GS8162Z36D-150I中文资料
XGC150-I履带起重机技术规格书
XGC150-I履带起重机技术规格书履带起重机型号:XGC150-I最大额定起重量:150t最大额定起重力矩:790.8t.m一、产品的部件和系统描述1.臂架组合方式主臂工况HB,长度16m~76m,主臂组成:底节臂1×8m、顶节臂1×8m、中间节2×3m、中间节1×6m、中间节4×12m;固定副臂工况HF,长度13m~31m,固定副臂组成:底节臂1×6m、顶节臂1×7m、中间节3×6m。
主臂配置臂端单滑轮。
2.臂架变幅构件采用高强拉板结构,安全系数高;可随臂架运输,安装方便、省力、高效。
3.桅杆桅杆为箱形双肢结构,具有良好的整体稳定性。
通过桅杆顶升油缸实现桅杆扳起顶升和降落。
桅杆上安装有辅助拆装油缸(选装件),用于主臂底节臂、中央平衡重及履带架自拆装,也可用于其它辅助吊装。
4.转台转台是联系上下车的关键承载结构件,采用高强钢板焊接而成的双侧“工”字梁箱框式复合结构,通过回转支承可与下车进行联接,整体强度高、稳定性好。
驾驶室、变幅机构、发动机系统、主泵、液压阀、桅杆、主臂底节、上车平衡重等可分别与转台在不同部位进行联接。
5.机构组成本机的机构配置及用途如下表:6.起升机构起升机构由马达驱动行星齿轮减速机,通过卷筒及滑轮组实现主钩或副钩起升下降,通过双泵供油功能提高起升机构升降速度。
起升机构内置行星减速机,采用常闭制动器,实现“弹簧制动/液压释放”功能,安全可靠。
起升机构使用高破断拉力的钢丝绳,钢丝绳直径φ26mm。
7.变幅机构变幅机构由马达驱动行星齿轮减速机,通过卷筒及变幅滑轮组来实现主臂变幅。
变幅机构内置行星减速机,采用常闭制动器,实现“弹簧制动/液压释放”功能,安全可靠。
变幅卷筒设有棘轮锁止装置,由液压油缸驱动棘爪,实现多重锁定保护。
变幅机构使用高破断拉力的钢丝绳,钢丝绳直径φ22mm。
8.回转机构回转机构与回转支承采用内啮合方式驱动,布置在转台内侧前面前部,由马达驱动行星齿轮减速机驱动回转支承,实现360°回转。
艾雷斯科技工控产品
产品 5:ACS-4051VE
产品名 称: 产品型 号: 产品类 别:
ACS-4051VE
ACS-4051VE 嵌入式 PC104 板 卡系列
驱动下载
产品特点
● 网络接口:集成 1 个 INTEL 82562ET 和 1 个 82559ER(可选) ● 10/100M 自适应以太网控制器,RJ-45 接口
产品 3:ACS-6599
产品名 称: 产品型 号: 产品类 别:
ACS-6599 ACS-6599 网安主板
驱动下载
产品特点
采用 Intel? E7520 +6300ESB 芯片组 >支持 双 Intel?Xeon? 64 位处理器 >具备 8DDR2 内存扩展插槽,最大支持 16GB DDR2 400 的双通道内存架构 >具有 8 个 PCI-Express 接口的 Intel 82571EB 千兆位以太网接口 >一个 PCI_E X8 插槽 >一个 PCI_X 插槽 >一个 PCI 扩展槽 >多种存储介质选择:2 个串行 ATA(SATA)通道,2个IDE通道,1 个 Compact Flash (CF)卡插槽, 2 个 SCSI 接口 >支持 1-255 秒软件可编程看门狗计时器 性能参数: 优势: 处理器/高速缓存: 采用 socket604 mPGA 封装的至强处理器。 支持 1-2 颗英特尔? 至强? 处理器, 至强 64 位处理器具备 2MB 大容量二级缓存,支持超 线程 (HT) 技术、英特尔? 64 位内存扩展技术 1 和英特尔增强型 SpeedStep? 技术 2 可 与支持 64 位的操作系统和应用程序兼容;用较低的运作成本降低了功耗。 系统的前端总线 800M,运行频率为 2.8G-3.2G 的英特尔? 至强 64 位处理器。 板载设备: 芯片组:Intel? E7520 北桥芯片组,Intel?6300ESB 南桥芯片组 网络 板载显卡:ATI RAGE XL 显卡,板载 8M 显存 网络:采用 4 个 Intel?82571EB 芯片的 PCI-Express 千兆位以太网控制器 韧体芯片: SST49LF004A 4M bit Flash 芯片 超级 I/O: Winbond W83627 芯片;
低压保护测控装置介绍
1)采用32位高性能的工业控制器作为主CPU
2)设计采用大容量的存储芯片单元(ROM(FLASH)、 RAM、FLASH)
报告主题
一、硬件构架
2、模拟采样模块(保护用模拟通道、测量模块) 1)保护用模拟通道与测量用模拟通道分开 2)保护用模拟输入部分采用快速14BIT A/D芯片 3)采用了专用的计量芯片
3)强大的故障录波功能。
报告主题
二、软件构架
5、友好丰富的人机接口软件模块设计 1)智能化识别人机接口(mmi)模件。 2)丰富的通讯接口规约配置。
3)高效、统一的打印模件支持。
报告主题
特点归纳
1)通用化平台设计 2)标准化保护元件设计和图形化编程
3)在低压系统中率先采用双以太网
4)保护信息表达清晰,方便维护 5)测试方便,可扩展性强
5)闭锁调压功能 6)过负荷告警
7)TV断线检测
8)出口逻辑可编程整定控制
报告主题
三、产品介绍
8、CSC-326GL数字式变压器后备保护测控装置
主要功能包括:
1)两段式复合电压闭锁(方向)过流保护
2)限时速断保护 3)充电保护
4)零序过压告警
5)过负荷保护,可选跳闸或告警 6)TV断线检测
7)出口逻辑可编程整定控制
A Nu m b er Rev i si o n
Si ze A Dat e: Fi le: 1 2 3
4 -Mar-2 0 0 5 Sh eet o f E: \ my d o c\ 亿能资料\ 硬件资料\ Cp u . DDDrawn B y : B
报告主题
4
一、硬件构架
1、高性能的中央处理器模块
报告主题
三、产品介绍
立鼎光电探测器产品手册(第二版)说明书
光电探测器产品手册(第二版)立鼎光电@郭玉西Tel*************Mob:139****43722016年8月20日立鼎光电探测器事业部简介西安立鼎光电科技有限公司是一家专业从事各种光电类产品及其部件、组件、元件的研发生产、系统集成、专业代理销售推广为一体的高新技术企业。
公司专注于为客户提供从元件、组件、部件到全套光电系统产品的完整解决方案。
总部位于中国古都西安的电子城街区和高新技术开发区之间,周围有众多知名高校、科研院所及高新技术企业,科研创新氛围浓厚,是公司人才引进和技术创新的强大源泉。
为了高效便捷地服务于国内广大客户,公司在北京、深圳、上海、武汉、香港等地设有分公司或办事处。
公司自成立以来,秉承“资源整合,自主创新”之思想研发产品的同时,也致力于将国外的先进产品和技术引进到国内。
立鼎光电探测器事业部以市场为导向,有效整合探测器资源,多年来与世界多家知名的探测器厂商建立了紧密的合作关系,一直专注于探测器产品在国内的售前、售中及售后的优质服务。
客户范围覆盖了航空、航天、兵器、船舶、电子、核工业等十大军工集团以及中科院所、知名高校和工农业领域。
我们始终秉承“领先技术、诚实服务、合作共赢”的发展理念,真诚与国内外广大用户、合作伙伴及同行携手合作,共创光电事业美好明天!产品目录光电探测器中华立鼎(CLPT)短波点元/焦平面探测器--------------------------------------------4 波兰VIGO公司MCT探测器及组件-----------------------------------------------------10 美国InfraRed 中/长波及双色探测器-----------------------------------------------------13 德国IFW 紫外探测器-----------------------------------------------------------------------18 美国EOS全波段光电探测器---------------------------------------------------------------22 美国GPD近红外探测器--------------------------------------------------------------------25 西班牙NIT硒化铅中波探测器------------------------------------------------------------29 德国ALPHALAS可见光/近红外高速探测器-------------------------------------------36 美国AGI短波/中波探测器-----------------------------------------------------------------40美国Teledyne Judson全波段探测器------------------------------------------------------43 俄罗斯Ekran像增强器及光电倍增管----------------------------------------------------45一、中华立鼎(CLPT )公司短波探测器前瞻技术研究室中华立鼎光电是一家研发、生产高品质InGaAs 短波探测器的公司,其产品从点元探测器到面阵探测器一应俱全,质量可靠,价格合理,得到世界客户的广泛认可和应用。
用户手册 GS系列 2
具栏上图标却操作,请按工具栏上图标7.2.3.1 编辑选项:单击菜单栏或工具栏中的“编辑”将会弹操作选项:冷却选项:新建选项:打开选项:保存选项:选项:“前一个”选项:“下一个”选项:“最后一个”选项:项:“解除报警”选项::日历选项:;用户设置选项:锁键盘选项:登录系统选项:指示灯测试选项::: 报警窗口:温度曲线测试窗口:N F BL 1R L 2O NL 3S T O N7R 2R 1M CT 2S 2S 1T 16O N O N O N L 2L 1NL 3L 1L 2NL 3电源765O N O N O N 4O N O N O N 3O N O N O N 2O N O N O N阎建华未注公差按 I T 12 执行蜂鸣器5C H E C K E DD E S I G N4D R A W NP C B回流焊底板布置图D W G N O .(S U B -D I R F I LE N A M E )D A T E02/25/01D A T E图号3D A T E材料M A T LG S \E L E \1221DCBS C A L E比例AP C S1件数T RJ P 11回流焊插卡跳线图D W G N O .(S U B -D I R F I LE N A M E )6210HJ P G 5J P C 58J P G 2J P C 2J P G 0J P C 0J P G 1J P C 1J P G 3J P C 3J P G 4J P C 47J P G 6J P C 6J P G 7J P C 7S W -D I P 64J P F O N 132653240H 12A 9J P 11J P G 2J P C 25J P G 0J P C 0J P G 1J P C 14J P G 5J P C 5J P G 3J P C 3J P G 4J P C 4J P G 6J P C 6J P G 7J P C 7S W -D I P 64J P F O N 132244H 312A 956J P 11230H32J P C 1J P G 1J P G 0J P C 0J P G 2J P C 2J P G 4J P C 4J P G 3J P C 3J P G 5J P C 5J P FS W -D I P 6O N 321546248H312A 96A 287D A T ED E S I G N阎建华A 2260HK J 1K J 2K J 3K124365K J 487A 2未注公差按 I T 12 执行5402/25/01D A T ED A T EC H E C K E DD R A W N3M A T L图号材料21J P G 7J P C 7J P G 6J P C 6DCBAS C A L EP C SG S \E L E \11件数比例1270H8765432187654321ABCD调速马达接线图图号D W G N O .(S U B -D I R F I L E N A M E )材料M A T LS C A L E比例件数P C SD E S I G ND A T EC H E C K E DD A T ED R A W ND A T E未注公差按 I T 12 执行阎建华2001.06.20G S \E L E \15W (白)G Y (灰)B (黑)。
(完整版)冷却塔的选型
冷却塔的选型冷却塔是用水作为循环冷却剂,从一系统中吸收热量排放至大气中,以降低水温的装置;其冷是利用水与空气流动接触后进行冷热交换产生蒸汽,蒸汽挥发带走热量达到蒸发散热、对流传热和辐射传热等原理来散去工业上或制冷空调中产生的余热来降低水温的蒸发散热装置,以保证系统的正常运行,装置一般为桶状,故名为冷却塔。
英文名叫做Thecoolingtower。
最近几年,冷却塔高速发展,产品不断更新。
正因如此,才使玻璃钢冷却塔问世。
玻璃钢冷却塔开始和闭式,玻璃钢维护结构的冷却塔冷却塔设计气象条件大气压力:P=99.4X103kPa干球温度:e=31.5°C湿球温度:T=28C(方形和普通型为27C)冷却塔设计参数1•标准型:进塔水温37C,出塔水温32C2•中温型:进塔水温43C,出塔水温33C3•高温型:进塔水温60C,出塔水温35C4•普通型:进塔水温37C,出塔水温32C5•大型塔:进塔水温42C,出塔水温32C工业中,使热水冷却的一种设备。
水被输送到塔内,使水和空气之间进行热交换,或热、质交换,以达到降低水温的目的。
分类编辑一、按通风方式分有自然通风冷却塔、机械通风冷却塔、混合通风冷却塔。
二、按热水和空气的接触方式分有湿式冷却塔、干式冷却塔、干湿式冷却塔。
三、按热水和空气的流动方向分有逆流式冷却塔、横流(交流)式冷却塔、混流式冷却塔。
四、按用途分一般空调用冷却塔、工业用冷却塔、高温型冷却塔。
五、按噪声级别分为普通型冷却塔、低噪型冷却塔、超低噪型冷却塔、超静音型冷却塔。
六、其他如喷流式冷却塔、无风机冷却塔、双曲线冷却塔等。
七、按玻璃钢冷却塔的外形分为圆型玻璃钢冷却塔和方型玻璃钢冷却塔。
适用范围编辑工业生产或制冷工艺过程中产生的废热,一般要用冷却水来导走。
冷却塔的作用是将挟带废热的冷却水在塔内与空气进行热交换,使废热传输给空气并散入大气中。
例如:火电厂内,锅炉将水加热成高温高压蒸汽,推动汽轮机做功使发电机发电,经汽轮机作功后的废汽排入冷凝器,与冷却水进行热交换凝结成水,再用水泵打回锅炉循环使用。
WXH-816A技术说明书
WXH-816(7)A微机线路保护装置技术说明书(Version 1.00)许继电气股份有限公司XJ ELECTRIC CO.,LTD.前言1、应用范围WXH-816(7)A系列保护装置主要用作中性点不接地或小接地系统输电线路的主保护及后备保护。
2、产品特点2.1装置系统平台z逻辑开发可视化国内首家在高压保护上实现可视化逻辑编程,保护源代码完全由软件机器人自动生成,正确率达到100%,杜绝了人为原因产生软件Bug。
所有的保护逻辑由基本的元件和组建组成。
z事故分析透明化通过分层、模块化、元件化的设计,装置内部实现了元件级、模块级、总线级三级监视点,可以监视装置内部任一个点的数据,发生事故后通过透明化事故分析工具,可以对故障进行快速准确的定位。
故障波形回放:z工程应用柔性化采用功能自描述和数据自描述技术,实现了内容可以通过描述文件以不同的形式重组,功能可以通过配置文件形式重构,解决了不同用户差异化需求和软件版本集中管理的矛盾。
2.2 人机界面人性化XJGUI和现场调试向导的成功应用,降低了现场维护和运行人员的工作强度,使运行维护工作变得轻松。
z借助XJ-GUI界面设计工具,实现操作界面的灵活定制及人性化设计;z主接线图及丰富的实时数据的显示;z类WINDOWS菜单,通过菜单提示,可完成装置的全部操作。
我公司保留对本说明书进行修改的权利;产品与说明书不符时,以实际产品为准,恕不另行通知。
2007.XX第X版印刷目录1、应用范围 02、产品特点 02.1装置系统平台 02.2 人机界面人性化 (1)1 概述 (1)1.1 应用范围及保护配置 (1)1.2 产品特点 (2)1.2.1保护功能特点 (2)1.2.2光纤通道技术 (2)1.2.3操作界面 (3)2 技术指标 (3)2.1 基本电气参数 (3)2.1.1额定交流数据 (3)2.1.2额定直流数据 (3)2.1.3打印机辅助交流电源 (3)2.1.4功率消耗 (3)2.1.5过载能力 (4)2.2 主要技术指标 (4)2.2.1纵差保护 (4)2.2.2距离保护 (4)2.2.3方向(复压)过流保护 (4)2.2.4测距部分 (5)2.2.5重合闸 (5)2.2.6手合同期 (5)2.2.7低周减载 (5)2.2.8低压减载 (5)2.2.9记录容量及定值区容量 (6)2.2.10对时方式 (6)2.2.11输出触点 (6)2.2.12绝缘性能 (6)2.2.13冲击电压 (7)2.2.14机械性能 (7)2.2.15抗电气干扰性能 (7)2.3 环境条件 (8)2.4 通信接口 (8)2.5 光纤通道技术参数 (8)2.5.1光纤接口 (8)2.5.2继电保护复用接口 (9)3 保护原理介绍 (9)3.1 启动元件 (9)3.1.1相电流突变量启动元件 (9)3.1.3静稳破坏启动元件 (10)3.1.4差流启动元件 (10)3.1.5低周启动元件 (10)3.1.6低压启动元件 (11)3.2 数字通信接口及同步调整 (11)3.2.1通信接口 (11)3.2.2通道信息和误码监测 (12)3.2.3同步调整 (12)3.3 电流差动元件 (13)3.3.1分相稳态量差动元件 (13)3.3.2分相增量差动元件 (13)3.4 阶段式距离元件 (14)3.4.1三段式相间距离 (14)3.4.2变压器低压侧相间短路的后备距离 (15)3.5 方向(复压)过流元件 (17)3.6 重合闸 (17)3.6.1重合方式 (17)3.6.2重合闸的充放电 (17)3.6.3重合闸的启动 (18)3.6.4重合出口 (18)3.6.5重合闸的告警回路 (18)3.6.6其它 (18)3.7 手合同期 (19)3.8 低周减载元件 (19)3.9 低压减载元件 (20)3.10 故障开放元件 (20)3.10.1短时开放保护 (20)3.10.2不对称故障开放元件 (20)3.10.3对称故障开放元件 (21)3.11 辅助元件 (21)3.11.1 TV断线检查 (21)3.11.2 TV反序检查 (22)3.11.3 TA断线 (22)3.11.4 TA饱和 (23)3.11.5远跳、远传信号 (23)3.12 保护逻辑框图 (24)3.12.1差动保护逻辑 (24)3.12.2距离保护逻辑 (25)3.12.3不对称相继速动保护逻辑 (26)3.12.4双回线相继速动保护逻辑 (26)3.12.5重合闸逻辑 (27)3.12.6低周减载 (28)3.12.7低压减载 (29)4 装置硬件介绍 (30)4.1 装置整体结构 (30)4.2 结构与安装 (32)4.3 装置插件介绍 (33)4.3.1电压切换插件 (33)4.3.2交流变换插件 (34)4.3.3 CPU插件 (34)4.3.4光纤接口 (34)4.3.5开入插件 (35)4.3.6出口插件 (36)4.3.7操作插件 (37)4.3.8通讯插件 (38)4.3.9电源插件 (39)4.4 定值清单及整定说明 (39)4.5 定值整定说明 (42)4.6 通道控制字 (44)4.7 软压板 (44)4.8 订货须知 (45)5 附图 (46)1 概述1.1 应用范围及保护配置WXH-817A 、WXH-816A 系列线路保护装置是适用于35kV~66kV 电压等级输电线路成套数字式保护装置。
方正科技集团 Z816 Z826 多功能扫描仪 说明书
电磁保护设备TeSys GV系列产品参数表说明书
C i r c u i t b r e a k e r sCircuit breakersTeSys GV, GBC ontrol and P rotection C omponentsChapterB60.75g g 1.1g g 1.5375 2.533.5 LR2 K0308GV2LE071.1g g –––––– 2.533.5 LR2 K0308GV2LE071.5g g 1.5g g 3375451 LR2 K0310GV2LE08––– 2.2g g –––451 LR2 K0312GV2LE082.2g g 3501004375 6.378 LR2 K0312GV2LE103g g 410100 5.537510138 LR2 K0314GV2LE144g g 5.510100–––10138 LR2 K0316GV2LE14––––––7.537510138 LRD 14GV2LE14––––––937514170 LRD 16GV2LE165.515507.56751137514170 LR2 K0321GV2LE167.5155096751537518223 LRD 21GV2LE20915401147518.537525327 LRD 22GV2LE2211154015475–––25327 LRD 22GV2LE2215105018.54752237532416LRD 32GV2LE32(1) As % of Icu.g ) > 100 kA.GV2 LE10D F 526144.t i fC i r c u i t b r e a k e r s0.09––––––0.45LRD 03GV2L030.12g g –––0.37g g 0.638LRD 04GV2L040.18g g ––––––0.638LRD 04GV2L04––––––0.55g g 113LRD 05GV2L050.25g g ––––––113LRD 05GV2L05––––––0.75g g 113LRD 06GV2L050.37g g 0.37g g –––113LRD 05GV2L050.55g g 0.55g g 1.1g g 1.622.5LRD 06GV2L06–––0.75g g ––– 1.622.5LRD 06GV2L060.75g g 1.1g g 1.54100 2.533.5LRD 07GV2L07Example: GV3 L32 becomes GV3 L326.(1) As % of Icu. Associated current limiter or fuses, where required. See characteristics page B6/33.g > 100 kA.GV2 L10D F 526145.t i fGV3 L65D F 526146.t i fTeSys GVThermal-magnetic motor circuit breakers GV2 ME0.06gg––––––0.16…0.252.4GV2ME020.09g g––––––0.25…0.405GV2ME030.12 0.18g g g g – –– –– – 0.37 –g–g –0.40…0.638GV2ME040.25gg––– 0.55gg0.63…113GV2ME050.37 0.55 –g g –g g –0.37 0.55 0.75g g g g g g – 0.75 1.1– g g – g g 1…1622.5GV2ME060.75g g1.1gg1.5375 1.6...2.533.5GV2ME071.1 1.5g g g g 1.5 2.2g g g g 2.2 3 3 375 75 2.5 (4)51GV2ME082.2gg350100 43754...6.378GV2ME103 4g g g g 4 5.510 10100 100 5.5 7.5 3 375 756 (10)138GV2ME145.5 –15 –50 –7.5 – 6 –75 – 9 11 3 375 759…14170GV2ME167.5155096751537513…18223GV2ME209154011475 18.537517…23327GV2ME2111154015475 –––20…25327GV2ME22 (3)15105018.54752237524 (32)416GV2ME32Motor circuit breakers from 0.06 to 15 kW / 400 V, with lugsTo order thermal magnetic circuit breakers with connection by lugs, add the digit 6 to the end of reference selected above.Example: GV2 ME08 becomes GV2 ME086.Thermal magnetic circuit breakers GV2 ME with built-in auxiliary contact block With instantaneous auxiliary contact block (composition, see page B6/11):b GV AE1, add suffix AE1TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE1TQ .b GV AE11, add suffix AE11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AE11TQ .b GV AN11, add suffix AN11TQ to the motor circuit breaker reference selected above. Example: GV2 ME01AN11TQ .These circuit breakers with built-in contact block are sold in lots of 20 units in a single pack.(1) As % of Icu.(2) The thermal trip setting must be within the range marked on the graduated knob.(3) Maximum rating which can be mounted in enclosures GV2 MC or MP , please consult your Regional Sales Office. g > 100 kA.GV2 ME10D F 526134.t i fC i r c u i t b r e a k e r sTeSys GVTeSys protection componentsThermal-magnetic motor circuit breakers GV2 MEReferences0.06g g ––– 0.16…0.25 2.4GV2ME0230.09g g ––– 0.25…0.405GV2ME0330.120.18g g g g –––0.40…0.638GV2ME0430.250.37g g g g 0.37g g 0.63…113GV2ME0530.370.55g g g g 0.370.550.75g g g g g g 1…1.622.5GV2ME0630.75g g1.1g g 1.6…2.533.5GV2ME0731.11.5g g g g 1.52.2g g g g 2.5…451GV2ME0832.2g g 350100 4…6.378GV2ME10334g g g g 45.510101001006…10138GV2ME1435.515507.5675 9…14170GV2ME1637.515509675 13…18223GV2ME203911151540401147517…23327GV2ME2131115401547520 (25)327GV2ME223Contact blocksDescription Mounting Maximum number Type of contacts Sold in lots of Unitreference Instantaneous auxiliary contactsFront 1N/O + N/C 10GVAE113N/O + N/O 10GVAE203LH side2N/O + N/C 1GVAN113N/O + N/O1GVAN203AccessoryDescriptionApplicationSold in lots of Unitreference Cable end reducerFor connection of conductors from 1 to 1.5 mm 220LA9D99(1) For connection of conductors from 1 to 1.5 mm 2, the use of an LA9 D99 cable end reducer is recommended.(2) Maximum rating which can be mounted in enclosures GV2 MC or MP , please consult your Regional Sales Office (3) The thermal trip setting must be within the range marked on the graduated knob.g > 100 kA.GV2 ME pp 3D F 526135.t i fLA9 D99D F 533898.e p sTeSys GVReferencesTeSys protection componentsThermal-magnetic motor circuit breakersGV2 P, GV3 P and GV3 ME80GV2 P10D F 526137.t i fGV3 P65D F 526139.t i fGV3 P651D F 526140.t i fC i r c u i t b r e a k e r sTeSys GVReferences93610011181001581007.59707010010091150501001001115101010010012…20GV7RS20 2.0109113636100100111518181001001518.58810010015…25GV7RE25 2.0109117070100100111550501001001518.5101010010015…25GV7RS25 2.01018.53610018.522181810010022810025…40GV7RE40 2.01018.57010018.550100221010025…40GV7RS40 2.0102236100301810030810030…50GV7RE50 2.01522701003050100301010030 (50)GV7RS502.01537361004555181810010055810048...80GV7RE80 2.040377010045555050100100551010048...80GV7RS80 2.0404536100–1810075810060...100GV7RE100 2.0404570100–50100751010060...100GV7RS100 2.0405575353510010075903030100100901108810010090 (150)GV7RE1502.020557570701001007590505010010090110101010010090…150GV7RS150 2.02090110353510010011013216030303010010010016020088100100132…220GV7RE220 2.3509011070701001001101321605050501001001001602001010100100132…220GV7RS220 2.350(1) As % of lcu.TeSys protection componentsThermal-magnetic motor circuit breakers GV7 RGV7 RE40D F 526138.t i fGV7 RS220D F 526141.t i f0.12–0.120.180.18–0.370.40…0.6313GV2RT040.090.120.250.370.250.370.370.550.63…122GV2RT050.180.250.370.550.370.550.370.550.750.751.11…1.633GV2RT060.370.750.751.1 1.11.51.6…2.551GV2RT070.550.75 1.11.5 1.51.52.2 2.23 2.5…478GV2RT081.12.22.23344…6.3138GV2RT101.52.234445.5 5.57.56…10200GV2RT142.23 5.55.57.57.59119…14280GV2RT1647.57.5991513…18400GV2RT205.5911111118.517…23400GV2RT21(1) The thermal trip setting must be within the range marked on the graduated knob.GV2 RTD F 526142.t i fC i r c u i t b r e a k e r sblack handle, blue legend plate(1) The thermal trip setting must be within the range marked on the graduated knob.(2) Other accessories such as mounting, cabling and marking accessories are identical to those used for GV2 ME motor circuit breakers, see page B6/13.GV2 RTD F 526142.t i fD F 526340.e p sC i r c u i t b r e a k e r sTeSys GVDescription Mounting Maximum number Type of contacts Sold inlots of Unitreference Instantaneous auxiliary contactsFront (1)1N/O or N/C (2)10GVAE1N/O + N/C 10GVAE11N/O + N/O10GVAE20Side (LH)2N/O + N/C1GVAN11N/O + N/O1GVAN20Fault signalling contact + instantaneous auxiliary contact Side (3) (LH)1N/O (fault)+ N/O1GVAD1010+ N/C1GVAD1001N/C (fault)+ N/O1GVAD0110+ N/C1GVAD0101Short-circuit signalling contactSide (LH)1C/O common point1GVAM11(1 block on RH sideof circuit breaker GV2 ME)50 Hz GVAX11560 Hz GVAX116127 V60 Hz GVAX115220…240 V 50 Hz GVAX22560 Hz GVAX226380…400 V50 Hz GVAX38560 Hz GVAX386415…440 V 50 Hz GVAX415440 V60 Hz GVAX385Add-on contact blocksDescriptionMountingMaximum number Reference Visible isolation block (5)Front (1)1GV2AK00 (6)LimitersAt top(GV2 ME and GV2 P)1GV1L3Independent1LA9LB920(1) Mounting of a GV AE contact block or a GV2 AK00 visible isolation block on GV2 P and GV2 L .(2) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.(3) The GV AD is always mounted next to the circuit breaker.(4) To order an undervoltage trip: replace the dot (p ) in the reference with a U , example: GV AU025. To order a shunt trip: replace the dot (p ) in the reference with an S , example: GV AS025.(5) Visible isolation of the 3 poles upstream of circuit breaker GV2 P and GV2 L .Visible isolation block GV2 AK00 cannot be used with motor circuit breakers GV2 P32 and GV2 L32 (Ith max = 25 A).(6) Ie Max = 32 A.ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsAdd-on blocks and accessoriesCharacteristics:pages B6/89 and B6/94Dimensions, schemes:pages B6/70 to B6/82LA9LB920D B 126629.e p sC i r c u i t b r e a k e r sTeSys GVTerminal blockfor supply to one or more GV2 G busbar setsConnection from the top1GV1G09Can be fitted with current limiter GV1 L3 (GV2 ME and GV2 P)1GV2G05Cover for terminal block For mounting in modular panels10LA9E07Flexible 3-pole connection for connecting a GV2 to a contactor LC1-D09…D25 Centre distance between mounting rails: 100…120 mm10GV1G02Set of connections upstream/downstream For connecting GV2 ME to a printed circuit board 10GV2GA01“Large Spacing” adapter UL 508 type EFor GV2 P pp H7 (except 32 A)1GV2GH7Clip-in marker holders (supplied with each circuit breaker)For GV2 P , GV2 L, GV2 LE and GV2 RT (8 x 22 mm)100LA9D92ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsAccessoriesDimensions, schemes:pages B6/70 to B6/82D B 417942.e p sTeSys GVD B 126631.e p sD B 126630.e p sD B 126632.e p s7P B 106297_45.e p sExtended Rotary HandleAllows a circuit breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position(depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm. The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut (Ø22) to make easierthe assembling. The new Laser Square tool brings the accuracy to align the circuit breaker and the rotary handle.device(padlocks not included)ReferencesTeSys protection componentsThermal-magnetic and magnetic motor circuit breakers GV2 with screw clamp connectionsC i r c u i t b r e a k e r sTeSys GVDescriptionMounting Maximum number Type of contacts Sold inlots of Unitreference Instantaneous auxiliary contactsFront1N/O or N/C (1)10GVAE1N/O + N/C 10GVAE11 (2)N/O + N/O10GVAE20 (2)Side (LH)2N/O + N/C1GVAN11 (2)N/O + N/O1GVAN20 (2)Fault signalling contact + instantaneous auxiliary contactFront 1N/O (fault)+ N/O1GVAED101 (2)N/O (fault)+ N/C1GVAED011 (2)Side (3) (LH)1N/O (fault)+ N/O1GVAD1010+ N/C1GVAD1001N/C (fault)+ N/O1GVAD0110+ N/C1GVAD0101Short-circuit signalling contact Side (LH)1C/O common point 1GVAM11(4)MountingVoltage ReferenceSide(1 block on RH side of circuit breaker)24 V 50 Hz GVA p 02560 Hz GVA p 02648 V 50 Hz GVA p 05560 Hz GVA p 05610050 Hz GVA p 107100…110 V 60 Hz GVA p 107110…115 V 50 Hz GVA p 11560 Hz GVA p 116120…127 V 50 Hz GVA p 125127 V 60 Hz GVA p 115200 V50 Hz GVA p 207200…220 V 60 Hz GVA p 207220…240 V 50 Hz GVA p 22560 Hz GVA p 226380…400 V 50 Hz GVA p 38560 Hz GVA p 386415…440 V 50 Hz GVA p 415415 V 60 Hz GVA p 416440 V 60 Hz GVA p 385480 V 60 Hz GVA p 415500 V 50 Hz GVA p 505600 V60 HzGVA p 505AccessoriesDescription Reference Sets of 3-pole 115 A busbars Pitch: 64 mm2 tap-off GV3 P pp and GV3 L pp GV3G2643 tap-off GV3 P pp and GV3 L pp GV3G364Cover “Large Spacing” UL 508 type E (Only one cover required on supply side)GV3 P ppGV3G66(1) Choice of N/C or N/O contact operation, depending on which way round the reversible block is mounted.(2) Contact blocks available in version with spring terminal connections. Add a figure 3 at the end of the references selected above. Example: GV AED101 becomes GV AED1013.(3) The GV AD pp is always mounted next to the circuit breaker.(4) To order an undervoltage trip: replace the dot (p ) in the reference with a U , example: GV AU025. To order a shunt trip: replace the dot (p ) in the reference with an S , example: GV AS025.Add-on blocks and accessoriesGV3 G66D F 537424.e p sTeSys GVD B 126637.e p sD B 126636.e p sD B 126632.e p s7P B 106297_45.e p sExtended Rotary HandleAllows a circuit breaker or a starter-controller installed in back of an enclosure to be operated from the front of the enclosure.A rotary handle can be black or red/yellow, IP54 or IP65. It includes a function for locking the circuit breaker or the starter in the O (Off) or I (On) position(depending of the type of rotary handle) by means of up to 3 padlocks with a shank diameter of 4 to 8 mm. The extended shaft must be adjusted to use in different size enclosures. The IP54 rotary handle is fixed with a nut (Ø22) to make easierthe assembling. The new Laser Square tool brings the accurency to align the circuit breaker and the rotary handle.For English 10-GVAPSEN For German 10-GVAPSDE For Spanish10-GVAPSES For Chinese 10-GVAPSCN For Portuguese 10-GVAPSPT For Russian 10-GVAPSRU For Italian10-GVAPSITD F 526342.e p sB6/21C i r c u i t b r e a k e r sTeSys GVfor locking the Start button (on open-mounted product)using up to 3 padlocks(padlocks to be ordered separately)External operator for mounting on enclosure door.Red Ø40 knob on yellow plate, padlockable in position O (with up to 3 padlocks). Door locked when knob in position I, and when knob padlocked in position O.GK3AP03(1) 1 voltage trip OR 1 fault signalling contact to be fitted inside the motor circuit breaker.Other versions24 to 690 V, 50 or 60 Hz voltage trips for circuit breakers GV3 ME80.Please consult your Regional Sales Office.ReferencesTeSys protection componentsMotor circuit breakers GV3 ME80 and GK3 EF80Add-on blocks and accessoriesCharacteristics:pages B6/89 and B6/92Dimensions:page B6/47B6/22D F 526344.e p sB6/23C i r c u i t b r e a k e r sTeSys GVThese allow remote indication of the circuit breaker contact states. They can be used for signalling, electrical locking, relaying, etc. They are available in two versions: standard and low level. They include a terminal block and the auxiliary circuits leave the circuit breaker through a hole provided for this purpose.They perform the following functions, depending on where they are located in the circuit breaker:Low levelGV7AB11Fault discrimination devicesThese make it possible to:b either differentiate a thermal fault from a magnetic fault,b or open the contactor only in the event of a thermal fault.VoltageReference a 24...48 and c 24…72 V GV7AD111 (1)z 110…240 VGV7AD112 (1)Electric tripsThese allow the circuit breaker to be tripped via an electrical control signal.b Undervoltage trip GV7 AUv Trips the circuit breaker when the control voltage drops below the tripping threshold, which is between 0.35 and 0.7 times the rated voltage.v Circuit breaker closing is only possible if the voltage exceeds 0.85 times the rated voltage. Circuit breaker tripping by a GV7 AU trip meets the requirements of IEC 60947-2.b Shunt trip GV7 ASTrips the circuit breaker when the control voltage rises above 0.7 times the rated voltage.b Operation (GV7 AU or GV7 AS)v When the circuit breaker has been tripped by a GV7 AU or AS, it must be reset either locally or by remote control. (For remote control, please consult your Regional Sales Office).v Tripping has priority over manual closing: if a tripping instruction is present, manual action does not result in closing, even temporarily, of the contacts.v Durability: 50 % of the mechanical durability of the circuit breaker.TypeVoltageReference Undervoltage trip48 V, 50/60 HzGV7AU055 (1)110…130 V, 50/60 Hz GV7AU107 (1)200…240 V, 50/60 Hz GV7AU207 (1)380…440 V, 50/60 Hz GV7AU387 (1)525 V, 50 HzGV7AU525 (1)Shunt trip48 V, 50/60 HzGV7AS055 (1)110…130 V, 50/60 Hz GV7AS107 (1)200…240 V, 50/60 Hz GV7AS207 (1)380…440 V, 50/60 Hz GV7AS387 (1)525 V, 50 HzGV7AS525 (1)(1) For mounting of a GV7 AD or a GV7 AU or AS.ReferencesTeSys protection componentsThermal-magnetic motor circuit breakers GV7 R with screw clamp connectionsAdd-on blocks and accessoriesCharacteristics:pages B6/51, B6/52 and B6/56Dimensions:pages B6/79 to B6/81Schemes:page B6/83B6/24B6/25C i r c u i t b r e a k e r sTeSys GVDescription ApplicationFor use on contactors Sold in lots of Unitreference Clip-on connectors for GV7 RUp to 150 A, 1.5…95 mm 2–3GV7AC021Up to 220 A, 1.5…185 mm 2–3GV7AC022Spreader 3-pole (1)To increase the pitch to 45 mm–1GV7AC03Terminal shields IP 405 (1)Supplied with sealing accessory–1GV7AC01Phase barriersSafety accessories used when fitting of shields is impossible –2GV7AC04Insulating screens Ensure insulation between the connections and the backplate –2GV7AC05Kits for combination with contactor (2)Allowing link between thecircuit breaker and the contactor. The cover provides protection against direct finger contactLC1 F115…F1851GV7AC06LC1 F225 and F2651GV7AC07LC1 D115 and D1501GV7AC08Replaces the circuit breaker front cover; secured by screws. It includes a device for locking the circuit breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). A conversion accessory allows the direct rotary handle to be mounted on the enclosure door. In this case, the door cannot be opened if the circuit breaker is in the “ON” position. Circuit breaker closing is inhibited if the enclosure door is open.Description TypeDegree of protection Reference Direct rotary handleBlack handle, black legend plate IP 40GV7AP03Red handle, yellow legend plateIP 40GV7AP04Adapter plate (3)Four mounting direct rotary handle on enclosure doorIP 43GV7AP05Allows a circuit breaker installed in the back of an enclosure to be operated from the front of the enclosure. It comprises:b a unit which screws onto the front cover of the circuit breaker,b an assembly (handle and front plate) to be fitted on the enclosure door,b an extension shaft which must be adjusted (distance between the mounting surface and the door: 185 mm minimum, 600 mm maximum). It includes a device for locking the circuit breaker in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included). This prevents the enclosure door from being opened.DescriptionTypeDegree of protection Reference Extended rotary handleBlack handle, black legend plate IP 55GV7AP01Red handle, yellow legend plateIP 55GV7AP02Allows circuit breakers not fitted with a rotary handle to be locked in the O (Off) position by means of up to 3 padlocks with a shank diameter of 5 to 8 mm (padlocks not included).Description ApplicationReference Locking deviceFor circuit breaker not fitted with a rotary handleGV7V01(1) Terminal shields cannot be used together with spreaders.(2) The kit comprises links, a protective shield and a depth adjustable metal bracket for the breaker.(3) This conversion accessory makes it impossible to open the door if the device is closed and prevents the device from being closed if the door is open.ReferencesTeSys protection componentsThermal-magnetic motor circuit breakers GV7 R with screw clamp connectionsAccessoriesGV7 AC07D F 537429.e p sGV7 AC08D F 537428.e p sDimensions:pages B6/79 to B6/81B6/260.5 6.63GB2DB051143GB2DB062263GB2DB073403GB2DB084503GB2DB095663GB2DB106833GB2DB1281083GB2DB14101383GB2DB16121653GB2DB20162203GB2DB21202703GB2DB22(1) Conforming to IEC 60947-1.GB2 CBppD F 526243.t i fGB2 CD ppD F 526244.t i fGB2 DBppD F 526245.t i fPresentation, selection :page B6/84Characteristics :pages B6/85 to B6/87Dimensions :page B6/88Schemes :page B6/88B6/27C i r c u i t b r e a k e r s(1) Conforming to IEC 60947-1.Accessories for circuit breakers GB2-CB, DB and CSDescriptionSold in lots of Unitreference Busbar set for supply to 10 GB2 DB or20 GB2 CB or GB2 CS with 2 connectors1GB2G210Supply connector 10GB2G01GB2 CS ppD F 526246.t i fPresentation, selection :page B6/84Characteristics :pages B6/85 to B6/87Dimensions :page B6/88Schemes :page B6/88B6/28B6/29B6/30TeSys GVCharacteristicsTeSys protection componentsMagnetic motor circuit breakers GV2 LE and GV2 LReferences:pages B6/2 and B6/3Dimensions:pages B6/43 to B6/47Schemes:page B6/48add-on contact blocks. Side by side mounting is possible up to 40 °C.(2) When mounting on a vertical rail, fit a stop to prevent any slippage.(1) As % of Icu.Average operating times at 20 °C related to multiples of the setting currentD F 534092.e p s1 3 poles from cold state2 2 poles from cold state3 3 poles from hot stateDynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VD F 534093.e p s1 Maximum peak current2 32 A3 25 A4 18 A5 14 A6 10 A7 6.3 A8 4 A9 2.5 A 10 1.6 A11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Dynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VD F 534094.e p s1 Maximum peak current2 32 A3 25 A4 18 A5 14 A6 10 A7 6.3 A8 4 A9 2.5 A 10 1.6 A11 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Thermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22Prospective Isc (kA)D F 534095.e p s1 32 A 2 25 A3 18 A4 14 A5 10 A6 6.3 A7 4 A8 2.5 A9 1.6 AThermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22D F 534096.e p s1 25 A and 32 A 2 18 A3 14 A 4 10 A5 6.3 A6 4 A7 2.5 A8 1.6 AThermal limit in kA 2s in the magnetic operating zone Sum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V22D F 534097.e p s1 32 A (GV2 LE32)2 25 A and 32 A (GV2 L32)3 18 A4 14 A5 10 A6 6.3 A7 4 A8 2.5 A9 1.6 A10 Limit of rated ultimate breaking capacity on short-circuit of GV2 LE (14, 18, 23 and 25 A ratings).Average operating time at 20 °C without prior current flowx the setting current (Ir)D F 534098.e p s1 3 poles from cold state2 2 poles from cold state3 3 poles from hot stateA Thermal overload relay protection zoneB GV3 L protection zoneDynamic stressI peak = f (prospective Isc) at 1.05 Ue = 435 VProspective Isc (kA)D B 418280.e p s1 Maximum peak current2 GV3 L653 GV3 L504 GV3 L405 GV3 L326 GV3 L25Thermal limit in A 2sSum of I 2dt = f (prospective Isc) at 1.05 Ue = 435 V2Prospective Isc (kA)D B 418279.e p s1 GV3 L652 GV3 L503 GV3 L404 GV3 L325 GV3 L25TeSys GVDimensions, mountingD F 537440.e p sD F 537441.e p sD F 537444.e p sTeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LETeSys GVDimensions, mounting TeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LED B 127415.e p sD B 127414.e p sa b Mini Maxi Mini Maxi GV2 APN pp140250GV2 APN pp + GV APH02151250GV2 APN pp + GV APK11250434--GV2 APN pp + GV APH02 + GV APK11--250445TeSys GVDimensions,mounting Sets of busbars GV2 G445, GV2 G454, GV2 G472, with terminal block GV2 G05D F 537451.e p sGV2 G445224269314359GV2 G454260314368422GV2 G472332404476548D F 537452.e p sD F 537454.e p sGV2 G345 (3 x 45 mm)134GV2 G354 (3 x 54 mm)152TeSys protection componentsMagnetic motor circuit breakers GV2 L and GV2 LED F 537480.e psD F 537435.e p sD F 510637.e p sD F 510638.e p sD B 127416.e p sD B 127417.e p sa b Mini Maxi Mini Maxi GV3 APN pp189300--GV3 APN pp + GV APK12300481GV3 APN pp + GV APH03--200300GV3 APN pp + GV APH03 + GV APK12--300492TeSys GVSchemesTeSys protection componentsMagnetic motor circuit breakers GV2 L, GV2 LE, GV3 LD F 537474.e p sD F 537475.e p sD F 537476.e p sGV2 ME, GV2 P , GV3 ME, GV3 P and GV7 R motor circuit breakers are 3-pole thermal-magnetic circuit breakers specifically designed for the control and protection of motors , conforming to standards IEC 60947-2 and IEC 60947-4-1.Connection GV2GV2 ME and GV2 P circuit breakers are designed for connection by screw clamp terminals.Circuit breaker GV2 ME can be supplied with lugs or spring terminal connections.Spring terminal connections ensure secure, permanent and durable clamping that is resistant to harsh environments, vibration and impact and are even more effective when conductors without cable ends are used. Each connection can take two independent conductors.GV3GV3 circuit breakers feature connection by BTR screws (hexagon socket head), tightened using a n° 4 Allen key.This type of connection uses the Ever Link ® system with creep compensation (1) (Schneider Electric patent).This technique makes it possible to achieve accurate and durable tightening torque, in order to avoid cable creep.GV3 circuit breakers are also available with connection by lugs. This type of connection meets the requirements of certain Asian markets and is suitable for applications subject to strong vibration, such as railway transport.GV7GV7 circuit breakers: with connection by screw clamp terminals (for bars and lugs) and by clip-on connectors.OperationControl is manual and local when the motor circuit breaker is used on its own.Control is automatic and remote when it is associated with a contactor.GV2 ME and GV3 ME80Pushbutton control.Energisation is controlled manually by operating the Start button “I” 1.De-energisation is controlled manually by operating the Stop button “O” 2, or automatically by the thermal-magnetic protection elements or by a voltage trip attachment.GV2 P , GV3 P and GV7 Rb Control by rotary knob: for GV2 P and GV3 P b Control by rocker lever: for GV7 R.Energisation is controlled manually by moving the knob or rocker lever to position “I” 1.De-energisation is controlled manually by moving the knob or rocker lever to position “O” 2.De-energisation due to a fault automatically places the knob or rocker lever in the “Trip” position 3.Re-energisation is possible only after having returned the knob or rocker lever to position “O”.(1) Creep: normal crushing phenomenon of copper conductors, that is accentuated over time.GV2 MEwith screw clamp terminals124D F 526134.t i fGV2 MEwith spring terminals connections124D F 526135.t i fGV3 P1324D F 526136.t ifGV2 P1342D F 526137.t i fGV7 R132D F 526138.t i f。
CSC-150数字式母线保护装置说明书
CSC-150数字式母线保护装置说明书CSC-150数字式母线保护装置说明书编制:操丰梅校核:宋小舟标准化审查:梁路辉审定:张忠理印刷版本号:V1.0文件代出版日期:2004.4版权所有:北京四方继保自动化股份有限公司注:本公司保留对此说明书修改的权利。
如果产品与说明书有不符之处,请您及时与我公司联系,我们将为您提供相应的服务。
重要提示感谢您使用北京四方继保自动化股份有限公司的产品。
为了安全、正确、高效地使用本装置,请您务必注意以下重要提示:1)本说明书仅适用于CSC-150数字式母线保护装置。
2)请仔细阅读本说明书,并按照说明书的规定调整、测试和操作。
如有随机资料,请以随机资料为准。
3)为防止装置损坏,严禁带电插拔装置各插件、触摸印制电路板上的芯片和器件。
4)请使用合格的测试仪器和设备对装置进行试验和检测。
5)装置如出现异常或需维修,请及时与本公司服务热线联系。
6)本装置的操作密码是:8888。
目录2.4电磁兼容性 .................................................................................................................6.8保护压板投退 .............................................................................................................7.3充电保护 .....................................................................................................................13.3CSC-150/1面板布置图 ............................................................................................13.6CSC-150/2背板端子图 ............................................................................................第一篇装置性能介绍1 概述1.1 适用范围CSC-150母线保护装置是适用于750kV及以下电压等级,包括单母线、单母分段、双母线、双母分段及一个半断路器接线等多种接线型式,最大接入单元为24个(包括线路、元件、母联及分段开关)的数字式成套母线保护装置(以下简称装置或产品)。
汉晶科技HG240128-01D系列说明书
HG240128-01D系列说明书(Version1.0)可选型号:产品型号及其后缀LCD类型(显示模式)背光类型(LED)时序方式逻辑电压(VDD)背光电压接口方式及其预留配置HG240128SYD-01DSYE STN黄绿底色黄绿背光80 5.0V 5.0V单排和双排插针焊位HG240128FPD-01DSWE FSTN 黑白正像白背光80 5.0V 5.0V单排和双排插针焊位HG240128SBD-01DSWE STN 蓝底色白背光80 5.0V 5.0V单排和双排插针焊位注:以上列出LCD类型为我公司标准产品,如果有其他需求,请致电我公司销售部!目录1、液晶显示模块整体描述-----------------------------------------------------------------------------------------32. 最大典型值---------------------------------------------------------------------------------------------------------43. 电气特性------------------------------------------------------------------------------------------------------------44. 光学特性-----------------------------------------------------------------------------------错误!未定义书签。
5. 光学特性测定方法------------------------------------------------------------------------------------------------56. 原理框图------------------------------------------------------------------------------------------------------------67. 时序图---------------------------------------------------------------------------------------------------------------68. 功能说明及指令集------------------------------------------------------------------------------------------------79. 字符代码表--------------------------------------------------------------------------------------------------------1610. LCD驱动电源连接方式---------------------------------------------------------------------------------------1611. 出厂测试报告----------------------------------------------------------------------------------------------------1712. 接口引脚定义----------------------------------------------------------------------------------------------------1813. 外形尺寸图纸----------------------------------------------------------------------------------------------------1814.液晶显示模块在使用过程中的注意事项--------------------------------------------------------------------211、液晶显示模块整体描述项目说明单位液晶显示模块组成液晶显示屏,背光灯箱,线路板,铁框,导电橡胶等液晶显示屏类型正像反射型,半透型,负像型液晶屏显示类型STN型:黄绿模式,灰模式,蓝模式FSTN型:黑白模式液晶显示屏视角 6 O’clock or 12 O’clock液晶模块外形尺寸 (LED*) 144.00(长)×104.00(宽)×13.00(厚) mm液晶模块视域 114.00(长)×64.00(宽) mm 液晶模块铁框尺寸 (LED*) 133.20(长)×80.00(宽)×13.00(厚) mm点阵液晶显示模块点阵数 240×128mm 液晶显示屏点尺寸 0.40(长)×0.40(宽)mm 液晶显示屏点间距 0.45(长)×0.45(宽) 液晶显示屏占空比 1/128液晶显示屏偏置电压 1/12液晶显示模块控制器 T6963C液晶显示模块使用温度范围(E*) -20~+70 ℃液晶显示模块存储温度范围(E*) -30~+80 ℃背光灯箱 LED:黄绿底色液晶显示模块数据输入格式八位并行输入格式,80时序方式电源输入电压 5V输入供电,内置DC/DC电路V液晶显示模块理论寿命 50,000 小时注意: LED*: LED背光E*: 宽温等级2. 最大典型值2.1 电气最大典型值Vss=0VUnitNote Item SymbolMin Max逻辑电源 Vdd-Vss 0 7.0 VLCD驱动电压 Vdd-V o 0 28.0 VVI/O口输入电压 Vi 0Vdd2.2 使用环境最大典型值Item Symbol Min Max Unit工作温度T0 -20 +70 ℃储存温度Ts -30 +80 ℃湿度 --- --- 85 %RH3. 电气特性3.1 电气特性Vss=0VItem Symbol Condition Min Typ Max Unit逻辑电压 Vdd ---- 4.5 5.0 5. 5 V LCD 驱动电压 Vdd-Vo ---- 15.5 --- 19.8 V输入电压最大值 VIH ---- Vdd-2.2--- Vdd V输入电压最小值 VIL ---- 0 --- 0.8 V 频率FELM Vdd=5V 65 78 85 Hz3.2 LED背光特性说明书背光颜色供电电流(典型值)黄绿背光 260mA白背光 140mA5. 光学特性测定方法6. 原理框图7. 时序图7.1 AC CHARACTERISTICSCharacteristic Symbol Min MaxUnitC/D set up time t CDS 100 --- ns C/D hold timet CDH 10 --- ns CE, RD, WR pulse width t CE , t RD , t WR80 --- ns Data set up time t DS 80 --- ns Data hold time t DH 40 --- ns Access time t ACC --- 150 ns Output hold timet OH10 50 ns7.2 TIMING CHARACTERISTICS8. 功能说明及指令集8.1. 读状态写入任何读写命令之前,必须检查“状态”寄存器。
GDZ12B中文资料
(V) 0.5 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.5 3.0 3.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 15.0 17.0 19.0 21.0 23.0 25.0 27.0
Notes: (1) The Zener voltage V(Z) is measured 40 ms after power is supplied. (2) The operating resistances (ZZ, ZZK) are measured by superimposing a 1 KHz alternating current on the regulated current (IZ)
Max. (Ω) 100 100 100 110 120 120 100 100 100 100 80 60 60 40 30 30 30 30 30 30 37 42 50 65 85 100 120 150 200 250 300 @IZ (mA) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Min. (V) 2.020 2.220 2.430 2.690 3.010 3.320 3.600 3.890 4.170 4.550 4.980 5.490 6.060 6.650 7.280 8.020 8.850 9.770 10.760 11.740 12.910 14.340 15.850 17.560 19.520 21.540 23.720 26.190 29.190 32.150 35.070 Max. (V) 2.200 2.410 2.630 2.910 3.220 3.530 3.845 4.160 4.430 4.750 5.200 5.730 6.330 6.930 7.600 8.360 9.230 10.210 11.220 12.240 13.490 14.980 16.510 18.350 20.390 22.470 24.780 27.530 30.690 33.790 36.870 IZ (mA) 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ICE3B0565J+(Chinese)(中文) 12W 5V Demo
焊接侧的铜箔和元件图例......................................................................................................................... 9
6
电路说明 ...................................................................................................................................... 10
应 用 说 明 , V1. 0,2005 年 9 月
AN-EVALSF3-ICE3B0565J
使 用 C o o l S E TT M F 3 I C E 3 B 0 5 6 5 J 的 1 2 W 5 . 0 V S M P S 评估板
电源管理与供电
思想永不停歇。
版本 2005 年 9 月 26 日 由 Infineon Technologies Asia Pacific 出版 168 Kallang Way, 349253 Singapore, Singapore © Infineon Technologies AP 2004。保留所有权利。
卧式初级电感lp830uh在引脚7完整变压器俯视图使用板上ice3b0565j12w5v演示板applicationnote1420050926测试结果91效率效率与交流电源输入电压的关系9085807570656050100150200250300交流电源输入电压vac输出功率为12效率与交流电源输入电压的关系效率与输出功率的关系9080706050403020101011121314输出功率vin85vacvin265vac50hz低线路电压和高线路电压下效率与输出功率的关系使用板上ice3b0565j12w5v演示板applicationnote152005092692输入待机功率空载待机功率与ac电源输入电压的关系302520151050100150200250300交流电源输入功率vacpo空载输入待机功率与ac电源输入电压的关系07505负载下的待机功率与ac电源输入电压关系07065060550550100150200250300ac电源输入电压负载下的输入待机功率与ac电源输入电压的关系使用板上ice3b0565j12w5v演示板applicationnote162005092693线路调节52线路调节
GS816236D-150资料
T h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)1M x 18, 512K x 36, 256K x 7218Mb Sync Burst SRAMs250 MHz–133 MHz 2.5 V or 3.3 V V DD 2.5 V or 3.3 V I/O119-, 165-, & 209-Bump BGA Commercial Temp Industrial Temp Features• FT pin for user-configurable flow through or pipeline operation • Single/Dual Cycle Deselect selectable• IEEE 1149.1 JTAG-compatible Boundary Scan• ZQ mode pin for user-selectable high/low output drive • 2.5 V or 3.3 V +10%/–10% core power supply • LBO pin for Linear or Interleaved Burst mode• Internal input resistors on mode pins allow floating mode pins • Default to SCD x18/x36 Interleaved Pipeline mode • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle• Automatic power-down for portable applications• JEDEC-standard 119-, 165-, and 209-bump BGA packageFunctional DescriptionApplicationsThe GS816218(B/D)/GS816236(B/D)/GS816272(C) is an18,874,368-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAMapplications, ranging from DSP main store to networking chip set support.ControlsAddresses, data I/Os, chip enable (E1), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.Flow Through/Pipeline ReadsThe function of the Data Output register can be controlled by the user via the FT mode . Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass theData Output Register. Holding FT high places the RAM inPipeline mode, activating the rising-edge-triggered Data Output Register.SCD and DCD Pipelined ReadsThe GS816218(B/D)/GS816236(B/D)/GS816272(C) is a SCD (Single Cycle Deselect) and DCD (Dual Cycle Deselect) pipelined synchronous SRAM. DCD SRAMs pipeline disable commands to the same degree as read commands. SCD SRAMs pipeline deselect commands one stage less than read commands. SCD RAMs begin turning off their outputs immediately after the deselect command has been captured in the input registers. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock. The user may configure this SRAM for either mode of operation using the SCD mode input.Byte Write and Global WriteByte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs.FLXDrive™The ZQ pin allows selection between high drive strength (ZQ low) for multi-drop bus applications and normal drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Sleep ModeLow power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.Core and Interface VoltagesThe GS816218(B/D)/GS816236(B/D)/GS816272(C) operates on a 2.5 V or 3.3 V power supply. All input are 3.3 V and 2.5 V compatible. Separate output power (V DDQ ) pins are used todecouple output noise from the internal circuits and are 3.3 V and 2.5 V compatible.Parameter Synopsis-250-225-200-166-150-133UnitPipeline 3-1-1-1t KQ tCycle 2.54.0 2.74.4 3.05.0 3.46.0 3.86.7 4.07.5ns ns 3.3 VCurr (x36)Curr (x72)330n/a 300n/a 270350230300215270190245mA mA 2-1-1-1KQ tCycle 5.55.5 6.06.0 6.56.57.07.07.57.58.58.5ns ns 3.3 VCurr (x36)Curr (x72)200n/a190n/a180225170115165210150185mA mAT h e x 18 a n dx36 pa r t si nt hi ss p e c i fi c a t i ona re N o tR e c o mme n de df o r Ne wD e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816272 Pad Out—209 Bump BGA —Top View (Package C)1234567891011A DQG DQG A E2ADSP ADSC ADV E3ADQBDQB B DQG DQG BC BG NC BW A BB BFDQBDQB C DQG DQG BH BD NC E1NC BEBADQB DQB D DQG DQG V SS NC NC G GW NCV SS DQB DQB E DQPG DQPC V DDQ V DDQ V DD V DD V DD V DDQ V DDQ DQP DQPB FDQCDQC V SS V SS V SS ZQ V SSV SS V SS DQF DQF G DQC DQCV DDQV DDQ V DD MCH V DD V DDQ V DDQ DQF DQF H DQC DQC V SSV SS V SS MCL V SS V SS V SS DQF DQF J DQC DQC V DDQ V DDQ V DD MCL V DD V DDQ V DDQ DQF DQF K NC NC CK NC V SSMCL V SS NC NC NC NC L DQH DQH V DDQ V DDQ V DDFTV DD V DDQ V DDQ DQA DQA M DQH DQH V SS V SSV SSMCL V SS V SS V SS DQA DQA N DQH DQH V DDQ V DDQ V DD SCD V DD V DDQ V DDQ DQA DQA P DQH DQH V SS V SSV SS ZZ V SS V SS V SS DQA DQA R DQPD DQPH V DDQV DDQ V DD V DD V DD V DDQ V DDQ DQPA DQPE T DQD DQD V SSNC NC LBO NC NC V SS DQE DQE U DQD DQDNC A1A A1A A NC DQE DQE V DQD DQD AA A A1A A A DQE DQE W DQDDQDTMSTDIAA0ATDOTCKDQEDQERev 1011 x 19 Bump BGA —14 x 22 mm 2 Body —1 mm Bump PitchT h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816272 BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset Inputs.An IAddress InputsDQ A DQ B DQ C DQ D DQ E DQ F DQ G DQ HI/O Data Input and Output pinsB A , B B , BC ,B D, B E , B F , B G ,B HI Byte Write Enable for DQ A , DQ B , DQ C , DQ D, DQ E ,DQ F , DQ G , DQ H I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highGW I Global Write Enable—Writes all bytes; active lowE 1, E 3I Chip Enable; active low E 2I Chip Enable; active highG I Output Enable; active lowADV I Burst address counter advance enable; active lowADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowSCD I Single Cycle Deselect/Dual Cycle Deselect Mode ControlMCH IMust Connect High MCL Must Connect Low BWI Byte Enable; active lowZQI FLXDrive Output Impedance Control(Low = Low Impedance [High Drive], High = High Impedance [Low Drive])TMS I Scan Test Mode Select TDII Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SSI I/O and Core Ground V DDQIOutput driver power supplyT h e x 18 a ndx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)165-Bump BGA—x18 Commom I/O—Top View (Package D)1234567891011A NC A E1BB NC E3BW ADSC ADV A A A B NC A E2NC BA CK GW G ADSP ANC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCL NC V DD V SS V SS V SS V DD NC ZQZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQV DD V SS V SS V SS V DD V DDQ DQA NC M N DQB SCD V DDQ V SS NC A NC V SS V DDQ NCNC N P NCNCA A TDI A1TDO A A A A P RLBO NCAATMSA0TCKAAAAR11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump PitchT h e x 18 a ndx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)165-Bump BGA—x36 Common I/O—Top View (Package D)1234567891011A NC A E1BC BB E3BW ADSC ADV A NC A B NC A E2BD BA CK GW G ADSP ANC B C DQC NC V DDQ V SS V SS V SS V SS V SS V DDQ NCDQB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCL NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQV DD V SS V SS V SS V DD V DDQ DQA DQA M N DQD SCD V DDQ V SS NC A NC V SS V DDQ NCDQA N P NCNCA A TDI A1TDO A A A A P RLBO NCAATMSA0TCKAAAAR11 x 15 Bump BGA—13mm x 15 mm Body—1.0 mm Bump PitchT h e x 18 a n dx 36pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816236 Pad Out—119-Bump BGA —Top View (Package B)1234567A V DDQ A A ADSP A V DDQB NC A A ADSC A ANC C NC A A V DD A ANC D DQ C DQP C V SS ZQ V SS DQ B DQ B E DQ C DQ C V SS E 1V SS DQ B DQ B F V DDQ DQ C V SS GV SS DQ B V DDQ G DQ C D Q C B CADV B B DQ B DQ B H DQ C DQ C V SS GW V SS DQ B DQ B J V DDQ V DDNCV DD NC V DD V DDQ K DQ DDQ D V SS CKV SS DQ A DQ A L DQ D DQ D B D SCD B A DQ A DQ A M V DDQ DQ D V SS BW V SS DQ A V DDQ N DQ D DQ DV SS A 1V SS DQ ADQ A PDQ D DQP D V SS A 0V SS DQP A DQ A R NC A LBO V DD FT A PE T NC NC A A A NC ZZ UV DDQTMSTDITCKTDONCV DDQT h e x 18 a n dx 36pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816218 Pad Out—119-Bump BGA —Top View (Package B)BPR1999.05.181234567A V DDQ A A ADSP A V DDQB NC A A ADSC A ANC C NC A A V DD A ANC D DQ B NC V SS ZQ V SS DQP A NC E NC DQ B V SS E 1V SS NC DQ A F V DDQ NC V SS GV SS DQ A V DDQ G NC D Q B B BADV NC NC DQ A H DQ B N CV SS GW V SS DQ A NC J V DDQ V DDNCV DD NC V DD V DDQ K NCDQ B V SS CKV SS NC DQ A L DQ B NCNC SCD B A DQ A NC M V DDQ DQ B V SS BW V SS NC V DDQ N DQ B NC V SS A 1V SS DQ A NC PNC DQP BV SS A 0V SS NC DQ A R NC LBOV DD FT A PE T NC A A NC A A ZZ UV DDQTMSTDITCKTDONCV DDQT h e x 18a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816218/36 BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsAn I Address Inputs DQ A DQ B DQ C DQ D I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active highBW I Byte Write—Writes all enabled bytes; active lowGW I Global Write Enable—Writes all bytes; active lowE 1I Chip Enable; active lowG I Output Enable; active lowADV I Burst address counter advance enable; active low ADSP, ADSCI Address Strobe (Processor, Cache Controller); active lowZZ I Sleep mode control; active highFT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [LowDrive])SCD I Single Cycle Deselect/Dual Cyle Deselect Mode ControlTMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock PE I Parity Bit Enable; active lowV DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyT h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816218/36 (PE = 0) Block DiagramA1A0A0A1D0D1Q1Q0Counter LoadD QD QRegisterRegisterDQRegisterD QRegisterD QRegisterD QRegisterD QRegisterD QRegisterD QR e g i s t e rDQ RegisterA0–An LBO ADVCKADSC ADSP GW BW E 1FT GZZPower Down ControlMemory Array36364AQDDQx1–DQx9NCParity NCParity EncodeCompare3643636432Note: Only x36 version shown for simplicity.SCD3636DQR e g i s t e r 4B AB BB CB DT h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)GS816218/36 (PE = 1) x32 Mode Block DiagramA1A0A0A1D0D1Q1Q0Counter LoadD QD QRegisterRegisterDQRegisterDQRegisterD QRegisterD QRegisterD QRegisterD QRegisterDQR e g i s t e rDQRegisterA0–An LBO ADVCK ADSC ADSP GW BW B AB BB CB DE 1FT GZZPower Down ControlMemory Array36364A QD DQx1–DQx8NCParity NCParity EncodeCompare3243236432Note: Only x36 version shown for simplicity.SCDD QRegisterD QRegisterParity Encode 3243236T h e x 18 a n dx 36pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Note:There are pull-up devices on the ZQ, SCD, and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Burst Counter SequencesBPR 1999.05.18Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear BurstH Interleaved BurstOutput Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC ActiveH Standby, I DD = I SBSingle/Dual Cycle Deselect Control SCD L Dual Cycle Deselect H or NC Single Cycle DeselectFLXDrive Output Impedance ControlZQ L High Drive (Low Impedance)H or NC Low Drive (High Impedance)9th Bit EnablePELActivate DQPx I/Os (x18/x36 mode)H or NC Deactivate DQPx I/Os (x16/x32 mode)Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address 000110112nd address 010011103rd address 101100014th address11100100T h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR ec o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)1.All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs.2.Byte Write Enable inputs B A , B B , B C , and/or B D may be used in any combination with BW to write single or multiple bytes.3.All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.4.Bytes “C ” and “D ” are only available on the x36 version.Byte Write Truth TableFunctionGWBWB AB BB CB DNotesRead H H X X X X 1Read H L H H H H 1Write byte a H L L H H H2, 3Write byte b H L H L H H2, 3Write byte c H L H H L H 2, 3, 4Write byte d H L H H H L 2, 3, 4Write all bytesHLLLLL2, 3, 4Write all bytes L X X X X XT h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi ca t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Synchronous Truth TableOperationAddress UsedState Diagram Key 5E 1ADSPADSCADVW 3DQ 4Deselect Cycle, Power Down None X H X LXXHigh-Z Read Cycle, Begin Burst External R L L X X X Q Read Cycle, Begin Burst External R L H LX F Q Write Cycle, Begin Burst External W L H L X T D Read Cycle, Continue Burst Next CR X H H L F Q Read Cycle, Continue Burst Next CR H XH L F Q Write Cycle, Continue Burst Next CW XH H L T D Write Cycle, Continue Burst Next CWH X H LT D Read Cycle, Suspend Burst Current XH H H F Q Read Cycle, Suspend Burst Current H X H H F Q Write Cycle, Suspend Burst Current XH H H T D Write Cycle, Suspend BurstCurrentHXHHTDNotes:1.X = Don’t Care, H = High, L = Low2.W = T (True) and F (False) is defined in the Byte Write Truth Table preceding3.G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shownas “Q” in the Truth Table above).4.All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplishbasic synchronous or synchronous burst operations and may be avoided for simplicity.5.Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above.6.Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.T h e x 18 a n dx 36pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Simplified State DiagramFirst WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWX XW RRWRXXX S i m p l e S y n c h r o n o u s O p e r a t i o nS i m p l e B u r s t S y n c h r o n o u s O p e r a t i o nCRRCW CRCRNotes:1.The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low.2.The upper portion of the diagram assumes active use of only the Enable (E1) and Write (B A , B B , B C , B D , BW, and GW) control inputs, andthat ADSP is tied high and ADSC is tied low.3.The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs andassumes ADSP is tied high and ADV is tied low.T h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Simplified State Diagram with GFirst WriteFirst ReadBurst WriteBurst ReadDeselectR WCRCWXXW RRWRXXX CRR CWCRCRWCWW CWNotes:1.The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G.e of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from read cycles to write cycles without passingthrough a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.3.Transitions shown in grey tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meetData Input Set Up Time.T h e x 18 a n dx 36 par t si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage in V DDQ Pins –0.5 to 4.6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCPower Supply Voltage RangesParameterSymbolMin.Typ.Max.UnitNotes3.3 V Supply Voltage V DD3 3.0 3.3 3.6V 2.5 V Supply Voltage V DD22.3 2.5 2.7V3.3 V V DDQ I/O Supply VoltageV DDQ3 3.0 3.3 3.6V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.52.7VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.Th e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i o na r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)V DDQ3 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 2.0—V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.8V 1V DDQ I/O Input High Voltage V IHQ 2.0—V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.8V1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.V DDQ2 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL–0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.T h e x 18 a n dx 36 pa rt si nt hi ss p e c i fi c a t i ona r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)Note:These parameters are sample tested.Capacitance(T A = 25o C, f = 1 MH Z , V DD = 2.5 V)ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V45pF Input/Output Capacitance C I/OV OUT = 0 V67pFAC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table.50% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and Timing Overshoot Measurement and Timing50% tKCV DD + 2.0 V50%V DDV IL DQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig CapacitanceT h e x 18 a n dx 36 pa r t si nt hi ss p e c i fi c a t i ona r e N o tRe c o mme n de df o r N e w D e s ig n.GS816218(B/D)/GS816236(B/D)/GS816272(C)DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA1 uA 100 uA FT, SCD, ZQ Input Current I IN2V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL–100 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable, V OUT = 0 to V DD–1 uA 1 uA Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V1.7 V —Output High Voltage V OH3I OH = –8 mA, V DDQ = 3.135 V2.4 V —Output Low VoltageV OLI OL = 8 mA—0.4 VT h e x 18 a n dx 36 pa r t s i n t h i s s p e c i fi c a t i o n a r e N o tR e c o mme n de df o r Ne w D e s i g n.GS816218(B/D)/GS816236(B/D)/GS816272(C)N o t e s : 1.I D D a n d I D D Q a p p l y t o a n y c o m b i n a t i o n o f V D D 3, V D D 2, V D D Q 3, a n d V D D Q 2 o p e r a t i o n .2.A l l p a r a m e t e r s l i s t e d a r e w o r s t c a s e s c e n a r i o .O p e r a t i n g C u r r e n t sP a r a m e t e r T e s t C o n d i t i o n s M o d eS y m b o l -250-225-200-166-150-133U n i t0t o 70°C –40 t o 85°C0t o 70°C –40 t o 85°C 0t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°C 0 t o 70°C –40t o 85°CO p e r a t i n g C u r r e n t3.3 VD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 72)P i p e l i n e I D DI D D Qn /a n /a n /a n /a 2906030060250502605022545235452054021540m AF l o w T h r o u g hI D DI D D Qn /a n /a n /a n /a 1953020530185301953018030190301652017520m A(x 36)P i p e l i n eI D DI D D Q290403004026535275352403025030205252152519025200251702018020m AF l o w T h r o u g h I D D I D D Q180201902017020180201651517515155151651515015160151401015010m A(x 18)P i p e l i n e I D DI D D Q260202702023520245202151522515185151951517015180151551016510m AF l o w T h r o u g hI D DI D D Q165101751015510165101501016010140101501013510145101251013510m AO p e r a t i n g C u r r e n t2.5 VD e v i c e S e l e c t e d ; A l l o t h e r i n p u t s ≥V I H o r ≤ V I LO u t p u t o p e n(x 72)P i p e l i n eI D DI D D Qn /a n /an /a n /a2904530045250402604022535235352053021530m AF l o w T h r o u g hI D DI D D Qn /a n /a n /a n /a1953020530185301953018030190301652017520m A(x 36)P i p e l i n eI D DI D D Q290303003026530275302402525025205202152019020200201701518015m AF l o w T h r o u g hI D DI D D Q180201902017020180201651517515155151651515015160151401015010m A(x 18)P i p e l i n eI D DI D D Q260152701523515245152151522515185101951017010180101551016510m AF l o w T h r o u g hI D DI D D Q165101751015510165101501016010140101501013510145101251013510m AS t a n d b y C u r r e n tZ Z ≥ V D D – 0.2 V —P i p e l i n eI S B 203020302030203020302030m AF l o w T h r o u g hI S B203020302030203020302030m AD e s e l e c t C u r r e n tD e v i c e D e s e l e c t e d ; A l l o t h e r i n p u t s ≥ V I H o r ≤ V I L—P i p e l i n eI D D859080857580647060655055m AF l o w T h r o u g hI D D606560655055505550554550m A。
SINAMICS G150 样本(中文)
C lo s e d -Io o p -c o n tr o l
D ia g n o s is
H e lp
ESC
OK
首先,选择所使用的电机类型 (技术数据符合标准 IEC 或 NEMA)。
Select Motortype ( IEC/ NEMA)
1 2 3
4
5
操作面板 1 通电指示灯 (绿色) 2 报警指示灯 (黄色) 3 故障指示灯 (红色) 4 数字键盘 5 键盘锁 6 显示 7 功能键 F1 - F5 8 本地 / 远程优先级的选择 9 驱动控制小键盘
1
变频调速柜
SINAMICS G150
■ 特性 (续)
• 结构紧凑,模块化设计,极易维护 • 无故障设计 • 易于连接,装配简单 • 调试快速,菜单提示,无需复杂参数化 • 舒适型图形化操作面板,操作简便,一目了然,测量值以纯
文本或准模拟条形图显示
质量
SINAMICS G150 变频调速柜是按最高质量标准和要求监造。 产品具有最大的可靠性、可用性和功能性。
A&D Mall 网址: /automation/mall
DA 12 DA 21.1 DA 22 DA 63 DA 65.10 M 11 SD 01 CA 01
SINAMICS G150 变频调速柜 订货样本 D 11
2004 年 6 月
本样本所及产品和系统 均为最高质量监造,获得 德国 DQS 认证,符合标 准 DIN EN ISO 9001。 DQS 认证为所有 EQ Net 获得国际认可。
110 kW - 560 kW (~800kW)
SINAMICS G150 变频调速柜,结构紧凑,模块化设计,维修 方便。
丰富的电气和机械选件,可使驱动系统优化用于各种应用。
广泰150iMJ-Ⅱ说明书
7
用户手册
图 3.3 菜单分布
在面板上按“程序”、“参数”、“刀补”、“手动”、“自动”功能键时对应上图 3.3 显示 界面、界面的切换可以通过上列菜单对应的 F 软键实现,返回主菜单界面按“ESC”键。
对话框数据输入 在本系统中数据的输入多数都是以对话框的形式输入的,当在对话框进行数据输入 时,本系统采用直接数据替换的方法。即在对话框进行数据输入时,此时对话框内的数 据即被新数据所替换。数据输入完成后按“Enter”键确认并退出,在数据输入的任何时 候按“Esc”键则取消本次数据输入并退出。
运行自动加工程序,同时灯亮。
程序在自动连续运行过程中按一次则暂停,在暂停状态下再按一 次则停止程序运行。在手动状态下时则用于停止当前的动作。
主轴在运转过程中,可以实时修调转速
进给轴倍率开关 在程序运行或手动时,可以实时修调各轴的进给速度
按键介绍:
键盘类别
功能用途
字母键 C H RTA X Y Z L I J K S F M G D P N 0 1 2 3 4 5 6 7 8 9 . - : 用于程序各种指令、 数字键 参数的编制,数字键用于输入加工数据、参数值和子菜单的选择
编辑键 功能键
↑、↓、→、←:用于光标移动,进行数据输入或菜单选择等。
Del:删除光标后的一个字符。
PgUp、PgDn:上、下翻页。
Alt:切换键,手、自动状态时用作坐标切换。
Back:删除光标前的一个字符。
SPC:空格。
Home:程序编辑状态时移动光标到本行行首位置;在参数菜单下时移动光
标到本类参数的第一个参数位置。
2.4.3 运行环境:
无过量粉尘、酸、碱腐蚀性气体和爆炸性气体,无强电磁干扰。
GS8162Z36BB-150中文资料
GS8162Z18/36B(B/D)18Mb Pipelined and Flow ThroughSynchronous NBT SRAM250 MHz –150 MHz 2.5 V or 3.3 V V DD 2.5 V or 3.3 V I/O119- & 165-Bump BGA Commercial Temp Industrial Temp Features• NBT (No Bus Turn Around) functionality allows zero wait Read-Write-Read bus utilization; fully pin-compatible with both pipelined and flow through NtRAM™, NoBL™ and ZBT™ SRAMs• 2.5 V or 3.3 V +10%/–10% core power supply • 2.5 V or 3.3 V I/O supply• User-configurable Pipeline and Flow Through mode • ZQ mode pin for user-selectable high/low output drive • IEEE 1149.1 JTAG-compatible Boundary Scan• On-chip write parity checking; even or odd selectable • On-chip parity encoding and error detection • LBO pin for Linear or Interleave Burst mode • Pin-compatible with 2M, 4M, and 8M devices • Byte write operation (9-bit Bytes)• 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down• JEDEC-standard 119-bump and 165-bump BGA packages • RoHS-compliant 119-bump and 165-bump BGA packages availableFunctional DescriptionThe GS8162Z18/36B(B/D) is an 18Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.Because it is a synchronous device, address, data inputs, and read/write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex off-chip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.The GS8162Z18/36B(B/D) may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising edge triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.The GS8162Z18/36B(B/D) is implemented with GSI's high performance CMOS technology and is available in a JEDEC-standard 119-bump or 165-bump BGA package.Parameter Synopsis-250-200-150UnitPipeline 3-1-1-1t KQ tCycle 2.54.0 3.05.0 3.86.7ns ns Curr (x18)Curr (x36)295345245285200225mA mA Flow Through 2-1-1-1t KQ tCycle 5.55.5 6.56.57.57.5ns ns Curr (x18)Curr (x36)225255200220185205mA mAGS8162Z18/36B(B/D)165 Bump BGA—x18 Commom I/O—Top View 1234567891011A NC A E1BB NC E3CKE ADV A A A A B NC A E2NC BA CK W G A A NC B C NC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPA C D NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA D E NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA E F NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA F G NC DQB V DDQ V DD V SS V SS V SS V DD V DDQ NC DQA G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC J K DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC K L DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC L M DQB NC V DDQ V DD V SS V SS V SS V DD V DDQ DQA NC M N DQPB DNU V DDQ V SS NC NC NC V SS V DDQ NC NC N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS8162Z18/36B(B/D)165 Bump BGA—x36 Common I/O—Top View 1234567891011A NC A E1BC BB E3CKE ADV A A NC A B NC A E2BD BA CK W G A A NC B C DQPC NC V DDQ V SS V SS V SS V SS V SS V DDQ NC DQPB C D DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB D E DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB E F DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB F G DQC DQC V DDQ V DD V SS V SS V SS V DD V DDQ DQB DQB G H FT MCH NC V DD V SS V SS V SS V DD NC ZQ ZZ H J DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA J K DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA K L DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA L M DQD DQD V DDQ V DD V SS V SS V SS V DD V DDQ DQA DQA M N DQPD DNU V DDQ V SS NC NC NC V SS V DDQ NC DQPA N P NC NC A A TDI A1TDO A A A NC P RLBONCAATMSA0TCKAAAAR11 x 15 Bump BGA—13 mm x 15 mm Body—1.0 mm Bump Pitch(Package D)GS8162Z36B Pad Out—119-Bump BGA—Top View (Package B)1234567A V DDQ A A A A A V DDQ B NC E 2A ADV A E 3NC C NC A A V DD A A NC D DQ C DQP C V SS ZQ V SS DQP B DQ B E DQ C DQ C V SS E 1V SS DQ B DQ B F V DDQ DQ C V SS G V SS DQ B V DDQ G DQ C DQ C B C A B B DQ B DQ B H DQ C DQ C V SS W V SS DQ B DQ B J V DDQ V DD NC V DD NC V DD V DDQ K DQ D DQ D V SS CK V SS DQ A DQ A L DQ D DQ D B D NC B A DQ A DQ A M V DDQ DQ D V SS CKE V SS DQ A V DDQ N DQ D DQ D V SS A 1V SS DQ A DQ A P DQ D DQP D V SS A 0V SS DQP A DQ A R NC A LBO V DD FT A NC T NC NC A A A NC ZZ UV DDQTMSTDITCKTDONCV DDQGS8162Z18/36B(B/D)GS8162Z18B Pad Out—119-Bump BGA—Top View (Package B)1234567AV DDQ A A A A A V DDQ B NC E 2A ADV A E 3NC C NC A A V DD A A NC D DQ B NC V SS ZQ V SS DQ PA NC E NC DQ B V SS E 1V SS NC DQ A F V DDQ NC V SS G V SS DQ A V DDQ G NC DQ B B B A NC NC DQ A H DQ B N C V SS W V SS DQ A NC J V DDQ V DD NC V DD NC V DD V DDQ K NC DQ B V SS CK V SS NC DQ A L DQ B NC NC NC B A DQ A NC M V DDQ DQ B V SS CKE V SS NC V DDQ N DQ B NC V SS A 1V SS DQ A NC P NC DQ PB V SS A 0V SS NC DQ A R NC A LBO V DD FT A NC T NC A A NC A A ZZ UV DDQTMSTDITCKTDONCV DDQGS8162Z18/36B(B/D)GS8162Z18/36B(B/D)GS8162Z18/36 119-Bump and 165-Bump BGA Pin DescriptionSymbolTypeDescriptionA 0, A 1I Address field LSBs and Address Counter Preset InputsA I Address Inputs DQ A DQB DQC DQD I/O Data Input and Output pinsB A , B B , BC , B DI Byte Write Enable for DQ A , DQ B , DQ C , DQ D I/Os; active lowNC —No ConnectCK I Clock Input Signal; active high CKE I Clock Enable; active low W I Write Enable; active low E 1I Chip Enable; active low E 3I Chip Enable; active low E 2I Chip Enable; active high G I Output Enable; active lowADV I Burst address counter advance enable; active highZZ I Sleep mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active lowZQ I FLXDrive Output Impedance Control (Low = Low Impedance [High Drive], High = High Impedance [LowDrive])TMS I Scan Test Mode Select TDI I Scan Test Data In TDO O Scan Test Data Out TCK I Scan Test Clock V DD I Core power supply V SS I I/O and Core Ground V DDQIOutput driver power supplyBPR1999.05.18GS8162Z18/36B(B/D)Functional DetailsClockingDeassertion of the Clock Enable (CKE) input blocks the Clock input from reaching the RAM's internal circuits. It may be used to suspend RAM operations. Failure to observe Clock Enable set-up or hold requirements will result in erratic operation.Pipeline Mode Read and Write OperationsAll inputs (with the exception of Output Enable, Linear Burst Order and Sleep) are synchronized to rising clock edges. Single cycle read and write operations must be initiated with the Advance/Load pin (ADV) held low, in order to load the new address. Device activation is accomplished by asserting all three of the Chip Enable inputs (E 1, E 2, and E 3). Deassertion of any one of the Enable inputs will deactivate the device. Function W B A B B B C B D Read H X X X X Write Byte “a”L L H H H Write Byte “b”L H L H H Write Byte “c”L H H L H Write Byte “d”L H H H L Write all Bytes L L L L L Write Abort/NOPLHHHHRead operation is initiated when the following conditions are satisfied at the rising edge of clock: CKE is asserted low, all three chip enables (E 1, E 2, and E 3) are active, the write enable input signals W is deasserted high, and ADV is asserted low. The address presented to the address inputs is latched into the address register and presented to the memory core and control logic. The control logic determines that a read access is in progress and allows the requested data to propagate to the input of the output register. At the next rising edge of clock the read data is allowed to propagate through the output register and onto the output pins.Write operation occurs when the RAM is selected, CKE is asserted low, and the Write input is sampled low at the rising edge of clock. The Byte Write Enable inputs (B A , B B , B C, and B D ) determine which bytes will be written. All or none may be activated. A write cycle with no Byte Write inputs active is a no-op cycle. The pipelined NBT SRAM provides double late write functionality, matching the write command versus data pipeline length (2 cycles) to the read command versus data pipeline length (2 cycles). At the first rising edge of clock, Enable, Write, Byte Write(s), and Address are registered. The Data In associated with that address is required at the third rising edge of clock.Flow Through Mode Read and Write OperationsOperation of the RAM in Flow Through mode is very similar to operations in Pipeline mode. Activation of a Read Cycle and the use of the Burst Address Counter is identical. In Flow Through mode the device may begin driving out new data immediately after new address are clocked into the RAM, rather than holding new data until the following (second) clock edge. Therefore, in Flow Through mode the read pipeline is one cycle shorter than in Pipeline mode.Write operations are initiated in the same way, but differ in that the write pipeline is one cycle shorter as well, preserving the ability to turn the bus from reads to writes without inserting any dead cycles. While the pipelined NBT RAMs implement a double late write protocol in Flow Through mode a single late write protocol mode is observed. Therefore, in Flow Through mode, address and control are registered on the first rising edge of clock and data in is required at the data input pins at the second rising edge of clock.Synchronous Truth TableOperationType Address CK CKE ADV W Bx E 1E 2E 3G ZZDQNotesRead Cycle, Begin Burst R External L-H L L H X L H L L L Q Read Cycle, Continue Burst B Next L-H L H X X X X X L L Q 1,10NOP/Read, Begin Burst R External L-H L L H X L H L H L High-Z 2Dummy Read, Continue Burst B Next L-H L H X X X X X H L High-Z 1,2,10Write Cycle, Begin Burst W External L-H L L L L L H L X L D 3Write Cycle, Continue Burst B Next L-H L H X L X X X X L D1,3,10Write Abort, Continue Burst B Next L-H L H X H X X X X L High-Z 1,2,3,10Deselect Cycle, Power Down D None L-H L L X X H X X X L High-Z Deselect Cycle, Power Down D None L-H L L X X X X H X L High-Z Deselect Cycle, Power Down D None L-H L L X X X L X X L High-Z Deselect Cycle D None L-H L L L H L H L X L High-Z 1Deselect Cycle, Continue DNone L-H L H X X X X X X L High-Z 1Sleep ModeNone X X X X X X X X X H High-Z Clock Edge Ignore, StallCurrentL-HHXXXXXXXL-4Notes:1.Continue Burst cycles, whether read or write, use the same control inputs. A Deselect continue cycle can only be entered into if a Dese-lect cycle is executed first.2.Dummy Read and Write abort can be considered NOPs because the SRAM performs no operation. A Write abort occurs when the Wpin is sampled low but no Byte Write pins are active so no write operation is performed.3.G can be wired low to minimize the number of control signals provided to the SRAM. Output drivers will automatically turn off duringwrite cycles.4.If CKE High occurs during a pipelined read cycle, the DQ bus will remain active (Low Z). If CKE High occurs during a write cycle, the buswill remain in High Z.5. X = Don’t Care; H = Logic High; L = Logic Low; Bx = High = All Byte Write signals are high; Bx = Low = One or more Byte/Writesignals are Low6.All inputs, except G and ZZ must meet setup and hold times of rising clock edge.7.Wait states can be inserted by setting CKE high.8.This device contains circuitry that ensures all outputs are in High Z during power-up.9. A 2-bit burst counter is incorporated.10.The address counter is incriminated for all Burst continue cycles.GS8162Z18/36B(B/D)GS8162Z18/36B(B/D)DeselectNew ReadNew WriteBurst ReadBurst WriteWRBRBWDDBBWRD BWRDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input commandcodes as indicated in the Synchronous Truth Table.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipelined and Flow through Read/Write Control State DiagramWRPipelined and Flow Through Read Write Control State DiagramGS8162Z18/36B(B/D)IntermediateIntermediateIntermediateIntermediateIntermediateIntermediateHigh Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)TransitionƒInput Command CodeKeyTransitionIntermediate State (N+1)Notes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateIntermediate ƒn n+1n+2n+3ƒƒƒCurrent State and Next State Definition for Pipeline Mode Data I/O State DiagramNext StateStatePipeline Mode Data I/O State DiagramGS8162Z18/36B(B/D)High Z (Data In)Data Out (Q Valid)High Z B W B R B DRW RWDDCurrent State (n)Next State (n+1)TransitionƒInput Command CodeKeyNotes1. The Hold command (CKE Low) is notshown because it prevents any state change.2. W, R, B, and D represent input command codes as indicated in the Truth Tables.Clock (CK)CommandCurrent StateNext Stateƒnn+1n+2n+3ƒƒƒCurrent State and Next State Definition for: Pipeline and Flow Through Read Write Control State DiagramFlow Through Mode Data I/O State DiagramGS8162Z18/36B(B/D)Burst CyclesAlthough NBT RAMs are designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from read to write, multiple back-to-back reads or writes may also be performed. NBT SRAMs provide an on-chip burst address generator that can be utilized, if desired, to further simplify burst read or write implementations. The ADV control pin, when driven high, commands the SRAM to advance the internal address counter and use the counter generated address to read or write the SRAM. The starting address for the first cycle in a burst cycle series is loaded into the SRAM by driving the ADV pin low, into Load mode.Burst OrderThe burst address counter wraps around to its initial state after four addresses (the loaded address and three more) have beenaccessed. The burst sequence is determined by the state of the Linear Burst Order pin (LBO). When this pin is Low, a linear burst sequence is selected. When the RAM is installed with the LBO pin tied high, Interleaved burst sequence is selected. See the tables below for details.FLXDrive™The ZQ pin allows selection between NBT RAM nominal drive strength (ZQ low) for multi-drop bus applications and low drive strength (ZQ floating or high) point-to-point applications. See the Output Driver Characteristics chart for details.Mode Pin FunctionsMode NamePin NameStateFunctionBurst Order Control LBO L Linear Burst H Interleaved Burst Output Register Control FT L Flow Through H or NC Pipeline Power Down Control ZZ L or NC Active H Standby, I DD = I SB FLXDrive Output Impedance ControlZQL High Drive (Low Impedance)H or NCLow Drive (High Impedance)Note:There are pull-up devices on the ZQ and FT pins and a pull-down device on the ZZ pin, so those input pins can be unconnected and the chip will operate in the default states as specified in the above tables.Note:The burst counter wraps to initial state on the 5th clock.Note:The burst counter wraps to initial state on the 5th clock.Linear Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1st address000110112nd address 011011003rd address 101100014th address11000110Interleaved Burst SequenceA[1:0]A[1:0]A[1:0]A[1:0]1staddress 000110112nd address 010011103rd address 101100014th address11100100GS8162Z18/36B(B/D)Burst Counter SequencesBPR 1999.05.18Sleep ModeDuring normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to I SB 2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, I SB 2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.Sleep Mode Timing DiagramtZZRtZZHtZZStKLtKHtKCCKZZDesigning for CompatibilityThe GSI NBT SRAMs offer users a configurable selection between Flow Through mode and Pipeline mode via the FT signal found on Bump 5R. Not all vendors offer this option, however most mark Bump 5R as V DD or V DDQ on pipelined parts and V SS on flow through parts. GSI NBT SRAMs are fully compatible with these sockets.Absolute Maximum Ratings(All voltages reference to V SS )SymbolDescriptionValueUnitV DD Voltage on V DD Pins –0.5 to 4.6V V DDQ Voltage in V DDQ Pins –0.5 to 4.6V V I/O Voltage on I/O Pins –0.5 to V DDQ +0.5 (≤ 4.6 V max.)V V IN Voltage on Other Input Pins –0.5 to V DD +0.5 (≤ 4.6 V max.)V I IN Input Current on Any Pin +/–20mA I OUT Output Current on Any I/O Pin +/–20mA P D Package Power Dissipation 1.5WT STG Storage Temperature –55 to 125o C T BIASTemperature Under Bias–55 to 125oCGS8162Z18/36B(B/D)Note:Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage RangesParameterSymbolMin.Typ.Max.UnitNotes3.3 V Supply Voltage V DD3 3.0 3.3 3.6V 2.5 V Supply Voltage V DD2 2.3 2.5 2.7V 3.3 V V DDQ I/O Supply Voltage V DDQ3 3.0 3.3 3.6V 2.5 V V DDQ I/O Supply VoltageV DDQ22.32.52.7VNotes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8162Z18/36B(B/D)V DDQ3 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 2.0—V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.8V 1V DDQ I/O Input High Voltage V IHQ 2.0—V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.8V1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.V DDQ2 Range Logic LevelsParameterSymbolMin.Typ.Max.UnitNotesV DD Input High Voltage V IH 0.6*V DD —V DD + 0.3V 1V DD Input Low Voltage V IL –0.3—0.3*V DD V 1V DDQ I/O Input High Voltage V IHQ 0.6*V DD —V DDQ + 0.3V 1,3V DDQ I/O Input Low VoltageV ILQ–0.3—0.3*V DDV1,3Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.3.V IHQ (max) is voltage on V DDQ pins plus 0.3 V.Recommended Operating TemperaturesParameterSymbolMin.Typ.Max.UnitNotesAmbient Temperature (Commercial Range Versions)T A 02570°C 2Ambient Temperature (Industrial Range Versions)T A–402585°C2Notes:1.The part numbers of Industrial Temperature Range versions end the character “I”. Unless otherwise noted, all performance specifica-tions quoted are evaluated for worst case in the temperature range marked on the device.2.Input Under/overshoot voltage must be –2 V > Vi < V DDn +2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.GS8162Z18/36B(B/D)50% tKCV SS – 2.0 V50%V SS V IHUndershoot Measurement and TimingOvershoot Measurement and Timing50% tKCV DD + 2.0 V50%V DDV ILCapacitanceo C, f = 1 MH Z , V DD ParameterSymbolTest conditionsTyp.Max.UnitInput Capacitance C IN V IN = 0 V 45pF Input/Output Capacitance C I/OV OUT = 0 V67pFNote:These parameters are sample tested.AC Test ConditionsParameterConditionsInput high level V DD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level V DD /2Output reference levelV DDQ /2Output loadFig. 1Notes:1.Include scope and jig capacitance.2.Test conditions as specified with output loading as shown in Fig. 1unless otherwise noted.3.Device is deselected as defined by the Truth Table.DQV DDQ/250Ω30pF *Output Load 1* Distributed Test Jig Capacitance(T A = 25= 2.5 V)DC Electrical CharacteristicsParameterSymbolTest ConditionsMinMaxInput Leakage Current (except mode pins)I IL V IN = 0 to V DD –1 uA 1 uA ZZ Input Current I IN1V DD ≥ V IN ≥ V IH 0 V ≤ V IN ≤ V IH –1 uA –1 uA 1 uA 100 uA FT, ZQ Input Current I IN2V DD ≥ V IN ≥ V IL 0 V ≤ V IN ≤ V IL–100 uA –1 uA 1 uA 1 uA Output Leakage Current I OL Output Disable, V OUT = 0 to V DD –1 uA 1 uA Output High Voltage V OH2I OH = –8 mA, V DDQ = 2.375 V 1.7 V —Output High Voltage V OH3I OH = –8 mA, V DDQ = 3.135 V2.4 V —Output Low VoltageV OLI OL = 8 mA—0.4 VGS8162Z18/36B(B/D)Operating CurrentsParameterTest ConditionsModeSymbol-250-200-150Unit0to 70°C–40 to 85°C0to 70°C–40to 85°C0 to 70°C–40to 85°COperating CurrentDevice Selected; All other inputs ≥V IH o r ≤ V IL Output open(x36)PipelineI DD I DDQ 305403154025530265302052021520mA Flow Through I DD I DDQ 235202452020515215151901520015mA (x18)PipelineI DD I DDQ 275202852023015240151851519515mA Flow ThroughI DD I DDQ 215102251019010200101751018510mA Standby Current ZZ ≥ V DD – 0.2 V —Pipeline I SB 405040504050mA Flow Through I SB 405040504050mA Deselect CurrentDevice Deselected; All other inputs ≥ V IH or ≤ V IL—PipelineI DD 859075806065mA Flow Through I DD606550555055mAGS8162Z18/36B(B/D)Notes:1.I DD and I DDQ apply to any combination of V DD3, V DD2, V DDQ3, and V DDQ2 operation.2.All parameters listed are worst case scenario.AC Electrical CharacteristicsParameterSymbol-250-200-150UnitMinMax Min Max Min Max PipelineClock Cycle Time tKC 4.0— 5.0— 6.7—ns Clock to Output Valid tKQ — 2.5— 3.0— 3.8ns Clock to Output Invalid tKQX 1.5— 1.5— 1.5—ns Clock to Output in Low-ZtLZ 1 1.5— 1.5— 1.5—ns Setup time tS 1.2— 1.4— 1.5—ns Hold time tH 0.2—0.4—0.5—ns Flow ThroughClock Cycle Time tKC 5.5— 6.5—7.5—ns Clock to Output Valid tKQ — 5.5— 6.5—7.5ns Clock to Output Invalid tKQX 2.0— 2.0— 2.0—ns Clock to Output in Low-ZtLZ 1 2.0— 2.0— 2.0—ns Setup time tS 1.5— 1.5— 1.5—ns Hold time tH 0.5—0.5—0.5—ns Clock HIGH Time tKH 1.3— 1.3— 1.5—ns Clock LOW Time tKL 1.5— 1.5— 1.7—ns Clock to Output inHigh-Z tHZ 1 1.5 2.5 1.5 3.0 1.5 3.0ns G to Output Valid tOE — 2.5— 3.0— 3.8ns G to output in Low-Z tOLZ 10—0—0—ns G to output in High-Z tOHZ 1— 2.5— 3.0— 3.8ns ZZ setup time tZZS 25—5—5—ns ZZ hold time tZZH 21—1—1—ns ZZ recoverytZZR20—20—20—nsGS8162Z18/36B(B/D)Notes:1.These parameters are sampled and are not 100% tested.2.ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and holdtimes as specified above.GS8162Z18/36B(B/D)Pipeline Mode Timing (NBT)Write ARead BSuspend Read CWrite Dwriteno-opRead EDeselecttHZtKQXtKQtLZ tH tStHtStH tStH tStH tStH tStH tStH tStKCtKLtKHA B C D ED(A)D(D)Q(E)Q(B)Q(C)CKA CKEE*ADVWBnDQGS8162Z18/36B(B/D)Flow Through Mode Timing (NBT)Write AWrite BWrite B+1Read CCont Read D Write E Read F Write GD(A)D(B)D(B+1)Q(C)Q(D)D(E)Q(F)D(G)tOLZ tOEtOHZtKQXtKQtLZtHZtKQX tKQ tLZtHtStHtStHtStHtStHtStHtStHtStKCtKLtKHABCDEFG*Note: E = High(False) if E1 = 1 or E2 = 0 or E3 = 1CKCKEEADVWBnA0–AnDQGGS8162Z18/36B(B/D)JTAG Port OperationOverviewThe JTAG Port on this RAM operates in a manner that is compliant with IEEE Standard 1149.1-1990, a serial boundary scan interface standard (commonly referred to as JTAG). The JTAG Port input interface levels scale with V DD . The JTAG output drivers are powered by V DDQ .Disabling the JTAG PortIt is possible to use this device without utilizing the JTAG port. The port is reset at power-up and will remain inactive unless clocked. TCK, TDI, and TMS are designed with internal pull-up circuits.To assure normal operation of the RAM with the JTAG Port unused, TCK, TDI, and TMS may be left floating or tied to either V DD or V SS . TDO should be left unconnected.JTAG Pin Descriptions PinPin NameI/ODescriptionTCK Test Clock In Clocks all TAP events. All inputs are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.TMSTest Mode SelectInThe TMS input is sampled on the rising edge of TCK. This is the command input for the TAP controller state machine. An undriven TMS input will produce the same result as a logic one input level.TDI Test Data In InThe TDI input is sampled on the rising edge of TCK. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP Controller state machine and the instruction that is currently loaded in the TAP Instruction Register (refer to the TAP Controller State Diagram). An undriven TDI pin will produce the same result as a logic one input level.TDO Test Data OutOut Output that is active depending on the state of the TAP state machine. Output changes inresponse to the falling edge of TCK. This is the output side of the serial registers placed betweenTDI and TDO.This device does not have a TRST (TAP Reset) pin. TRST is optional in IEEE 1149.1. The Test-Logic-Reset state is entered while TMS is held high for five rising edges of TCK. The TAP Controller is also reset automaticly at power-up.JTAG Port Registers OverviewThe various JTAG registers, refered to as Test Access Port orTAP Registers, are selected (one at a time) via the sequences of 1s and 0s applied to TMS as TCK is strobed. Each of the TAP Registers is a serial shift register that captures serial input data on the rising edge of TCK and pushes serial data out on the next falling edge of TCK. When a register is selected, it is placed between the TDI and TDO pins.Instruction RegisterThe Instruction Register holds the instructions that are executed by the TAP controller when it is moved into the Run, Test/Idle, or the various data register states. Instructions are 3 bits long. The Instruction Register can be loaded when it is placed between the TDI and TDO pins. The Instruction Register is automatically preloaded with the IDCODE instruction at power-up or whenever the controller is placed in Test-Logic-Reset state.Bypass RegisterThe Bypass Register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAM’s JTAG Port to another device in the scan chain with as little delay as possible.Boundary Scan RegisterThe Boundary Scan Register is a collection of flip flops that can be preset by the logic level found on the RAM’s input or I/O pins. The flip flops are then daisy chained together so the levels found can be shifted serially out of the JTAG Port’s TDO pin. The Boundary Scan Register also includes a number of place holder flip flops (always set to a logic 1). The relationship between the。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A B C D E F G H J K L M N P R T U V W Rev 10
1 DQG DQG DQG DQG DQPG DQC DQC DQC DQC NC DQH DQH DQH DQH DQPD DQD DQD DQD DQD
2 DQG DQG DQG DQG DQPC DQC DQC DQC DQC NC DQH DQH DQH DQH DQPH DQD DQD DQD DQD
-250 -225 -200 -166 -150 -133 Unit
2.5 2.7 3.0 3.4 3.8 4.0 ns 4.0 4.4 5.0 6.0 6.7 7.5 ns
280 255 230 200 185 165 mA 330 300 270 230 215 190 mA n/a n/a 350 300 270 245 mA
元器件交易网
The x18 and x36 parts in this specification are Not Recommended for New Design.
GS8162Z18(B/D)/GS8162Z36(B/D)/GS8162Z72(C)
119, 165, & 209 BGA Commercial Temp Industrial Temp
The GS8162Z18(B/D)/36(B/D)/72(C) may be configured by the user to operate in Pipeline or Flow Through mode. Operating as a pipelined synchronous device, in addition to the rising-edge-triggered registers that capture input signals, the device incorporates a rising edge triggered output register. For read cycles, pipelined SRAM output data is temporarily stored by the edge-triggered output register during the access cycle and then released to the output drivers at the next rising edge of clock.
Because it is a synchronous device, address, data inputs, and read/write control inputs are captured on the rising edge of the input clock. Burst order control (LBO) must be tied to a power rail for proper operation. Asynchronous inputs include the Sleep mode enable (ZZ) and Output Enable. Output Enable can be used to override the synchronous control of the output drivers and turn the RAM's output drivers off at any time. Write cycles are internally self-timed and initiated by the rising edge of the clock input. This feature eliminates complex offchip write pulse generation required by asynchronous SRAMs and simplifies input signal timing.
© 1999, GSI Technology
The x18 and x36 parts in this specification are Not Recommended for New Design.
元器件交易网
GS8162Z72 BGA Pin Description
A
NC
A
A
A
A1
A
A
TDI
A
A0
A
TDO
11 x 19 Bump BGA—14 x 22 mm2 Body—1 mm Bump Pitch
9 A BF BA VSS VDDQ VSS VDDQ VSS VDDQ NC VDDQ VSS VDDQ VSS VDDQ VSS NC A TCK
10 DQB DQB DQB DQB DQPF DQF DQF DQF DQF NC DQA DQA DQA DQA DQPA DQE DQE DQE DQE
Functional Description
The GS8162Z18(B/D)/36(B/D)/72(C) is an 18Mbit Synchronous Static SRAM. GSI's NBT SRAMs, like ZBT, NtRAM, NoBL or other pipelined read/double late write or flow through read/single late write SRAMs, allow utilization of all available bus bandwidth by eliminating the need to insert deselect cycles when the device is switched from read to write cycles.
VDD
MCH
VDD
VDDQ
VSS
VSS
MCL
VSS
VSS
VDDQ
VDD
MCH
VDD
VDDQ
NC
VSS
MCL
VSS
NC
VDDQ
VDD
FT
VDD
VDDQ
VSS
VSS
MCL
VSS
VSS
VDDQ
VDD
MCH
VDD
VDDQ
VSS
VSS
ZZ
VSS
VSS
VDDQ
VDD
VDD
VDD
VDDQ
NC
NC
LBO
PE
NC
A
NC
• 2.5 V or 3.3 V +10%/–10% core power supply • 2.5 V or 3.3 V I/O supply • User-configurable Pipeline and Flow Through mode • ZQ mode pin for user-selectable high/low output drive • IEEE 1149.1 JTAG-compatible Boundary Scan • LBO pin for Linear or Interleave Burst mode • Pin-compatible with 2M, 4M, and 8M devices • Byte write operation (9-bit Bytes) • 3 chip enable signals for easy depth expansion • ZZ Pin for automatic power-down • JEDEC-standard 119-, 165-, or 209-Bump BGA package
TDI
I
TDO
O
TCK
I
VDD
I
VSS
I
VDDQ
I
GS8162Z18(B/D)/GS8162Z36(B/D)/GS8162Z72(C)
The x18 and x36 parts in this specification are Not Recommended for New Design.
元器件交易网
GS8162Z18(B/D)/GS8162Z36(B/D)/GS8162Z72(C)
GS8162Z72 Pad Out—209-Bump BGA—Top View (Package C)
3 A BC BH VSS VDDQ VSS VDDQ VSS VDDQ CK VDDQ VSS VDDQ VSS VDDQ VSS NC A TMS
4
5
6
78E2源自AADVA
E3
BG
NC
W
A
BB
BD
NC
E1
NC
BE
NC
NC
G
NC
NC
VDDQ
VDD
VDD
VDD
VDDQ
VSS
VSS
ZQ
VSS
VSS
VDDQ
275 250 230 195 180 165 mA 320 295 265 225 210 185 mA n/a n/a 335 290 260 235 mA
tKQ tCycle
5.5 6.0 6.5 7.0 7.5 8.5 ns 5.5 6.0 6.5 7.0 7.5 8.5 ns