Barnett-4薄膜

合集下载

各类膜组件的分类及应用

各类膜组件的分类及应用

各类膜组件的分类及应用膜组件是一种基于薄膜技术的分离装置,其主要作用是将物质根据大小、形状、电荷等特性进行分离和浓缩。

膜组件广泛应用于水处理、食品加工、制药、化工、石油等领域,其应用涵盖了过滤、分离、浓缩、纯化等方面。

膜组件可以根据不同的分离机制进行分类,常见的分类包括微滤膜、超滤膜、纳滤膜和反渗透膜。

下面将分别介绍这四类膜组件的应用。

微滤膜(Microfiltration Membrane)是一种通过孔径大小来分离物质的膜组件,其孔径通常在0.1-10微米之间。

微滤膜广泛应用于悬浮物固液分离、细菌除尘等领域。

在食品加工中,微滤膜可用于酒类的澄清和过滤、果汁的澄清和浓缩等。

在制药领域,微滤膜可用于细胞培养液的澄清、疫苗的纯化等。

超滤膜(Ultrafiltration Membrane)是一种通过分子大小和形状来分离物质的膜组件,其分离精度通常在0.001-0.1微米之间。

超滤膜广泛应用于水处理、生物制药、食品加工等领域。

在水处理中,超滤膜可以用于去除水中的胶体、藻类、细菌等微粒,得到清澈的水源。

在生物制药领域,超滤膜可用于生物反应器中的细胞分离和浓缩。

在食品加工中,超滤膜可用于乳制品的浓缩、蛋清的分离等。

纳滤膜(Nanofiltration Membrane)是一种介于超滤膜和反渗透膜之间的膜组件,其分离精度通常在0.001-0.01微米之间。

纳滤膜广泛应用于水处理、饮料制造、废水处理等领域。

在水处理中,纳滤膜可以除去水中的重金属离子、有机物质、胶体等,提高水的清洁度。

在饮料制造中,纳滤膜可以去除水中的微生物、重金属等,提高饮料的安全性和口感。

在废水处理中,纳滤膜可以实现有机物质的回收和水的再利用。

反渗透膜(Reverse Osmosis Membrane)是一种通过渗透压差来实现物质分离的膜组件,其分离精度通常在0.001微米以下。

反渗透膜广泛应用于海水淡化、饮用水净化、废水处理等领域。

在海水淡化中,反渗透膜可以去除海水中的盐分和微生物,得到可用于灌溉、工业用水的淡水。

反溶剂对钙钛矿薄膜与电池性能的影响

反溶剂对钙钛矿薄膜与电池性能的影响

㊀鲁东大学学报(自然科学版)㊀JournalofLudongUniversity(NaturalScienceEdition)2020ꎬ36(4):321 326㊀㊀㊀收稿日期:2020 ̄07 ̄22ꎻ修回日期:2020 ̄08 ̄23㊀㊀基金项目:山东省泰山学者青年专家计划项目(tsqn201812098)ꎻ湖北科技学院校级科研项目(2020-21X26)ꎻ咸宁市自然科学基金项目(XNKJ-28)㊀㊀第一作者简介:贾祥瑞(1995 )ꎬ男ꎬ山东泰安人ꎬ硕士研究生ꎬ研究方向为新型太阳能电池ꎮE-mail:mrjxr@foxmail.com㊀㊀通信作者简介:张树芳(1979 )ꎬ女ꎬ内蒙古丰镇人ꎬ教授ꎬ硕士研究生导师ꎬ博士ꎬ研究方向为新能源材料及器件ꎮE-mail:zhangshufang98@126.com反溶剂对钙钛矿薄膜与电池性能的影响贾祥瑞1ꎬ白㊀帆2ꎬ毛彩霞3ꎬ张树芳1ꎬ2(1.鲁东大学㊀物理与光电工程学院ꎬ山东烟台264039ꎻ2.南京理工大学㊀材料科学与工程学院ꎬ南京210094ꎻ3.湖北科技学院㊀电子与信息工程学院ꎬ湖北咸宁437100)摘要:钙钛矿太阳能电池效率在近十年来增长迅速ꎬ表现出了十分可观的应用潜力ꎮ而作为这类太阳能电池中至关重要的组成部分ꎬ钙钛矿薄膜对改善电池性能起着关键性的作用ꎮ利用传统一步溶液法制备的钙钛矿薄膜容易出现晶粒尺寸较小㊁覆盖度较差的问题ꎬ导致电池效率低㊁稳定性差ꎬ从而不利于其商业化发展ꎮ若要显著地提高薄膜的质量ꎬ可以在一步溶液法制备的过程中引入反溶剂ꎮ本文在大气环境下使用疏水性的溶剂(甲苯㊁氯苯㊁乙酸乙酯)作为反溶剂来研究不同反溶剂对钙钛矿薄膜以及电池性能的影响ꎮ关键词:钙钛矿薄膜ꎻ反溶剂ꎻ一步沉积法ꎻ光电性能ꎻ稳定性中图分类号:TM914.4+2㊀㊀文献标志码:A㊀㊀文章编号:1673 ̄8020(2020)04 ̄0321 ̄06㊀㊀在过去的十年间ꎬ一种新型太阳能电池 铅卤钙钛矿太阳能电池ꎬ因其优异的性能进入人们的研究视野ꎮ最常使用的吸光材料是CH3NH3PbI3ꎬCH3NH3PbI3不仅具有很强的光吸收能力ꎬ而且具有较低的激子束缚能(0 19eV)㊁较高的载流子迁移率(电子7 5cm2 V-1 s-1和空穴12~66cm2 V-1 s-1)㊁较长的载流子扩散距离(100nm~1m m)以及相对较低的制备成本ꎬ因此在太阳能电池领域引起了广泛关注[1]ꎮ钙钛矿薄膜对电池性能起着至关重要的作用ꎬ它的优劣直接影响电池的转换效率和稳定性ꎮ在制备钙钛矿吸光层薄膜时ꎬ最常使用的方法是溶液法ꎬ如一步溶液法以及两步顺序沉积法等[2 4]ꎮ一步溶液法比两步顺序沉积法更简单㊁更方便ꎬ是钙钛矿薄膜沉积程序中应用最普遍ꎬ也是最具有前景的方法ꎮ然而ꎬ使用这种传统方法制备的钙钛矿薄膜极易产生枝晶和大面积的针孔ꎬ这种形貌特征会导致TiO2基底覆盖不完全ꎬ并且会出现粒度不均匀的问题ꎬ这极其不利于太阳光的收集ꎬ而且在微观层面会加速复合载流子ꎬ导致太阳能电池的光电性能的下降和电池的不稳定性ꎮ传统一步溶液法制备钙钛矿薄膜质量太低的主要原因是钙钛矿前驱体溶液中的溶剂NꎬN-二甲基甲酰胺(DMF)沸点(153ħ)远高于退火温度(100ħ)ꎬ在退火过程中溶剂挥发过慢ꎬ缓慢的形核速率引起晶体的生长不均匀ꎮHuang等[5]在传统一步溶液法的基础上ꎬ使用反溶剂诱导溶剂快速挥发ꎬ从而加快形核和晶体生长过程ꎬ即在旋涂钙钛矿薄膜的过程中滴加氯苯ꎮ因为氯苯和二甲基甲酰胺(DMF)具有良好的互溶性ꎬ但氯苯并不会溶解钙钛矿薄膜ꎬ因此在旋涂过程中氯苯可以萃取薄膜中的DMF并因为旋涂过程中的离心力而离开钙钛矿薄膜ꎬ从而使得薄膜快速形核ꎮ使用这种方法可以在1min内制备出薄膜ꎬ并且钙钛矿薄膜的致密度高ꎬ粒径分布非常均匀ꎬ形貌无针孔ꎮ然而ꎬ由于钙钛矿薄膜的不稳定性ꎬ通常需要在充满氮气的手套箱中制备ꎬ增加了制备工艺的复杂性和成本ꎬ如果实现了在大气环境下制备高质量钙钛矿薄膜ꎬ将会极大促进钙钛矿太阳能电池的生产与规模化应用ꎮ基于上述认识ꎬ为了改善薄膜的质量ꎬ本文通过在一步溶液法制备CH3NH3PbI3薄膜时引入疏322㊀鲁东大学学报(自然科学版)第36卷㊀水性的反溶剂(甲苯㊁氯苯㊁乙酸乙酯)来调控CH3NH3PbI3薄膜的结晶过程[6]ꎬ在大气环境下制备晶粒尺寸均匀且覆盖度高的钙钛矿薄膜ꎬ将样品制成完整的电池并且测试其光伏性能的参数ꎮ1㊀实验1.1㊀实验原料与试剂本实验所采用的主要化学试剂和原材料如下:分析纯规格的无水乙醇(CH3CH2OH)㊁甲苯(C6H5CH3)㊁乙酸乙酯(C4H8O2)㊁异丙醇((CH3)2CHOH)㊁NN-二甲基甲酰胺(C3H7NO)㊁二甲基亚砜(C2H6OS)㊁松油醇(C10H18O)㊁丙酮(CH3COCH3)ꎬ99 8%规格的氯苯(C6H5Cl)ꎬ38%规格的盐酸(HCl)ꎬ化学纯规格的Spiro-OMeTADꎬ99 9%规格的碘化铅(PbI2)㊁碘化甲基铵(CH3NH2I)ꎬ15Ω cm-2规格的FTOꎬ75%规格的二异丙氧基双乙酰丙酮钛ꎬ96%规格的4-TPB(C9H13N)ꎬ99 95%规格的LiTFSI(C2F6LiNO4S2)ꎮ1.2㊀钙钛矿薄膜的制备先准备好实验所需的溶液和涂有电子传输层的基片ꎬ将加热板升温到110ħꎮ先将钙钛矿前驱体溶液吸入注射器ꎬ调整旋涂仪转速在1000r min-1参数下旋涂10sꎬ转速为4000r min-1参数下旋涂35sꎮ随后将基片放于旋涂仪上ꎬ并用注射器滴加2~3滴钙钛矿溶液进行旋涂ꎮ进行高速旋转时ꎬ在第10s用移液枪吸取700μL的反溶剂(氯苯㊁甲苯以及乙酸乙酯)在10s内快速滴加ꎬ完成反溶剂的萃取过程ꎮ待旋涂结束后ꎬ将样品置于加热板上进行退火处理ꎬ退火时间为20minꎮ退火结束后将样品收于盒中备用ꎮ1.3㊀钙钛矿太阳能电池的制备1)FTO玻璃基片的清洗依次用自来水㊁去离子水㊁乙醇清洗FTO玻璃各15minꎬ用丙酮溶液干燥后ꎬ放置在UV-O3中处理30minꎮ2)电子传输层的制备采用旋涂制备的方式ꎬ将预先配置好的浓度为0 1mol mL-1的TiO2致密层用0 22μm规格的水系过滤头旋涂到上一步清洗过的FTO玻璃基体的表面ꎬ设置仪器参数如下:1000r min-1转速旋转10sꎬ3500r min-1转速旋转35sꎻ随后将旋涂了第一层电子传输层的玻璃基片在100ħ温度下退火10minꎬ待基片降至室温时ꎬ再按照以上的步骤继续旋涂第二层ꎻ第二层旋涂结束后ꎬ将基片先在100ħ温度下加热10minꎬ再按照2min/25ħ的速度将温度缓缓升到500ħꎬ随后加热2hꎬ结束后待冷却至室温ꎬ收入盒子备用ꎮ[7]3)空穴传输层的制备取0 167gSpiro-OMeTAD溶解于1ml氯苯中ꎬ然后向其加入作为添加剂的0.0298g4-叔丁基吡啶(4-TPB)和0.0103g三氟甲烷磺酰亚胺锂(LITFSI)ꎬ制备成Spiro-OMeTAD旋涂液ꎬ设置参数为5500r min-1转速下旋转30sꎮ4)金属电极的制备在空穴传输层上面ꎬ通过掩膜版ꎬ真空蒸镀约100nm的Au电极ꎮ2㊀结果与讨论2.1㊀反溶剂对钙钛矿薄膜表面形貌与结构的影响㊀㊀在使用一步溶液法旋涂钙钛矿薄膜时ꎬ依次使用甲苯㊁氯苯和乙酸乙酯用作反溶剂ꎬ研究不同的反溶剂对CH3NH3PbI3薄膜结晶过程的影响ꎬ其样品的电子显微镜(SEM)扫描图ꎬ如图1所示ꎮSEM结果表明:当未滴加反溶剂时ꎬ钙钛矿薄膜表面存在很多树枝晶ꎬ平整度很差ꎮ经过反溶剂萃取后的钙钛矿薄膜中晶粒尺寸均匀ꎬ覆盖率较好ꎮ使用甲苯和氯苯制备的钙钛矿薄膜的形貌比较接近ꎬ薄膜平整度相对较高ꎬ晶粒尺寸也明显较大ꎬ薄膜致密且不存在有如针孔等的缺陷[8]ꎮ但是使用乙酸乙酯制备的钙钛矿薄膜缺陷较多ꎬ会导致空穴传输层与电子传输层发生导通ꎬ产生漏电电流ꎬ降低光电转化效率ꎻ而且薄膜表面出现了白色固体颗粒ꎬ这可能与乙酸乙酯疏水性较差有关ꎬ这些白色的颗粒很有可能是钙钛矿遇水分解产生的PbI2颗粒[9]ꎮ因为相比于CH3NH3IꎬPbI2在DMSO/DMF的混合液中拥有较低的溶解度ꎬ而且乙酸乙酯比甲苯和氯苯拥有更强的萃取能力ꎬ因此使用乙酸乙酯制备钙钛矿薄膜时ꎬ会造成PbI2的大量析出ꎮ㊀第4期贾祥瑞ꎬ等:反溶剂对钙钛矿薄膜与电池性能的影响323㊀(a)无反溶剂(b)甲苯(c)氯苯(d)乙酸乙酯图1㊀使用不同反溶剂制备的CH3NH3PbI3薄膜微观形貌Fig.1MicrostructureofCH3NH3PbI3thinfilmspreparedbydifferentanti-solvent2.2㊀反溶剂对钙钛矿薄膜光电性能的影响为了研究使用不同反溶剂萃取对钙钛矿薄膜的光学吸收性能的影响ꎬ对制备的钙钛矿薄膜进行了紫外 可见光光谱测试ꎮ如图2所示ꎬ制备的钙钛矿薄膜对400~750nm波长范围内的可见光有较强的吸收ꎬ这与文献中报道的一致[10]ꎮ将600~850nm波长的吸收图谱放大并作出了切线ꎬ图示切线与横坐标交点处的波长在780nm左右ꎮ其禁带宽度可以通过计算得知为1 5eVꎬ该结果与典型的CH3NH3PbI3的禁带宽度是一致的[11]ꎮ在550~850nm波长范围里ꎬ用上文3种反溶剂制备的CH3NH3PbI3薄膜ꎬ它们的光吸收强度基本一致ꎻ观察放大图ꎬ相比于使用氯苯以及乙酸乙酯制备的钙钛矿薄膜ꎬ使用甲苯作为反溶剂制备的薄膜吸收强度稍高ꎻ在400~550nm波长范围里ꎬ使用乙酸乙酯作为反溶剂萃取所得薄膜的光吸收强度明显要低于使用其他两种反溶剂制备的钙钛矿薄膜ꎻ这是因为使用乙酸乙酯萃取的薄膜晶粒尺寸相对较小ꎬ薄膜形貌比较粗糙ꎬ并且薄膜中存在数量很多的PbI2颗粒ꎬ降低了薄膜在短波范围内对光的吸收[12]ꎮ图2㊀经过不同反溶剂萃取的薄膜的光吸收谱和局部放大图Fig.2Opticalabsorptionspectraandpartialenlargeddrawingbydifferentanti ̄solventextraction324㊀鲁东大学学报(自然科学版)第36卷㊀㊀㊀为了进一步研究反溶剂对钙钛矿薄膜导电性能的影响ꎬ在使用不同反溶剂制备的钙钛矿薄膜表面ꎬ进行了蒸镀一层金属电极的处理ꎬ然后测量这几种薄膜的电化学阻抗谱(EIS)ꎬ测量结果在图3中给出ꎬ该样品结构为FTO/TiO2/CH3NH3PbI3/Auꎮ通过奈奎斯特图可以看出ꎬ使用甲苯作为反溶剂时ꎬ制备得到的CH3NH3PbI3薄膜的电阻值最小ꎬ数值为2028Ωꎮ随后是使用氯苯制备的薄膜ꎬ它的电阻大小是3036Ωꎮ而使用乙酸乙酯作反溶剂制备的薄膜阻值最大ꎬ为5127Ωꎮ由此可见ꎬ载流子(电子和空穴)在甲苯制备的钙钛矿薄膜中传输较快ꎬ载流子有较高的响应速度ꎮ这与CH3NH3PbI3薄膜中的晶粒尺寸密切相关ꎬ结合SEM图片可知ꎬ使用甲苯作为反溶剂制备的钙钛矿薄膜晶粒尺寸相对较大ꎬ因此薄膜中的晶界密度就相对较小ꎬ导致电子和空穴在晶界处的复合一并随之减少ꎬ这对于电子和空穴的传输是非常有利的ꎬ可以显著提高光生电流密度[13]ꎮ因此ꎬ本文实验选取的3种溶剂中ꎬ甲苯的效果最佳ꎮ图3㊀经过不同反溶剂萃取的薄膜的电化学阻抗谱Fig.3Electrochemicalimpedancespectroscopyofthinfilmsextractedbydifferentanti ̄solvent2.3㊀反溶剂对钙钛矿太阳能电池效率的影响为了研究反溶剂是否对钙钛矿太阳能电池有显著的影响ꎬ分别使用甲苯㊁氯苯和乙酸乙酯制备了钙钛矿薄膜ꎬ并制备成钙钛矿太阳能电池来研究其光伏特性ꎬ所制备的电池结构为FTO/TiO2/perovskite/Spiro-OMeTAD/Auꎬ让其在温度25~30ħꎬ大气质量AM1 5ꎬ太阳光光照强度为100mW cm-2的标准条件下进行了光伏特性测试ꎬ具体数据见表1ꎬ所得电池的J-V曲线如图4所示ꎮ由图4可知:使用甲苯作为反溶剂ꎬ制得电池的效率13 90%是最高的ꎬ其短路电流密度与开路电压分别为20 89mA cm-2和1 03Vꎻ并且电池效率的增大主要表现为短路电流密度的增大ꎬ这是由于使用甲苯作为反溶剂时ꎬ薄膜对光的吸收较强ꎬ产生的光生载流子更多ꎮXRD结果表明:使用甲苯时晶体的结晶度更高ꎬ晶粒更大ꎬ较大的晶粒表明晶界密度较小ꎬ载流子的传输电阻较小ꎬ这与后面通过电化学阻抗谱中得到的结果是一致的ꎮ使用乙酸乙酯制备的薄膜中存在较多的针孔ꎬ产生了较大的漏电电流ꎬ电流密度下降较大ꎬ导致电池效率下降ꎮ为了验证实验的准确性ꎬ对每一组情况分别作了15个样品进行测试ꎬ测试所对应电池的效率ꎬ以分布直方图的形式在图4(b)给出ꎮ在直方图中可以直观看到ꎬ当用甲苯作为反溶剂制备电池时ꎬ效率分布非常集中ꎬ超过9个样品的效率分布在13 7%~14 1%之间ꎬ这表明使用甲苯作为反溶剂时制备的薄膜具有良好的重现性ꎮ表1㊀不同反溶剂制备的电池的光伏特性参数表Tab.1Photovoltaiccharacteristicparametersofcellspreparedbydifferentanti ̄solvent反溶剂Voc/VJsc/(mA cm-2)FFPCE/%甲苯1.0320.890.6413.90氯苯1.0320.280.5912.46乙酸乙酯1.0419.770.5511.33㊀第4期贾祥瑞ꎬ等:反溶剂对钙钛矿薄膜与电池性能的影响325㊀(a)J-V曲线(b)电池效率的分布直方图图4㊀不同反溶剂萃取后的电池Fig.4Batteryafterdifferentanti ̄solventextraction2.4㊀反溶剂对钙钛矿薄膜的稳定性影响为了进一步研究不同反溶剂对钙钛矿薄膜的稳定性产生的影响ꎬ本文使用不同反溶剂制备了钙钛矿薄膜并将其置于特定的环境下(湿度为30%~40%ꎬ温度为25~30ħ)ꎬ定期对钙钛矿薄膜的吸光性能进行了测试ꎮ由于使用乙酸乙酯制备的钙钛矿薄膜中存在较多的PbI2杂质ꎬ并且制得的薄膜质量较差ꎬ所以本文直接将使用乙酸乙酯制得的薄膜剔除掉ꎮ如图5所示ꎬ在放置期间ꎬ使用甲苯和氯苯作为反溶剂制备的钙钛矿薄膜都有不同程度的下降ꎬ尤其是放置超过21d后ꎬ钙钛矿薄膜在短波长的吸收值都有明显的下降ꎬ表明此时钙钛矿薄膜已发生部分降解ꎮ图5㊀使用不同的反溶剂制备的薄膜在放置28d后的UV稳定性数据Fig.5UVstabilitydataoffilmspreparedwithdifferentanti ̄solventafter28days2.5㊀反溶剂对钙钛矿太阳能电池的稳定性影响本节研究反溶剂的使用对钙钛矿太阳能电池稳定性所产生的影响ꎬ将使用不同的反溶剂制备的钙钛矿薄膜进一步组装成完整的钙钛矿电池ꎬ并将它们置于温度25~30ħꎬ湿度为30%~40%的环境中ꎬ测试其电池效率的变化ꎮ如图6所示ꎬ经过10d的稳定性测试ꎬ使用甲苯和氯苯制备的电池的稳定性比较接近ꎬ而且使用甲苯作为反溶剂制备的电池的稳定性稍稍强于使用氯苯作为反溶剂制备的电池ꎮ使用乙酸乙酯作反溶剂制备的太阳能电池从第3天开始ꎬ效率就有了较大幅度的下降ꎬ这与钙钛矿薄膜的晶体质量有较大的关系ꎮ水汽和氧对钙钛矿薄膜的侵蚀首先是从晶界和针孔等一些缺陷处开始的ꎮ使用乙酸乙酯制备的钙钛矿薄膜中存在大量的针孔ꎬ晶界密度也比较大ꎬ而且薄膜中存在较多的PbI2颗粒ꎬ这些颗粒很有可能会成为位点使得氧和水汽结合ꎬ进一步加速薄膜的降解ꎬ从而使电池的效率严重下降ꎮ随后经过10d放置ꎬ使用甲苯以及氯苯制备的钙钛矿太阳能电池的效率仍能达到初始值的60%以上ꎬ但是使用乙酸乙酯作反溶剂制备的太阳能电池效率不到原来效率的50%ꎬ该现象也说明电池器件的稳定性与其薄膜微观结构之间有密不可分的联系ꎮ图6㊀使用不同反溶剂制备的电池效率的稳定性Fig.6Stabilityofcellefficiencypreparedwithdifferentanti-solvent3㊀结语以上实验表明ꎬ使用不同的反溶剂(甲苯㊁氯苯㊁乙酸乙酯)对钙钛矿薄膜的质量影响很大ꎬ薄膜的覆盖度和晶粒尺寸差异明显ꎬ特别是当使用甲苯作为反溶剂萃取薄膜时ꎬ薄膜晶粒尺寸较大而且没有针孔ꎬ同时其覆盖率和平整度也最高ꎬ这些都利于电池中载流子的抽取与传输ꎬ从而实现更高的光电转化效率ꎮ参考文献:[1]㊀STOUMPOSCCꎬMALLIAKASCDꎬKANATZIDISMG.Semiconductingtinandleadiodideperovskiteswithorganiccations:phasetransitionsꎬhighmobilitiesꎬandnear ̄infraredphotoluminescentproperties[J].InorganicChemistryꎬ2013ꎬ52(15):9019-9038.[2]㊀BURSCHKAJꎬPELLETNꎬMOONSJꎬetal.Sequentialdepositionasaroutetohigh ̄performanceperovskite ̄sensitizedsolarcells[J].Natureꎬ2013ꎬ499:316.[3]㊀LIUMꎬJOHNSTONMBꎬSNAITHHJꎬetal.Efficientplanarheterojunctionperovskitesolarcellsbyvapourdeposition[J].Natureꎬ2013ꎬ501:395.[4]㊀CHENQꎬZHOUHPꎬHONGZRꎬetal.Planarhetero ̄junctionperovskitesolarcellsviavapor ̄assistedsolutionprocess[J].JournaloftheAmericanChemicalSocietyꎬ2014ꎬ136(2):622-625.[5]㊀XIAOMDꎬHUANGFZꎬHUANGWCꎬetal.Afastdeposition ̄crystallizationprocedureforhighlyefficientleadiodideperovskitethin ̄filmsolarcells[J].Ange ̄wandteChemieInternationalEditionꎬ2014ꎬ53(37):9898-9903.[6]㊀LEEJWꎬKIMDHꎬKIMHSꎬetal.Formamidiniumandcesiumhybridizationforphotoandmoisture ̄stableperovskitesolarcell[J].AdvancedEnergyMaterialsꎬ2015ꎬ5(20):1501310.[7]㊀邱婷.APbI3型钙钛矿材料的组分优化与光伏性能研究[D].南京:南京理工大学ꎬ2019.[8]㊀YUWLꎬLIFꎬWANGHꎬetal.UltrathinCu2Oasaneffi ̄cientinorganicholetransportingmaterialforperovskitesolarcells[J].Nanoscaleꎬ2016ꎬ8(11):6173-6179.[9]㊀HEYYꎬLEIYꎬYANGXGꎬetal.UsingelementalPbsurfaceasaprecursortofabricatelargeareaCH3NH3PbI3perovskitesolarcells[J].AppliedSurfaceScienceꎬ2016ꎬ389(10):540-546.[10]JEONNJꎬNAHꎬJUNGEHꎬetal.Afluorene ̄termi ̄natedhole ̄transportingmaterialforhighlyefficientandstableperovskitesolarcells[J].NatureEnergyꎬ2018ꎬ3(8):682-689.[11]BOYDCCꎬCHEACHAROENRRꎬBUSHKAꎬetal.Barrierdesigntopreventmetal ̄induceddegradationandimprovethermalstabilityinperovskitesolarcells[J].ACSEnergyLettersꎬ2018ꎬ3(7):1772-1778.[12]白帆.反溶剂对CH3NH3PbI3钙钛矿薄膜及器件性能的影响[D].南京:南京理工大学ꎬ2019.[13]NIEWYꎬHSINHANTꎬREZAAꎬetal.High ̄efficiencysolution ̄processedperovskitesolarcellswithmillimeter ̄scalegrains[J].Scienceꎬ2015ꎬ347(6):521-522.(下转第352页)RoleofMicroRNAsinBreastCarcinogenesisSHEWeiwei1ꎬ2ꎬHUANGQingrong1ꎬLIYanmin1ꎬZHANGGuichun1ꎬZHOUJuhua1(1.InstituteforTumorImmunologyꎬSchoolofLifeSciencesꎬLudongUniversityꎬYantai264039ꎬChinaꎻ2.ShanghaiVocationalCollegeofAgricultureandForestryꎬShanghai201699ꎬChina)Abstract:MicroRNAs(miRNAs)areagroupofnon-codingsingle-strandedRNAsꎬwhicharecomposedof20~24nucleotides.IneukaryotesꎬmiRNAsarehighlyconservativeandtissue-specific.miRNAsusuallyinducemRNAdegradationorpost-transcriptionalinhibitionbycompletelyorincompletelycomplementarypairingwiththeirtargetmRNAsꎬleadingtotargetgenesilencing.RecentstudieshaveconfirmedthatthedysregulationofmiRNAexpressionisassociatedwithbreastcancerdevelopment.miRNAsplayanimportantroleintumorfor ̄mationꎬdifferentiationꎬinvasionandmetastasis.RecentstudiesontheexpressionꎬfunctionandunderlyingmechanismsofspecificmiRNAsinbreastcancerpathogenesisarediscussed.Theresultspresentedherewillprovidesolidevidencesforthedevelopmentofnoveleffectivediagnosisꎬprognosisandtreatmentforbreastcancer.Keywords:microRNAsꎻbreastcancerꎻmechanismofactionꎻdiagnosisꎻtherapy(责任编辑㊀李维卫)(上接第326页)AbstractID:1673 ̄8020(2020)04 ̄0321 ̄EAEffectofAnti ̄solventonthePerformanceofPerovskiteThinFilmsandSolarCellsJIAXiangrui1ꎬBAIFan2ꎬMAOCaixia3ꎬZHANGShufang1ꎬ2(1.SchoolofPhysicsandOptoelectronicEngineeringꎬLudongUniversityꎬYantai264039ꎬChinaꎻ2.SchoolofMaterialsScienceandEngineeringꎬNanjingUniversityofTechnologyꎬNanjing210094ꎬChinaꎻ3.SchoolofElectronicsandInformationEngineeringꎬHubeiUniversityofScienceandTechnologyꎬXianning437100ꎬChina)Abstract:Theefficiencyofperovskitesolarcellshasincreasedrapidlyinafewyearsꎬshowingagreatpotentialforapplication.Asthemostimportantpartofthiskindofbatteryꎬperovskitethinfilmisveryimportanttotheperformanceofthebattery.Perovskitethinfilmspreparedbytraditionalone ̄stepsolutionmethodarepronetosmallgrainsizeandpoorcoverageꎬwhichleadtoloweffi ̄ciencyandpoorstabilityofthebatteryandarenotconducivetoitscommercialdevelopment.Thequalityofperovskitethinfilmscanbeeffectivelyimprovedbyintroducinganti ̄solventintheone ̄stepsolutionmethod.Inthispaperꎬhydrophobicsolvents(tolu ̄eneꎬchlorobenzeneꎬethylacetate)wereusedasanti ̄solventtostudytheeffectofdifferentanti ̄solventsontheperformanceofper ̄ovskitethinfilmandbattery.Keywords:perovskitethinfilmꎻanti ̄solventꎻone ̄stepdepositionmethodꎻphotoelectricpropertyꎻstability(责任编辑㊀李秀芳)。

江浙沪地区太阳能资源技术与经济分析

江浙沪地区太阳能资源技术与经济分析

江浙沪地区太阳能资源技术与经济分析徐新华 王 昕 汪大辉浙江大学环境科学与工程研究所〔提要〕 本文对江浙沪地区太阳能潜力进行了调查和统计,并就太阳能热水器能量资金回收,被动式太阳房、太阳能电池进行研究和分析,认为在我国应用前景很大。

文末对CO2减排是作了预测。

〔关键词〕 太阳能 技术与经济 减排 江浙沪地区 太阳能是地球上唯一外来的永不枯竭的能源,根据估算,地球上每天接收的太阳辐射能相当于2.5×108万桶石油,约等于地球石油总蕴藏量的四分之一。

另外,太阳能利用过程中对环境无任何污染,因此,太阳能是替代能源中的首选能源。

1 太阳能利用现状太阳能的开发利用主要有三个方面:太阳能热利用,太阳能光发电,太阳能热发电。

目前大规模经济地替代常规能源的利用方式是太阳能热利用。

太阳能热利用途径众多,其中具有代表性的已在应用中的有:太阳能热水器、太阳能温室、太阳房、太阳能干燥、太阳灶等。

以太阳能热水器为例,国际上,太阳能热水器技术已趋成熟,世界各主要利用太阳能的国家已达到工业生产阶段,作为商品进入市场。

如以色列有60%的家庭在使用,日本有400万台热水器在运行,全世界正在使用的太阳能热水器约700余万平方米。

我国从七十年代开始,就逐步推广使用太阳能热水器。

到1992年底为止,已推广使用太阳能热水器约200多万平方米,应用范围也由初期以城市的浴室、医院、旅馆等公共事业供应低温热水为主,逐步扩大到游泳池以及低温发酵、工业产品洗涤等工农业生产方面。

另外一种国际上研究较热门的太阳能热利用方式是太阳池,太阳池作为一种大型的热能贮存库,可以调节太阳能的季节变化,可用于采暖和空调、工农业用热以及发电。

其中采暖和空调是最经济和最有现实意义的应用,此外,太阳池发电,有可能是术阳能热发电的突破口。

目前世界上已有十几个实验性太阳池在工作,主在分布在以色列、美国、澳大利亚、意大利等国。

以色列计划在死海建造一系列太阳池电站,总容量达几百万千瓦,现已有一台5MW的太阳池电站投入运行。

溅射功率对GeSb2Te4膜形貌及力学性能的影响

溅射功率对GeSb2Te4膜形貌及力学性能的影响

溅射功率对GeSb2Te4膜形貌及力学性能的影响丁建宁;解国新;范真;付永忠;杨继昌;葛世荣【期刊名称】《江苏大学学报(自然科学版)》【年(卷),期】2005(026)005【摘要】利用电子回旋共振CVD设备的射频磁控溅射方法制备了GeSb2Te4膜,采用原子力显微镜、纳米硬度计以及侧向力显微镜考察了不同溅射功率对GeSb2Te4膜表面微观结构以及力学性能的影响.结果表明:在一定的溅射功率范围内,由于薄膜生长方式从三维向二维的转化,薄膜的表面粗糙度随功率的增大而降低,而且薄膜致密度也随之提高,从而使得非晶态GeSb2Te4膜硬度和弹性模量增大.利用能量密度理论对这一现象进行了分析.另外,由于表面能等因素的影响,功率为63 W制备的GeSb2Te4膜粘附力较高,摩擦系数却较小.【总页数】4页(P372-375)【作者】丁建宁;解国新;范真;付永忠;杨继昌;葛世荣【作者单位】江苏大学微纳米科学技术研究中心,江苏,镇江,212013;江苏大学微纳米科学技术研究中心,江苏,镇江,212013;江苏大学微纳米科学技术研究中心,江苏,镇江,212013;江苏大学微纳米科学技术研究中心,江苏,镇江,212013;江苏大学微纳米科学技术研究中心,江苏,镇江,212013;中国矿业大学材料科学与工程学院,江苏,徐州,221008【正文语种】中文【中图分类】TG174.444【相关文献】1.改性咪唑啉缓蚀剂对碳钢CO2腐蚀产物膜形貌和力学性能的影响 [J], 柴成文;路民旭;李兴无;张国安2.沉积温度对中频磁控溅射制备含氢非晶碳膜表面形貌和力学性能的影响 [J], 姜辉;邹宇3.溅射功率对ZrNx薄膜微观结构、表面形貌及浸润性能的影响 [J], 安涛;鞠金宁4.溅射功率对TiO_2薄膜形貌和光催化性能的影响 [J], 张哲朋;周晨露;禹彪;范海波;郑新亮;姚合宝5.调制结构对TiN/ZrN纳米多层膜的表面形貌、生长行为及力学性能的影响 [J], 徐晓明;辛萍;王娟;赵阳;张庆瑜因版权原因,仅展示原文概要,查看原文内容请购买。

4-咪唑甲酸乙酯的制备

4-咪唑甲酸乙酯的制备

第!"卷第"期苏州大学学报(自然科学版)#$%&!",’$&"*:;&!(() !(()年"月*+,-’./+01,23+,,’4#5-1467(’.6,-./1845’8559464+’)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!文章编号:"(((<!(=>(!(())("<(()?<(@@A咪唑甲酸乙酯的制备"马济美,顾建华,张雅文,沈宗旋(苏州大学化学化工学院,江苏苏州!")((B)摘要:甘氨酸经乙酰化、酯化,在氢化钠作用下与甲酸乙酯缩合,然后在盐酸条件下与硫氰酸钾关环,最后通过双氧水氧化脱巯基,得到咪唑甲酸乙酯,总产率为">CD产物经核磁、元素分析表征D关键词:咪唑甲酸乙酯;缩合;氧化中图分类号:+B!"&>文献标识码:.(引言咪唑(E F E G:H$%I)具有质子授A受性能、共轭酸碱性能、络和配位性能等,享有“生物催化剂”、“生物配体”的美誉D含有咪唑环的组氨酸在医药合成上起着举足轻重的作用,可用于生产治疗心脏病、贫血、风湿关节炎和消化道溃疡等的药物,近年来化学工作者对咪唑甲酸酯衍生物的合成和应用的研究十分活跃D 文献["]报道了两种关环合成’<取代咪唑羧酸甲酯的方法:(")以肌氨酸为原料,通过酯化、’<甲酰化,再关环、选择性去硫得到:图"’<甲基咪唑甲酸甲酯的合成路线"(!)以二氨基丁烯二腈为原料,用原甲酸三乙酯关环,然后酯化、水解、选择性脱羧,再酯化得到:"收稿日期:!((@A(J A"(基金项目:江苏省有机合成重点实验室开放课题资助项目(*1K("))万方数据作者简介:马济美("J?"A),女,湖北黄冈人,硕士研究生,主要从事不对称合成研究D图!"#甲基咪唑甲酸甲酯的合成路线!!$$%年,文献[!]以溴乙酸甲酯为原料合成了"#取代的咪唑甲酸甲酯&图’"#苄基咪唑甲酸甲酯的合成路线我们以易得的甘氨酸为原料,通过酰化、酯化,在"()作用下与甲酸乙酯缩合,再与*+,"关环,最后氧化脱去巯基,得到-.咪唑甲酸乙酯(%),合成路线如下:图-咪唑甲酸乙酯的合成路线%实验部分%&%仪器及试剂熔点用显微镜熔点测定仪(四川大学科仪厂,/,#%型)测定,温度计未校正&元素分析由,(012#304(#%%%$型自动元素分析仪完成&"56由7(08(9#:92;(#-$$型核磁共振仪记录&实验所用的药品均为国产<6或,=级试剂,使用前均经纯化处理&>第%期马济美,顾建华,张雅文,等:-.咪唑甲酸乙酯的制备万方数据!"#咪唑甲酸酯(!)的合成!"#"!乙酰甘氨酸(#)的合成"将##$%&甘氨酸(’"(’)*+)溶于,-).水中,于#’/搅拌下,分批加入01).(’"%’)*+,先加总量的0/%)醋酐,(’)23后补加剩余醋酐,继续于#’/搅拌反应#4,混合物冰冻过夜"抽滤,滤饼用少量冰水洗涤,干燥后得白色固体#-",&,滤液薄膜浓缩,残留物加三倍量水热溶后冷冻,抽滤干燥得("-&,合并两次所得产物乙酰甘氨酸(#)(’"%&(5-"56),)"7"#’-/!#’1/(文献[(]:)"7"#’1/!#’5/)"!"#"#乙酰甘氨酸乙酯(()的合成"将!!"1&(#)(’"!’)*+)、!!1).乙醇及!!"1&’’!81型强酸性苯乙烯阳离子交换树脂加入到#%’).圆底烧瓶中,剧烈搅拌,回流(4后,冷却至室温,过滤回收树脂,滤液浓缩,真空抽去溶剂,析出固体,抽滤得乙酰甘氨酸乙酯(()!#"!&(5("(6),)"7"0-/!05/(文献[0]:)"7"00/!0-/)"!"#"(#9巯基909咪唑甲酸乙酯(%)的合成"将含量为-’6的:;<固体#"-&(’"’-%)*+)和!%).甲苯加入到!’’).三颈瓶中,安装好机械搅拌,:#保护下,缓慢滴加!%).甲酸乙酯,控制温度在!%/!!,/之间,得到灰色浆状物"加毕,冰浴冷却至’/,维持温度于!4内滴加完!%).溶有5"1&(()(’"’-)*+)的甲苯溶液"自然升温至室温,反应混合物渐变粘稠,至搅拌不动时停止反应,放置过夜得灰色粘稠状缩合物(0)"将(0)溶于#!"-&(保留总量的!/%)冰水中,分离出水层,甲苯层再用剩余的冰水洗涤,合并水层置于!’’).圆底烧瓶中,冰盐浴下,加入-"5&(’"’1)*+)硫氰酸钾固体,于’/下缓慢滴加!("%&(’$!#%)*+)浓<=+,加毕,加热至%%/!-’/,保温搅拌04,冷却,浓缩除去残留甲苯,冷冻过夜,析出晶体"抽滤得#9巯基909咪唑甲酸乙酯(%)粗品"干燥后,用乙醇重结晶,得淡黄色固体(%)("0&((#",6),)"7"!50/!!5-/"!"#"009咪唑甲酸乙酯(!)的合成"在!%/下将’"%&(%)(’"’’()*+)溶于#"%&(’"’(%)*+)%’6双氧水,加热至%%/!-’/,反应#4,冷至室温,用饱和碳酸钠溶液中和至7<>1,析出白色结晶,冷冻过夜,过滤,干燥,得0?咪唑甲酸乙酯(!)粗品"用水重结晶得白色固体(!)’"#(&(%06)"!<:@A (=B =+():"!"(-!!"0’(C ,(<,=<(),0"(0!0"0’(D ,#<,=<#),1"1-!1"1,(E ,#<,2)2E ;F *+G H 23&7H *C *3I )"元素分析实测值(=-<5:#J #理论值)(6):=,%!"%!(%!"0#);<,%"5((%"1%);:,!,"10(!,",,)"#结果与讨论在缩合环化时,生成的产物比较粘稠,我们采用机械搅拌的方法,使反应物充分混合,反应更彻底,比普通的磁力搅拌效果好"我们也尝试了改变:;<、甲酸乙酯与乙酰甘氨酸乙酯加入的先后顺序,经比较只有向:;<中先滴加甲酸乙酯,后加乙酰甘氨酸乙酯最佳"在氧化脱巯基过程中,我们尝试了硝酸氧化法,但所得到的产物经!<:@A 鉴定,不是目标产物,而可能是#?巯基咪唑?0?羧酸甲酯的异构体"咪唑羧酸酯是合成组氨酸的前体,在有机合成中有很重要的实用价值,我们设计的合成方法路线比较简单,原料经济易得,实验操作方便,美中不足的是产率比较低,进一步提高产率将有望应用于实际生产"参考文献:[!]#=J ::K ..L M ,N O A P Q K R R K L ,S K ..KTK ,!"#$"=*3U G 32G 3C I V 3C 4G I 2I *W )G C 4V +!9)G C 4V+9#,09E 2X H *)*9%92)2E ;F *+G 9Y ;H X *Z V +;C G [L ]"[V3C 4G I 2I ,!,55,(#):1-1?1-,"[#][J K B K 9<Q \L ]A K ^R [=,.O A K :@_,<Q .[]K A ^K :M],!"#$"\)7H *U G E I 7G Y 2W 2Y I V 3C 4G I 2I *W [!‘9!%:]9;3E [(‘9’-苏州大学学报(自然科学版)第#!卷万方数据!"#]$%$&’()’*’+,[-].-%/0,11,*23*4/*’53&/67,899!,:::;<!=;<".[<]>?4#@A A-B ,C ’2C ##C 42-.A &,/D ’*D /)/1E (,*&E *651E (’(5F /D ,)E 1G 1E D ’+,/+*G 1E D E 1)E65(’+,[-].-2&,7H 5DI ,6J ’+A 6/+(!,!K L <:M ;"=M ;L .[:]?#N @4H @#AI ,O P ?A A ?H?O ,%?B @H H C #HC .!,8,:$A 6’Q /Q ’+,(F 657)&’5/D E1/),*/7’+5/D ’*,(),6([-].A ,)6/&,$*65+,!K ;<,<K :<:!K =<:88.!"#$%"%&’()(*!+,’-’.%/(0#,:,1%"2(340’1%1’.#&540#6&#"R ?-’$7,’,O S-’/+$&T /,U P ?#OV /$W ,+,H P @#U 5+G$X T /+(H D &5515F 2&,7’()6E /+*2&,7’D /1@+G ’+,,6’+G,H T Q &5TS +’Y .,H T Q &5T 8!"99M ,2&’+/)726&"%1&:?D ,)E 1G 1E D ’+,,)&E 1,(),6,36,3/6,*F 657G 1E D ’+,0E /D ,)E 1/)’5+F 5115W ,*0E ,(),6’F ’D /)’5+,W /(D 5+$*,+(,*W ’)&,)&E 1F 567/),’+)&,36,(,+D ,5F #/P )5/F F 56*)&,F 567E1/),*365*T D ),W &’D &W /()&,+D 5+Y ,6),*)5)&,)’)1,D 5735T +*0E /6’+G $D 15(T 6,6,/D )’5+W ’)&Z H 2#’+/[T 5T (P 21,/+**,(T 1F T 6/)’5+0E )6,/)’+G W’)&P 8C 8.A &,365*T D )W /(D &/6/D ),6,*0E !P #R 4/+*,1,7,+)/+/1E (’(.8#49(".6:,)&E 1’7’*/Q 51,D /605X E 1/),;D 5+*,+(/)’5+;5X ’*/)’5+(责任编辑:耳东)(上接第<!页)参考文献:[!]?N %@44%,Z C #P @\R ?O ,R 2?#N 4@B R P .A 53515G ’D /1,+)653E[-].A 6/+(?7,6R /)&H 5D ,!K M ",!!::<9K =<!K .[8]>C B @#4.A 53515G ’D /1,+)653E F 56+5+$D 573/D )(,)([-].A 6/+(?7,6R /)&H 5D ,!K L <,!;::!8"=!<M .[<]I @H A #V>.N ’7,+(’5+A &,56E ’+N E +/7’D /1H E (),7([R ].25+),7356/6E ]’,(/+*?331’D /)’5+(.2&’D /G 5:S +’Y ,6(’)E5F 2&’D /$G5I 6,((,!K K L .[:]>4\#R ,Z ?A C Z?.C +%5D /1@+)653E [R ].%,D )T 6,#5),(’+R /)&,7/)’D (.>,61’+$#,WV 56J :H 36’+G $],61/G.["]A ?Z @#H^,]@4>\A H Z \@.C +)&,Y /6’/)’5+/136’+D ’31,F 56)&,)53515G ’D /1,+)653E 5F D ,6)/’++5+$D 573/D )(,)([-].@6G5*A &_N E +/7H E(,899<,8<:<!L =<:;.:)&5#;%"’%&’()%0$"’)1’$0#*("&5#&($(0(<’1%0#)&"($4(*1#"&%’))(),1(-$%1&6#&H P @#-’+G$&T /(H D &5515FR /)&,7/)’D H D ’,+D ,,H T Q &5TS +’Y .,H T Q &5T 8!"99M ,2&’+/)726&"%1&:^56/D 5+)’+T 5T ()6/+(F 567/)’5+!5F /D 573/D )(3/D ,(",#),!’(,6G 5*’D ,W ,D 5+(’*,6)&,(,)$,’)D 5+(’()(5F /1135’+)(%"")&/))&,1’7’)(5F =15G !(&’(%,"))’W ’)&6,(3,D ))5’/+*"’(,[T /1)5)&,7,/(T 6,)&,56,)’D ,+)653E (!(!).B ,365Y ,(!(!)‘()53(!,$))8#49(".6:)53515G ’D /1,+)653E ;7,/(T 6,)&,56,)’D ,+)653E ;,6G 5*’D ’+Y /6’/+)7,/(T 6,(责任编辑:谢金海)!M 第!期马济美,顾建华,张雅文,等::=咪唑甲酸乙酯的制备万方数据4-咪唑甲酸乙酯的制备作者:马济美, 顾建华, 张雅文, 沈宗旋, MA Ji-mei, GU Jian-hua, ZHANG Ya-wen,SHEN Zong-xuan作者单位:苏州大学,化学化工学院,江苏,苏州,215006刊名:苏州大学学报(自然科学版)英文刊名:JOURNAL OF SUZHOU UNIVERSITY NATURAL SCIENCE EDITION年,卷(期):2005,21(1)1.BARNETT J W;O'CONNORCJ The acid catalysed hydrolysis of acetylglycine and glycyltyrosine[外文期刊] 19732.SOEDE-HUIJBREGTS C;LARENMV;HULSBERGEN F B Improved specific synthesis of [1'-15N-and [3'-15N-L-histidine[外文期刊] 20013.CONNELL J F;PARQUETTE J;YELLE W E Convenient synthesis of methyl 1-methyl-2,4-dibromo-5-imidazolecarboxylate[外文期刊] 1988(02)4.ANDERSEN T P;GHATTASAG;LAWESSON S O1,2,4-Trizazines from thioacylated amino acid esters[外文期刊] 1983本文链接:/Periodical_suzhoudxxb-zr200501013.aspx。

2024年APET薄膜市场需求分析

2024年APET薄膜市场需求分析

APET薄膜市场需求分析1. 概述本文旨在对APET(共聚酯)薄膜市场的需求进行分析。

首先,我们将介绍APET 薄膜的定义和特性。

然后,我们将探讨薄膜市场的主要应用领域,并分析各领域的市场需求。

最后,我们将总结市场需求的趋势和未来发展前景。

2. APET薄膜的定义和特性APET薄膜是由共聚酯(聚对苯二甲酸乙二醇酯)制成的透明薄膜。

它具有以下主要特性:•优异的透明度:APET薄膜具有出色的透明度,可展示产品的外观和特点。

•优秀的耐热性:APET薄膜能够在高温条件下保持较好的稳定性和性能。

•耐化学品腐蚀:APET薄膜对许多化学品具有良好的抗腐蚀性,适用于包装化学品和食品等领域。

•易于加工:APET薄膜可通过吹塑、挤出和热封等加工方法制成各种形状和尺寸的包装产品。

3. 薄膜市场的主要应用领域APET薄膜在各个行业中有广泛的应用。

以下是主要的市场领域:3.1 食品包装APET薄膜在食品包装行业中广泛应用。

由于其优异的透明度和耐化学品腐蚀性,APET薄膜常被用于包装饮料、果汁、糖果、糕点等食品,能够有效展示产品的外观,满足消费者对产品质量和安全性的需求。

3.2 医疗器械包装由于APET薄膜具有良好的耐热性和化学稳定性,因此广泛用于医疗器械包装领域。

医疗器械需要经过严格的环境保护和消毒处理,并保持其卫生和安全性能,APET薄膜能够满足这些要求并提供良好的包装保护。

3.3 电子产品包装APET薄膜在电子产品包装中也有广泛应用。

电子产品对包装的要求非常严格,需要具备良好的抗静电性能和耐冲击性能,同时还需要具备透明度较高的特点。

APET薄膜能够满足这些要求,为电子产品提供良好的保护。

4. 市场需求分析APET薄膜市场需求主要受以下因素影响:4.1 消费者态度变化随着消费者对产品质量和安全性的关注程度不断提高,对于包装材料的要求也日益严格。

消费者对于透明度和产品展示的要求提高,对于环保材料的需求也增加。

这促使APET薄膜市场需求逐渐增加。

热处理对GeSb_2Te_4薄膜微观结构及其摩擦性能的影响

热处理对GeSb_2Te_4薄膜微观结构及其摩擦性能的影响

热处理对GeSb_2Te_4薄膜微观结构及其摩擦性能的影响解国新;丁建宁;范真;付永忠;朱守星;万春磊【期刊名称】《摩擦学学报》【年(卷),期】2006(26)2【摘要】利用射频溅射法制备了GeSb2Te4薄膜并对其进行热处理,分析热处理前后样品的结晶情况,用纳米硬度计测定硬度,利用静电力显微镜表征样品的表面电势,采用原子力显微镜观察薄膜表面形貌,利用侧向力显微镜对比考察了在考虑相对湿度的情况下,热处理前后GeSb2Te4薄膜的粘附力和摩擦性能.结果表明:经过退火的沉积态GeSb2Te4薄膜发生从非晶相到fcc亚稳相再到hex稳定相转变;粘附力与表面粗糙度之间没有明显的对应关系,但与样品表面自由能和表面电势有一定关系;在低载荷下GeSb2Te4薄膜的摩擦力很大程度上受粘附力支配,而在高载荷下的摩擦力受犁沟影响显著;经过340℃退火GeSb2Te4薄膜由于具有层状结构,呈现出一定的润滑作用.【总页数】5页(P108-112)【关键词】GeSb2Te4薄膜;热处理;表面电势;粘附力;摩擦性能【作者】解国新;丁建宁;范真;付永忠;朱守星;万春磊【作者单位】江苏大学微纳米技术研究中心;东华大学机械工程学院;清华大学材料工程系【正文语种】中文【中图分类】TG174.44;TH117.3【相关文献】1.热处理温度对Ag+、Zn2+共掺杂TiO2薄膜微观结构及抗菌性能的影响 [J], 公伟伟;徐松梅;吴明健;高朋召2.温度对类富勒烯碳氮薄膜微观结构与摩擦学性能的影响 [J], 冯兴国;杨拉毛草;周晖;张凯峰;万志华;胡汉军;郑玉刚;张文晶;霍丽霞3.Ta含量对Cr-Ta-N薄膜的微观结构、力学性能以及摩擦磨损性能的影响 [J], 边建国;许俊华4.纳米GeSb_2Te_4薄膜在大气环境中的摩擦性能研究 [J], 朱守星;丁建宁;范真;李长生;蔡兰;杨继昌5.掺杂类金刚石薄膜微观结构和摩擦学性能的研究进展 [J], 汪科良;周晖;张凯锋;贵宾华;蒋钊;张延帅;刘兴光;郑玉刚因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Structure,stability,and mechanical properties of epitaxialWÕNbN superlatticesA.Madan a)and S.A.BarnettDepartment of Materials Science and Engineering and Advanced Coating Technology Group,Northwestern University,Evanston,Illinois60208A.Misra,H.Kung,and M.NastasiLos Alamos National Laboratory,Los Alamos,New Mexico͑Received3November2000;accepted19February2001͒Epitaxial W/NbN superlattices with modulation wavelengths⌳ranging from1.3to25nm were grown on MgO͑001͒substrates by dc reactive magnetron sputtering in Ar/N2mixtures.The epitaxial relationship between the layers is given by W͑001͒ʈNbN͑001͒and W͓110͔ʈNbN͓100͔.X-ray diffraction and Rutherford backscattering resultsfitted using simulations showed that the superlattices had well-defined planar layers with interface widths ofϷ0.2nm.Nanoindentation measurements showed superlattice hardnesses as high as33GPa compared to8for W and20for NbN.The superlattices showed little change in x-ray superlattice reflections or nanoindentation hardness after vacuum annealing up to the highest temperature tested,1000°C for6h.Thus,the layers remained intact during annealing,allowing the superlattice hardness enhancement to be retained.©2001American Vacuum Society.͓DOI:10.1116/1.1365133͔I.INTRODUCTIONThinfilm superlattices containing an elemental metal anda compound layer are a type of nanocomposite material thatcan exhibit substantial hardness increases,oftenϾ100%,over rule-of-mixtures values.1Hardness enhancements havebeen seen for polycrystalline Ni/TiN,2Pt/TiN,3Fe/TiC,4W/TiC,5Mo/NbN,6,7and W/NbN.6The latter four superlat-tices consist of a body centered cubic͑bcc͒metal͑M͒andB1-structure group-VIA compound͑C͒,with an epitaxialorientation of(001)Mʈ(001)C and͓110͔Mʈ͓100͔C.With this 45°rotation of their unit cubes about the͑001͒direction,there is a good lattice match.High quality epitaxial superlat-tices of Mo/NbN6and W/NbN6,8have been grown onMgO͑001͒over a wide range of periods.For W/TiC multi-layers,there is a transition from epitaxial to polycrystallinewith increasing modulation wavelength.5Metal/nitride nano-structures have the potential to be stable at elevated tempera-tures because of their low-energy coherent interfaces andtheir limited solubility.In a recent article,9it was shown thatMo/NbN superlattices were stable up to1h at1000°C.Forlonger anneals,the ternary compound MoNbN formed,re-sulting in a loss of x-ray diffraction superlattice reflections.Thefilms retained their high hardnesses͑Ͼ30GPa͒evenafter the loss of the superlattice reflections,apparently due tothe formation of a stable MoNbN/NbN nanostructure.Thehigh-temperature stability of the W/NbN system has notbeen studied;it may be more stable than Mo/NbN since thereis no ternary phase reported.In this article,we report a detailed study of epitaxialW/NbN superlattices.In addition to x-ray diffraction andnanoindentation measurements performed before and afterhigh-temperature annealing,more complete structural char-acterization of the as-depositedfilms is provided than in prior articles.6Section II describes the experimental proce-dure for deposition and characterization of the superlattices.The results of x-ray diffraction͑XRD͒scans and correspond-ing computer simulations are detailed in Sec.III.Rutherfordbackscattering͑RBS͒results are detailed in Sec.IV.Anneal-ing results and nanoindentation measurements are presentedin Sec.V.II.EXPERIMENTAL PROCEDUREW/NbN superlattices with modulation wavelengths⌳from1.3to24nm and l W/⌳ϳ0.5͑where l W is the W layerthickness and⌳is the period͒were deposited using an ultra-high vacuum reactive dc magnetron sputtering system thathas been described in detail elsewhere.10Films were depos-ited from two water-cooled magnetron sputter sources with5-cm-diameter,99.95%purity W and Nb targets in Ar–N2͑puritiesϾ99.999%͒mixtures at a total pressure of10 mTorr.The substrate temperature ofϷ800Ϯ50°C was suf-ficiently large that minimal nitrogen was incorporated intothe individual layers of W during growth,6even with nitro-gen partial pressures͑4–8mTorr͒high enough to form stoi-chiometric NbN.This results from the relatively low heat ofWN formation compared to that of NbN.7The sputteringcurrents and voltages were0.3A and440–540V for W and0.6A and440–560V for Nb.As the targets eroded,thecurrents were kept constant and the voltages of the gunsdecreased in the range indicated.Under these conditions,thedeposition rates for W and NbN were2.7and1.8Å/s,re-spectively.Totalfilm thicknesses wereϷ1␮m.The sub-strates were polished MgO͑001͒.A retarding-field analyzer mounted in the growth chamber was used for in situ Auger electron spectroscopy͑AES͒and low-energy electron dif-fraction͑LEED͒measurements.Both high-and low-angle XRD␪/2␪scans were made with a double-crystal diffractometer in theϩ/Ϫgeometry.a͒Electronic mail:a-madan@952952 J.Vac.Sci.Technol.A19…3…,MayÕJun20010734-2101Õ2001Õ19…3…Õ952Õ6Õ$18.00©2001American Vacuum SocietyThe diffractometer was equipped with a LiF͑002͒focusing monochromator.Since the intensity of the satellite peaks var-ied over5–6orders of magnitude,the power of the x-ray tube was adjusted,with a maximum of1.2kW used for the weakest peaks.Keeping an overlap of at least one peak,the different parts of the spectrum were then combined.The azi-muthal scans were done on a four circle diffractometer which allows rotation about␹,␸,and␪͑the symbols have their usual meanings͒.11The scans were done keeping␹and␪fixed and varying␸at intervals of0.2°.The low-angle XRD patterns were simulated using Paratt’s formalism.12The superlattice period⌳was deter-mined by matching the peak positions.The layer thickness ratio l W/⌳͑where l W is the W layer thickness͒was then adjusted so that the relative peak intensities matched.The high-angle XRD patterns were simulated using a kinematical calculation assuming a trapezoidal compositional modula-tion.The high-angle simulation is similar to other such calculations13,14and is described elsewhere.15Layer thick-nesses were taken from the low-angle simulation results.The lattice spacings of the individual constituents were adjusted so that the relative intensities between the most-intense peaks in the W͑002͒and the NbN͑002͒regions matched. Peak widths were accounted for by adjusting the following three factors.First,instrumental peak broadening was ac-counted for byfitting the MgO substrate peak.Second,crys-talline defects were included via a Gaussian distribution of interplanar spacings with width␴d around the average.Fi-nally,a Gaussian distribution of the modulation wavelengthwith width␴⌳was used to account for variations in layer thicknesses.Interface widths were then adjusted to obtain a bestfit to the peak intensities.RBS was performed with2MeV Heϩions to determine the chemical composition of the superlattices and ion chan-neling was performed with5.6MeV Heϩϩions to check the epitaxial quality of thefilm.Both normal and60°angle of incidence were used at2MeV but only normal incidence was needed for the channeling experiment.The layered structure was better resolved at60°tilt at small bilayer peri-ods.The experimental data was compared with simulations performed using the software RUMP.16The annealing experiments were performed in a vacuum furnace with a maximum temperature of1000°C and a base pressure of1.0ϫ10Ϫ8Torr obtained using turbomolecular and ion pumps.Typical test pressures during the anneals were5.0ϫ10Ϫ8Torr.After the furnace was brought to the annealing temperature,the sample was inserted via a load lock into the preheated furnace.After annealing,the sample was removed from the furnace and allowed to cool under vacuum.Nanoindentation measurements on as-deposited and an-nealedfilms were performed at room temperature,using a UMIS-2000ultramicroindentation system.The triangular Berkovich diamond indenter tip was calibrated using fused silica.17Each sample was indented ten times,with a maxi-mum load of8mN,which yielded typical maximum depths ofϳ80nm for the superlattices.The depth resolution of the instrument isϳ0.1nm.A typical experiment would include a load segment,a hold segment for100s,and an unload segment.The data shown are averages over the ten indents. III.AS-DEPOSITED FILMSA.Monolithicfilm structure and compositionPreliminary experiments were carried out to determine the optimum conditions for depositing epitaxial Wfilms on MgO in an Ar/N2atmosphere.The substrate temperature was varied from650to800°C.Good quality epitaxial growth was achieved atϷ800°C,as verified by spotty in situ LEED patterns.XRD scans confirmed the͑002͒orientation,with no peaks corresponding to WN.At lower temperatures,the W films showed an additional W͑011͒reflection.A N2partial pressureу4mTorr yielded stoichiometric NbN.Figure1shows the in situ AES spectra taken after deposition of monolithic NbN͑a͒and W͑b͒films in an Ar/N2mixture with a nitrogen partial pressure ofϳ6mTorr. Comparison of the NbN spectrum with prior results10indi-cates that thefilm was stoichiometric.The W spectrum shows a N peak barely above the background.This very low N content is not surprising given that the substrate tempera-ture of800°C is higher than where N desorbs from W–N films,Ϸ700°C.18These results show that essentially metallic W can be grown in the same Ar–N2mixtures used to deposit stoichiometricNbN.F IG.1.In situ Auger spectra from͑a͒a NbNfilm and͑b͒a Wfilm deposited in an Ar/N2atmosphere.The NbN is stoichiometric and W spectra shows little or no residual nitrogen.JVST A-Vacuum,Surfaces,and FilmsB.Superlattice x-ray analysis1.Pole figure scansThe epitaxial orientation of W/NbN superlattices on MgO ͑001͒was observed by aligning the diffractometer to observe the MgO ͕220͖,NbN ͕220͖,or W ͕110͖out-of-plane reflections,and rotating the sample azimuthally.Figure 2shows four peaks from MgO ͕220͖separated by 90°in ␸,corresponding to the angles where those planes were aligned with the diffractometer.The observed differences in intensity among each family of reflections occurs because of imperfect substrate orientation in the diffractometer.The NbN ͕220͖peak ␸values matched those of MgO,showing that the ori-entation was the same as the substrate.The four peaks from the W ͕110͖are rotated by 45°with respect to the NbN ͕220͖peaks.This shows that the epitaxial orientation is (001)W ʈ͑001͒NbN and ͓110͔W ʈ͓100͔NbN ,i.e.,there is a 45degree rotation of the unit cubes about the ͑001͒normal asshown schematically in Fig.3.The result is similar to that obtained for Mo/NbN superlattices.2.Low-angle XRDFigure 4depicts typical low-angle XRD scans for W/NbN superlattices with different ⌳and l W /⌳ϳ0.5.About 18re-flections are seen for the ⌳ϭ16.4nm superlattice.The strong superlattice reflections result from the large difference in x-ray scattering factors for the layers,and also indicate that the superlattices had relatively abrupt flat interfaces.The relative peak intensities depend on the layer thickness ratio.For l W /⌳ϳ0.5,every alternate peak is weak as seen in Fig.4.The low-angle patterns were used to accurately determine ⌳.The peaks of different orders n in the low angle XRD pattern occur at values of ␪n given by 19sin 2␪n Х͑␭/2⌳͒2n 2ϩ2␦,͑1͒where ␦is the correction to the average refractive index and ␭is the x-ray wavelength.A plot of sin 2␪vs n 2is a straight line and ⌳can be evaluated from ⌳ϭ␭2ͱslope.3.High-angle XRDFigure 5shows typical high-angle XRD patterns about the ͑002͒reflections for W/NbN superlattices (l W /⌳ϳ0.45)for different ⌳values.The expected Bragg peak positions for the ͑002͒reflections for W,NbN,and MgO are labeled.Mul-tiple strong superlattice reflections were observed in all cases.Similar XRD patterns with a large number of strong reflections were seen in another study.8The envelope func-tions have two maxima near the W and NbN Bragg-peak positions.As ⌳increases,thesuperlattice reflection spacingF IG .3.Schematic drawing showing the epitaxial relationship observed be-tween BCC Wand rocksalt NbN.F IG .4.Low-angle XRD patterns from W/NbN superlattices with superlat-tice periods ⌳ϭ3.48,6.95,13.1,and 16.4nm.The 3.48nm period super-lattice is 34.8nm thick whereas the other superlattices have a total thickness of 1␮m.Simulated ͑–͒low-angle XRD patterns for the ⌳ϭ3.48nm W/NbN superlatticeare also shown.F IG .2.Pole figure XRD scans of ͑a ͒NbN ͑220͒,͑b ͒W ͑110͒,and ͑c ͒MgO ͑220͒reflections from a ⌳ϭ3.8nm W/NbN superlattice.J.Vac.Sci.Technol.A,Vol.19,No.3,May ÕJun 2001decreases and the envelope function becomes stronger near the W ͑002͒and NbN ͑002͒positions and weaker between.The transition from an envelope function with a central maximum to one with two maxima occurs at relatively small ⌳due to the large ratio of out-of-plane lattice spacings a NbN ͓002͔/a W ͓002͔ϭ1.4,compared, e.g.,with NbN/TiN (a NbN ͓002͔/a TiN ͓002͔ϭ1.036).15Superlattices with a large ra-tio of out-of-plane spacings,such as Pt/Fe (a Pt ͓002͔/a Fe ͓002͔ϭ1.46),20Au/Fe (a Au ͓002͔/a Fe ͓002͔ϭ1.42),21and Au/Cr (a Au ͓002͔/a Cr ͓002͔ϭ1.42),22also have broad envelope func-tions with two maxima and hence also show superlattice re-flections over a large range in 2␪.4.XRD simulationsA best fit to an experimental low-angle XRD pattern is shown in Fig.4.The modulation wavelength ⌳ϭ3.48nm and the layer thickness ratio l W /⌳ϭ0.56obtained from this low-angle XRD simulation agree well with the growth rate calibrations and the ⌳obtained using Eq.͑1͒.The best-fit simulation of the high-angle XRD pattern from the ⌳ϭ3.86nm superlattice is shown in Fig.5.Interface widths obtained from both high-and low-angle simulations were Ͻ0.2nm,similar to values obtained previously for epitaxial Mo/NbN superlattices.6These relatively abrupt interfaces are not sur-prising given that the layer materials are immiscible in both these cases.In contrast,larger interface widths of Ϸ1nm are observed for miscible-layer TiN/NbN 14superlattices grown under similar conditions.The simulation lattice spacings in-dicate that the W was strained,whereas the NbN was not strained.This is similar to what was seen for Mo/NbN su-perlattices and is the net effect of the coherency and thermal-mismatch strains.6Cross-sectional transmission electron mi-croscopy images of a W/NbN superlattice from another study showed continuous well-defined layers with verticallines propagating vertically down through the image inter-rupting the lateral coherence of the layers.8This was attrib-uted to dislocation lines relieving the relative strain between the W and NbN.The lattice spacing fluctuations ␴d ϳ0.002nm indicate some crystalline imperfections,and are similar to the values obtained for TiN/NbN 15and Mo/NbN 6superlattices grown under similar conditions.Fluctuations in the modulation wavelength were ␴⌳ϳ0.2nm,and indicated some interface roughness.C.Rutherford backscattering …RBS …resultsThe epitaxial quality of the W and NbN layers on MgO was revealed in the ion-channeling experiments on a ⌳ϭ17nm superlattice,using 5.6MeV He ϩϩions,shown in Fig.6.To obtain the backscattering yield for a random orientation,the sample stage was wobbled Ϯ4°during the scan ͑solid lines in Fig.6͒.The RBS yield when the sample was not wobbled,but rather tilted with the incoming ions aligned along the easy ͓100͔channeling direction,is also plotted on Fig.6.The significant drop in the backscattering yield in the channeled sample,as compared to random,indicates that the superlattice was epitaxial.At the surface W peak ͑channel ϳ495in Fig.6͒,the minimum channeling yield,␹min ͑ratio of the backscattering yield from channeled to random spectra,23was calculated as 46%.The theoretical ␹min value for W is ϳ1.2%.23This higher value of channeling yield as compared to the theoretical estimate for a perfect crystal is attributed to the mosaic spread ͑full width at half maximum ϭ1.92°for W peaks in the XRD ␾scans ͒in these epitaxial films.Typically,for angular misorientations Ͼϳ1°the back-scattering yield will be above the theoretical minimum.23Due to the large number of very thin superlattice layers,spectra taken with a normal incidence beam did notclearlyF IG .5.High-angle XRD spectra around the 002reflections from W/NbN superlattices with periods ⌳ϭ3.86,6.95,and 13.1nm.The NbN ͑002͒and W ͑002͒Bragg angles,41.06°and 58.27°,respectively,are indicated.Simu-lated ͑᭹͒XRD patterns for the 3.86nm W/NbN superlattice are also shown.The parameters obtained from the simulations are l W /⌳ϭ0.53and a w ϭ0.322nm,a NbN ϭ0.439nm,␴⌳ϭ0.1nm,and ␴d ϭ0.002nm.F IG parison of the backscattering yields from a W/NbN sample that was wobbled ͑random orientation,solid lines ͒and a sample that was ori-ented for ion channeling ͑dotted lines ͒.The low backscattering yield in the channeled sample is consistent with epitaxial alignment of the superlattice.JVST A -Vacuum,Surfaces,and Filmsresolve the individual layers.However,when the sample was tilted by ϳ60°,as in the data shown in Fig.7,some of the bilayers near the surface can be separated.The resolution deteriorates with increasing depth due to straggling,i.e.,the spread in energy of the incident He ϩions increases with increasing depth.This allowed the compositions of the indi-vidual layers and the separation of elements across the inter-faces to be determined via simulations.The RBS spectrum from a superlattice with ⌳ϭ17nm,obtained using 2MeV He ϩions,is shown in Fig.7.Only the near-surface region,where distinct peaks from the layers are observed,is shown in Fig.7.Four clear oscillations in the yield are seen just below the W edge,corresponding to the four W layers nearest the surface.Oscillations are also seen below the Nb edge,but the oscillation amplitude is reduced due to interference between scattering from the W and Nb layers.The simulations results are superimposed on the ex-perimental data in Fig.7.The best fit was obtained for the following compositional profile:͑i ͒stoichiometric NbN lay-ers,͑ii ͒pure W layers ͑note,however,that a nitrogen con-tamination of Ͻ2at.%could not be clearly resolved by com-paring the experimental and simulated patterns ͒,͑iii ͒no interdiffusion of Nb and W across the interfaces,and ͑iv ͒equal numbers of atoms/cm 2͑within ϳ2%͒of the W and NbN layers,with each containing 55ϫ1015atoms/cm -ing the atomic density of W of 6.32ϫ1022atoms/cm 3the layer thickness obtained is ϳ8.7nm.This agrees well with the XRD data in Fig.4,where the simulation yielded a W layer thickness of 8.5nm.RBS experiments on samples with only one or two bilay-ers might allow more accurate determination of the compo-sitions.Nevertheless,the data presented here ͑Figs.6and 7͒conclusively show that the superlattices were epitaxial ͑con-sistent with XRD ͒,and that the W and Nb are well separated across the interface with no detectable N in the W layers and stoichiometric NbN layers.D.Hardness resultsFigure 8shows the typical loading–unloading sequences for W,NbN,and an as-deposited W/NbN superlattice ͑⌳ϳ3.2nm ͒.As expected,the W film showed the largest displacement depth and the largest area between the loading and unloading curves,indicating a relatively low hardness ͑8GPa ͒and substantial plastic deformation.The NbN film dis-placement depth was considerably smaller,and the hardness obtained was larger,Ϸpared to the monolithic films,the superlattices showed lower indent depths and much smaller areas between the loading and unloading curves,as shown in Fig.8.This indicates less plastic deformation and substantially higher hardness.The superlattice hardness was always larger than the rule-of-mixtures value of 14GPa,de-creasing from Ϸ33GPa at small ⌳͑2–3nm ͒to Ϸ22GPa at ⌳ϭ24nm.The hardness values for as-deposited films agreed well with a prior report.6It is to be noted that the creep values ͑displacement at maximum load ͒are 6.8nm for the W,14.5nm for the NbN,and 0.3nm for the as-deposited superlattice.The creep value is lower for the superlattice because of the interfaces hindering dislocation motion.Fig-ure 8also shows the loading–unloading curve for the W/NbN superlattice after annealing at 1000°C for 6h,which is discussed in the following section.IV.ANNEALING RESULTSFigure 9compares the ͑a ͒high-angle and ͑b ͒low-angle XRD scans from a W/NbN superlattice with ⌳ϭ3.2nm be-fore and after annealing at 1000°C for 6h.There is little change in the XRD peaks in the low-angle pattern.Every second peak remains lower in intensity for the annealed films indicating that the superlattice retained its original layer thickness ratio of Ϸ0.5.This is different from what was seen for Mo/NbN superlattices under the same annealing condi-tions,where the low-angle XRD peak intensitiesgraduallyF IG .7.Experimental RBS data compared with the simulation ͑dotted lines ͒assuming discrete W and NbN layers of equalthicknesses.F IG .8.Typical nanoindenter loading–unloading displacement curves for W ͑ϫ͒,NbN ͑᭿͒,and an as-deposited ⌳ϳ3.2nm W/NbN superlattice ͑–͒.The result for the superlattice after annealing at 1000°C for 6h is also shown ͑•••͒.J.Vac.Sci.Technol.A,Vol.19,No.3,May ÕJun 2001decreased with increasing annealing time,indicating degra-dation of the layered structure.7There is also no evidence of any interfacial compound for the annealed W/NbN superlat-tices,unlike Mo/NbN where reflections from the ternary compound MoNbN were observed as the annealed time in-creased.Note that the phase diagram for the W–Nb–N sys-tem does not show the existence of the ternary WNbN.24W has a substantially higher melting point͑3422°C͒than Mo ͑2623°C͒,and hence it is possible that the ternary compound would form at a higher temperature.The loading–unloading curve for the superlattice with ⌳ϭ3.2nm,after annealing at1000°C for6h,is shown in Fig.8.The curves look similar to those for the as-deposited film,and HϷ33GPa was obtained,the same as for the as-depositedfilm within experimental error.This is similar to the behavior observed for Mo/NbN,where the hardness re-mained stable or increased slightly upon annealing.9The W/NbN superlattices were much more stable than the mis-cible TiN/NbN superlattices,where the layers interdiffused rapidly and the hardness decreased at temperatures у800°C.25This is presumably due to the immiscibility of W and NbN.V.SUMMARY AND CONCLUSIONSEpitaxial W/NbN superlattices have been grown on MgO ͑001͒substrates in an Ar/N2atmosphere.A45°rotation of the W lattice with respect to the NbN lattice and the MgO substrate has been verified via polefigure scans.The super-lattices have a well-defined layered structure,as confirmed by low and high XRD scans along with RBS.W/NbN super-lattices retain their structure and hardness even after the samples have been annealed at1000°C for6h.ACKNOWLEDGMENTSTwo authors͑A.M.and S.B.͒would like to acknowledge thefinancial support of National Science Foundation Grant No.DMR-9442873.Three authors͑A.M.,M.N.,and H.K.͒acknowledge support at Los Alamos National Laboratory from DOE/OBES͑Dept.of Energy/Office of Basic Energy Science͒.1S.A.Barnett,in Physics of Thin Films,edited by M.Francombe and J.A. Vossen͑Academic,New York,1993͒,p.1.2X.Chu,M.S.Wong,W.D.Sproul,S.L.Rohde,and S.A.Barnett,J. Vac.Sci.Technol.A10,1604͑1992͒.3J.L.He,W.Z.Li,and H.D.Li,Jpn.J.Appl.Phys.Lett.37,679͑1997͒. 4C.H.Liu,W.Z.Li,and H.D.Li,Nucl.Instrum.Methods Phys.Res.B 95,323͑1995͒.5T.D.Moustakas,J.Scanlon,J.Y.Koo,H.W.Deckman,A.Ozekcin,R. Friedman,and J.A.McHenry,Mater.Sci.Eng.,B6,179͑1990͒.6A.Madan,Y.-Y.Wang,S.A.Barnett,C.Engstrom,H.Ljungcrantz,L. Hultman,and M.Grimsditch,J.Appl.Phys.84,776͑1998͒.7A.Madan,X.Chu,and S.A.Barnett,Appl.Phys.Lett.68,2198͑1996͒. 8R.M.Osgood III,J.E.Pearson,C.H.Sowers,and S.D.Bader,J.Appl. Phys.84,940͑1998͒.9C.Engstrom,A.Madan,J.Birch,M.Nastasi,L.Hultman,and S.A. Barnett,J.Mater.Res.15,554͑2000͒.10P.B.Mirkarimi,M.Shinn,and S.A.Barnett,J.Vac.Sci.Technol.A10, 618͑1992͒.11B.D.Cullity,Elements of X-ray Diffraction͑Addison-Wesley,Reading, MA,1978͒.12L.G.Paratt,Phys.Rev.A95,359͑1954͒.13M.B.Stearns,Phys.Rev.B38,8109͑1988͒.14G.Gladyszewski,Thin Solid Films170,99͑1989͒.15A.Madan,P.Yashar,M.Shinn,and S.A.Barnett,Thin Solid Films302, 147͑1997͒.16L.R.Doolittle,Ph.D.thesis,Cornell University,Ithaca,NY,1987.17W.C.Oliver and G.M.Pharr,J.Mater.Res.7,1564͑1992͒.18K.Y.Ahn,S.B.Brodsky,C.Y.Ting,and J.Kim,J.Vac.Sci.Technol. A4,3111͑1986͒.19B.K.Aggarwal,X-ray Spectroscopy͑Springer,Berlin,1979͒.20M.Sakurai,J.Appl.Phys.76,7272͑1994͒.21N.Nakayama,T.Okuyama,and T.Shinjo,J.Phys.:Condens.Matter5, 1173͑1993͒.22P.Bisanti,M.B.Brodsky,G.P.Felcher,M.Grimsditch,and L.R.Sill, Phys.Rev.B35,7813͑1987͒.23L.C.Feldman,J.W.Mayer,and S.T.Picraux,Materials Analysis by Ion Channeling͑Academic,New York,1982͒.24P.Villars,A.Prince,and H.Okamoto,Handbook of Ternary Alloy Phase Diagrams͑ASM International,Materials Park,Ohio,1995͒.25C.Engstro¨m,L.Hultman,A.Madan,S.A.Barnett,M.Nastasi,and C. Lavoie,unpublished.F IG.9.͑a͒X-ray diffraction patternsaround the002Bragg reflections forthe W/NbN superlattices with period ⌳ϭ3.2nm,both as-deposited and af-ter annealing at1000°C for6h.͑b͒X-ray reflectivity scans from W/NbNsuperlattices with period⌳ϭ3.2nm,both as-deposited and after annealingat1000°C for6h.JVST A-Vacuum,Surfaces,and Films。

相关文档
最新文档