通用变频器的干扰与抗干扰措施
变频器如何抗干扰变频器干扰解决方法
变频器如何抗干扰变频器干扰解决方法一、变频器干扰的原因变频器在工作过程中会产生一定的电磁干扰,主要有以下几个原因:1.高频脉冲干扰:变频器由电机驱动器和电子器件组成,电子器件工作时会产生高频脉冲干扰,对周围电子设备产生辐射干扰。
2.电磁辐射:变频器中的电路部件和电机线圈会产生电磁场辐射,导致周围电子设备受到电磁干扰。
3.电源线干扰:变频器需要接入电源,当供电电源线路不稳定或存在电磁干扰时,会影响变频器正常工作并产生干扰。
二、变频器抗干扰的解决方法1.优化变频器布局:合理安排变频器及其接线的位置,将尽量远离其他敏感设备,减少电磁辐射对其它设备的干扰。
2.使用屏蔽电缆:通过使用屏蔽电缆连接变频器与电机,减少电磁辐射和电磁感应,从而减小干扰。
3.安装滤波器:安装电力滤波器来滤除变频器输出端的高频脉冲干扰,减少对周围设备的辐射。
4.增加电磁隔离屏蔽:在变频器周围添加金属屏蔽罩或者设施屏蔽屏蔽间隔来减少电磁波的辐射,从而保护周围设备。
5.优化供电电源:通过增加稳压器、滤波电容、终端电阻等措施,保证供电线路稳定,减少电源线干扰。
6.地线连接优化:保证变频器、电机、控制系统等设备都接地良好,减少电磁波的辐射和对其他设备的干扰。
7.使用额外的电磁屏蔽材料:在关键部位使用电磁屏蔽材料,如电磁屏蔽垫、屏蔽套管等,减少电磁波干扰。
8.添加滤波和降压器:通过在变频器的输入端添加滤波器,滤除电网的高频干扰信号,降低输入电源的干扰。
9.使用低噪声电源:选择低噪声的电源供应系统,减少输入变频器的电源噪声。
三、变频器干扰预防1.确保变频器本身具备较低的辐射性和敏感性,选择正规生产厂家和合格产品。
2.在购买变频器时,要选择具有良好抗干扰能力的产品,并参考其抗干扰性能指标。
3.对变频器进行适当的屏蔽和隔离设计,加强变频器周围环境的电磁兼容性。
4.在使用变频器时,要仔细阅读和遵守变频器的使用说明书,正确安装和接线,避免出现安装错误和使用不当的情况。
变频器抗干扰方法
变频器抗干扰方法变频器是一种用来控制电动机转速的装置,广泛应用于工业生产中。
然而,由于变频器的调节过程中涉及到高频开关过程,就会产生电磁干扰,对其它电子设备和通信系统造成干扰。
因此,为了减少变频器的电磁干扰对周围设备的影响,需要采取一系列抗干扰措施。
首先,为了降低变频器的辐射干扰,可以采取以下措施:1.优化布线:合理布设电源线、控制线和信号线,使其远离敏感的模拟控制线路和通信线路,减少干扰的传递。
2.使用屏蔽线缆:将电源线、以及输入输出信号线采用带有屏蔽层的线缆,以减少干扰的辐射和传递。
3.增加滤波器:在变频器输入端安装滤波器,能够滤除高频噪声,减少干扰的辐射。
4.安装金属屏蔽罩:在变频器周围安装金属屏蔽罩,能够有效屏蔽辐射干扰。
其次,为了降低变频器的传导干扰,需要采取以下措施:1.使用滤波器:在变频器输入端和输出端都安装滤波器,以减少输入输出电缆的传导干扰。
2.分开供电:变频器的电源线和控制信号线分开供电,减少共模干扰。
3.添加低噪声电源:为变频器提供低噪声的电源,减少变频器输出端的电磁噪声。
4.选择合适的电缆:使用屏蔽效果好的电缆线材以减少传导干扰。
此外,为了提高变频器的抗干扰能力,还可以采取以下措施:1.优化地线:建立良好的接地系统,确保变频器和其它设备的共同接地,减少干扰的传导。
2.合理设置工作频率:选择合适和规范的工作频率范围,减少对其它设备的干扰。
3.添加滤波电容:在变频器输入端和输出端添加滤波电容,以降低高频噪声和干扰。
4.合理布置设备:将变频器和其它设备互相隔离,减少干扰传递。
最后,为了保证变频器的抗干扰性能,需要进行电磁兼容性测试和评估。
这样能够及早发现问题,并对干扰源进行识别和消除。
总结来说,为了降低变频器的电磁干扰对周围设备的影响,我们可以从减少辐射干扰、传导干扰和提高抗干扰能力等方面进行考虑。
通过合理的设备布局,优化的电路设计以及合适的滤波措施,能够有效地降低变频器的干扰程度,确保其正常稳定的运行。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言变频器是一种用于调节电机转速的装置,广泛应用于工业生产和机械设备中。
然而,变频器在工作过程中会产生一定的电磁干扰,对其他设备和系统造成影响。
本文将详细介绍变频器产生的干扰原因和解决方案。
二、变频器产生的干扰原因1. 高频电磁辐射:变频器在工作时会产生高频电磁辐射,这会对周围的设备和系统产生电磁干扰。
辐射干扰主要体现在电缆和导线上,导致信号传输质量下降。
2. 电源电磁干扰:变频器的电源输入端会产生电磁干扰,通过电源线传播到其他设备和系统中。
这种干扰主要体现在电源线上,导致其他设备的工作不稳定。
3. 电磁感应干扰:变频器工作时,电机和电缆中的电流变化会产生磁场,进而诱发周围设备和系统中的感应电流,导致电磁干扰。
三、变频器产生的干扰解决方案1. 电磁屏蔽措施(1)对变频器进行金属屏蔽:通过在变频器外壳上添加金属屏蔽罩,可以有效地抑制电磁辐射和电磁感应干扰。
(2)对电缆和导线进行屏蔽:在电缆和导线上添加金属屏蔽层,可以减少电磁辐射和电磁感应干扰对信号传输的影响。
2. 滤波器的应用(1)输入滤波器:在变频器的电源输入端添加滤波器,可以有效地抑制电源电磁干扰,保证电源线的稳定性。
(2)输出滤波器:在变频器的输出端添加滤波器,可以减少电机产生的高频电磁辐射,降低对周围设备和系统的干扰。
3. 接地措施(1)良好的设备接地:确保变频器和其他设备都有良好的接地,减少电磁干扰的传播。
(2)信号接地隔离:对于需要传输信号的设备,可以采用信号接地隔离的方式,避免电磁干扰对信号传输的影响。
4. 频率选择根据实际需求,选择适当的变频器工作频率。
较低的工作频率可以减少电机产生的高频电磁辐射,降低干扰程度。
5. 电路设计优化对变频器的电路进行优化设计,减少电流变化对周围设备和系统的影响。
例如,通过增加电感、电容等元件,可以降低电流的变化率。
四、结论变频器产生的干扰对其他设备和系统的正常工作造成一定的影响,但通过采取适当的解决方案,可以有效地减少干扰程度。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案1. 引言变频器是一种用于调节机电转速的设备,广泛应用于工业生产中。
然而,变频器在工作过程中会产生电磁干扰,对其他设备和系统造成不利影响。
本文将详细介绍变频器产生的干扰及解决方案。
2. 变频器产生的干扰变频器产生的干扰主要包括电磁辐射干扰和电源线干扰两个方面。
2.1 电磁辐射干扰变频器工作时,机电和变频器之间的电缆会产生电磁辐射,通过空气传播到周围设备和系统中。
这种干扰可能导致其他设备的电子元件受损、通信中断或者数据丢失。
2.2 电源线干扰变频器通过电源线接入电网,其高频脉冲信号会通过电源线传播到其他设备和系统中,引起电源线上的电压和电流波动,导致其他设备的正常工作受到干扰。
3. 解决方案为了解决变频器产生的干扰问题,可以采取以下几种方案:3.1 滤波器安装滤波器是减少电磁辐射干扰的有效方法。
滤波器可以在变频器的电缆和电源线上安装,通过滤波器的滤波作用,将高频噪声滤除,减少电磁辐射干扰的传播。
3.2 屏蔽措施为了减少电磁辐射干扰的传播,可以采取屏蔽措施。
在变频器和机电之间的电缆上使用屏蔽材料包裹,阻挡电磁辐射的传播。
此外,还可以在设备周围建立金属屏蔽罩,进一步减少电磁辐射的泄漏。
3.3 接地措施良好的接地系统可以有效减少电磁辐射干扰。
通过建立良好的接地网络,将变频器和其他设备的接地点连接在一起,减少电磁辐射的泄漏。
此外,还可以使用接地屏蔽器,将电磁辐射导向接地,减少对其他设备的干扰。
3.4 选择合适的电缆选择合适的电缆也可以减少电磁辐射干扰。
使用屏蔽效果好的电缆,能够有效地阻挡电磁辐射的传播。
此外,还可以选择带有抗干扰能力的电缆,减少电源线干扰对其他设备的影响。
3.5 距离隔离在设计设备布局时,可以将变频器与其他敏感设备保持一定的距离,减少电磁辐射干扰的传播。
通过合理的布局,将变频器放置在远离其他设备的位置,可以有效降低干扰的程度。
4. 结论变频器产生的干扰对其他设备和系统的正常工作造成为了一定的影响,但通过采取相应的解决方案,可以有效减少干扰的程度。
变频器有效的抗干扰措施
变频器有效的抗干扰措施变频器是一种电力设备,主要用于控制电动机的转速和频率。
由于其工作原理的特殊性,变频器在使用过程中容易受到干扰,从而影响工作的稳定性和性能。
为了提高变频器的抗干扰能力,下面列举了一些有效的措施。
1.地线连接良好:变频器的金属外壳和内部的各个部件都需要通过地线进行连接,确保设备的安全接地。
地线是变频器有效抗干扰的基础,良好的接地可以有效地降低干扰电压和干扰电流。
2.电源滤波:变频器电源端通常会存在电源波动、杂散干扰等问题,可以通过选用电源滤波器来过滤这些干扰。
电源滤波器可以将电源端的高频噪声滤掉,使得输入电源稳定,从而提高变频器的抗干扰能力。
3.屏蔽措施:通过给变频器的各个输入输出端口进行屏蔽处理,可以有效地防止外界的电磁干扰。
具体的屏蔽方式可以采用金属屏蔽罩、屏蔽隔离光耦、屏蔽线缆等。
屏蔽措施可以减少变频器对外界的敏感度,提高其抗干扰能力。
4.选择合适的电缆:变频器的输入输出端口通常需要连接电缆,合适的电缆选择可以降低电磁干扰的影响。
选用屏蔽性能好的电缆,并且尽量缩短电缆的长度,可以有效减少电磁干扰。
5.避免共模干扰:变频器内部的电源和控制信号线路之间通常会存在共模干扰问题,其中一种常见的共模干扰是电源端的地线干扰。
为了避免共模干扰,可以采用双层绕线、降低绕线电阻、增加绕线间距等措施。
6.引入滤波器:在变频器的输入端和输出端引入滤波器可以有效地降低电磁干扰的影响。
输入端滤波器可以将外界电磁干扰滤掉,使得变频器在供电稳定的情况下运行;输出端滤波器则可以减少变频器对外界设备的电磁干扰。
7.防止回流干扰:变频器在工作过程中会产生回流,即原电源线上产生的噪声通过电源线传播回来影响其它设备。
为了防止回流干扰,可以使用阻抗匹配网络、电源滤波器等措施,将回流电流的传播途径阻断,从而降低干扰的影响。
总结起来,变频器有效的抗干扰措施包括地线连接良好、电源滤波、屏蔽措施、选择合适的电缆、避免共模干扰、引入滤波器、防止回流干扰等。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案变频器是一种将电源的频率和电压转换为所需的频率和电压的电力调节装置。
它在许多工业和家用设备中被广泛应用,如电机驱动、电梯、空调等。
然而,变频器在运行过程中会产生一些干扰问题,这些干扰可能对其他设备和系统造成负面影响。
本文将重点介绍变频器产生的干扰及其解决方案。
一、变频器产生的干扰类型:1.电磁辐射干扰:变频器运行时会产生较高频率的电磁辐射,对周围的电子设备和无线通信设备造成电磁干扰。
2.电功率干扰:变频器会对电源网络产生带有谐波成分的高电流脉冲,容易导致电网电压波动,同时也可能导致其他设备的故障。
3.传导干扰:变频器内部的电磁干扰会通过电力线或控制信号线传导到其他设备中,影响其正常工作。
二、变频器产生干扰的原因:1.变频器内部电路的高频振荡:变频器内部的开关电路会产生高频振荡,因为各种电容和电感元件之间的互联会产生谐振环路,导致电路的振荡频率高于基本频率。
2.高频开关的操作:变频器内部的半导体开关装置,如IGBT等,会频繁开关,导致高频电流脉冲。
三、解决变频器干扰问题的方法:1.滤波器的使用:通过在变频器和被干扰设备之间添加滤波器,可以有效减少电磁辐射干扰和传导干扰。
滤波器可以选择带通滤波器、陷波器等。
2.感应式隔离变压器:通过使用感应式隔离变压器,可以有效消除变频器产生的电功率干扰。
感应式隔离变压器可以将电网和变频器之间的电源隔离,降低干扰传导。
3.屏蔽和接地:在设计和安装变频器系统时,应注意使用屏蔽电缆和接地装置,以减少电磁辐射干扰和传导干扰。
正确的接地和屏蔽可以有效降低或消除干扰。
4.合理的电缆布线:将变频器和被干扰设备之间的电缆布线分离,避免电缆交叉和平行布线。
这样可以减少电磁辐射和传导干扰的发生。
5.系统优化:在设计和安装变频器系统时,应选择质量可靠、抗干扰能力较强的变频器产品。
优化系统结构,提高系统的抗干扰能力。
总结:变频器产生的干扰是一个普遍存在的问题,对于设备的正常运行和其他设备的工作状态产生了一定的影响。
变频器的三大干扰问题及解决方法
变频器的三大干扰问题及解决方法1、变频器对微机控制板的干扰在使用变频器的控制系统中,多采用微机或者PLC进行控制,在系统设计或者改造过程中,一定要注意变频器对微机控制板的干扰问题。
由于用户自己设计的微机控制板一般工艺水平差,不符合EMC国际标准,在采用变频器后,产生的传导和辐射干扰,往往导致控制系统工作异常,因此需要采取必要措施。
(1)良好的接地。
电机等强电控制系统的接地线必须通过接地汇流排可靠接地,微机控制板的屏蔽地,最好单独接地。
对于某些干扰严重的场合,建议将传感器、I/O接口屏蔽层与控制板的控制地相连。
(2)给微机控制板输入电源加装EMI滤波器、共模电感、高频磁环等,成本低。
可以有效抑制传导干扰。
另外在辐射干扰严重的场合,如周围存在GSM、或者小灵通机站时,可以对微机控制板添加金属网状屏蔽罩进行屏蔽处理。
(3)给变频器输入加装EMI滤波器,可以有效抑制变频器对电网的传导干扰,加装输入交流和直流电抗器L1、L2,可以提高功率因数,减小谐波污染,综合效果好。
在某些电机与变频器之间距离超过100m的场合,需要在变频器侧添加交流输出电抗器L3,解决因为输出导线对地分布参数造成的漏电流保护和减少对外部的辐射干扰。
一个行之有效的方法就是采用钢管穿线或者屏蔽电缆的方法,并将钢管外壳或者电缆屏蔽层与大地可靠连接。
请注意,在不添加交流输出电抗器L3时,如果采用钢管穿线或者屏蔽电缆的方法,增大了输出对地的分布电容,容易出现过流。
当然在实际中一般只采取其中的一种或者几种方法。
(4)对模拟传感器检测输入和模拟控制信号进行电气屏蔽和隔离。
在变频器组成的控制系统设计过程中,建议尽量不要采用模拟控制,特别是控制距离大于1M,跨控制柜安装的情况下。
因为变频器一般都有多段速设定、开关频率量输入输出,可以满足要求。
如果非要用模拟量控制时,建议一定采用屏蔽电缆,并在传感器侧或者变频器侧实现远端一点接地。
如果干扰仍旧严重,需要实现DC/DC隔离措施。
变频器在应用中的抗干扰措施
变频器在应用中的抗干扰措施.doc1.切断干扰传播途径(1)干扰的传播常通过共用的接地线传播。
将动力线的接地与控制线的接地分开是切断这一途径的根本方法,即将动力装置的接地端子接到地线上,将控制装置的接地端子接到该装置盘的金属外壳上。
(2)信号线靠近有干扰源的导线时,干扰会被诱导到信号线上,使信号受到干扰,布线分离对消除这种干扰行之有效。
实际工程中需把高压电缆、动力电缆、控制电缆常常与仪表电缆、计算机电缆分开布线,分走不同的桥架。
变频器的控制线也最好与其主回路线路以垂直的方式布线。
2.抑制高次谐波(1)在变频器前侧安装线路电抗器,可抑制电源侧过电压,并降低变频器产生的电流畸变,避免使主电源受到严重干扰。
该方案价格便宜,但限制谐波的效率有限,且电抗太大时会产生无法接受的电压降损失。
(2)在变频器前加装LC无源滤波器,滤掉高次谐波,通常滤掉5次和7次谐波,但该方法完全取决电源和负载,灵活性小。
(3)设置专用滤波器用来检测变频器和相位,并产生一个与谐波电流的幅值相同且相位正好相反的电流,通到变频器中,从而可以有效地吸收谐波电流。
(4)当设备的附近环境受到电磁干扰时,应装设抗射频干扰滤波器,可减少主电源的传导发射,且要采取措施屏蔽电机电缆。
(5)当电机电缆长度大于50m或80m(非屏蔽)时,为了防止电机启动时的瞬时过电压,减少电机对地的泄漏电流和噪声,保护电动机,在变频器与电机之间安装电抗器。
(6)增加变频器供电电源内阻抗。
通常电源设备的内阻抗可以起到缓冲变频器直流滤波电容的无功功率的作用,内阻抗越大,谐波含量越小,这种内阻抗就是变压器的短路阻抗。
因此选择变频器供电电源时,最好选择短路阻抗大的变压器。
(7)采用变压器多相运行。
通用变频器为六脉波整流器,因此产生的谐波较大。
如果采用变压器多相运行,使相位角互差30,如Y组合的变压器构成12脉波的效果,可减小低次谐波电流,很好的抑制谐波。
艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,被广泛应用于工业生产中。
然而,变频器在工作过程中产生的电磁干扰问题也逐渐凸显出来。
本文将详细介绍变频器产生的干扰原因及解决方案。
二、变频器产生的干扰原因1. 高频脉冲干扰:变频器内部的开关元件工作时,会产生高频脉冲信号,这些高频脉冲信号会通过电源线和信号线传播,导致其他设备受到干扰。
2. 电磁辐射干扰:变频器内部的高频电流和电压变化会产生电磁场,这些电磁场会辐射到周围环境中,干扰其他设备的正常工作。
3. 地线干扰:变频器的地线接触不良或电阻过大,会导致地线电压的变化,进而引起其他设备的干扰。
三、变频器产生的干扰对设备的影响1. 信号干扰:变频器产生的高频脉冲信号会干扰其他设备的信号传输,导致数据传输错误或丢失。
2. 电磁辐射干扰:变频器产生的电磁辐射会影响其他设备的正常工作,甚至可能引起设备故障。
3. 电源干扰:变频器产生的高频脉冲信号会通过电源线传播,影响其他设备的电源稳定性,导致设备不能正常工作。
四、变频器干扰解决方案1. 滤波器的应用:在变频器的输入端和输出端分别安装滤波器,可以有效地抑制变频器产生的高频脉冲信号和电磁辐射。
2. 地线的优化:确保变频器的地线接触良好,并使用低阻抗的地线,以减小地线电压的变化,降低地线干扰的可能性。
3. 屏蔽措施:对变频器进行屏蔽处理,可以减少电磁辐射干扰。
同时,在变频器的输入端和输出端分别安装屏蔽罩,以阻挡电磁辐射的传播。
4. 接地措施:在变频器的输入端和输出端分别设置良好的接地装置,以减小电磁辐射的影响范围。
5. 信号隔离:对变频器的输入端和输出端进行信号隔离,可以有效地防止信号干扰的传播。
6. 电源滤波:在变频器的输入端安装电源滤波器,可以减小高频脉冲信号对电源的干扰,保证其他设备的电源稳定性。
五、结论变频器作为重要的电力调节设备,在工业生产中起到了关键的作用。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言随着现代工业的发展,变频器作为一种重要的电力调节设备,被广泛应用于各个行业。
然而,变频器在工作过程中往往会产生一些干扰问题,给周围设备和系统带来不良影响。
本文将详细介绍变频器产生的干扰问题及解决方案。
二、变频器产生的干扰1. 电磁干扰变频器在工作时会产生电磁干扰,主要表现为电磁辐射和导电干扰。
电磁辐射会干扰到周围的电子设备和通信系统,导致其正常工作受阻。
导电干扰则是通过电源线或者信号线传导到其他设备,造成设备的异常运行或者故障。
2. 电网干扰变频器接入电网时,会对电网产生一定的干扰。
这种干扰主要表现为谐波污染和功率因数问题。
谐波污染会导致电网电压波形失真,影响其他设备的正常运行。
功率因数问题则会导致电网的功率因数下降,造成能源的浪费。
三、解决方案1. 电磁干扰解决方案(1)屏蔽措施:通过在变频器外壳和电缆上加装屏蔽材料,减少电磁辐射的泄漏。
(2)滤波器:在变频器的输入端和输出端安装滤波器,对电源线和信号线进行滤波,减少导电干扰。
2. 电网干扰解决方案(1)谐波滤波器:在变频器的输出端安装谐波滤波器,减少谐波污染,保证电网电压波形的纯净度。
(2)有源滤波器:通过控制变频器的输出电流波形,改善功率因数问题,提高电网的功率因数。
3. 其他解决方案(1)地线连接:保证变频器的良好接地,减少接地电阻,降低电磁干扰的发生。
(2)优化布线:合理规划变频器和其他设备的布线,减少电磁干扰的传导路径。
(3)选择合适的变频器:在购买变频器时,选择具有良好抗干扰性能的产品,减少干扰问题的发生。
四、结论变频器在工作过程中产生的干扰问题对周围设备和系统的正常运行造成为了一定的影响。
通过采取一系列的解决方案,如屏蔽措施、滤波器安装、谐波滤波器等,可以有效减少干扰问题的发生。
此外,合理的地线连接和布线规划,以及选择抗干扰性能良好的变频器产品,也是解决干扰问题的重要手段。
通过这些措施的综合应用,可以提高变频器的工作效率,减少对周围设备和系统的干扰,确保工业生产的正常运行。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言变频器是一种用于调节交流电机转速的设备,其工作原理是通过改变电源电压的频率和幅值,从而控制电机的转速。
然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和通信系统造成影响。
本文将详细介绍变频器产生的干扰及解决方案。
二、变频器产生的干扰1. 电磁辐射干扰:变频器在工作时会产生高频电磁辐射,对周围的电子设备和通信系统造成干扰。
这种干扰主要表现为电子设备的工作不稳定、通信信号的丢失或干扰等问题。
2. 电源干扰:变频器需要从电源中获取能量供其工作,但其工作过程中会产生电源波动、谐波等问题,对电源系统造成干扰。
这种干扰主要表现为电源系统的电压波动、谐波污染等现象。
3. 传导干扰:变频器的电磁辐射会通过电源线、信号线等传导到其他设备中,造成传导干扰。
这种干扰主要表现为其他设备的工作异常、信号传输的错误等问题。
三、解决方案1. 电磁屏蔽措施:(1)合理布局:在安装变频器时,应合理布局各个设备,尽量避免电磁辐射干扰。
可以通过增加隔离间隔、采用金属屏蔽罩等方式来减少电磁辐射的影响。
(2)屏蔽材料:可以在变频器周围使用电磁屏蔽材料,如铁板、铜箔等,来减少电磁辐射的传播。
这些材料可以有效地吸收和屏蔽电磁波,减少对周围设备的干扰。
2. 滤波器的应用:(1)电源滤波器:可以在变频器输入端和输出端加装电源滤波器,用于抑制变频器产生的电源干扰。
这些滤波器可以有效地滤除电源中的谐波、电压波动等问题,减少对电源系统的干扰。
(2)信号滤波器:可以在变频器的信号线上加装信号滤波器,用于抑制传导干扰。
这些滤波器可以滤除电磁辐射通过信号线传导到其他设备中的干扰信号,保证信号的传输质量。
3. 接地措施:(1)设备接地:变频器及其周围的设备应进行良好的接地,确保设备的接地电阻符合标准要求。
良好的接地可以有效地减少电磁辐射和传导干扰。
(2)屏蔽接地:在使用屏蔽材料进行电磁屏蔽时,应将屏蔽材料与设备的接地系统连接,形成完整的屏蔽接地。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案引言概述:随着现代工业的发展,变频器在电气控制系统中得到了广泛应用。
然而,变频器在工作过程中会产生一定的干扰,给其他设备带来不利影响。
本文将探讨变频器产生的干扰问题,并提出解决方案。
正文内容:1. 变频器产生的干扰1.1 电磁干扰:变频器在工作过程中会产生高频电磁辐射,这种辐射会干扰周围的电子设备,导致其正常工作受阻。
1.2 电源干扰:变频器对电源系统的电流和电压波形产生扰动,引起电网电压波动,进而干扰其他设备的正常工作。
1.3 传导干扰:变频器的高频电流会通过电源线、信号线等传导到其他设备中,造成干扰。
2. 解决方案2.1 电磁屏蔽:通过在变频器外壳中添加屏蔽材料,减少电磁辐射对周围设备的干扰。
同时,合理设计电缆布线,使用屏蔽电缆,减少传导干扰。
2.2 滤波器的应用:在变频器的输入端和输出端添加滤波器,用于滤除电源干扰和输出端的高频噪声,降低干扰水平。
2.3 接地处理:优化变频器的接地方式,确保接地电阻符合标准要求,减少干扰的传导路径。
2.4 电源质量改善:通过加装稳压器、滤波器等设备,改善电源质量,减少电源波动对其他设备的干扰。
2.5 信号隔离:对变频器的输入和输出信号进行隔离处理,减少干扰信号的传递。
总结:综上所述,变频器产生的干扰主要包括电磁干扰、电源干扰和传导干扰。
为解决这些问题,可以采取电磁屏蔽、滤波器的应用、接地处理、电源质量改善和信号隔离等方案。
通过这些措施,可以有效降低变频器产生的干扰,确保其他设备的正常运行。
在实际应用中,需要根据具体情况选择合适的解决方案,并进行适当的调试和优化,以达到最佳效果。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为一种重要的电力调节设备,在工业生产中得到了广泛应用。
然而,变频器在正常工作过程中会产生电磁干扰,给周围的电子设备和系统带来负面影响。
本文将详细介绍变频器产生的干扰类型及其对电子设备的影响,并提供一些解决方案来降低变频器干扰。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器在工作过程中会产生高频电磁辐射,这种辐射会干扰周围的电子设备,导致其正常工作受阻或产生误差。
2. 电源线干扰:变频器的高频脉冲电流会通过电源线传导到其他设备,干扰其正常工作。
3. 电磁感应干扰:变频器的高频电磁场会感应到周围的导体,导致感应电流产生,从而干扰其他设备。
三、变频器干扰对电子设备的影响1. 电子设备故障:变频器产生的干扰可能导致电子设备的故障,如芯片损坏、电路板烧毁等,从而影响生产效率和设备寿命。
2. 信号干扰:变频器干扰还可能导致信号传输的错误或丢失,影响数据的准确性和可靠性。
3. 电磁兼容性问题:变频器干扰可能导致系统中其他设备之间的电磁兼容性问题,从而影响整个系统的稳定性和可靠性。
四、变频器干扰的解决方案1. 电磁屏蔽:通过在变频器周围设置金属屏蔽罩或屏蔽箱,可以有效地阻止电磁辐射的传播,减少干扰对周围设备的影响。
2. 滤波器的使用:在变频器的输入和输出端加装滤波器,可以有效地滤除高频噪声和脉冲,减少对其他设备的干扰。
3. 接地措施:良好的接地系统可以有效地减少变频器的电磁辐射和感应干扰。
确保变频器、其他设备和建筑物的接地良好,并采用合适的接地方法。
4. 电缆屏蔽:使用屏蔽性能良好的电缆,可以有效地减少变频器干扰信号通过电缆传播到其他设备的可能性。
5. 隔离放大器:在需要保护的电子设备输入端使用隔离放大器,可以实现输入和输出之间的电气隔离,减少干扰的传播。
6. 电磁兼容性测试:在安装变频器之前,进行电磁兼容性测试,确保变频器符合相关标准和要求,减少干扰对其他设备的影响。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、介绍变频器是一种用于控制交流机电转速的电子设备,广泛应用于工业自动化领域。
然而,由于其工作原理和电路特性,变频器可能会产生电磁干扰,对周围的电子设备和系统造成干扰。
本文将详细介绍变频器产生的干扰类型及相应的解决方案。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器工作时,电路中的开关元件会产生高频电流和电压变化,从而产生电磁辐射。
这种辐射干扰可能会影响附近的无线通信设备、电视机、收音机等电子设备的正常工作。
2. 电磁干扰传导:变频器的电源线和信号线可能会成为传导电磁干扰的途径,将干扰信号传递到其他设备和系统中。
这种干扰可能会导致其他设备的误动作、数据传输错误等问题。
3. 电源电压波动:变频器在工作时会不断变化其输出电压和频率,这可能导致电源电压波动。
电源电压波动可能会对其他设备的正常工作产生不利影响。
三、解决方案针对变频器产生的干扰问题,以下是一些常见的解决方案:1. 使用滤波器:安装适当的滤波器可以有效地减少变频器产生的电磁辐射干扰。
滤波器可以在变频器的输入和输出端口处安装,用于滤除高频噪声和电磁辐射。
2. 优化布线:合理布置变频器的电源线和信号线,避免与其他设备的路线交叉或者挨近。
使用屏蔽电缆可以减少电磁干扰的传导。
3. 接地和屏蔽:良好的接地可以有效地减少变频器的电磁干扰。
使用金属屏蔽箱或者屏蔽罩可以将干扰信号隔离,防止其传播到其他设备。
4. 使用隔离变压器:在变频器的输入端和输出端之间安装隔离变压器,可以有效地隔离干扰信号,防止其传导到其他设备。
5. 选择合适的变频器:在购买变频器时,选择具有较低辐射干扰和较好抗干扰能力的产品。
一些品牌的变频器可能会有专门的抗干扰设计,可以减少干扰问题。
6. 进行干扰测试:在安装变频器后,进行干扰测试可以匡助发现潜在的干扰问题。
通过测试,可以及时采取相应的措施解决干扰问题。
四、总结变频器产生的干扰对周围的电子设备和系统可能会造成不利影响。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案引言概述:变频器是一种用来调节电机的转速和输出功率的设备,广泛应用于工业生产和机械设备中。
然而,变频器在工作过程中会产生一定的干扰,给设备和系统带来一定的影响。
本文将详细介绍变频器产生的干扰及解决方案。
一、变频器产生的干扰1.1 电磁干扰:变频器在工作时会产生电磁辐射,这种辐射会对周围的电子设备和通信系统产生干扰,导致设备的正常工作受阻。
1.2 电网干扰:变频器将电网的交流电转换为直流电,然后再将直流电转换为需要的频率和电压输出。
这个过程中会产生电网波动和谐波,对电网的稳定性和电力设备造成干扰。
1.3 机械干扰:变频器在控制电机转速时,会通过改变电机的电压和频率来实现。
这种频繁的改变会对电机和机械设备产生额外的压力和振动,导致设备的寿命缩短。
二、解决方案2.1 电磁屏蔽:通过在变频器和受干扰设备之间添加电磁屏蔽材料,可以有效地隔离电磁干扰,减少干扰对设备的影响。
2.2 滤波器的应用:在变频器的输入端和输出端添加滤波器,可以滤除电网的谐波和波动,减少对电网和其他设备的干扰。
2.3 机械隔离:通过增加减振装置和隔振材料,可以减少变频器对机械设备的振动和压力,保护设备的正常运行。
三、电磁兼容性测试3.1 辐射测试:对变频器进行辐射测试,检测其电磁辐射水平是否符合相关标准,如果不符合,需要进行电磁屏蔽和滤波器的优化。
3.2 抗干扰测试:对变频器进行抗干扰测试,检测其对外界干扰的抵抗能力,如果不符合要求,需要对变频器的设计和电路进行优化。
3.3 整机测试:对整个系统进行综合测试,评估变频器对其他设备的干扰程度,根据测试结果进行相应的处理和改进。
四、合理布线和接地4.1 信号线和电源线的分离:将变频器的信号线和电源线进行分离布线,避免相互干扰,减少干扰的传播。
4.2 接地的合理设计:对变频器和其他设备的接地进行合理设计,确保接地的可靠性和连续性,减少接地回路的干扰。
五、定期维护和保养5.1 清洁和散热:定期清洁变频器和散热器,保持设备的良好散热状态,避免因过热而引起的干扰。
通用变频器的干扰与抗干扰措施
通用变频器的干扰与抗干扰措施摘要:变频器的应用越来越广泛,系统的干扰问题日益严重。
本文主要介绍了变频器应用系统中干扰的产生及其传播途径,提出了抗干扰的实际解决方法,阐述了在变频器安装应用中抑制干扰的具体措施,以及部分应用实例。
关键词:变频器高次谐波电磁干扰[中图分类号]TN973 [文献标识码]B 文章编号0、引言变频器调速技术[1]的应用越来越广泛,但变频系统的电磁干扰比较严重,相应的抗干扰技术变得更加重要。
变频器系统的干扰有时能直接造成系统的硬件损坏,或者使微处理器的系统程序运行失控,造成设备和生产事故。
变频器系统的干扰主要有两个方面:一是变频器对其他计算机和自动控制装置等电子设备、通信设备和无线电等产生的干扰。
二是电网中的谐波干扰变频器的正常工作。
如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容。
下面主要探讨一下变频器的干扰及其抗干扰措施。
1、主要干扰源电磁干扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的[2]。
变频器的整流电路对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。
另外,变频器的逆变器大多采用PWM技术,其工作于开关模式并作高速切换,产生大量耦合性噪声。
变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。
1.1变频器的输入和输出电流中,都含有很多高次谐波成分和能构成电源无功损耗的较低次谐波。
它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。
(1)变频器的输入侧是二极管整流和电容滤波电路,只有当电源的线电压大于电容器两端的直流电压时,整流桥中才有充电电流。
因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的脉动波形式。
它具有很强的高次谐波成分。
(2)绝大多数变频器的逆变桥都采用PWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波,但与载波频率相等的谐波分量仍然较大。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案标题:变频器产生的干扰及解决方案引言概述:随着现代工业自动化水平的不断提高,变频器作为一种重要的电力调节设备,被广泛应用于各种机械设备中。
然而,变频器在工作过程中会产生一定的电磁干扰,影响其他设备的正常运行。
本文将探讨变频器产生的干扰及解决方案。
一、干扰原因1.1 电磁辐射干扰:变频器在工作时会产生电磁辐射,影响周围设备的正常运行。
1.2 电磁感应干扰:变频器的电磁场会感应到周围设备,导致其产生干扰。
1.3 电源线干扰:变频器对电源线的谐波干扰也会影响其他设备的电气系统。
二、干扰表现2.1 设备频繁故障:受到变频器干扰的设备容易出现频繁故障,影响生产效率。
2.2 信号传输受阻:变频器产生的干扰会影响设备之间的信号传输,导致通讯中断。
2.3 电气系统不稳定:变频器干扰会导致电气系统的不稳定,影响设备的正常运行。
三、解决方案3.1 硬件滤波器:在变频器的输入端和输出端加装滤波器,可以有效减少电磁干扰。
3.2 电磁屏蔽:采用电磁屏蔽技术对变频器进行屏蔽处理,减少电磁辐射。
3.3 接地处理:加强设备的接地处理,减少电磁感应干扰的影响。
四、预防措施4.1 合理布局:在工厂布局时,应将变频器与其他设备隔离,减少干扰的影响。
4.2 维护保养:定期对变频器进行维护保养,确保其正常运行,减少干扰的可能性。
4.3 选择优质设备:选购具有良好抗干扰能力的变频器,减少干扰对设备的影响。
五、结语通过对变频器产生的干扰及解决方案的探讨,我们可以更好地了解干扰的原因和表现,采取相应的措施进行预防和解决。
在今后的工作中,我们应该加强对变频器干扰的认识,提高设备的稳定性和可靠性,确保生产过程的顺利进行。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案【摘要】变频器是一种常见的电力设备,但其工作过程中会产生电磁干扰,对设备和系统带来负面影响。
变频器产生的干扰源主要包括电磁辐射和传导干扰。
这些干扰会导致设备的误动作、传感器失灵等问题,严重影响设备的正常运行。
为了降低变频器干扰,可以采取一些方法,如增加电磁屏蔽措施、使用滤波器等。
电磁屏蔽措施可以有效隔离电磁辐射;而使用滤波器则可以有效滤除传导干扰。
有效解决变频器干扰问题对设备的正常运行至关重要,完善的电磁兼容性方案也是必不可少的。
只有采取适当的措施和技术手段,才能有效地避免变频器干扰带来的问题,确保设备和系统的稳定运行。
【关键词】变频器、干扰、解决方案、干扰源、影响、降低、电磁屏蔽、滤波器、电磁兼容性、重要性。
1. 引言1.1 变频器产生的干扰及解决方案变频器是一种用于调节电机运行速度和节能的设备,但在实际应用中,变频器会产生一定的干扰。
变频器产生的干扰主要包括电磁干扰和谐波干扰两种类型。
电磁干扰主要指变频器中的功率器件和控制器件在工作时会产生高频和宽带的电磁干扰,影响周围设备的正常工作;而谐波干扰则是指变频器产生的非线性负载会引起电网电压和电流的波形失真,造成电网谐波污染。
这些干扰会对设备和系统造成严重的影响,包括降低设备的工作效率、缩短设备的使用寿命、引起设备故障等。
为了降低变频器产生的干扰,可以采取一些方法,如合理布线、地线接地、电磁屏蔽措施等。
电磁屏蔽措施是重要的手段之一,可以有效隔离电磁波,减少干扰传播。
使用滤波器也是一种常见的降低干扰的方法。
滤波器可以对变频器输出端的电压和电流进行谐波抑制和滤波处理,有效减少谐波对电网和设备的影响。
在设计和应用中,应充分考虑滤波器的使用。
有效解决变频器产生的干扰问题对设备和系统的稳定运行至关重要,而采取完善的电磁兼容性方案也是保障设备正常运行的关键。
通过合理设计和应用电磁屏蔽措施和滤波器,可以有效降低变频器干扰,提高设备的可靠性和稳定性。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言随着工业自动化的快速发展,变频器作为调节电机转速的重要设备,被广泛应用于各个行业。
然而,变频器在工作过程中会产生一定的电磁干扰,对其他电子设备和系统造成负面影响。
本文将详细介绍变频器产生的干扰及其解决方案。
二、变频器产生的干扰类型1. 电磁辐射干扰:变频器工作时,电源和电机之间会产生高频电流和电压,导致电磁辐射干扰,影响周围电子设备的正常工作。
2. 电源电压波动干扰:变频器在工作时,由于电机负载的变化,会引起电源电压波动,对其他设备的电源供应造成干扰。
3. 电磁感应干扰:变频器的高频电流和电压会在电源线和控制线上引起电磁感应,进而对周围设备和系统产生干扰。
三、变频器干扰的影响1. 对其他电子设备的干扰:变频器产生的电磁辐射干扰可能导致其他电子设备的噪声增加、通信异常、数据传输错误等问题。
2. 对电源系统的干扰:变频器的电源电压波动干扰可能引起其他设备的电源不稳定,甚至导致设备损坏。
3. 对控制系统的干扰:变频器的电磁感应干扰可能导致控制系统的误差增加,影响系统的稳定性和精度。
四、变频器干扰的解决方案1. 电磁屏蔽措施:通过在变频器和电机之间安装屏蔽罩、屏蔽线缆等措施,减少电磁辐射干扰的传播。
2. 滤波器的应用:在变频器的输入端和输出端安装滤波器,可以有效抑制电源电压波动干扰和电磁感应干扰。
3. 接地措施:合理的接地设计可以降低变频器产生的干扰,例如使用良好的接地网、接地线等。
4. 优化布线:合理布置电源线和控制线,减少电磁感应干扰的可能性。
5. 选择合适的变频器:在购买变频器时,应选择具有良好抗干扰性能的产品,降低干扰的概率。
五、干扰测试与评估为了确保变频器的干扰问题得到解决,可以进行干扰测试和评估。
测试过程中可以使用专业的测试设备,如频谱分析仪、示波器等,对变频器产生的干扰进行定量分析。
评估结果可用于判断干扰是否达到标准要求,并指导后续的干扰解决方案。
六、结论变频器产生的干扰对其他电子设备和系统造成不可忽视的影响。
变频器产生的干扰及解决方案
变频器产生的干扰及解决方案一、引言变频器是一种用于调节电机转速的设备,它通过改变电源频率来改变电机的转速。
然而,变频器在工业应用中常常会产生电磁干扰,对周围的电子设备和通信系统造成不利影响。
本文将详细介绍变频器产生的干扰原因、干扰类型以及相应的解决方案。
二、干扰原因变频器产生的干扰主要源于以下几个方面:1. 高频噪声:变频器工作时,会产生高频噪声,这些噪声会通过电源线、信号线和地线传播,导致附近设备的干扰。
2. 脉冲干扰:变频器输出的电压和电流波形不完全是正弦波,而是由一系列脉冲组成的,这些脉冲会对其他设备产生干扰。
3. 电磁辐射:变频器内部的电子元件和电路会产生电磁辐射,这种辐射会干扰附近的电子设备和通信系统。
三、干扰类型变频器产生的干扰主要表现为以下几种类型:1. 电源干扰:变频器的高频噪声会通过电源线传播,影响到其他电子设备的正常工作。
2. 信号干扰:变频器的脉冲干扰会通过信号线传播,导致其他设备接收到干扰信号,影响其正常工作。
3. 辐射干扰:变频器的电磁辐射会干扰附近的电子设备和通信系统,导致其工作异常或信号质量下降。
四、解决方案为了解决变频器产生的干扰问题,可以采取以下一些解决方案:1. 滤波器:在变频器的输入端和输出端添加合适的滤波器,可以有效地抑制高频噪声和脉冲干扰。
2. 屏蔽措施:对变频器进行屏蔽处理,减少其电磁辐射对周围设备的影响。
可以采用金属屏蔽罩、金属隔离板等方式进行屏蔽。
3. 接地措施:合理的接地设计可以有效地减少变频器产生的干扰。
可以采用单点接地、多点接地等方式,确保设备的接地电阻符合要求。
4. 电缆布线:合理的电缆布线可以减少变频器对其他设备的干扰。
可以采用屏蔽电缆、远离敏感设备等方式进行布线。
5. 电磁兼容性测试:对变频器进行电磁兼容性测试,确保其符合相关标准要求,减少对其他设备的干扰。
五、结论变频器产生的干扰是工业应用中常见的问题,但通过合理的解决方案,可以有效地减少干扰对其他设备和通信系统的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通用变频器的干扰与抗干扰措施摘要:变频器的应用越来越广泛,系统的干扰问题日益严重。
本文主要介绍了变频器应用系统中干扰的产生及其传播途径,提出了抗干扰的实际解决方法,阐述了在变频器安装应用中抑制干扰的具体措施,以及部分应用实例。
关键词:变频器高次谐波电磁干扰[中图分类号]TN973 [文献标识码]B 文章编号0、引言变频器调速技术[1]的应用越来越广泛,但变频系统的电磁干扰比较严重,相应的抗干扰技术变得更加重要。
变频器系统的干扰有时能直接造成系统的硬件损坏,或者使微处理器的系统程序运行失控,造成设备和生产事故。
变频器系统的干扰主要有两个方面:一是变频器对其他计算机和自动控制装置等电子设备、通信设备和无线电等产生的干扰。
二是电网中的谐波干扰变频器的正常工作。
如何提高系统的抗干扰能力和可靠性是自动化装置研制和应用中不可忽视的重要内容。
下面主要探讨一下变频器的干扰及其抗干扰措施。
1、主要干扰源电磁干扰(EMI),是以外部噪声和无用信号在接收中所造成的电磁干扰,通常是通过电路传导和以场的形式传播的[2]。
变频器的整流电路对电网来说是非线性负载,它所产生的谐波会对同一电网的其他电子、电气设备产生谐波干扰。
另外,变频器的逆变器大多采用PWM技术,其工作于开关模式并作高速切换,产生大量耦合性噪声。
变频器对系统内其他的电子、电气设备来说是一个电磁干扰源。
1.1变频器的输入和输出电流中,都含有很多高次谐波成分和能构成电源无功损耗的较低次谐波。
它们将以各种方式把自己的能量传播出去,形成对变频器本身和其它设备的干扰信号。
(1)变频器的输入侧是二极管整流和电容滤波电路,只有当电源的线电压大于电容器两端的直流电压时,整流桥中才有充电电流。
因此,充电电流总是出现在电源电压的振幅值附近,呈不连续的脉动波形式。
它具有很强的高次谐波成分。
(2)绝大多数变频器的逆变桥都采用PWM调制方式,其输出电压为占空比按正弦规律分布的系列矩形波;由于电动机定子绕组的电感性质,定子的电流十分接近于正弦波,但与载波频率相等的谐波分量仍然较大。
1.2电网中的谐波干扰主要通过变频器的供电电源干扰变频器。
电网中存在大量谐波源,如各种整流设备、交直流互换设备、电子电压调整设备、非线性负载及照明设备等。
这些负荷都使电网中的电压、电流产生波形畸变,从而对电网中其他设备产生危害的干扰。
变频器的供电电源受到来自被污染的交流电网的干扰后若不加处理,电网噪声就会通过电源电路干扰变频器。
供电电源的干扰对变频器主要有(1)过压、欠压、瞬时掉电(2)浪涌、跌落 (3)尖峰电压脉冲 (4)射频干扰等。
(1)晶闸管换流设备对变频器的干扰:当供电网络内有容量较大的晶闸管换流设备时,由于晶闸管总是在每相半周期内的部分时间内导通,容易使网络电压出现凹口,波形严重失真。
它使变频器输入侧的整流电路有可能因出现较大的反向回复电压而受到损害,从而导致输入回路击穿而烧毁。
(2)电力补偿电容对变频器的干扰。
电力部门对用电单位的功率因数有一定的要求,为此,许多用户都在变电所采用集中电容补偿的方法来提高功率因数。
在补偿电容投入或切出的暂态过程中,网络电压有可能出现很高的峰值,其结果是可能使变频器的整流二极管因承受过高的反向电压而击穿。
2、干扰的传播途径由于变频器能产生功率较大的谐波,对系统其它设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要可以分为电路耦合(传导)、电磁辐射、感应耦合三种传播方式。
下面作一下具体分析:2.1电路耦合方式即通过阻抗耦合或接地回路耦合将干扰传入其它电路——电源网络传播。
由于输入电流为非正弦波,当变频器的容量较大时,将使网络电压产生畸变,影响其他设备正常工作,同时输出端产生的传导干扰使直接驱动的电机铜损、铁损大幅增加,影响了电机的运转特性。
这是变频器输入电流干扰信号的主要传播方式,传播的距离可以很远。
比较典型的传播途径是:接自工业低压网络的变频器所产生的干扰信号将沿着配电变压器进入中压网络,并沿着其它的配电变压器最终又进入民用低压配电网络,使接自民用配电母线的电气设备成为远程的受害者。
2.2空中幅射方式即以电磁波方式向空中幅射,如果变频器不是处在一个全封闭的金属外壳内,它就可以通过空间向外辐射电磁波。
这是高频谐波分量的主要传播方式。
其辐射场强取决于干扰源的电流强度、装置的等效辐射阻抗以及干扰源的发射频率。
变频器的整流桥对电网来说是非线性负载,它所产生的谐波对接入同一电网的其它电子、电气设备产生谐波干扰。
变频器的逆变桥大多采用PWM技术,当根据给定频率和幅值指令产生预期的和重复的开关模式时,其输出的电压和电流的功率谱是离散的,并且带有与开关频率相应的高次谐波群。
高载波频率和场控开关器件的高速切换(dv/dt可达1kV/μs以上)所引起的辐射干扰问题相当突出。
当变频器的金属外壳带有缝隙或孔洞,则辐射强度与干扰信号的波长有关,当孔洞的大小与电磁波的波长接近时,会形成干扰辐射源向四周辐射。
而辐射场中的金属物体还可能形成二次辐射。
同样,变频器外部的辐射也会干扰变频器的正常工作。
2.3感应耦合方式当变频器的输入电路或输出电路与其他设备的电路挨得很近时,变频器的高次谐波信号将通过感应的方式耦合到其他设备中去。
感应的方式又有两种:一是电磁感应方式,这是电流干扰信号的主要方式;二是静电感应方式,这是电压干扰信号的主要方式。
干扰的大小取决干扰源电缆产生的磁通大小,即取决于控制电缆形成的闭环面积和干扰源电缆与控制电缆间的相对角度。
系统内的干扰信号通过相同的途径干扰变频器的正常工作。
3、抗电磁干扰的原理与措施3.1抗电磁干扰的原理根据电磁性的基本原理[3],形成电磁干扰须具备电磁干扰源、电磁干扰的传播途径、对电磁干扰敏感的系统等三个要素。
为防止干扰,可采用硬件抗干扰和软件抗干扰两种方法。
其中,硬件抗干扰是最基本和最重要的抗干扰措施,一般从抗和防两方面入手来抑制干扰,其总原则是抑制和消除干扰源、切断干扰对系统的藕合通道、降低应用系统对干扰信号的敏感性。
谐波的传播途径是传导和辐射,解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源和被干扰的线路或系统进行屏蔽。
3.2抑制干扰的措施[4]抑制干扰的具体措施在工程上可采用隔离、滤波、屏蔽、接地等方法。
(1)隔离所谓干扰的隔离,就是变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流,使它们不发生电的联系。
在变频调速传动系统中,通常是电源和放大器电路之间电源线上采用隔离变压器以免传导干扰,电源隔离变压器可应用噪声隔离变压器。
为避免传导干扰,应尽量减少变频器与控制系统不必要的连线。
除了控制系统与变频器之间必须的控制线外,其它电路、控制电源等应分开,变频器的控制电源由另外系统供电;在控制电源的输入侧装设线路滤波器;装设隔离变压器,且屏蔽接地。
加大与干扰源电缆的距离。
具体方法有:①设备的电源线和信号线应尽量远离变频器的输入、输出线;一般将控制电缆与主回路电缆或其它动力电缆分离铺设,分离距离通常在30cm以上(一般可降低噪声 1/2~1/3),最低为10cm。
分离困难时,将控制电缆穿过铁管铺设。
②其他设备的电源线和信号线应避免和变频器的输入、输出线平行;安装布线时将电源线和控制电缆分开,例如使用独立的线槽等。
如果控制电路连接线必须和电源电缆交叉,应成90°交叉布线。
(2)滤波给变频器输入加装EMI滤波器,可以有效抑制变频器对电网的传导干扰。
加装输入交流和直流电抗器,可以提高功率因数,减小输入谐波。
为减少电磁噪声和损耗,可在变频器输出侧设置输出滤波器。
若线路中有敏感电子设备,可在电源线上设置电源噪声滤波器以免传导干扰。
滤波器是削弱频率较高的谐波分量的主要手段。
根据使用位置的不同,可分为:①输入滤波器通常又有两种:一是线路滤波器,主要由电感线圈构成,串联在电源与变频器的输入侧之间。
它通过增大线路在高频下的阻抗来削弱频率较高的谐波电流。
二是辐射滤波器,主要由高频电容器构成。
它将吸收掉频率很高的、具有辐射能量的谐波成分。
②输出滤波器也由电感线圈构成。
它可以有效地削弱输出电流中的高次谐波成分。
不但起到抗干扰的作用,而且能削弱电动机中由高次谐波电流引起的附加转矩。
在变频器的输入电流中频率较低的谐波分量所占的比重也很高,它们除了可能干扰其他设备的正常运行之外,还因为它们消耗了大量的无功功率,使线路的功率因数大为下降。
输入滤波器也是削弱较低频率的谐波分量的主要手段。
它可以提高功率因数;削弱输入电路中的浪涌电流对变频器的冲击;削弱电源电压不平衡的影响。
对于变频器输出端的抗干扰措施,必须注意以下方面:①变频器的输出端不允许接入电容器,以免在逆变管通断瞬间,产生峰值很大的充放电电流,损害逆变管;②当输出滤波器由LC电路构成时,滤波器内接入电容器的一侧,必须与电动机侧相接。
如果变频器运行在对噪声敏感的环境中,可以采用RFI滤波器减小来自变频器的传导和辐射干扰。
滤波器散热器与安装金属板之间应有良好的导电连接。
变频器在运行时产生的高次谐波会对电网产生影响,使电网波型严重畸变,可能造成电网电压降很大、电网功率因数很低,大功率变频器应特别注意。
解决的方法主要有采用无功自动补偿装置以调节功率因数,同时可以根据具体情况在变频器电源进线侧加电抗器以减少对电网产生的影响。
(3)屏蔽屏蔽干扰源是抑制干扰的最有效的方法。
通常变频器本身用铁壳屏蔽,不让其电磁干扰泄漏。
在电动机和变频器之间的电缆应穿钢管敷设或用铠装电缆。
特别是以外部信号控制变频器时,要求信号线采用双芯屏蔽,尽可能短(一般为20m以内),并与主电路及控制回路完全分离,不能放于同一配管或线槽内,周围电子敏感设备线路也要求屏蔽,避免辐射干扰。
为使屏蔽有效,屏蔽罩必须可靠接地。
这样能有效抑制电流谐波对邻近设备的辐射干扰。
(4)正确接地正确的接地既可以使系统有效地抑制外来干扰,又能降低设备本身对外界的干扰,提高系统的抗干扰能力。
在实际应用系统中,有时由于系统电源零线(中线)、地线(保护接地、系统接地)不分、控制系统屏蔽地(控制信号屏蔽地和主电路导线屏蔽地)的混乱连接,大大降低了系统的稳定性和可靠性。
对于变频器,主回路端子PE(E、G)的正确接地是提高变频器抑制噪声能力和减小变频器干扰的重要手段,因此在实际应用中一定要非常重视。
变频器接地导线的截面积一般应不小于2.5mm2,长度控制在20m以内。
建议变频器的接地与其它动力设备接地点分开。
变频器的接地方式有多点接地、一点接地及经母线接地等几种形式,要根据具体情况采用,否则会因为接地不良而对设备产生干扰。
单点接地在低频下的性能好;多点接地在高频下的性能好;混合接地是根据信号频率和接地线长度,系统采用单点接地和多点接地共用的方式。