD 开始有交点,∴ n ≥ 1,当 B'在线段 CD 上时,如图 2BB'交 x 轴于 M 点,过 B'做 B'E⊥OD,B'M=n-3,B'E=1,OD=5,OC=3∵ S△COD = S△OB'C + S△OB'D∴'' 222 CO OD CO B M OD B E ⨯⨯⨯=+∴353(3)51 222n⨯⨯-⨯=+解得:193n=,综上所述,当平移后的线段 AB 与线段 CD 有公共点时,1913n≤≤.③∵A(m−3,3m+3), B(m,m+4) D(0,−5)且AD 沿直线 AB 方向平移得到线段BE,∴E点横坐标为:3E点纵坐标为:﹣5+m+4-(3m+3)=﹣4-2m∴E(3,﹣4-2m),设DE:y=kx+b,把D(0,﹣5),E(3,﹣4-2m)代入y=kx+b∴3k+b=42mb=5⎧⎨⎩﹣-﹣∴1-2mk=3b=-5⎧⎪⎨⎪⎩,∴y=12mx53--,把y=﹣2代入解析式得:﹣2=12mx53--,x=912m-,∴F9(,2) 12m--.【点睛】本题考查平面直角坐标系中点的平移计算及一次函数解析式求法,解题关键在于理解掌握平面直角坐标系中点平移计算方法以及用待定系数法求函数解析式方法的应用.28.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF与∠EFD的角平分线交于点P,∴1()902FEP EFP BEF EFD︒∠+∠=∠+∠=∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK,∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴1452QPK EPK HPK︒∠=∠=+∠,∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.【点睛】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.29.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,。

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】

初中八年级数学上册期末考试题及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分) 1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.在实数|﹣3|,﹣2,0,π中,最小的数是( )A .|﹣3|B .﹣2C .0D .π4.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:① ;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论BD BE2是()A.①②③B.①②④C.②③④D.①②③④9.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+3 10.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.若二次根式x 1-有意义,则x 的取值范围是 ▲ .3.因式分解:24x -=__________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,在平面直角坐标系中,△AOB ≌△COD ,则点D 的坐标是__________.6.如图,已知直线y =ax +b 和直线y =kx 交于点P ,则关于x ,y 的二元一次方程组y kx y ax b =⎧⎨=+⎩的解是________.三、解答题(本大题共6小题,共72分)1.解下列不等式,并把解集在数轴上表示出来(1)2562x x -≥- (2)532122x x ++-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知,a、b互为倒数,c、d互为相反数,求31-+++的值.ab c d4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.(1)求证:△BCE≌△DCF;(2)求证:AB+AD=2AE.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B4、A5、A6、A7、A8、A9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、x1≥.3、(x+2)(x-2)4、x=25、(-2,0)6、12 xy=⎧⎨=⎩.三、解答题(本大题共6小题,共72分)1、(1)43x≤-,数轴表示见解析;(2)12x>,数轴表示见解析.2、-33a+,;12-.3、0.4、略5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.。

八年级数学上册期末测试卷(及答案)

八年级数学上册期末测试卷(及答案)

八年级数学上册期末测试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则m 的取值范围是( )A .6<m <7B .6≤m <7C .6≤m ≤7D .6<m ≤73.若一个多边形的内角和为1080°,则这个多边形的边数为( )A .6B .7C .8D .94.在平面直角坐标系中,点A (﹣3,2),B (3,5),C (x ,y ),若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,(﹣3,5)B .10,(3,﹣5)C .1,(3,4)D .3,(3,2)5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或4.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°8.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.若式子x1x+有意义,则x的取值范围是__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.5.如图,四边形ABCD中,点M,N分别在AB,BC上,将BMN△沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =________°.6.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x yx y⎧+=⎪⎨⎪-=⎩(2)1263()46x y yx y y+⎧-=⎪⎨⎪+-=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、D5、A6、C7、A8、D9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、x 1≥-且x 0≠3、204、40°5、956、74°三、解答题(本大题共6小题,共72分)1、(1)1083xy=⎧⎪⎨=⎪⎩;(2)2xy=⎧⎨=⎩.2、22x-,12-.3、(1)12,32-;(2)略.4、E(4,8) D(0,5)5、(1)y=-6x,y=-2x-4(2)86、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.。

八年级上学期期末考试数学试卷(附带答案)

八年级上学期期末考试数学试卷(附带答案)

八年级上学期期末考试数学试卷(附带答案)一.单选题。

(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。

八年级数学(上)期末试卷(含答案)

八年级数学(上)期末试卷(含答案)

八年级数学(上)期末试卷(含答案)一、选择题(共10小题,每题3分,满分30分,每题有且只有一个正确答案) 1.(3分)平面直角坐标系中,点P (2022,a )(其中a 为任意实数),一定不在( ) A .第一象限B .第二象限C .直线y =x 上D .坐标轴上2.(3分)下列是轴对称图形的是( )A .B .C .D .3.(3分)下列三角形与如图全等的三角形是( )A .B .C .D .4.(3分)下列命题中,逆命题是真命题的是( ) A .对顶角相等 B .若a =b ,那么a 2=b 2 C .等角的补角相等D .若a =b ,那么|a |=|b |5.(3分)如图,在△ABC 中,∠B =62°,∠C =24°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .70°B .60°C .50°D .40°6.(3分)若点A (x 1,y 1)和B (x 2,y 2)都在一次函数y =(k ﹣1)x +2(k 为常数)的图象上,且当x1<x2时,y1>y2,则k的值可能是()A.k=0B.k=1C.k=2D.k=37.(3分)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12B.10C.8D.68.(3分)已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.9.(3分)自2021年9月16日起,合肥市出租车价格调整,调整后的价格如下图所示,根据图中的数据,下列说法不正确的是()A.出租车的起步价为10元B.超过起步价以后,每公里加收2元C.小明乘坐2.8公里收费为10元D.小丽乘坐10公里,收费25元10.(3分)如图,在等腰△ABC中,AB=BC,∠ABC=108°,点D为AB的中点,DE⊥AB交AC于点E,若AB=6,则CE的长为()A .4B .6C .8D .10二、填空题(共6小题,每题3分,满分18分)11.(3分)一个三角形的三条边长分别是2,4和x ,则x 的取值范围是 . 12.(3分)如图,点D ,E 分别在线段AB ,AC 上,且AD =AE ,要判定△ABE ≌△ACD ,则还需要添加的条件是 (只需要添加一个条件).13.(3分)如图,函数y =mx +3与y =﹣2x 的图象交于点A (a ,2),则方程组{y =mx +32x +y =0的解为 .14.(3分)在△ABC 中,∠C =90°,AD 是△ABC 的角平分线,BC =6、AC =8、AB =10,则点D 到AB 的距离为 .15.(3分)如果直线y =﹣x ﹣2与直线y =2x ﹣b 的交点在第二象限,那么b 的取值范围是 .16.(3分)在平面直角坐标系中,△ABC 的顶点A 、B 、C 的坐标分别为(0,3)、(4,0)、(0,0),AB =5,点P 为x 轴上一点,若使得△ABP 为等腰三角形,那么点P 的坐标除点(78,0)外,还可以是 .三、解答题(共7题,满分52分)17.(6分)已知y ﹣1是x 的正比例函数,且当x =﹣1时,y =2. (1)请求出y 与x 的函数表达式;(2)当x 为何值时,函数值y =4.18.(6分)如图,在△ABC 中,AB =AC ,CD ⊥AB 于点D ,∠A =50°,求∠BCD 的度数.19.(7分)如图,点B ,C ,E ,F 在同一直线上,BE =CF ,AB ∥DE ,AC ∥DF , 求证:AC =DF .20.(7分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,1),B (3,4),C (4,2).(1)在图中画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)通过平移,使C 1移动到原点O 的位置,画出平移后的△A 2B 2C 2.(3)在△ABC 中有一点P (m ,n ),则经过以上两次变换后点P 的对应点P 2的坐标为 .21.(8分)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,每吨运费如下:(单位:元/吨)目的地 生产商 AB甲 20 25 乙1524(1)求甲乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从甲厂运往A 地x 吨,两厂运往A ,B 两地的总运费为y 元,求y 与x 之间的函数关系式,并设计使总运费最少的调运方案.22.(8分)如图,△ABC 是等边三角形,点D 、E 、F 分别同时从A 、B 、C 以同样的速度沿AB 、BC 、CA 方向运动,当点D 运动到点B 时,三个点都停止运动. (1)在运动过程中△DEF 是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE =4,∠DEC =150°,求等边△ABC 的周长.23.(10分)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象有y =−12x 的图象向上平移1个单位得到的,并且与y 轴交于点A . (1)求这个一次函数y =kx +b (k ≠0)的解析式;(2)若函数y =ax (a ≠0)与一次函数y =kx +b (k ≠0)相交于点P ,且△POA 的面积为12,求a 的值;(3)若当x <﹣1时,都有函数y =ax (a ≠0)大于一次函数y =kx +b (k ≠0)的值,请直接写出a 的取值范围.参考答案与解析一、选择题(共10小题,每题3分,满分30分,每题有且只有一个正确答案)1.(3分)平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在()A.第一象限B.第二象限C.直线y=x上D.坐标轴上【分析】由点P的横坐标2022>0,可得出点P一定不在第二、三象限,对照各选项后即可得出结论.【解答】解:∵2022>0,∴点P(2022,a)一定不在第二、三象限.故选:B.2.(3分)下列是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、C、D中图形都不是轴对称图形,B中图形是轴对称图形,故选:B.3.(3分)下列三角形与如图全等的三角形是()A.B.C.D.【分析】根据三角形的内角和定理求出第三个角的度数,再根据全等三角形的判定定理逐个判断即可.【解答】解:180°﹣51°﹣49°=80°,A.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B .只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;C .符合全等三角形的判定定理SAS ,能推出两三角形全等,故本选项符合题意;D .只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意; 故选:C .4.(3分)下列命题中,逆命题是真命题的是( ) A .对顶角相等 B .若a =b ,那么a 2=b 2 C .等角的补角相等D .若a =b ,那么|a |=|b |【分析】先交换命题的条件与结论得到四个命题的逆命题,然后分别利用对顶角的定义、平方根的定义、补角的定义和绝对值的意义进行判断.【解答】解:A .对顶角相等的逆命题为相等的角为对顶角,此逆命题为假命题,所以A 选项不符合题意;B .若a =b ,那么a 2=b 2的逆命题为若a 2=b 2,那么a =b ,此逆命题为假命题,所以B 选项不符合题意;C .等角的补角相等的逆命题为若两角的补角相等,则这两个角相等,此逆命题为真命题,所以C 选项符合题意;D .若a =b ,那么|a |=|b |的逆命题为若|a |=|b |,那么a =b ,此逆命题为假命题,所以D 选项不符合题意. 故选:C .5.(3分)如图,在△ABC 中,∠B =62°,∠C =24°,分别以点A 和点C 为圆心,大于12AC的长为半径画弧,两弧相交AC 的两侧于点M 、N ,连接MN ,交BC 于点D ,连接AD ,则∠BAD 的度数为( )A .70°B .60°C .50°D .40°【分析】分别求出∠BAC ,∠DAC 的大小,可得结论. 【解答】解:∵∠B =62°,∠C =24°, ∴∠BAC =180°﹣∠B ﹣∠C =94°, 由作图可知MN 垂直平分线段AC ,∴DA=DC,∴∠DAC=∠C=24°,∴∠BAD=∠BAC﹣∠DAC=94°﹣24°=70°,故选:A.6.(3分)若点A(x1,y1)和B(x2,y2)都在一次函数y=(k﹣1)x+2(k为常数)的图象上,且当x1<x2时,y1>y2,则k的值可能是()A.k=0B.k=1C.k=2D.k=3【分析】由当x1<x2时y1>y2,利用一次函数的性质可得出k﹣1<0,解之即可得出k 的取值范围,再对照四个选项即可得出结论.【解答】解:∵点A(x1,y1)和B(x2,y2)都在一次函数y=(k﹣1)x+2(k为常数)的图象上,且当x1<x2时,y1>y2,即y随x的增大而减小,∴k﹣1<0,∴k<1,∴k的值可能是0.故选:A.7.(3分)如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12B.10C.8D.6【分析】根据一线三等角模型证明△ABE≌△ECD,可得AB=EC,即可解答.【解答】解:∵∠ABE=∠AED=90°,∴∠A+∠AEB=90°,∠AEB+∠DEC=90°,∴∠A=∠DEC,∵∠ABE=∠ECD=90°,AE=ED,∴△ABE≌△ECD(AAS),∴AB=CE=8∵BC=20,∴BE=BC﹣CE=20﹣8=12,故选:A.8.(3分)已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A.B.C.D.【分析】根据一次函数与正比例函数的性质对四个选项进行逐一分析即可.【解答】解:A、由一次函数的图象可知,m>0,n<0,故n>0,mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确.B、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn>0,两结论不一致,故本选项不正确;C、由一次函数的图象可知,m>0,n>0,故mn>0;由正比例函数的图象可知mn<0,两结论不一致,故本选项不正确;D、由一次函数的图象可知,m<0,n>0,故mn<0;由正比例函数的图象可知mn<0,两结论一致,故本选项正确;故选:D.9.(3分)自2021年9月16日起,合肥市出租车价格调整,调整后的价格如下图所示,根据图中的数据,下列说法不正确的是()A.出租车的起步价为10元B.超过起步价以后,每公里加收2元C.小明乘坐2.8公里收费为10元D.小丽乘坐10公里,收费25元【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图象可得,出租车的起步价为10元,故选项A正确,不符合题意;超过起步价以后,每公里加收(19﹣15)÷(7﹣5)=4÷2=2(元),故选项B正确,不符合题意;(15﹣10)÷2=5÷2=2.5(公里),即出租车在5﹣2.5=2.5(公里)内收费10元,故选项C错误,符合题意;小丽乘坐10公里,收费为:10+(10﹣2.5)×2=10+7.5×2=10+15=25(元),故选项D正确,不符合题意;故选:C.10.(3分)如图,在等腰△ABC中,AB=BC,∠ABC=108°,点D为AB的中点,DE⊥AB交AC于点E,若AB=6,则CE的长为()A.4B.6C.8D.10【分析】根据等腰三角形的性质及三角形内角和定理求出∠C=∠A= 180°−∠ABC2=36°.由线段垂直平分线的性质得出EA=EB,那么∠ABE=∠A=36°,再证明∠BEC=∠EBC=72°,得出BC=EC,等量代换即可求出CE=6.【解答】解:在等腰△ABC中,AB=BC,∠ABC=108°,∴∠C=∠A=180°−∠ABC2=36°.∵点D为AB的中点,DE⊥AB交AC于点E,∴EA=EB,∴∠ABE=∠A=36°,∴∠BEC=∠ABE+∠A=72°,∠EBC=∠ABC﹣∠ABE=108°﹣36°=72°,∴∠BEC=∠EBC,∴BC=EC,∵AB =BC ,AB =6, ∴CE =6. 故选:B .二、填空题(共6小题,每题3分,满分18分)11.(3分)一个三角形的三条边长分别是2,4和x ,则x 的取值范围是 2<x <6 . 【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:4﹣2<x <4+2, 即2<x <6. 故答案为:2<x <6;12.(3分)如图,点D ,E 分别在线段AB ,AC 上,且AD =AE ,要判定△ABE ≌△ACD ,则还需要添加的条件是 AB =AC (答案不唯一) (只需要添加一个条件).【分析】此题是一道开放型的题目,答案不唯一,只要符合全等三角形的判定定理即可. 【解答】解:添加的条件是AB =AC , 理由是:在△ABE 和△ACD 中, {AE =AD ∠A =∠A AB =AC, ∴△ABE ≌△ACD (SAS ),故答案为:AB =AC (答案不唯一).13.(3分)如图,函数y =mx +3与y =﹣2x 的图象交于点A (a ,2),则方程组{y =mx +32x +y =0的解为 {x =−1y =2.【分析】先由正比例函数解析式得到点A 坐标,方程组的解就是正比例函数y =﹣2x 的图象与一次函数y =mx +3的交点,根据交点坐标即可写出方程组的解. 【解答】解:∵函数y =mx +3与y =﹣2x 的图象交于点A (a ,2), ∴2=﹣2a ,即a =﹣1,∴正比例函数y =﹣2x 的图象与一次函数y =mx +3的交点A 为(﹣1,2), ∴方程组{y =mx +32x +y =0的解为{x =−1y =2.故答案为:{x =−1y =2.14.(3分)在△ABC 中,∠C =90°,AD 是△ABC 的角平分线,BC =6、AC =8、AB =10,则点D 到AB 的距离为 3 .【分析】作DE ⊥AB 于E ,如图,再利用角平分线的性质得到DE =DC ,设DE =DC =x ,利用面积法得到10x +8x =6×8,然后解方程即可. 【解答】解:如图,作DE ⊥AB 于E ,∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB , ∴DE =DC , 设DE =DC =x ,∵S △ABC =12DE •AB +12AC •CD =12AC •BC ,BC =6、AC =8、AB =10, 即10x +8x =6×8, 解得x =3,即点D 到AB 边的距离为3. 故答案为:3.15.(3分)如果直线y =﹣x ﹣2与直线y =2x ﹣b 的交点在第二象限,那么b 的取值范围是 b <﹣4 .【分析】用含b 的代数式表示交点的坐标,根据交点在第二象限列出不等式组,即可解得答案.【解答】解:由{y =−x −2y =2x −b得{x =b−23y =−b−43, ∴直线y =﹣x ﹣2与直线y =2x ﹣b 的交点为(b−23,−b−43),∵直线y =﹣x ﹣2与直线y =2x ﹣b 的交点在第二象限,∴{b−23<0−b−43>0, 解得b <﹣4; 故答案为:b <﹣4.16.(3分)在平面直角坐标系中,△ABC 的顶点A 、B 、C 的坐标分别为(0,3)、(4,0)、(0,0),AB =5,点P 为x 轴上一点,若使得△ABP 为等腰三角形,那么点P 的坐标除点(78,0)外,还可以是 (﹣1,0)、(﹣4,0)、(9,0) .【分析】先表示出PB =|a ﹣4|,P A 2=a 2+9,AB =5,再分三种情况①当PB =AB 时.②当P A =PB 时,③当P A =AB 时,讨论计算即可. 【解答】解:设P (a ,0), ∵A (0,3)、(4,0),∴PB =|a ﹣4|,P A 2=a 2+9,AB =5, ∵△ABP 是等腰三角形, ∴①当PB =AB 时, ∴|a ﹣4|=5, ∴a =﹣1或9,∴P (﹣1,0)或(9,0), ②当P A =PB 时, ∴(a ﹣4)2=a 2+9, ∴a =78, ∴P (78,0),③当P A =AB 时, ∴a 2+9=25,∴a =4(舍)或a =﹣4, ∴P (﹣4,0).即:满足条件的点P 的坐标为(﹣1,0)、(﹣4,0)、(9,0), 故答案为:(﹣1,0)、(﹣4,0)、(9,0). 三、解答题(共7题,满分52分)17.(6分)已知y ﹣1是x 的正比例函数,且当x =﹣1时,y =2. (1)请求出y 与x 的函数表达式; (2)当x 为何值时,函数值y =4.【分析】(1)设y 与x 的函数表达式为y ﹣1=kx (k ≠0),由当x =﹣1时y =2,可得出关于k的方程,解之即可得出k值,进而可得出y与x的函数表达式;(2)代入y=4求出x值,此题得解.【解答】解:(1)∵y﹣1是x的正比例函数,∴设y与x的函数表达式为y﹣1=kx(k≠0).∵当x=﹣1时,y=2,∴2﹣1=﹣k,∴k=﹣1,∴y与x的函数表达式为y﹣1=﹣x,即y=﹣x+1.(2)当y=4时,﹣x+1=4,解得:x=﹣3,∴当x为﹣3时,函数值y=4.18.(6分)如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.【分析】根据垂直的定义得到∠ADC=90°,根据∠A=50°和等腰三角形的性质即可得到结论.【解答】解:∵CD⊥AB,∴∠ADC=90°,∵AB=AC,∠A=50°,∴∠ABC=∠ACB=65°,∴∠BCD=90°﹣∠ABC=90°﹣65°=25°.19.(7分)如图,点B,C,E,F在同一直线上,BE=CF,AB∥DE,AC∥DF,求证:AC=DF.【分析】先求出BC=EF,再根据两直线平行,同位角相等求出∠B=∠DEF,∠ACB=∠F,然后利用“角边角”证明△ABC≌△DEF,根据全等三角形对应边相等证明即可.【解答】证明:∵BE=CF,∴BE +EC =CF +EC , 即BC =EF ,∵AB ∥DE ,AC ∥DF , ∴∠B =∠DEF ,∠ACB =∠F ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F ,∴△ABC ≌△DEF (ASA ), ∴AC =DF .20.(7分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,1),B (3,4),C (4,2).(1)在图中画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)通过平移,使C 1移动到原点O 的位置,画出平移后的△A 2B 2C 2.(3)在△ABC 中有一点P (m ,n ),则经过以上两次变换后点P 的对应点P 2的坐标为 (m ﹣4,﹣n +2) .【分析】(1)依据轴对称的性质,即可得到△ABC 关于x 轴对称的△A 1B 1C 1; (2)依据C 1移动到原点O 的位置,即可得到平移的方向和距离,进而得到平移后的△A 2B 2C 2.(3)依据轴对称的性质以及平移的性质,即可得到两次变换后点P 的对应点P 2的坐标. 【解答】解:(1)如图所示,△A 1B 1C 1即为所求; (2)如图所示,△A 2B 2C 2即为所求;(3)点P (m ,n )经过第一次变换后的点P 1的坐标为(m ,﹣n ),经过第二次变换后的对应点P 2的坐标为(m ﹣4,﹣n +2). 故答案为:(m ﹣4,﹣n +2).21.(8分)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量比甲厂的2倍少100吨,这批防疫物资将运往A 地240吨,B 地260吨,每吨运费如下:(单位:元/吨)目的地 生产商 AB甲 20 25 乙1524(1)求甲乙两厂各生产了这批防疫物资多少吨?(2)设这批物资从甲厂运往A 地x 吨,两厂运往A ,B 两地的总运费为y 元,求y 与x 之间的函数关系式,并设计使总运费最少的调运方案.【分析】(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨,根据题意列方程组解答即可;(2)根据题意得出y 与x 之间的函数关系式以及x 的取值范围,再根据一次函数的性质解答即可.【解答】解:(1)设这批防疫物资甲厂生产了a 吨,乙厂生产了b 吨, 由题意得:{a +b =5002a −b =100,解得:{a =200b =300,∴这批防疫物资甲厂生产了200吨,乙厂生产了300吨,答:甲生产了这批防疫物资200吨,乙厂生产了这批防疫物资300吨. (2)由题意甲运往A 地x 吨,甲运往B 地(200﹣x )吨, 乙运往A 地(240﹣x )吨,乙运往B 地[300﹣(240﹣x )]吨, 得:y =20x +25(200﹣x )+15(240﹣x )+24(x +60)=4x +10040,∵4>0,∴y 随x 的增大而增大,∴当x =0时,可以使总运费最少,即甲运往A 地0吨,甲运往B 地200吨,乙运往A 地240吨,乙运往B 地60吨, ∴y 与x 之间的函数关系式为y =4x +10040;使总运费最少的调运方案为:甲厂的200吨物资全部运往B 地,乙厂运往A 地240吨,运往B 地60吨.22.(8分)如图,△ABC 是等边三角形,点D 、E 、F 分别同时从A 、B 、C 以同样的速度沿AB 、BC 、CA 方向运动,当点D 运动到点B 时,三个点都停止运动. (1)在运动过程中△DEF 是什么形状的三角形,并说明理由;(2)若运动到某一时刻时,BE =4,∠DEC =150°,求等边△ABC 的周长.【分析】(1)根据等边三角形的性质得出∠A =∠B =∠C =60°,AB =BC =CA ,AD =BE =CF ,进一步证得BD =EC =AF ,即可证得△ADF ≌△BED ≌△CFE ,根据全等三角形的性质得出DE =EF =FD ,即可证得△DEF 是等边三角形;(2)由△ABC 和△DEF 是等边三角形,∠DEC =150°,证明∠FEC =90°,然后根据含30度角的直角三角形即可解决问题.【解答】解:(1)△DEF 是等边三角形,理由如下; ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AB =BC =CA , ∵AD =BE =CF , ∴BD =EC =AF , 在△ADF 和△BED 中, {AF =BD ∠A =∠B AD =BE, ∴△ADF ≌△BED (SAS ), ∴DF =DE ,同理在△BED 和△CFE 中, △BED ≌△CFE (SAS ), ∴DE =FE , ∴DF =DE =FE , ∴△DEF 是等边三角形;(2)解:∵△ABC 和△DEF 是等边三角形, ∴∠DEF =60°, ∵∠DEC =150°, ∴∠FEC =90°, 在Rt △CEF 中, ∵∠C =60°,∴∠EFC =90°﹣60°=30° ∵CF =BE =4, ∴CE =12CF =2, ∴BC =BE +CE =4+2=6,∴等边△ABC 的周长=6+6+6=18.23.(10分)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象有y =−12x 的图象向上平移1个单位得到的,并且与y 轴交于点A . (1)求这个一次函数y =kx +b (k ≠0)的解析式;(2)若函数y =ax (a ≠0)与一次函数y =kx +b (k ≠0)相交于点P ,且△POA 的面积为12,求a 的值;(3)若当x <﹣1时,都有函数y =ax (a ≠0)大于一次函数y =kx +b (k ≠0)的值,请直接写出a 的取值范围.【分析】(1)根据平移的规律即可求得;(2)设P 点的坐标为(m ,−12m +1),根据题意得到12×1×|m |=12,求得m 的值,即可求得P 的坐标,代入y =ax (a ≠0)即可求得a 的值;(3)求得当直线=ax (a ≠0)过点(﹣1,32)时a 的值,根据图象即可求得a 的取值范围.【解答】解:(1)∵函数y =−12x 的图象向上平移1个单位得到y =−12x +1, ∴这个一次函数y =kx +b (k ≠0)的解析式为y =−12x +1; (2)把x =0代入y =−12x +1得,y =1, ∴A (0,1),设P 点的坐标为(m ,−12m +1), ∵△POA 的面积为12,∴12×1×|m |=12,∴|m |=1, ∴m =±1,∴P (1,12)或(﹣1,32),分别代入y =ax 得a =12或−32;(3)当x =﹣1时,y =−12×(﹣1)+1=32,∴当直线=ax (a ≠0)过点(﹣1,32)时,则32=−a ,∴a =−32,由图象可知,当x <﹣1时,都有函数y =ax (a ≠0)大于一次函数y =kx +b (k ≠0)的值时,a 的取值范围是a <−32.。

八年级数学上册期末试卷(及参考答案)

八年级数学上册期末试卷(及参考答案)

八年级数学上册期末试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.若a 72b 27a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图, BD 是△ABC 的角平分线, AE ⊥ BD ,垂足为 F ,若∠ABC =35°,∠ C =50°,则∠CDE 的度数为( )A .35°B .40°C .45°D .50°10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.函数32y x x =-+x 的取值范围是__________. 3.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C5、C6、A7、D8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、7或-12、23x -<≤3、204、(-4,2)或(-4,3)5、96、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)略(2)1或24、(1)k=-1,b=4;(2)点D的坐标为(0,-4).5、24°.6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。

八年级数学(上)期末数学试卷(含答案)

八年级数学(上)期末数学试卷(含答案)

八年级数学(上)期末数学试卷(含答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.下面4个汉字中,可以看作轴对称图形的是()A.合B.肥C.瑶D.海2.下列各点中,位于第二象限的是()A.(2,3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,﹣3)3.直线y=4x﹣5的截距是()A.4B.﹣4C.5D.﹣54.在△ABC中,∠A=∠B+∠C,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定5.如图,D,E在线段AB,AC上,且AD=AE,再添加条件(),不能得到△ABE≌△ACD.A.∠B=∠C B.∠BDF=∠CEF C.AB=AC D.BE=CD6.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P 点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)7.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<28.已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y1>y2,且kb<0,则直线y=kx+b(k≠0)在平面直角坐标系中的图象大致是()A.B.C.D.9.如图,在△ABC中,AB=AC,点D在边BC上,过点D作DE∥AC,DF∥AB,交AB,AC于E,F两点,连接EF,以点B为顶点作∠1,使得∠1=∠2,下列结论:①EB=ED;②△BEG≌△EDF;③∠A=∠EDF;④|BE﹣AE|=GD.其中正确的有()个.A.1B.2C.3D.410.如图,在△ABC中,D,E是边BC上的两点,且BA=BE,CA=CD,设∠BAC=x°,∠DAE=y°,则y与x之间的关系式为()A.y=x B.y=C.y=90°﹣D.y=180°﹣二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.“全等三角形的对应边相等”的逆命题是:.13.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD、CE交于点H,已知AE=CE=5,CH=2,则BE=.14.如图,直线l1:y1=ax+b经过(﹣3,0),(0,1)两点,直线l2:y2=kx﹣2;①若l1∥l2,则k的值为;②当x<1时,总有y1>y2,则k的取值范围是.三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的一次函数y=(2m+1)x﹣2,其图象经过第一、三、四象限,求m的取值范围.16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,﹣1)、B(2,﹣2),C(0,﹣3).(1)将△ABC平移,平移后点A的对应点为A1,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出C2的坐标.四、(本大题共2小题,每小题8分,满分16分)17.某汽车在加油后开始匀速行驶.已知汽车行驶到20km时,油箱中剩油53L,行驶到50km 时,油箱中剩油50L,如界油箱中剩余油量y(L)与汽车行驶路程x(km)之间是一次函数关系,请求出这个一次函数表达式,并写出自变量的取值范围.18.已知△ABC的三边长分别为m+2,2m,8.(1)求m的取值范围;(2)如果△ABC是等腰三角形,求m的值.五、(本大题共2小题,每小题10分,满分20分)19.已知:在△ABC中,以AB,AC为直角边向外作Rt△ADB和Rt△AEC,其中∠ABD==∠ACE=90°,且AD=AE,DB=EC.(1)求证:∠ABC=∠ACB;(2)若∠BAC与∠ABC的角平分线交于F点,且∠F=130°,求∠BAC的度数.20.如图,直线l1:y=x+1与x轴交于A点,与y轴交于B点,直线l2:y=﹣x+4与x 轴交于D点,与y轴交于C点,l1与l2交于点P.(1)求点P的坐标;(2)连接BD,求△BPD的面积.六、(本题满分12分)21.如图,∠ABC=100°.(1)用尺规作出∠B的角平分线BM和线段BC的垂直平分线GH(不写作法,保留作图痕迹);(2)按下面要求画出图形:BM和GH交于点D,GH交BC于点E,连接CD并延长,交AB于点F;(3)求证:FD=2DE.七、(本题满分12分)22.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤.图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为.(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.八、(本题满分14分)23.已知,在△AOB和△COD中,AO=CO,∠AOB=∠COD=∠α,∠B=∠D,且A,O,D三点在同一条直线上.(1)如图1,求证:OB=OD;(2)如图2,连接AC、DB并延长交于点Q.当∠α=120°时,判断△QAD的形状,并说明理由;(3)如图3,过D点作DG⊥AQ,垂足为G,若QB=4,DG=5,当∠α=135°时,求QC的长.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.下面4个汉字中,可以看作轴对称图形的是()A.合B.肥C.瑶D.海【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.利用轴对称图形的定义进行判断即可.解:“合”能找到这样的一条直线,使其沿一条直线折叠,直线两旁的部分能够互相重合,可以看作是轴对称图形,“肥”、“瑶”、“海”不能找到这样的一条直线,使其沿一条直线折叠,直线两旁的部分能够互相重合,不可以看作是轴对称图形,故选:A.2.下列各点中,位于第二象限的是()A.(2,3)B.(﹣2,﹣3)C.(﹣2,3)D.(2,﹣3)【分析】根据第二象限的点的坐标特征判断即可.解:因为第二象限的点的坐标的特征是(﹣,+),所以(﹣2,3)在第二象限,故选:C.3.直线y=4x﹣5的截距是()A.4B.﹣4C.5D.﹣5【分析】代入x=0求出y值,此题得解.解:当x=0时,y=4×0﹣5=﹣5,∴直线y=4x﹣5的截距是﹣5.故选:D.4.在△ABC中,∠A=∠B+∠C,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【分析】根据三角形的内角和是180°计算.解:∠A+∠B+∠C=180度.又∠A=∠B+∠C,则2∠A=180°,即∠A=90度.即该三角形是直角三角形.故选:B.5.如图,D,E在线段AB,AC上,且AD=AE,再添加条件(),不能得到△ABE≌A.∠B=∠C B.∠BDF=∠CEF C.AB=AC D.BE=CD【分析】已有条件AD=AE,公共角∠A=∠A,然后根据所给选项,结合全等三角形的判定方法进行分析即可.解:A、添加∠B=∠C可利用AAS判定△ABE≌△ACD,故此选项不符合题意;B、添加∠BDF=∠CEF可得∠AEB=∠ADC,可利用ASA判定△ABE≌△ACD,故此选项不符合题意;C、添加AB=AC可利用SAS判定△ABE≌△ACD,故此选项不符合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.6.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P 点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.7.如图,直线y=kx+b(k≠0)经过点A(﹣3,2),则关于x的不等式kx+b<2解集为()A.x>﹣3B.x<﹣3C.x>2D.x<2【分析】由图象得y=kx+b<2时x<﹣3.解:由图象可得当x<﹣3时,y<2,∴kx+b<2解集为x<﹣3.8.已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y1>y2,且kb<0,则直线y=kx+b(k≠0)在平面直角坐标系中的图象大致是()A.B.C.D.【分析】由“当x1<x2时,y1>y2”,利用一次函数的性质可得出k<0,结合kb<0可得出b>0,再利用一次函数图象与系数的关系可得出直线y=kx+b(k≠0)经过第一、二、四象限,对照四个选项后即可得出结论.解:∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,当x1<x2时,y1>y2,即y随x的增大而减小,∴k<0.又∵kb<0,∴b>0,∴直线y=kx+b(k≠0)经过第一、二、四象限.故选:C.9.如图,在△ABC中,AB=AC,点D在边BC上,过点D作DE∥AC,DF∥AB,交AB,AC于E,F两点,连接EF,以点B为顶点作∠1,使得∠1=∠2,下列结论:①EB=ED;②△BEG≌△EDF;③∠A=∠EDF;④|BE﹣AE|=GD.其中正确的有()个.A.1B.2C.3D.4【分析】由等腰三角形的性质可得∠ABC=∠ACB,由平行线的性质可得∠ABC=∠EDB =∠ACB,可得EB=ED,故①正确;由“ASA”可证△BEG≌△EDF,故②正确;由平行线的性质可得∠A=∠BEG=∠EDF,故③正确;由线段的和差关系可得|BE﹣AE|=|DE﹣EG|=DG,故④正确,即可求解.解:∵AB=AC,∴∠ABC=∠ACB,∵DE∥AC,∴∠EDB=∠ACB,∴∠ABC=∠EDB,∴EB=ED,故①正确;∵DF∥AB,∴∠BEG=∠EDF,又∵∠1=∠2,∴△BEG≌△EDF(ASA),∴EF=BG,∵AF∥DE,∴∠2=∠AFE,∵∠1=∠2,∴∠AFE=∠1,∵∠AED=∠1+∠EGB=∠2+∠AEF,∴∠BGE=∠AEF,又∵BE=EF,∠1=∠AFE,∴△AEF≌△EGB(ASA),故②正确;∵DE∥AC,DF∥AB,∴∠A=∠BEG,∠BEG=∠EDF,∴∠A=∠EDF,故③正确;∵BE=DE,AE=EG,∴|BE﹣AE|=|DE﹣EG|=DG,故④正确,故选:D.10.如图,在△ABC中,D,E是边BC上的两点,且BA=BE,CA=CD,设∠BAC=x°,∠DAE=y°,则y与x之间的关系式为()A.y=x B.y=C.y=90°﹣D.y=180°﹣【分析】根据等腰三角形性质得出∠BAE=∠BEA,∠CAD=∠CDA,根据三角形内角和定理得出∠B=180°﹣2∠BAE①,∠C=180°﹣2∠CAD②,①+②得出∠B+∠C=360°﹣2(∠BAE+∠CAD),求出2∠DAE=180°﹣∠BAC,将∠BAC=x°,∠DAE=y °代入即可求出y与x之间的关系式.解:∵BE=BA,∴∠BAE=∠BEA,∴∠B=180°﹣2∠BAE,①∵CD=CA,∴∠CAD=∠CDA,∴∠C=180°﹣2∠CAD,②①+②得:∠B+∠C=360°﹣2(∠BAE+∠CAD)∴180°﹣∠BAC=360°﹣2[(∠BAD+∠DAE)+(∠DAE+∠CAE)],∴﹣∠BAC=180°﹣2[(∠BAD+∠DAE+∠CAE)+∠DAE],∴﹣∠BAC=180°﹣2(∠BAC+∠DAE),∴2∠DAE=180°﹣∠BAC.∵∠BAC=x°,∠DAE=y°,∴2y=180°﹣x,∴y=90°﹣.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是x≠0.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解:根据题意得函数y=中分母不为0,即x≠0.故答案为x≠0.12.“全等三角形的对应边相等”的逆命题是:三对边相等的三角形是全等三角形.【分析】根据互逆命题的定义进行解答即可.解:∵命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等.∴此命题的逆命题是:三对边相等的三角形是全等三角形.故答案为:三对边相等的三角形是全等三角形.13.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别是D,E,AD、CE交于点H,已知AE=CE=5,CH=2,则BE=3.【分析】根据ASA证明△AEH与△CEB全等,进而利用全等三角形的性质解答.解:∵AD⊥BC,CE⊥AB,∴∠AEH=∠HDC=90°,∵∠EHA=∠DHC,∴∠EAH=∠ECB,在△AEH与△CEB中,,∴△AEH≌△CEB(ASA),∴BE=EH=CE﹣CH=5﹣2=3,故答案为:3.14.如图,直线l1:y1=ax+b经过(﹣3,0),(0,1)两点,直线l2:y2=kx﹣2;①若l1∥l2,则k的值为;②当x<1时,总有y1>y2,则k的取值范围是≤k<.【分析】①由l1∥l2可得k=a,将(﹣3,0),(0,1)代入y=ax+b求解.②先求出x=1,y1=y2时k的值,根据图象可得k减小至两直线平行时满足题意.解:①将(﹣3,0),(0,1)代入y=ax+b得,解得,∴y=x+1,∵l1∥l2,∴k=,故答案为:.②将x=1代入y=x+1得y=,∴直线l1经过(1,),将(1,)代入y2=kx﹣2得=k﹣2,解得k=,∵直线l2经过定点(0,﹣2),当直线l2绕着点(0,﹣2)顺时针旋转至两直线平行时满足题意,∴≤k<,故答案为:≤k<.三、(本大题共2小题,每小题8分,满分16分)15.已知关于x的一次函数y=(2m+1)x﹣2,其图象经过第一、三、四象限,求m的取值范围.【分析】根据函数图象经过第一、三,四象限,得出m的不等式组解答即可.解:由题意可得:2m+1>0,解得:m>﹣,即当m>﹣时函数图象经过第一、三,四象限.16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,﹣1)、B(2,﹣2),C(0,﹣3).(1)将△ABC平移,平移后点A的对应点为A1,画出平移后的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2,并写出C2的坐标.【分析】(1)利用平移变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)利用轴对称变换的性质分别作出A1,B1,C1的对应点A2,B2,C2即可.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,点C2(3,0).四、(本大题共2小题,每小题8分,满分16分)17.某汽车在加油后开始匀速行驶.已知汽车行驶到20km时,油箱中剩油53L,行驶到50km 时,油箱中剩油50L,如界油箱中剩余油量y(L)与汽车行驶路程x(km)之间是一次函数关系,请求出这个一次函数表达式,并写出自变量的取值范围.【分析】先设出油箱中剩余油量y(L)与汽车行驶路程x(km)之间的函数解析式为y =kx+b,然后根据汽车行驶到20km时,油箱中剩油53L,行驶到50km时,油箱中剩油50L,可以得到关于k和b的二元一次方程组,然后求出k、b的值,即可写出y和x的函数关系式,再令y=0求出x的值,即可写出x的取值范围.解:设油箱中剩余油量y(L)与汽车行驶路程x(km)之间的函数解析式为y=kx+b,由题意可得,解得,∴y=﹣0.1x+55,当y=0时,0=﹣0.1x+55,得x=550,即油箱中剩余油量y(L)与汽车行驶路程x(km)之间的函数解析式为y=﹣0.1x+55(0≤x≤550).18.已知△ABC的三边长分别为m+2,2m,8.(1)求m的取值范围;(2)如果△ABC是等腰三角形,求m的值.【分析】(1)根据三角形的三边关系,可得,解不等式组即可;(2)分m+2=2m,m+2=8,2m=8三种情况分别讨论即可求解.解:(1)根据三角形的三边关系得,解得2<m<10;(2)当m+2=2m时,解得m=2(不合题意,舍去);当m+2=8时,解得,m=6,符合题意;当2m=8时,解得,m=4,符合题意.所以若△ABC为等腰三角形,m=6或4.五、(本大题共2小题,每小题10分,满分20分)19.已知:在△ABC中,以AB,AC为直角边向外作Rt△ADB和Rt△AEC,其中∠ABD==∠ACE=90°,且AD=AE,DB=EC.(1)求证:∠ABC=∠ACB;(2)若∠BAC与∠ABC的角平分线交于F点,且∠F=130°,求∠BAC的度数.【分析】(1)由“HL”可证Rt△ADB≌Rt△AEC,可得AB=AC,可得结论;(2)由角平分线的性质和三角形内角和定理可求∠ACB=80°,由等腰三角形的性质可求解.【解答】(1)证明:在Rt△ADB和Rt△AEC中,,∴Rt△ADB≌Rt△AEC(HL),∴AB=AC,∴∠ABC=∠ACB;(2)∵∠BAC与∠ABC的角平分线交于F点,∴∠BAF=∠BAC,∠ABF=∠ABC,∵∠F=130°,∴∠ABF+∠BAF=50°,∴∠BAC+∠ABC=100°,∴∠ACB=80°,∵AB=AC,∴∠ABC=∠ACB=80°,∴∠BAC=20°.20.如图,直线l1:y=x+1与x轴交于A点,与y轴交于B点,直线l2:y=﹣x+4与x 轴交于D点,与y轴交于C点,l1与l2交于点P.(1)求点P的坐标;(2)连接BD,求△BPD的面积.【分析】(1)联立方程y=x+1与y=﹣x+4求解.(2)由直线解析式求出点B,C,D的坐标,由S△BPD=S△OCD﹣S△PCB﹣S△OBD求解.解:(1)令x+1=﹣x+4,解得x=2,把x=2代入y=x+1得y=3,∴点P坐标为(2,3).(2)连接BD,将x=0代入y=x+1得y=1,∴点B坐标为(0,1),将x=0代入y=﹣x+4得y=4,∴点C坐标为(0,4),将y=0代入y=﹣x+4得0=﹣x+4,解得x=8,∴点D坐标为(8,0),S△BPD=S△OCD﹣S△PCB﹣S△OBD=OD•OC﹣BC•x P﹣OB•OD=×8×4﹣×(4﹣1)×2﹣×1×8=9.六、(本题满分12分)21.如图,∠ABC=100°.(1)用尺规作出∠B的角平分线BM和线段BC的垂直平分线GH(不写作法,保留作图痕迹);(2)按下面要求画出图形:BM和GH交于点D,GH交BC于点E,连接CD并延长,交AB于点F;(3)求证:FD=2DE.【分析】(1)利用尺规作出图形即可;(2)利用角平分线的性质定理以及直角三角形30°的性质证明即可.【解答】(1)解:如图,射线BM直线GH即为所求;(2)解:如图,线段DF即为所求.(3)证明:过点D作DT⊥AB于点T.∵BM平分∠ABC,∴∠ABM=∠CBM=50°,∵DE垂直平分线段BC,∴DB=DC,∴∠C=∠DBC=50°,∴∠BFC=180°﹣100°﹣50°=30°,∵∠DTF=90°,∴DF=2DT,∵DT⊥BA,DE⊥BC,BM平分∠ABC,∴DT=DE,∴DF=2DE.七、(本题满分12分)22.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤.图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为(7,0),线段AB所在直线的解析式为y=﹣150x+1050.(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.【分析】(1)由题意知销售完600斤(库存量为0)需要4天,即可得B的坐标,设直线AB解析式为y=kx+b,用待定系数法即可得直线AB的解析式;(2)设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150﹣x)斤,可得y=8x+12(150﹣x)=﹣4x+1800,又甲种方式的数量不低于乙种方式,即有x≥75,根据一次函数性质即可得答案.解:(1)∵进行销售,每天销售150斤,∴销售完600斤(库存量为0)需要4天,∴B(7,0),设直线AB解析式为y=kx+b,将A(3,600)、B(7,0)代入得:,解得,∴线AB解析式为y=﹣150x+1050,故答案为:(7,0),y=﹣150x+1050;(2)设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150﹣x)斤,根据题意得:y=8x+12(150﹣x)=﹣4x+1800,∵甲种方式的数量不低于乙种方式,∴x≥150﹣x,∴x≥75,而﹣4<0,∴y随x的增大而减小,∴x=75时,y最大为﹣4×75+1800=1500,答:该超市卖完全部糕点销售总额的最大值是1500元.八、(本题满分14分)23.已知,在△AOB和△COD中,AO=CO,∠AOB=∠COD=∠α,∠B=∠D,且A,O,D三点在同一条直线上.(1)如图1,求证:OB=OD;(2)如图2,连接AC、DB并延长交于点Q.当∠α=120°时,判断△QAD的形状,并说明理由;(3)如图3,过D点作DG⊥AQ,垂足为G,若QB=4,DG=5,当∠α=135°时,求QC的长.【分析】(1)证明△AOB≌△COD(AAS),由全等三角形的性质得出OB=OD;(2)证出∠OAC=∠ODB=60°,由等边三角形的判定可得出结论;(3)在QA上取点H,使QH=QB,连接DH,证明△QHD≌△QBA(SAS),由全等三角形的性质得出HD=BA,由(1)可知△AOB≌△COD,得出AB=CD,求出HG=CG =1,则可得出答案.【解答】(1)证明:∵AO=OC,∠AOB=∠COD,∠B=∠D,∴△AOB≌△COD(AAS),∴OB=OD;(2)解:△QAD是等边三角形.理由如下:∵∠AOB=∠COD=120°,∴∠BOD=∠AOC=60°,∵OA=OC,OB=OD,∴∠OAC=∠ODB=60°,∴△QAD是等边三角形;(3)在QA上取点H,使QH=QB,连接DH,∵QD=QA,∠Q=∠Q,QH=QB,∴△QHD≌△QBA(SAS),∴HD=BA,由(1)可知△AOB≌△COD,∴AB=CD,∴HD=CD,由(2)可知,当α=135°时,∠OAC=∠ODB=67.5°,∴∠Q=45°,∵DG⊥AQ,∴QG=DG=5,∵HD=CD,∴CG=GH,∵QB=4,∴HQ=4,∴HG=CG=1,∴QC=CG+GH+QH=4+1+1=6.。

八年级数学(上册)期末试卷(附参考答案)

八年级数学(上册)期末试卷(附参考答案)

八年级数学(上册)期末试卷(附参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为( ) A .-6B .6C .16-D .162.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1B .2C .8D .115.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( )A .-1B .1C .2D .37.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间8.如图,在▱ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于 ( )A .1cmB .2cmC .3cmD .4cm9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行) B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补) D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等) 10.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.因式分解:2218x -=__________.3.33x x -=-,则x 的取值范围是________.4.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b >kx+6的解集是_________.5.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为__________ .6.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:a3a2++÷22a6a9a-4++-a1a3++,其中50+-113⎛⎫⎪⎝⎭2(-1).3.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.4.如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(3)当x>20时,小明选择哪种付费方式更合算?并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、C5、B6、A7、B8、B9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、72、2(x+3)(x﹣3).3、3x≤4、x>3.56、1500三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、-33a+,;12-.3、m>﹣24、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为32或2或﹣12.5、(1)略(2)略6、(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当20<x<25时,小明选择方式二的付费方式,当x=25时,小明选择两种付费方式一样,当x>25时,小明选择方式一的付费方式。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)一、选择题1.下列条件中,不能判断△ABC 是直角三角形的是( )A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:2:3 2.如图,已知O 为ABC ∆三边垂直平分线的交点,且50A ∠=︒,则BOC ∠的度数为( )A .80︒B .100︒C .105︒D .120︒3.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,3),则不等式﹣2x +b >0的解集为( )A .x >32B .x <32C .x >3D .x <34.如果等腰三角形两边长是5cm 和2cm ,那么它的周长是( )A .7cmB .9cmC .9cm 或12cmD .12cm5.如图:若△ABE ≌△ACD ,且AB =6,AE =2,则EC 的长为( )A .2B .3C .4D .6 6.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +127.2的算术平方根是()A .4B .±4C 2D .2±8.下列各数:4,﹣3.14,227,2π,3无理数有()A.1个B.2个C.3个D.4个9.在平面直角坐标系xOy中,线段AB的两个点坐标分别为A(﹣1,﹣1),B(1,2).平移线段AB,得到线段A′B′.已知点A′的坐标为(3,1),则点B′的坐标为()A.(4,4)B.(5,4)C.(6,4)D.(5,3)10.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二、填空题11.点P(﹣5,12)到原点的距离是_____.12.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′处,那么CD=_____.13.若关于x的方程233x mx+=-的解不小于1,则m的取值范围是_______.14.如图,△ABC中,5BC=,AB边的垂直平分线分别交AB、BC于点D、E,AC边的垂直平分线分别交AC、BC于点F、G,则△AEG周长为____.15.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为______.16.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.17.3的平方根是_________.18.计算:16=_______.19.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.20.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.三、解答题21.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.22.(1)计算:04(51)+-(2)解方程:23(1)120x --=23.已知一次函数y=2x+b.(1)它的图象与两坐标轴所围成的图形的面积等于4,求b 的值;(2)它的图象经过一次函数y=-2x+1、y=x+4图象的交点,求b 的值.24.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3)点B 坐标为(2,1);(2)请作出△ABC 关于y 轴对称的△A 'B 'C ',并写出点C '的坐标;(3)判断△ABC 的形状.并说明理由.25.解方程:21133x xx x=+++.四、压轴题26.如图1.在△ABC中,∠ACB=90°,AC=BC=10,直线DE经过点C,过点A,B分别作AD⊥DE,BE⊥DE,垂足分别为点D和E,AD=8,BE=6.(1)①求证:△ADC≌△CEB;②求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N 以8个单位长度/秒的速度从点B出发沿着线BC—CA运动,到终点A.M,N两点同时出发,运动时间为t秒(t>0),当点N到达终点时,两点同时停止运动,过点M作PM⊥DE 于点P,过点N作QN⊥DE于点Q;①当点N在线段CA上时,用含有t的代数式表示线段CN的长度;②当t为何值时,点M与点N重合;③当△PCM与△QCN全等时,则t=.27.如图,A,B是直线y=x+4与坐标轴的交点,直线y=-2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)点D是折线A—B—C上一动点.①当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,用直尺和圆规画出点E 的位置(保留作图痕迹,不要求写作法和证明),并求E点的坐标.②是否存在点D,使△ACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由28.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x =3+a c ,y =3+b d ,那么称点T 是点A 和B 的融合点.例如:M (﹣1,8),N (4,﹣2),则点T (1,2)是点M 和N 的融合点.如图,已知点D (3,0),点E 是直线y =x +2上任意一点,点T (x ,y )是点D 和E 的融合点.(1)若点E 的纵坐标是6,则点T 的坐标为 ;(2)求点T (x ,y )的纵坐标y 与横坐标x 的函数关系式:(3)若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.29.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?30.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】A 、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B 、根据角的比值求出各角的度数,便可判断出三角形的形状;C 、根据三角形的内角和为180度,即可计算出∠C 的值;D 、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A 、因为a :b :c=3:4:5,所以设a=3x ,b=4x ,c=5x ,则(3x )2+(4x )2=(5x )2,故为直角三角形,故A 选项不符合题意;B 、因为∠A :∠B :∠C=3:4:5,所以设∠A=3x ,则∠B=4x ,∠C=5x ,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B 选项符合题意;C 、因为∠A+∠B=∠C ,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C 选项不符合题意;D 、因为a :b :c=1:23,所以设a=x ,b=2x ,3x ,则x 2+3x )2=(2x )2,故为直角三角形,故D 选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.2.B解析:B【解析】【分析】延长AO交BC于D,根据垂直平分线的性质可得到AO=BO=CO,再根据等边对等角的性质得到∠OAB=∠OBA,∠OAC=∠OCA,再由三角形的外角性质可求得∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA,从而不难求得∠BOC的度数.【详解】延长AO交BC于D.∵点O在AB的垂直平分线上.∴AO=BO.同理:AO=CO.∴∠OAB=∠OBA,∠OAC=∠OCA.∵∠BOD=∠OAB+∠OBA,∠COD=∠OAC+∠OCA.∴∠BOD=2∠OAB,∠COD=2∠OAC.∴∠BOC=∠BOD+∠COD=2∠OAB+2∠OAC=2(∠OAB+∠OAC)=2∠BAC.∵∠A=50°.∴∠BOC=100°.故选:B.【点睛】此题主要考查:(1)线段垂直平分线的性质:垂直平分线上任意一点,到线段两端点的距离相等.(2)三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.3.B解析:B【解析】【分析】根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.4.D解析:D【解析】【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【详解】解:当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.【点睛】考查了等腰三角形的性质,此类题注意分情况讨论,还要看是否符合三角形的三边关系.5.C解析:C【解析】【分析】根据全等三角形的对应边相等解答即可.【详解】解:∵△ABE≌△ACF,∴AC=AB=6,∴EC=AC﹣AE=6-2=4,故选:C.【点睛】本题考查的知识点是全等三角形的性质,熟记性质内容是解此题的关键.6.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.7.C解析:C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:2故选C.【点睛】本题主要考查了算术平方根的定义,熟练掌握概念是解题的关键.8.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.B解析:B【解析】由题意可得线段AB平移的方式,然后根据平移的性质解答即可.【详解】解:∵A(﹣1,﹣1)平移后得到点A′的坐标为(3,1),∴线段AB先向右平移4个单位,再向上平移2个单位,∴B(1,2)平移后的对应点B′的坐标为(1+4,2+2),即(5,4).故选:B.【点睛】本题考查了平移变换的性质,一般来说,坐标系中点的平移遵循:上加下减,左减右加的规律,熟练掌握求解的方法是解题关键.10.D解析:D【解析】【分析】根据轴对称的性质分别写出点P1的坐标为、点P2的坐标、点P3的坐标、点P4的坐标,从中找出规律,根据规律解答.【详解】解:由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.【点睛】本题主要考查了点的坐标、坐标与图形变化−−对称,正确找出点的坐标的变化规律是解题的关键.二、填空题11.13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离==13.故答案为13.本题考查的是勾股定理,熟知在任何一个直角三角形中,解析:13【解析】【分析】直接根据勾股定理进行解答即可.【详解】∵点P(-5,12),∴点P到原点的距离=13.故答案为13.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.12.3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解析:3cm.【解析】【分析】利用勾股定理列式求出AB,根据翻折变换的性质可得BC′=BC,C′D=CD,然后求出AC′,设CD=x,表示出C′D、AD,然后利用勾股定理列方程求解即可.【详解】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB10cm,由翻折变换的性质得,BC′=BC=6cm,C′D=CD,∴AC′=AB﹣BC′=10﹣6=4cm,设CD=x,则C′D=x,AD=8﹣x,在Rt△AC′D中,由勾股定理得,AC′2+C′D2=AD2,即42+x2=(8﹣x)2,解得x=3,即CD=3cm.故答案为:3cm.【点睛】本题考查了翻折变换的性质,勾股定理,此类题目熟记性质并利用勾股定理列出方程是解题的关键.13.m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程的解,然后根据解不小于1列出不等式,即可求出. 【详解】解:解关于x的方程得x=m+9因为的方程的解不小于,且x≠3所以m+解析:m≥-8 且m≠-6【解析】【分析】首先求出关于x的方程233x mx+=-的解,然后根据解不小于1列出不等式,即可求出.【详解】解:解关于x的方程233x mx+=-得x=m+9因为x的方程233x mx+=-的解不小于1,且x≠3所以m+9≥1 且m+9≠3解得m≥-8 且m≠-6 .故答案为:m≥-8 且m≠-6【点睛】此题主要考查了分式方程的解,是一个方程与不等式的综合题目,重点注意分式方程存在的意义分母不为零.14.【解析】【分析】根据线段垂直平分线的性质可得AE=BE,AG=GC,据此计算即可.【详解】解:∵ED,GF分别是AB,AC的垂直平分线,∴AE=BE,AG=GC,∴△AEG的周长为AE解析:【解析】【分析】根据线段垂直平分线的性质可得AE=BE ,AG=GC ,据此计算即可.【详解】解:∵ED ,GF 分别是AB ,AC 的垂直平分线,∴AE=BE ,AG=GC ,∴△AEG 的周长为AE+AG+EG=BE+CG+EG=BC=5.故答案是:5.【点睛】此题主要考查线段的垂直平分线的性质,掌握性质是解题关键.线段的垂直平分线上的点到线段的两个端点的距离相等.15.【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.16.22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场), ∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【解析:22【解析】【分析】【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).故答案为:22.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.17.【解析】试题解析:∵()2=3,∴3的平方根是.故答案为.解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为18.4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式==4.故答案为4.【点睛】此题主解析:4【解析】【分析】根据算术平方根的概念去解即可.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【详解】解:原式.故答案为4.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.19.68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.20.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAC=120°,∴∠BAD=12×120°=60°, 故答案为:60°.【点睛】 本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质.三、解答题21.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =, ∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A作AM⊥y轴,过B作BN⊥x轴于N,AM与BN相交于M,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM,在△OBN与△BAM中,M ONBOBN BAM OB AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBN≌△BAM(AAS),∴AM=BN,ON=BM,设AM=x,则BN=AM=x,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.22.(1)3;(2)3x =或1x =-.【解析】【分析】(1)根据实数的运算法则将每一项进行化简然后计算求解即可.(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.【详解】解:(1)0451)原式21=+3=(2)解方程:23(1)120x --=2(1)4x -=12x -=±3x =或1x =-【点睛】本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.23.(1)±4;(2)5【解析】【分析】(1)分别求出一次函数y=2x+b 与坐标轴的交点,然后根据它的图象与坐标轴所围成的图象的面积等于4列出方程即可求出b 的值;(2)由题意可知:三条直线交于一点,所以可先求出一次函数y=-2x+1与y=x+4的交点坐标,然后代入y=2x+b 求出b 的值.【详解】解:(1)令x=0代入y=2x+b ,∴y=b ,令y=0代入y=2x+b ,∴x=-2b , ∵y=2x+b 的图象与坐标轴所围成的图象的面积等于4,∴12×|b|×|-2b |=4, ∴b 2=16,∴b=±4;(2)联立214y x y x =-+⎧⎨=+⎩, 解得:13x y =-⎧⎨=⎩, 把(-1,3)代入y=2x+b ,∴3=-2+b ,∴b=5,【点睛】本题考查了一次函数与坐标轴的交点,图形与坐标的性质,待定系数求一次函数的解析式,解题的关键是根据条件求出b 的值,本题属于基础题型.24.(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可;(2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C '的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=,∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 25.32x =-【解析】【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+, 解得:32x =-, 经检验32x =-是方程的解, ∴原方程的解为32x =-. 【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.四、压轴题26.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC =∠ECB ,由AAS 即可得出△ADC ≌△CEB ;②由全等三角形的性质得出AD =CE =8,CD =BE =6,即可得出DE =CD +CE =14; (2)①当点N 在线段CA 上时,根据CN =CN−BC 即可得出答案;②点M 与点N 重合时,CM =CN ,即3t =8t−10,解得t =2即可;③分两种情况:当点N 在线段BC 上时,△PCM ≌△QNC ,则CM =CN ,得3t =10−8t ,解得t =1011;当点N 在线段CA 上时,△PCM ≌△QCN ,则3t =8t−10,解得t =2;即可得出答案.【详解】(1)①证明:∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∵∠ACB =90°,∴∠DAC +∠DCA =∠DCA +∠BCE =90°,∴∠DAC =∠ECB ,在△ADC和△CEB中ADC CEBDAC ECBAC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=1011;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.27.(1)A(-4,0) ;B(0,4);C(2,0);(2)①点E的位置见解析,E(43-,0);②D点的坐标为(-1,3)或(45,125) 【解析】【分析】 (1)先利用一次函数图象上点的坐标特点求得点A 、B 的坐标;然后把B 点坐标代入y=−2x +b 求出b 的值,确定此函数解析式,然后再求C 点坐标;(2)①根据轴对称—最短路径问题画出点E 的位置,由待定系数法确定直线DB 1的解析式为y=−3x−4,易得点E 的坐标;②分两种情况:当点D 在AB 上时,当点D 在BC 上时.当点D 在AB 上时,由等腰直角三角形的性质求得D 点的坐标为(−1,3);当点D 在BC 上时,设AD 交y 轴于点F ,证△AOF 与△BOC 全等,得OF=2,点F 的坐标为(0,2),求得直线AD 的解析式为122y x =+,与y=−2x +4组成方程组,求得交点D 的坐标为(45,125). 【详解】 (1)在y=x +4中,令x =0,得y=4,令y =0,得x=-4,∴A(-4,0) ,B(0,4)把B(0,4)代入y=-2x+b ,得b =4,∴直线BC 为:y=-2x+4在y=-2x +4中,令y =0,得x=2,∴C 点的坐标为(2,0);(2)①如图∵点D 是AB 的中点∴D (-2,2)点B 关于x 轴的对称点B 1的坐标为(0,-4),设直线DB 1的解析式为y kx b =+,把D (-2,2),B 1(0,-4)代入,得224k b b -+=⎧⎨=-⎩, 解得k=-3,b=-4,∴该直线为:y=-3x-4,令y=0,得x=43 -,∴E点的坐标为(43-,0).②存在,D点的坐标为(-1,3)或(45,125).当点D在AB上时,∵OA=OB=4,∴∠BAC=45°,∴△ACD是以∠ADC为直角的等腰直角三角形,∴点D的横坐标为421 2,当x=-1时,y=x+4=3,∴D点的坐标为(-1,3);当点D在BC上时,如图,设AD交y轴于点F.∵∠FAO+∠AFO=∠CBO+∠BFD,∠AFO=∠BFD,∴∠FAO=∠CBO,又∵AO=BO,∠AOF=∠BOC,∴△AOF≌△BOC(ASA)∴OF=OC=2,∴点F的坐标为(0,2),设直线AD的解析式为y mx n=+,将A(-4,0)与F(0,2)代入得402m nn-+=⎧⎨=⎩,解得1,22m n==,∴122y x=+,联立12224y xy x⎧=+⎪⎨⎪=-+⎩,解得:45125xy⎧=⎪⎪⎨⎪=⎪⎩,∴D 的坐标为(45,125). 综上所述:D 点的坐标为(-1,3)或(45,125) 【点睛】本题是一次函数的综合题,难度适中,考查了利用待定系数法求一次函数的解析式、轴对称的最短路径问题、直角三角形问题,第(2)②题采用了分类讨论的思想,与三角形全等结合,解题的关键是灵活运用一次函数的图象与性质以及全等的知识.28.(1)(73,2);(2)y =x ﹣13;(3)E 的坐标为(32,72)或(6,8) 【解析】【分析】(1)把点E 的纵坐标代入直线解析式,求出横坐标,得到点E 的坐标,根据融合点的定义求求解即可;(2)设点E 的坐标为(a ,a+2),根据融合点的定义用a 表示出x 、y ,整理得到答案;(3)分∠THD=90°、∠TDH=90°、∠DTH=90°三种情况,根据融合点的定义解答.【详解】解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x +2=6,解得,x =4,∴点E 的坐标是(4,6),∵点T (x ,y )是点D 和E 的融合点,∴x =343+=73,y =063+=2, ∴点T 的坐标为(73,2), 故答案为:(73,2); (2)设点E 的坐标为(a ,a +2),∵点T (x ,y )是点D 和E 的融合点,∴x =33a +,y =023a ++, 解得,a =3x ﹣3,a =3y ﹣2,∴3x ﹣3=3y ﹣2,整理得,y =x ﹣13; (3)设点E 的坐标为(a ,a +2), 则点T 的坐标为(33a +,23a +),当∠THD =90°时,点E 与点T 的横坐标相同, ∴33a +=a , 解得,a =32, 此时点E 的坐标为(32,72), 当∠TDH =90°时,点T 与点D 的横坐标相同, ∴33a +=3, 解得,a =6, 此时点E 的坐标为(6,8),当∠DTH =90°时,该情况不存在,综上所述,当△DTH 为直角三角形时,点E 的坐标为(32,72)或(6,8) 【点睛】本题考查了一次函数图象上点的坐标特征、融合点的定义,解题关键是灵活运用分情况讨论思想.29.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇【解析】【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t ,则PC=BC-BP=6-2t ,故答案为:6-2t ;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83;(4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t , 解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.30.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(8-,0).【解析】【分析】(1)根据A,(0,B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;(3)证明△POB ≌△DPA ,得到PA=OB=,DA=PB ,进而得OD 的值,即可求出点D 的坐标.【详解】(1)A,(0,B ,∴OA=OB=∵∠AOB=90°,∴△AOB 为等腰直角三角形,∴∠OAB=45°;(2)PE 的值不变,理由如下:∵△AOB 为等腰直角三角形,C 为AB 的中点,∴∠AOC=∠BOC=45°,OC ⊥AB ,∵PO=PD ,∴∠POD=∠PDO ,∵D 是线段OA 上一点,∴点P 在线段BC 上,∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,∴∠POC=∠DPE ,在△POC 和△DPE 中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12××=4, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB,∴DA=PB=-,∴OD=OA−DA=8-,∴点D的坐标为(8,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案) 一、选择题1.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .45 2.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,61 3.在平面直角坐标系中,点(1,2)P 到原点的距离是( )A .1B .3C .2D .54.如图,以Rt ABC ∆的三边为边,分别向外作正方形,它们的面积分别为1S 、2S 、3S ,若12316S S S ++=,则1S 的值为( )A .7B .8C .9D .105.在下列分解因式的过程中,分解因式正确的是( )A .-xz +yz =-z(x +y)B .3a 2b -2ab 2+ab =ab(3a -2b)C .6xy 2-8y 3=2y 2(3x -4y)D .x 2+3x -4=(x +2)(x -2)+3x6.下到图形中,不是轴对称图形的是( )A .B .C .D .7.已知点M (1,a )和点N (2,b )是一次函数y =-2x +1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .以上都不对8.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 9.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CDB .AD =2CDC .AD =3BD D .AB =2BC 10.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A . B . C .D .二、填空题11.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.12.等边三角形绕一点至少旋转_____°与自身完全重合.13.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.14.如图,直线483y x =-+与x 轴,y 轴分别交于点A 和B ,M 是OB 上的一点,若将ABM ∆沿AM 折叠,点B 恰好落在x 轴上的点B ′处,则直线AM 的解析式为_____.15.10_____3.(填“>”、“=”或“<”)16.因式分解:24ax ay -=__________.17.若等腰三角形的顶角为100︒,则这个等腰三角形的底角的度数__________.18.当x =_____时,分式22x x x-+值为0. 19.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.20.如图,点 P是∠AOB内一点,PE⊥OA,PF⊥OB,垂足分别为 E、F,若 PE=PF,且∠OPF=72°,则∠AOB 的度数为__________.三、解答题21.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.(1)甲队单独完成这项工程,需要多少天?(2)求乙队单独完成这项工程需要的天数;(3)实际完成的时间比甲独做所需的时间提前多少天?22.在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历.我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交又相乘,再相减,例如:7×13-6×14=7,17×23-16×24=7,不难发现,结果都是7.①请你再选择一个类似的部分试一试,看看是否符合这个规律;②请你利用整式的运算对以上的规律加以证明.23.(12216-(3)(3)8+-(2)化简:22x9x3 1-69x4 x x-+÷-++24.求下列各式中的x:(1)2x 2=8(2)(x ﹣1)3﹣27=025.如图,四边形ABCD 中,CD ∥AB ,E 是AD 中点,CE 交BA 延长线于点F .(1)试说明:CD =AF ;(2)若BC =BF ,试说明:BE ⊥CF .四、压轴题26.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --++-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).27.在ABC 中,AB AC =,D 是直线BC 上一点(不与点B 、C 重合),以AD 为一边在AD 的右侧作ADE ,AD AE =,DAE BAC ∠=∠,连接CE .(1)如图,当 D 在线段BC 上时,求证:BD CE =.(2)如图,若点D 在线段CB 的延长线上,BCE α∠=,BAC β∠=.则α、β之间有怎样的数量关系?写出你的理由.(3)如图,当点D 在线段BC 上,90BAC ∠=︒,4BC =,求DCE S 最大值.28.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).29.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义:若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.30.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】易得BE =DE ,利用勾股定理求得DE 的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD =∠DBC .又∵AD ∥BC ,∴∠ADB =∠DBC ,∴∠ADB =∠EBD ,∴BE =DE .设BE =DE =x ,∴AE =12﹣x . ∵四边形ABCD 是矩形,∴∠A =90°,∴AE 2+AB 2=BE 2,即(12﹣x )2+62=x 2,x =7.5,∴S △EDB =12×7.5×6=22.5. 故选B . 【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE 的长是解决本题的关键.2.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、∵12+222,故A 选项能构成直角三角形;B 、∵32+42=52,故B 选项能构成直角三角形;C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形.故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【解析】【分析】根据:(1)点P(x ,y)到x 轴的距离等于|y|; (2)点P(x ,y)到y 轴的距离等于|x|;利用勾股定理可求得.【详解】在平面直角坐标系中,点(1,2)P =故选:D【点睛】考核知识点:勾股定理.理解点的坐标意义是关键.4.B解析:B【解析】【分析】根据正方形的面积公式及勾股定理即可求得结果.【详解】因为是以Rt ABC ∆的三边为边,分别向外作正方形,所以AB 2=AC 2+BC 2所以123S S S =+因为12316S S S ++=所以1S =8故选:B【点睛】考核知识点:勾股定理应用.熟记并理解勾股定理是关键.5.C解析:C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】-xz+yz=-z(x-y),故此选项错误;3a2b-2ab2+ab=ab(3a-2b+1),故此选项错误;6xy2-8y3=2y2(3x-4y)故此选项正确;x2+3x-4=(x+2)(x-2)+3x,此选项没把一个多项式转化成几个整式积的形式,此选项错误.故选:C.【点睛】因式分解的意义.6.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.7.A解析:A【解析】【分析】【详解】∵k=﹣2<0,∴y 随x 的增大而减小,∵1<2,∴a >b .故选A .8.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.9.B解析:B【解析】【分析】在Rt △ABC 中,由∠A 的度数求出∠B 的度数,在Rt △BCD 中,可得出∠BCD 度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD ,由BD 的长求出BC 的长,在Rt △ABC 中,同理得到AB=2BC ,于是得到结论.【详解】解:∵△ABC 中,∠ACB =90°,∠A =30°,∴AB =2BC ;∵CD ⊥AB ,∴AC =2CD ,∴∠B =60°,又CD ⊥AB ,∴∠BCD =30°,在Rt △BCD 中,∠BCD =30°,CD 3,在Rt △ABC 中,∠A =30°,AD 3=3BD ,故选:B.【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.10.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题11.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.12.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等, 所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.13.【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10. ∴斜边上的中线长=×10=5.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.解析:【解析】【分析】【详解】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=5. 考点:1.勾股定理;2. 直角三角形斜边上的中线性质.14.【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得与的长,BM=,然后设MO=x ,由在Rt△中,,即可得方程,继而求得M 的坐标,然后利用待定系数法 解析:132y x =-+ 【解析】【分析】由题意,可求得点A 与B 的坐标,由勾股定理,可求得AB 的值,又由折叠的性质,可求得'AB 与'OB 的长,BM='B M ,然后设MO=x ,由在Rt △'OMB 中,222OM OB B M ''+=,即可得方程,继而求得M 的坐标,然后利用待定系数法即可求得答案.【详解】令y=0得:x=6,令x=0得y=8,∴点A 的坐标为:(6,0),点B 坐标为:(0,8),∵∠AOB=90°,∴10=,由折叠的性质,得:AB='AB =10,∴OB '=AB '-OA=10-6=4,设MO=x ,则MB=MB '=8-x ,在Rt △OMB '中,222OM OB B M '+=,即2224(8)x x +=-,解得:x=3,∴M(0,3),设直线AM 的解析式为y=km+b ,代入A(6,0),M(0,3)得:603k b b +=⎧⎨=⎩ 解得:123k b ⎧=-⎪⎨⎪=⎩∴直线AM 的解析式为:132y x =-+ 【点睛】本题考查了折叠的性质,待定系数法,勾股定理,解决本题的关键正确理解题意,熟练掌握折叠的性质,能够由折叠得到相等的角和边,能够利用勾股定理求出直角三角形中未知的边. 15.>.【解析】【分析】先求出3=,再比较即可.【详解】∵32=9<10,∴>3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号内的方法.解析:>.【解析】【分析】先求出【详解】∵32=9<10,3,故答案为:>.【点睛】本题考查了实数的大小比较和算术平方根的应用,用了把根号外的因式移入根号16.【解析】【分析】运用提公因式法求解,公因式是2a.【详解】故答案为:【点睛】考核知识点:因式分解.掌握提公因式法是关键.解析:()22a x y -【解析】【分析】运用提公因式法求解,公因式是2a.【详解】()2422ax ay a x y -=-故答案为:()22a x y -【点睛】考核知识点:因式分解.掌握提公因式法是关键.17.40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为∴这个等腰三角形的底角为(180°-100°)=40°故答案为:40°.【点睛解析:40°【解析】【分析】根据等腰三角形的性质和三角形的内角和定理计算即可.【详解】解:∵等腰三角形的顶角为100︒ ∴这个等腰三角形的底角为12(180°-100°)=40° 故答案为:40°.此题考查的是等腰三角形的性质和三角形的内角和,掌握等边对等角和三角形的内角和定理是解决此题的关键.18.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.19.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:∴菱形的面积=AE•故答案为:【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.20.36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=∠AOB,解析:36°【解析】【分析】利用角平分线的判定及直角三角形的性质解答即可.【详解】解:∵PE⊥OA,PF⊥OB,PE=PF∴OP是∠AOB的平分线,∠OEP=90°, ∴∠AOP=12∠AOB,∵∠AOP=90°-∠OPE,∠OPE=72°,∴∠AOP=18°, ∴∠AOB=2∠AOP=36°故答案为36°.【点睛】本题考查了角平分线的判定与直角三角形的性质,关键是熟练掌握角平分线的判定.三、解答题21.(1)40天;(2)60天;(3)12天.【解析】【分析】(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.【详解】(1)因为甲队独做10天完成总工作量的0.25,所以甲一天做了0.25÷10=140,于是甲队单独完成这项工程需要的天数为:1÷140=40天;(2)甲乙6天完成总量的(0.5-0.25)即0.25,则乙6天的工作量是0.25-140×6=110,所以乙的效率是110÷6=160,所以乙队单独完成这项工程需要的天数为1÷160=60天;(3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,即0.75÷(140+160)+10=18+10=28(天),因为甲队独做需用40天,所以40-28=12天,故实际完成的时间比甲独做所需的时间提前12天.考点:实际问题与一次函数.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)直接利用已知数据求出即可;(2)利用数字之间的变化规律得出一般式,进而验证即可.【详解】(1)例如11×17-10×18=7;3×9-2×10=7;(2)设最小的一个数为x,其他三个分别为x+1,x+7,x+8,则:(x+1)(x+7)-x(x+8),=x2+8x+7-x2-8x,=7.【点睛】此题考查了数字的变化规律,整式的混合运算,由特殊到一般,利用日历表中数字的特点得出一般性结论解决问题.23.(1) 2; (2)73 x--【解析】【分析】(1)首先计算平方根和立方根,然后进行加减运算即可;(2)根据分式的除法和减法进行计算.【详解】解:(1)原式=4332-+-=2;(2)原式=()()()2334 133x x xxx+-+ -⨯+-=4 13xx+ --=343x xx----=73 x--【点睛】本题考查分式的混合运算和二次根式的混合运算,解题的关键是明确它们各自的计算方法.24.(1)x=±2;(2)x=4【解析】【分析】(1)先将方程化系数为1,然后两边同时开平方即可求解;(2)先移项,再两边同时开立方即可求解.【详解】解:(1)∵2x2=8,∴x2=4,∴x=±2;(2)∵(x﹣1)3﹣27=0∴(x﹣1)3=27,∴x﹣1=3,∴x=4.【点睛】本题考查的知识点是平方根与立方根,熟记平方根与立方根的定义是解此题的关键.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)由CD ∥AB ,可得∠CDE =∠FAE ,而E 是AD 中点,因此有DE =AE ,再有∠AEF =∠DEC ,所以利用ASA 可证△CDE ≌△FAE ,再利用全等三角形的性质,可得CD =AF ; (2)先利用(1)中的三角形的全等,可得CE =FE ,再根据BC =BF ,利用等腰三角形三线合一的性质,可证BE ⊥CF .【详解】证明:(1)∵CD ∥AB ,∴∠CDE =∠FAE ,又∵E 是AD 中点,∴DE =AE ,又∵∠AEF =∠DEC ,∴△CDE ≌△FAE ,∴CD =AF ;(2)∵BC =BF ,∴△BCF 是等腰三角形,又∵△CDE ≌△FAE ,∴CE =FE ,∴BE ⊥CF (等腰三角形底边上的中线与底边上的高相互重合).【点睛】本题考查了全等三角形的判定与性质及等腰三角形的性质;证明△CDE ≌△FAE 是正确解答本题的关键.四、压轴题26.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --+-=,∴220,2110a b a b--=+-=,∴2202110a ba b--=⎧⎨+-=⎩,∴34ab=⎧⎨=⎩,∴A(0,3),B(4,0);(2)如图1中,设直线CD交y轴于E.∵CD//AB,∴S△ACB=S△ABE,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E(0,-5),设直线AB的解析式为y=kx+b,将点A(0,3),(4,0)代入解析式中得:343kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=334x-+,∵AB//CD,∴直线CD的解析式为y=34x c-+,又∵点E(0,-5)在直线CD上,∴c=5,即直线CD的解析式为y=354x--,又∵点C(-3,m)在直线CD上,∴m=115,∴C (-3, 115), ∵点A (0,3)平移后的对应点为C (-3,115), ∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.27.(1)见解析;(2)αβ=,理由见解析;(3)2【解析】【分析】(1)证明()ABD ACE SAS ≅△△,根据全等三角形的性质得到BD CE =;(2)同(1)先证明()ABD ACE SAS ≅△△,得到∠ACE=∠ABD ,结合等腰三角形的性质和外角和定理用不同的方法表示∠ACE ,得到α和β关系式;(3) 同(1)先证明()ABD ACE SAS ≅△△,得到ABC ADCE S S ∆=四边形,那么DCE ADE ADCE S S S ∆∆=-四边形,当AD BC ⊥时,ADE S ∆最小,即DCE S ∆最大.【详解】解:(1)∵BAC DAE ∠=∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,∴BAD CAE ∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≅△△,∴BD CE =;(2)同(1)的方法得()ABD ACE SAS ≅△△,∴∠ACE=∠ABD ,∠BCE=α,∴∠ACE=∠ ACB+∠BCE=∠ACB+α,在ABC 中,∵AB= AC ,∠BAC=β,∴∠ACB=∠ABC =12(180°-β)= 90°-12β, ∴∠ABD= 180°-∠ABC= 90°+12β, ∴∠ACE=∠ACB +α= 90°-12β+α, ∵∠ACE=∠ABD = 90°+12β, ∴90°-12β+α= 90°+12β, ∴α = β;(3)如图,过A 做AH BC ⊥于点H ,∵AB AC =,90BAC ∠=︒,∴45ABC ∠=︒,122BH AH BC ===, 同(1)的方法得,()ABD ACE SAS ≅△△,AEC ABD S S ∆∆∴=,AEC ADC ABD ADC S S S S ∆∆∆∆+=+, 即142ABC ADCE S S BC AH ∆==⋅=四边形, ∴DCE ADE ADCE S S S ∆∆=-四边形,当ADE S ∆最小时,DCE S ∆最大,∴当AD BC ⊥2AD =,时最小,2122ADE S AD ∆==,422DCE S ∆∴=-=最大.【点睛】本题考查全等三角形的性质和判定,等腰三角形的性质,三角形的外角和定理,解题的关键是抓住第一问中的那组全等三角形,后面的问题都是在这个基础上进行证明的.28.(1)①E (3,﹣2)②见解析;③12OM BD =,理由见解析;(2)OD+OA =2AM 或OA ﹣OD =2AM【解析】【分析】(1)①过点E 作EH ⊥y 轴于H .证明△DOA ≌△AHE (AAS )可得结论.②证明△BOM ≌△EHM (AAS )可得结论.③是定值,证明△BOM ≌△EHM 可得结论.(2)根据点D 在点B 左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E 作EH ⊥y 轴于H .∵A (0,3),B (﹣3,0),D (﹣5,0),∴OA =OB =3,OD =5,∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∴△DOA ≌△AHE (AAS ),∴AH =OD =5,EH =OA =3,∴OH =AH ﹣OA =2,∴E (3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.29.(1)①);②B ;(2)3s =;(3)59k ≤≤. 【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,,∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x x b x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.30.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒;(2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK=60°,AF=KF,∴△AFK为等边三角形,∴∠KAF=60°,∴∠KAB=∠FAC,在ABK和ACF中,AB ACKAB ACFAK AF=⎧⎪∠=∠⎨⎪=⎩,∴ABK ACF≌(SAS),BK CF=∴∠AKB=∠AFC=120°,∴∠BKE=120°﹣60°=60°,∵∠BPC=30°,∴∠PBK=30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99 AF KF CP CF PK CP CP CP ==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.。

八年级数学上册期末测试卷及完整答案

八年级数学上册期末测试卷及完整答案

八年级数学上册期末测试卷及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知25523y x x=-+--,则2xy的值为()A.15-B.15C.152-D.1522.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠33.已知α、β是方程x2﹣2x﹣4=0的两个实数根,则α3+8β+6的值为()A.﹣1 B.2 C.22 D.304.把38a化为最简二次根式,得()A.22a a B.342a C.322a D.24a a5.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.247.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80C.80(1+2x)=100 D.80(1+x2)=1008.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.在△ABC中,AB=15,AC=13,高AD=12,则ABC∆的周长为____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.=,D是AB边上一点(点D与A,4.如图,在ABC中,ACB90∠=,AC BCB不重合),连结CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连结DE交BC于点F,连接BE.1()求证:ACD≌BCE;()当AD BF2∠的度数.=时,求BEF5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、C7、A8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、﹣33、32或424、255、56、12三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、13、-4≤a<-3.4、()1略;()2BEF67.5∠=.5、略.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷(含答案) 一、选择题 1.在平面直角坐标系中,下列各点在第二象限的是( )A .(3,1)B .(3,-1)C .(-3,1)D .(-3,-1)2.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .323.以下列各组线段为边作三角形,不能构成直角三角形的是( )A .1,2,5B .3,4,5C .3,6,9D .23,7,614.7的平方根是( ) A .±7 B .7 C .-7D .±7 5.下列运算正确的是( ) A .236a a a ⋅= B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=- 6.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的127.能表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 是常数且m ≠0)的图象的是( )A .B .C .D .8.在同一平面直角坐标系中,函数y x =-与34y x =-的图像交于点P ,则点P 的坐标为( )A .(1,1)-B .(1,1)-C .(2,2)-D .(2,2)-9.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-10.某篮球运动员的身高为1.96cm ,用四舍五人法将1.96精确到0.1的近似值为( )A .2B .1.9C .2.0D .1.90二、填空题11.等边三角形绕一点至少旋转_____°与自身完全重合.12.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.13.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 14.已知点P 的坐标为(4,5),则点P 到x 轴的距离是____. 15.式子21x x -在实数范围内有意义的条件是__________. 16.点(2,1)P 关于x 轴对称的点P'的坐标是__________.17.计算:8的平方根______,-8的立方根是_____.18.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.19.已知一次函数1y kx =+的图像经过点(1,0)P -,则k =________.20.已知函数y=x+m-2019 (m 是常数)是正比例函数,则m= ____________三、解答题21.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y 千米,图中折线表示y 与x 之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为 千米;(2)求快车和慢车的速度;(3)求线段DE 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围.22.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.如图,在平面直角坐标系中,点B 的坐标是()0,2,动点A 从原点O 出发,沿着x 轴正方向移动,以AB 为斜边在第一象限内作等腰直角三角形ABP ∆,设动点A 的坐标为()(),00t t ≥.(1)当2t =时,点P 的坐标是 ;当1t =时,点P 的坐标是 ;(2)求出点P 的坐标(用含t 的代数式表示);(3)已知点C 的坐标为()1,1,连接PC 、BC ,过点P 作PQ y ⊥轴于点Q ,求当t 为何值时,当PQB ∆与PCB ∆全等.24.如图,M 、N 两个村庄落在落在两条相交公路AO 、BO 内部,这两条公路的交点是O ,现在要建立一所中学C ,要求它到两个村庄的距离相等,到两条公路的距离也相等.试利用尺规找出中学的位置(保留作图痕迹,不写作法).25.计算或求值(1)计算:(2a+3b )(2a ﹣b );(2)计算:(2x+y ﹣1)2;(3)当a =2,b =﹣8,c =5时,求代数式242b b ac a-+-的值; (4)先化简,再求值:(m+252m --)243m m -⨯-,其中m =12-. 四、压轴题26.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.27.在平面直角坐标系中,点A 、B 在坐标轴上,其中A(0,a)、B(b ,0)满足:222110a b a b --+-=.(1)直接写出A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为C(-3,m),如图(1)所示.若S ΔABC =16,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图(2)所示,P 为线段AB 上一动点(不与A 、B 重合),连接OP ,PE 平分∠OPB ,交x 轴于点M ,且满足∠BCE=2∠ECD . 求证:∠BCD=3(∠CEP-∠OPE).28.如图,以直角△AOC 的直角顶点O 为原点,以OC ,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A (0,a ),C (b ,0)满足280a b b -++-=.(1)点A 的坐标为________;点C 的坐标为________.(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOA ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180°可以直接使用).29.如图,在平面直角坐标系中,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且AB =BC .(1)求直线BC 的解析式;(2)点P 为线段AB 上一点,点Q 为线段BC 延长线上一点,且AP =CQ ,设点Q 横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.30.在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.【详解】A. (3,1)位于第一象限;B. (3,-1)位于第四象限;C. (-3,1)位于第二象限;D. (-3,-1)位于第三象限;故选C.【点睛】此题主要考察直角坐标系的各象限坐标特点.2.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】,∴点A.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.3.C解析:C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A、∵12+222,故A选项能构成直角三角形;B、∵32+42=52,故B选项能构成直角三角形;C、∵32+62≠92,故C选项不能构成直角三角形;D、∵72+()22,故D选项能构成直角三角形.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.D解析:D【解析】【分析】根据乘方运算,可得一个正数的平方根.【详解】)2=7,∴7.故选:D.【点睛】本题考查了平方根,利用了乘方运算求一个正数的平方根,注意一个正数有两个平方根.5.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a 2⋅a 3=a 5,故A 错误;B. (−a 2)3=−a 6,故B 错误;C. a 10÷a 9=a(a≠0),故C 正确;D. (−bc)4÷(−bc)2=b 2c 2,故D 错误;故答案选C.【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.6.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 7.C解析:C【解析】【分析】对于各选项:先通过一次函数的性质确定m 、n 的符合,从而得到mn 的符合,然后根据正比例函数的性质对正比例函数图象进行判断,从而可确定该选项是否正确.【详解】A 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以A 选项错误;B 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误;C 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以C 选项正确;D 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误.故选:C .【点睛】本题考查了正比例函数图象:正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.也考查了一次函数的性质.8.B解析:B【解析】【分析】联立两直线解析式,解方程组即可.【详解】联立34y x y x -⎧⎨-⎩==, 解得11x y ⎧⎨-⎩==, 所以,点P 的坐标为(1,-1).故选B .【点睛】本题考查了两条直线的交点问题,通常利用联立两直线解析式解方程组求交点坐标,需要熟练掌握.9.C解析:C【解析】分析:根据第二象限内点的坐标特征,可得答案.详解:由题意,得x=-4,y=3,即M 点的坐标是(-4,3),故选C .点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.10.C解析:C【解析】【分析】根据四舍五入法可以将1.96精确到0.1,本题得以解决.【详解】1.96≈2.0(精确到0.1),故选:C .【点睛】此题主要考查有理数的近似值,熟练掌握,即可解题.二、填空题11.120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,所以,旋转角解析:120【解析】分析:等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等,求旋转角即可.详解:因为等边三角形的中心到三个顶点的距离相等,相邻顶点与中心连线的夹角相等, 所以,旋转角为360°÷3=120°,故至少旋转120度才能与自身重合.故答案为:120.点睛:本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.12.1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键.【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 14.5【解析】【分析】根据点到x 轴的距离等于该点纵坐标的绝对值即可得出答案.【详解】解:∵点P 的坐标为(4,5),∴点P 到x 轴的距离是5;故答案为:5.【点睛】本题主要考查了点到坐标轴【解析】【分析】根据点到x轴的距离等于该点纵坐标的绝对值即可得出答案.【详解】解:∵点P的坐标为(4,5),∴点P到x轴的距离是5;故答案为:5.【点睛】本题主要考查了点到坐标轴的距离的计算,解题的关键是熟记点到坐标轴的距离. 15.【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】解:式子在实数范围内有意义的条件是:x-1>0,解得:x>1.故答案为:.【点睛】此题主要考查了二次根式有意x>解析:1【解析】【分析】直接利用二次根式和分式有意义的条件分析得出答案.【详解】在实数范围内有意义的条件是:x-1>0,解得:x>1.x>.故答案为:1【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16.(2,-1)【解析】【分析】关于轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】点关于轴对称的点的坐标是(2,-1)故答案为:(2,-1)考核知识点:用坐标表示轴对称.解析:(2,-1)【解析】【分析】关于x轴对称的点坐标(横坐标不变,纵坐标变为相反数)【详解】P关于x轴对称的点P'的坐标是(2,-1)点(2,1)故答案为:(2,-1)【点睛】考核知识点:用坐标表示轴对称. 理解:关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;17.-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±2)2=8,∴8的平方根是:±2;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±2,解析:-2【解析】【分析】根据平方根以及立方根的定义即可直接求解.【详解】解:∵(±)2=8,∴8的平方根是:±;∵(-2)3=-8,∴-8的立方根是:-2.故答案是:±,-2.【点睛】本题主要考查了立方根的概念的运用.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a 叫做被开方数,3叫做根指数.18.【解析】认真审题,根据垂线段最短得出PM⊥A B时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.19.1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【解析:1【解析】【分析】直接把点P(-1,0)代入一次函数y=kx+1,求出k的值即可.【详解】∵一次函数y=kx+1的图象经过点P(-1,0),∴0=-k+1,解得k=1.故答案为1.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.20.2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比解析:2019【解析】【分析】根据正比例函数的定义,m-2019=0,从而求解.【详解】解:根据题意得:m-2019=0,解得:m=2019,故答案为2019.【点睛】本题主要考查了正比例函数的定义,形如y=kx(k是常数,k≠0)的函数,其中k叫做比例系数.正比例函数一定是一次函数,但一次函数不一定是正比例函数.三、解答题21.(1)560;(2)快车的速度是80km/h,慢车的速度是60km/h.(3)y=-60x+540(8≤x≤9).【解析】【分析】(1)根据函数图象直接得出甲乙两地之间的距离;(2)根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;(3)利用(2)所求得出D,E点坐标,进而得出函数解析式.【详解】(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大,快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20,∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴90 860 k bk b+⎧⎨+⎩==,解得:60540kb-⎧⎨⎩==.∴线段DE所表示的y与x之间的函数关系式为:y=-60x+540(8≤x≤9).【点睛】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,根据题意得出D,E 点坐标是解题关键.22.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.23.(1) (2,2);(32,32); (2) P(2t 2+,2t 2+);(3) . 【解析】【分析】(1) 当2t =时,三角形AOB 为等腰直角三角形, 所以四边形OAPB 为正方形,直接写出结果;当1t =时,作PN ⊥y 轴于N ,作PM ⊥x 轴与M ,求出△BNP ≌△AMP ,即可得到ON+OM=OB-BN+OA+AM=OB+OA ,即可求出;(2) 作PE ⊥y 轴于E ,PF ⊥x 轴于F ,求出△BEP ≌△AFP ,即可得到OE+OF=OB+BE+OA+AF=OB+OA ,即可求出;(3) 根据已知求出BC 值,根据上问得到OQ=2t 2+ ,△PQB ≌△PCB ,BQ=BC ,因为OQ=BQ+OB ,即可求出t.【详解】(1) 当2t =时,三角形AOB 为等腰直角三角形如图所以四边形OAPB为正方形,所以P(2,2)当1t 时,如图作PN⊥y轴于N,作PM⊥x轴与M∴四边形OMPN为矩形∵∠BPN+∠NPA=∠APM+∠NPA=90°∴∠BPN =∠APM∵∠BNP=∠AMP∴△BNP≌△AMP∴PN=PM BN=AM∴四边形OMPN为正方形,OM=ON=PN=PM ∴ON+OM=OB-BN+OA+AM=OB+OA=2+1=3∴OM=ON=PN=PM=32∴ P(32,32)(2) 如图作PE ⊥y 轴于E ,PF ⊥x 轴于F ,则四边形OEPF 为矩形∵∠BPE+∠BPF=∠APF+∠BPF=90°∴ ∠BPE =∠APF ∵∠BEP=∠AFP∴ △BEP ≌△AFP∴PE=PF BE=AF∴四边形OEPF 为正方形,OE=OF=PE=PF∴OE+OF=OB+BE+OA+AF=OB+OA=2+t∴ OE=OF=PE=PF=2t 2+ ∴ P(2t 2+,2t 2+); (3) 根据题意作PQ ⊥y 轴于Q ,作PG ⊥x 轴与G∵ B(0,2) C(1,1)∴2由上问可知P(2t 2+,2t 2+),OQ=2t 2+ ∵△PQB ≌△PCB ∴2∴2+2=2t 2+ 解得 t=22+2.【点睛】此题主要考查了正方形的性质、全等三角形、直角坐标系等概念,关键是作出正方形求出相应的全等三角形.24.作图见解析.【解析】【分析】先连接MN ,根据线段垂直平分线的性质作出线段MN 的垂直平分线DE ,再作出∠AOB 的平分线OF ,DE 与OF 相交于C 点,则点C 即为所求.【详解】点C 为线段MN 的垂直平分线与∠AOB 的平分线的交点,则点C 到点M 、N 的距离相等,到AO 、BO 的距离也相等,作图如下:.【点睛】此题考查作图-应用与设计作图,熟练地应用角平分线的作法以及线段垂直平分线作法是解决问题的关键.25.(1)4a 2+4ab ﹣3b 2;(2)4x 2+4xy+y 2﹣4x ﹣2y ﹣1;(3)426+4)﹣2m ﹣6,-5【解析】【分析】(1)利用多项式乘多项式展开,然后合并即可;(2)利用完全平方公式计算;(3)先计算出24b ac -,然后计算代数式的值;(4)先把括号内通分,再把分子分母因式分解后约分得到原式26m =--,然后把m 的值代入计算即可.【详解】解:(1)原式224263a ab ab b =-+-22443a ab b =+-; (2)原式2(2)2(2)1x y x y =+-+-2244421x xy y x y =++---;(3)224(8)42524b ac -=--⨯⨯=,2482646b b ac -+-++==; (4)原式(2)(2)52(2)[]23m m m m m +---=--- (3)(3)2(2)23m m m m m +--=--- 2(3)m =-+26m =--,当12m =-时,原式12()652=-⨯--=-. 【点睛】本题考查了多项式乘法和、分式的化简求值以及代数式求值.掌握整式乘法和分式运算法则熟练运算是解题关键.四、压轴题26.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为210【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.27.(1)A (0,3),B (4,0);(2)D (1,-265);(3)见解析 【解析】【分析】(1)根据非负数的性质求解;(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;【详解】(1)∵222110a b a b --+-=,∴222110a b a b --=+-=,∴2202110a b a b --=⎧⎨+-=⎩ ,∴34ab=⎧⎨=⎩,∴A(0,3),B(4,0);(2)如图1中,设直线CD交y轴于E.∵CD//AB,∴S△ACB=S△ABE,∴12AE×BO=16,∴12×AE×4=16,∴AE=8,∴E(0,-5),设直线AB的解析式为y=kx+b,将点A(0,3),(4,0)代入解析式中得:343kb⎧=-⎪⎨⎪=⎩,∴直线AB的解析式为y=334x-+,∵AB//CD,∴直线CD的解析式为y=34x c-+,又∵点E(0,-5)在直线CD上,∴c=5,即直线CD的解析式为y=354x--,又∵点C(-3,m)在直线CD上,∴m=115,∴C(-3,115),∵点A(0,3)平移后的对应点为C(-3,115),∴直线AB 向下平移了265个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D , ∴点D 的坐标为(1,-265); (3)如图2中,延长AB 交CE 的延长线于点M .∵AM ∥CD ,∴∠DCM=∠M ,∵∠BCE=2∠ECD ,∴∠BCD=3∠DCM=3∠M ,∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,∴∠BCD=3(∠CEP-∠OPE ).【点睛】考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.28.(1)(0,6),(8,0);(2)存在t=2.4时,使得△ODP 与△ODQ 的面积相等;(3)2∠GOA+∠ACE=∠OHC ,理由见解析.【解析】【分析】(1)根据算术平方根的非负性,绝对值的非负性即可求解;(2)根据运动速度得到OQ=t ,OP=8-2t ,根据△ODP 与△ODQ 的面积相等列方程求解即可;(3)由∠AOC=90°,y 轴平分∠GOD 证得OG ∥AC ,过点H 作HF ∥OG 交x 轴于F ,得到∠FHC=∠ACE ,∠FHO=∠GOD ,从而∠GOD+∠ACE=∠FHO+∠FHC ,即可证得2∠GOA+∠ACE=∠OHC.【详解】(1280a b b -+-=,∴a-b+2=0,b-8=0,∴a=6,b=8,∴A(0,6),C(8,0);故答案为:(0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),∴OA=6,OB=8,由运动知,OQ=t,PC=2t,∴OP=8-2t,∵D(4,3),∴114222ODQ DS OQ x t t=⨯=⨯=△,11823123 22ODP DS OP y t t=⨯=-⨯=-△(),∵△ODP与△ODQ的面积相等,∴2t=12-3t,∴t=2.4,∴存在t=2.4时,使得△ODP与△ODQ的面积相等;(3)2∠GOA+∠ACE=∠OHC,理由如下:∵x轴⊥y轴,∴∠AOC=∠DOC+∠AOD=90°,∴∠OAC+∠ACO=90°.又∵∠DOC=∠DCO,∴∠OAC=∠AOD.∵x轴平分∠GOD,∴∠GOA=∠AOD.∴∠GOA=∠OAC.∴OG∥AC,如图,过点H作HF∥OG交x轴于F,∴HF∥AC,∴∠FHC=∠ACE.∵OG∥FH,∴∠GOD=∠FHO,∴∠GOD+∠ACE=∠FHO+∠FHC,即∠GOD+∠ACE=∠OHC,∴2∠GOA+∠ACE=∠OHC.【点睛】此题考查算术平方根的非负性,绝对值的非负性,坐标系中的动点问题,平行线的判定及性质定理,是一道较为综合的题型.29.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.【详解】(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.30.(1)①见解析;②DE =297;(2)DE 的值为 【解析】【分析】 (1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC =∠EAD =90°,∴∠EAB =∠DAC ,∵AE =AD ,AB =AC ,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.。

八年级(上)数学期末试卷(含答案)

八年级(上)数学期末试卷(含答案)

八年级教学质量监测 数 学 试 卷【本试卷满分100分,考试时间90分钟】亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获。

请认真审题,看清要求,仔细答题,要相信你能行! 一、细心选一选(每小题只有一个答案是正确的,请将正确答案的代号填入表格中,每小题3分,共30分)1. 对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有A. 1个B. 2个C. 3个D. 4个2. 下列图形中具有稳定性的是 A. 正方形 B. 长方形C. 直角三角形D. 平行四边形3. 若把分式xyyx +中的x 和y 都扩大5倍,那么分式的值A. 扩大5倍B. 不变C. 缩小5倍D. 缩小25倍4. 若分式33x x --值为零,则x 的值为 A. 3B. -3C. 3或-3D. 05. 下列说法错误的是A. 边长相等的两个等边三角形全等B. 两条直角边对应相等的两个直角三角形全等C. 有两条边对应相等的两个等腰三角形全等D. 形状和大小完全相同的两个三角形全等6. “国庆”节到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x 页,则根据题意可列出方程为 A.80705x x=- B.80705x x =+ C. 80705x x=+ D.80705x x =- 7. 已知等腰三角形的一个内角为50°,则它的另外两个内角是 A. 65°,65°B. 80°,50°C. 65°,65°或80°,50°D.不确定8. (x m +)与(3x +)的乘积中不含x 的一次项,则m 的值为 A. –3B. 3C. 0D. 19. 如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,下列说法错误的是A. △EBD 是等腰三角形,EB ED =B. 折叠后∠ABE 和∠CBD 一定相等C. 折叠后得到的图形是轴对称图形D. △EBA 和△EDC 一定是全等三角形10. 如图所示,在△ABC 中,BAC ∠=90°,ACB ∠=30°,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为A. 2B. 4C. 6D. 8二、耐心填一填(每小题3分,共30分)11. 如图,A B C D E ∠+∠+∠+∠+∠= . 12. 当x = 时,分式11x +无意义. 13. 如图,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E .已知3PE =,则点P到AB 的距离是 .14. 如图,△ABC 中,DE 是AC 的垂直平分线,3AE =cm ,△ABD 的周长为13cm ,△ABC 的周长为____________cm .11题图 13题图 14题图 15. 计算:2133mm m--=-- . 16. 如图,已知AD AB =,DAC BAE ∠=∠,要使ABC △≌ADE △,可补充的条件是__________________(写出一个即可). 17. 分解因式=+-xy y x y x22332 .18. 等腰三角形的周长为18,一边长5,则其余两边长为 . 19. 若2425x kx ++是一个完全平方式,则k 的值是___________. 20. 观察下列各式11)(1(2-=+-x x x ) 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x 1)1)(1(5234-=++++-x x x x x x ……则1222222200620072008++++++ = .三、用心做一做,看看谁做得准确,要细心哟!(共18分)21. (5分)解方程: 0)1(213=-+--x x x x .16题图22. (5分)先化简再求值:)52)(52()1(42-+-+m m m ,其中3-=m .23. (8分)如图,已知A D ∠=∠=90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB CD =,BE CF =.求证:(1)Rt △ABF ≌Rt △DCE ;(2)OE OF =.四、认真解一解,学会用数学知识解决身边的实际问题!(解答要求写出文字说明、证明过程或计算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上学期期末试题
时间:120分钟,满分:120分
一:选择题(共60分)
1. 下列图案中,轴对称图形的个数是( )
A 、3
B 、2
C 、1
D 、0
2. 下列命题中,不正确的是( )
A 、关于直线L 成轴对称的两个三角形一定全等;
B 、两个大小相同的圆形纸片随意平放在水平桌面上便可构成轴对称图形;
C 、若两图形关于某直线对称,则对称轴是对应点所连线段的垂直平分线;
D 、等腰三角形一边上的高、中线及这边所对的角的平分线重合。

3.如图,在△中,∠,

平分∠


,则图中等腰三角形的个数为( ) A.1 B.3C.4 D.5
4..下列语句中,属于命题..
的是() (A) 作线段的垂直平分线 (B) 等角的补角相等吗 (C) 三角形是轴对称图形(D) 用三条线段去拼成一个三角形
5 O 为锐角△ABC 的∠C 平分线上一点,O 关于AC 、BC 的对称点分别为P 、Q ,则△POQ 一定是( )
A.等边三角形
B.等腰三角形
C.直角三角形
D.等腰直角三角形 6. 在1y ,13 ,
,
4
x+y , 23x 2
y, 2xy
π中,分式有﹙ ﹚ A .2个 B.3个
C.4个
D.5个
7.若
d
c
b a =,则下列结论错误的是( ) A.b
c a
d = B. C. D.
d c
m b m a =++ 8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学
2
12
+x 2222d c b a =ad c b
ad 22=A
E B
C
D 第3题图
知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A. SSS B. SAS C. AAS D. ASA
9. 下列分式中是最简分式的是(

A .ab-a 3ab
B.
C.m m
3451-
D.t-11-t
10.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,
96,95,94.那么,这组数据的众数和中位数分别是( ) A.96,94.5 B.96,95 C.95,94.5 D.95,95
11、化简ab
a b a +-22
2的结果为( )
A.
a b a 2- B.a b a - C.a b a + D.b
a b
a +- 12、如果方程3
33-=-x m
x x 有增根,那么m 的值为( ) A.0 B.-1 C.3 D.1
13、甲班与乙班同学到离校15千米的公园秋游,两班同时出发,甲班的速度是乙班同学速度的1.2倍,结果比乙班同学早到半小时,求两个班同学的速度各是多少?若设乙班同学的速度是x 千米/时,则根据题意列方程,得( )
A.21152.115-=x x
B. 21
152.115+=x x C.
30152.115-=x x D.3015
2.115+=x
x 14、 如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=8,则DF 的长是
(A )2 (B )3 (C )25
(D )4
15、到三角形的三个顶点距离相等的点是 ( ) A.三条角平分线的交点 B.三条中线的交点 C.三条高的交点 D.三条边的垂直平分线的交点
2
2y x y x +-
16. 如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( ) A .45°B.55° C .60° D .75°
17、下列各式成立的是( )

b a b a =++22 ②1-=-+-y
x y
x ③1302132.0--=--a a a a ④
)1(1
1112
2
≠-=----
x x x x A .①② B.②④ C. ②③ D. ①④
18.设一项工程的工程量为1,甲单独做需要天完成,乙单独做需要天完成,则甲、
乙两人合做一天的工作量为()
A.
B.
C. D.
19. 如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 交EF 于F , 若BF=AC ,则∠ABC 等于( )
A .45°
B .48°
C .50°
D .60°
第19题图 20.如图(右侧上图),在△
中,
,∠




则∠()
A.
B.
C.
D.
二:填空题(满分12分)
21. .如图,在△中,
的垂直平分线交
于点,若


则△
的周长为_______.
22. 晓彤在平面镜中看到一串数字为“ ”,
则这串数字实际应为 。

1a b +2
a b +11a b
+P
A
E
C
B
D
A
第21题图
23. 已知当2-=x 时,分式
无意义,当x=4时,此分式的值为0,则 a=______,b=_________
24 在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%。

八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩___________________.
三、解答题(本大题共6个小题,满分44分.写出必要的推理、验算过程) 25. (5分)先化简,再求值:
26、解分式方程(每小题5分,共10分)
(1)x
x x 1
512
=-+ (2)
27. (6分)一名射击运动员连续打靶20次,命中的环数如图所示.
(1)计算所有环数组成的这组数据 的平均数、众数和中位数,
(2)你认为用(1)中得出的哪个数据来表示该运动员打靶的水平更为合适.
a
x b
x +-21
,21422=-+-a a
a a 其中
28.(10分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品?
29 (8分)如图,∠BAC=∠DAE ,∠ABD=∠ACE ,AB=AC 。

求证:BD=CE 30.(9分)如图,
,的垂直平分线交的延长线于,交于点,
,.
求:(1)△的周长;(2)∠的度数.
.
C
A
C
D
B
第30题图
F
八年级数学上学期期末试题参考答案
21、9 22、810076 23、4,2==b a 24、90 三、解答题(共6个小题,满分48分) 25.化简 原式=
21+a (………4分)代入得 原式=5
2
(………5分); 26、(1)x=-5 (2) x=-1 27.解:(1)平均数
5.84
410210
49481072=+++⨯+⨯+⨯+⨯………………3分
众数8…………………1分 中位数8…………………1分 (2)众数…………………1分
28.解:设甲工厂每天加工x 件产品,则乙工厂每天加工1.5x 件产品,
依题意得
…………………………………4分 解得:x=40 …………………………………6分
经检验:x=40是原方程的根,所以1.5x=60……………7分
答:甲工厂每天加工40件产品,乙工厂每天加工60件产品. …………………8分 29证明:∵∠BAC=∠DAE ∴∠BAD=∠CAE ∵∠ABD=∠ACE ,AB=AC
∴△ABD ≌△ACE(ASA)∴BD=CE
30解:(1)因为垂直平分
,所以
所以△的周长为
(2)因为,所以
因为垂直平分
,所以所以
105.11200
1200=-x
x。

相关文档
最新文档