2016贵阳市中考数学(扫描版)

合集下载

人教版七年级数学下册第十章检测卷

人教版七年级数学下册第十章检测卷

第十章检测卷时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列调查中,适合采用全面调查(普查)方式的是() A.了解西宁电视台“教育在线”栏目的收视率B.了解青海湖斑头雁种群数量C.了解全国快递包裹产生包装垃圾的数量D.了解某班同学“跳绳”的成绩2.空气是混合物,为直观介绍空气中各成分的百分比,最适合用的统计图是() A.折线图B.条形图C.直方图D.扇形图3.某校对初三年级800名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为()A.320人B.240人C.400人D.40人4.2017年,某县有近9000名考生参加中考,为了解这些考生的数学成绩,从中抽取100名考生的数学成绩进行统计分析,以下说法正确的是()A.近9000名考生是总体B.这100名考生是总体的一个样本C.100名学生是样本容量D.每位考生的数学成绩是个体5.如图是根据某市2012年至2016年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2012年至2016年间工业生产总值逐年增加B.2016年的工业生产总值比前一年增加了40亿元C.2014年与2015年每一年与前一年比,其增长额相同D.从2013年至2016年,每一年与前一年比,2016年的增长率最大第5题图第6题图6.如图是某校八年级(1)班同学在一次体检中每分钟心跳次数的频数分布直方图(次数均为整数),已知该班只有5位同学的心跳每分钟75次,有下列说法:①数据75落在第2小组;②第4小组的频率是0.1;③心跳为每分钟75次的人数占该班人数的112.其中正确的个数是()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,每小题4分,共24分)7.妈妈煮一道菜时,为了解菜的咸淡是否适合,于是妈妈取了一点品尝,这属于__________(填“全面调查”或“抽样调查”).8.红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有________人.9.如图是景德镇二月份某日的温度变化情况,则这天中8时到18时的温差为________.第9题图第10题图10.李老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A等级的人数占总人数的________%.11.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是________万元.12.记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下,根据图中信息,该足球队全年比赛胜了________场.三、(本大题共4小题,每小题8分,共32分)13.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.14.某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根据调查收集的数据绘制了如下扇形统计图,其中对垃圾分类非常了解的学生有30人.(1)本次抽取的学生有________人;(2)请补全扇形统计图;(3)请估计该校1600名学生中对垃圾分类不了解的人数.15.福州市2011~2015年度常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了________万人;(2)与上一年相比,福州市常住人口数增加最多的年份是________;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.16.为了解某校七年级男生的体能情况,从该校七年级中抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出如下频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数之比为1∶3∶4∶2.(1)求第二小组的频数和频率;(2)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.四、(本大题共2小题,每小题10分,共20分)17.为了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“您最关心孩子哪方面成长”的主题调查,调查设置了“健康安全”、“日常学习”、“习惯养成”、“情感品质”四个项目,并随机抽取甲、乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)若全校共有3600位学生家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?18.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有________人,其中选择B类的人数有________人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.五、(本大题共12分)19.为了帮助九年级学生做好体育考试项目的选考工作,某校统计了本县上届九年级毕业生体育考试各个项目参加的男、女生人数及平均成绩,并绘制成如图所示的两个统计图,请结合统计图信息解决问题.(1)已知“掷实心球”项目男、女生总人数是“跳绳”项目男、女生总人数的2倍,求“跳绳”项目的女生人数;(2)若一个考试项目的男、女生总平均成绩不小于9分为“优秀”,试判断该县上届毕业生的考试项目中达到“优秀”的有哪些项目,并说明理由;(3)请结合统计图信息和实际情况,给该校九年级学生体育考试项目的选择提出合理化建议.六、(本大题共14分)20.菲尔兹奖是国际上享有崇高声誉的一个数学奖项,每4年评选一次,颁给有卓越贡献的年轻数学家,被视为数学界的诺贝尔奖.下面的数据是从1936年至2014年45岁以下菲尔兹奖得主获奖时的年龄(岁):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 3734 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 3834 33 40 36 36 37 31 38 38 37 35 40 39 37请根据以上数据,解答以下问题:(1)小彬按“组距为5”列出了如下的频数分布表,每组数据含最小值不含最大值,请将表中空缺的部分补充完整,并补全频数分布直方图;分组频数A:25~30B:30~3515C:35~4031D:40~45总计50(2)在(1)的基础上,小彬又画出了如图所示的扇形统计图,图中B组所对的圆心角的度数为________;(3)根据(1)中的频数分布直方图试描述这50位菲尔兹奖得主获奖时的年龄的分布特征.参考答案与解析1.D 2.D 3.A 4.D 5.D 6.D7.抽样调查 8.680 9.15.5℃ 10.20 11.80 12.27 13.解:(1)根据题意得n =39+26+20+15=100.(4分) (2)根据题意得1100×20+15100=385(人).(7分)答:估计该校1100名学生中一年的课外阅读量超过10本的人数约为385人.(8分) 14.解:(1)300(2分)(2)了解很少的人数所占的百分比为1-30%-10%-20%=40%,补图略.(5分) (3)1600×30%=480(人),(7分)故该校1600名学生中对垃圾分类不了解的人数约为480人.(8分)15.解:(1)7(2分) (2)2014年(4分)(3)约为757万人.(5分)理由如下:从统计图可知,福州市常住人口每年增加的数量大致是7万人,由此可以预测2016年人口数大约为757万人.(8分)16.解:(1)50×31+3+4+2=15,1550=0.3.(3分)故第二小组的频数和频率分别为15,0.3.(4分)(2)4+21+3+4+2×100%=60%.(7分) 答:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比为60%.(8分)17.解:(1)乙班关心“情感品质”的家长有100-(18+20+23+17+5+7+4)=6(人),(3分)补全条形统计图如图所示.(4分)(2)3600×4+6100=360(人).(6分)答:估计约有360位家长最关心孩子“情感品质”方面的成长.(7分)(3)无确切答案,结合自身情况或条形统计图,言之有理即可,如:从条形统计图中,看出家长对孩子“情感品质”的成长关心不够,可适当关注与指导.(10分)18.解:(1)800 240(4分)(2)∵A 类人数所占百分比为1-(30%+25%+14%+6%)=25%,∴A 类对应扇形圆心角α的度数为360°×25%=90°,(6分)A 类的人数为800×25%=200(人),补全条形统计图如图所示.(8分)(3)12×(25%+30%+25%)=9.6(万人).答:估计该市“绿色出行”方式的人数约为9.6万人.(10分) 19.解:(1)(400+600)÷2-260=500-260=240(人).(2分) 答:“跳绳”项目的女生人数是240人.(3分)(2)“掷实心球”项目男、女生总平均成绩约为(400×8.7+600×9.2)÷(400+600)=9(分).(5分)“投篮”项目男、女生的平均成绩均大于9分,故“投篮”项目男、女生总平均成绩大于9分.(6分)其余项目男、女生总平均成绩均小于9分.(7分)故该县上届毕业生的考试项目中达到“优秀”的有“投篮”、“掷实心球”两个项目.(8分)(3)如:游泳项目考试的人数最多,可以选考游泳(答案不唯一).(12分) 20.解:(1)补全频数分布表从上往下依次填1,3,(4分) 补全频数分布直方图如下.(6分)(2)108°(10分)(3)由频数分布直方图知,这50位菲尔兹奖得主获奖时的年龄主要分布在35~40岁.(14分)高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..(1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别 ◆类型一 简单几何体的三视图 1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( ) 第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( ) A .1个 B .2个 C .3个 D .4个 5.(2016·宁波中考)如图所示的几何体的主视图为( ) 6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( ) 7.(2016·菏泽中考)如图所示,该几何体的俯视图是( ) ◆类型二 简单组合体的三视图乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。

2016年数学中考试题及答案

2016年数学中考试题及答案

2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。

..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。

将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。

若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。

表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。

为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。

人教版贵州贵阳市中考数学一轮培优:第3单元 第9讲 一次函数的图象与性质

人教版贵州贵阳市中考数学一轮培优:第3单元 第9讲  一次函数的图象与性质

2.如图②,不等式k1x+b1>k2x+b2的解集 y=k1x+b1的图象在y=k2x+b2
图象上方时,对应的x的取值范围;
不等式k1x+b1<k2x+b2的解集 y=k1x+b1的图象在y=k2x+b2图象下方 时,对应的x的取值范围.
重难点突破
重难点突破
一、一次函数的图象与性质
例1 已知关于x的函数y=(m-1)x+m+5.
返回思维导图 垂直 k1·k2=-1.
返回思维导图
一次函数与 方程(组)、不 等式的关系
与一元一次方程的关系:一次函数y=kx+b(k≠0)的图象与x轴交点的
横坐标 方程kx+b=0的解.
与二元一次方程组的关系:一次函数y=k1x+b1与y=k2x+b2图象的交点
为A(m,n)
二元一次方程组
y y
A. -2
B. - 4 2 3
C. -4 3 3
D. - 4 5 3
第9题图
10. (2010贵阳20题10分)如图,直线与x轴、y轴分别交于A、B两点.
(1)将直线AB绕原点O沿逆时针方向旋转90°得到直线A1B1.
请在所给的图中画出直线A1B1,此时直线AB与A1B1的位置关系为____垂__直__(填“平行”或
x=2
图所示,则关于x,y的方程组
y-k1x=的b1解是______y_=_.1
y-k2x=b2
命题点 3 一次函数与几何图形综合(10年3考)
9. (2014贵阳10题3分)如图,A点的坐标为(-4,0),直线y= x+n3与坐标轴交于点B,C,
连接AC,如果∠ACD=90°,则n的值为( )

2016届全国中考数学优教通精品课件(26份)-21

2016届全国中考数学优教通精品课件(26份)-21

数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个
七 超市买10本以上的练习本优惠折扣是__ __折.
需要更完整的资源请到 新世纪教 育网 -
2.(2015·沈阳)如图1,在某个盛水容器内,有一个小水杯,小 水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯 后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关 系满足如图2中的图象,则至少需要__5 __s能把小水杯注满.
需要更完整的资源请到 新世纪教 育网 -
3.三种题型 (1)选择题——关键:读懂函数图象,学会联系实际;
(2)综合题——关键:运用数形结合思想;
(3)求运动过程中的函数解析式——关键:以静制动.
需要更完整的资源请到 新世纪教 育网 -
ቤተ መጻሕፍቲ ባይዱ
1.(2015·阜新)小明到超市买练习本,超市正在打折促销:购买 10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱
230k+b=440, k=-2, 解得 ∴y=-2x+900,经验证,x=240,y 235k + b = 430 , b = 900 ,
=420;x=245,y=410都满足上述函数关系式,∴y与x的函数关系式 为y=-2x+900 (2)由题意得200≤x≤200×(1+50%),∴200≤x≤
需要更完整的资源请到 新世纪教 育网 -
1.构建函数模型 函数的图象与性质是研究现实世界的一个重要手段,对于函数
的实际问题要认真分析,构建函数模型,从而解决实际问题.函
数的图象与性质也是中考重点考查的一个方面. 2.实际问题中函数解析式的求法 设x为自变量,y为x的函数,在求解析式时,一般与列方程解应 用题一样先列出关于x,y的二元方程,再用含x的代数式表示y.利 用题中的不等关系或结合实际求出自变量x的取值范围.

中考数学备考专题复习反比例函数含解析

中考数学备考专题复习反比例函数含解析

反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。

2016届中考数学真题类编-知识点026 直角三角形、勾股定理及逆定理2016A

2016届中考数学真题类编-知识点026  直角三角形、勾股定理及逆定理2016A

一、选择题1.(2016山东东营,9,3分)在△ABC中,AB=10,AC=BC边上的高AD=6,则另一边BC等于()A.10 B.8 C.6或10 D.8或10【答案】C【逐步提示】本题考查勾股定理,分类讨论思想.根据题意画出相应的图形,然后利用勾股定理分别求出BC的长.【详细解答】解:如图①所示,在Rt△ABD中,8,在Rt△ACD中,2,∴BC=BD+CD=8+2=10.如图②所示,同理求出BD=8,CD=2,∴BC=BD-CD=8-2=6.故选C.【解后反思】解答本题易出现漏解的错误,即只考虑高在三角形内部的情况,而忽视高在外部的情况,而造成漏解.【关键词】勾股定理;分类讨论思想2.(2016山东潍坊,7,3分)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B 也随之沿射线OM方向滑动,下列各图中用虚线画出木杆中点P随之下落的路线,其中正确的是()【答案】D【逐步提示】本题考查了直角三角形的性质,解题的关键是掌握能够观察到图中的OP是斜边AB上的中线,利用直角三角形斜边上的中线等于斜边的一半,可得OP的长度始终保持不变,然后结合图形可选出答案.【详细解答】解:连接OP,∵△AOB为直角三角形,∴12OP AB=.故点P下落路线为以O为圆心,OP为半径的一段圆弧,故选择D .【解后反思】本题在解答时需掌握直角三角形斜边上的中线等于斜边的一半,从而OP的长度不变,本题是来源于青岛版八下课本.【关键词】直角三角形;14.3.(2016山东省烟台市,14,3分)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰【答案】7 【逐步提示】利用等腰△ABC 三线合一定理判断出AB OC ⊥,然后利用勾股定理即可求出OM 的长,则点M 对应的实数即可求出.【详细解答】解: ∵A ,B 两点分别对应-3,3,即OA=OB ,又∵△ABC 为等腰三角形,∴AB OC ⊥, ∴ OM=OC=2234-=7 ,故答案为 7 .【解后反思】1.本题考查数轴与点一一对应关系,需要借助数轴和勾股定理判断出字母对应的数值.2.在数轴上,数轴形象地反应了数与点之间的关系,数轴上的点与实数之间是一一对应的,借助于数与形的相互转化来解决数学问题,数轴具有如下作用:(1)利用数轴可以用点直观地表示数.(2)利用数轴可以比较数的大小.(3)利用数轴可以解决绝对值问题.【关键词】等腰三角形;勾股定理;数轴;数形结合思想;4.5. (2016浙江杭州,9,3分)已知直角三角形纸片的两条直角边长分别为m 和n (m <n ),过锐角顶点把该纸片剪成两个三角形.若这两个三角形都是等腰三角形,则( )A .m 2+2mn +n 2=0B .m 2-2mn +n 2=0C .m 2+2mn -n 2=0D .m 2-2mn -n 2=0【答案】C .【逐步提示】本题考查了直角三角形从一个顶点出发的一条射线将原三角形分成两个等腰三角形条件下的两条直角边的数量关系,解题的关键是画出符合题意的图形后,利用数形结合思想将两条直角边m 、n 及其代数式表示直角三角形的三边后用勾股定理建立等量关系.在解题时,首先画出符合题意的图形,利用斜边的垂直平分线与较长直角边的交点,得到一个等腰直角三角形后就产生了两个等腰三角形;再将等腰直角三角形的斜边用n -m 表示;最后由勾股定理,得到m 、n 的等量关系,化简后即可选择正确答案.【解析】如下图,在△ABC 中,∠C =90°,AC =m ,BC =n ,过点A 的射线AD 交BC 于点D ,且将△ABC 分成两个等腰三角形:△ACD 和△ADB ,则AC =CD =m ,AD =DB =n -m .在Rt △ACD 中,由勾股定理,得m 2+m 2=(n -m )2,2m 2=m 2-2mn +n 2,从而m 2+2mn -n 2=0,故选择C .n -mn -mm mDBC A【解后反思】解答本题的关键在于将题意用图形语言表示出来,所以说几何画图是学习好数学的基本功之一.在本题中,两个等三角形一定有一个是等腰直角三角形,另一个等腰三角形也一定是顶角为135°(45°的邻补角)的等腰三角形,此时利用线段的垂直平分线上的点到线段的两个端点距离相等来画原三角形斜边的中垂线即可.在解决了画图关后,如何用m 、n 的代数式表示等腰直角三角形的斜边就容易得多了,最后利用勾股定理不难探索出m 、n 的等量关系.综上所述,对于数学的学习,尤其是几何题,将文字语言、符号语言、图形语言三者之间的相互转换,就显得尤为重要了.【关键词】直角三角形;等腰三角形;勾股定理(2016淅江丽水,7,3分)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A.13B.17C.20D.26 【答案】【逐步提示】根据平行四边形的性质得到BC 及OB+OC 的长,从而求得△OBC 的周长.【解析】由题意得BC=AD=8, OB+OC=12(AC+BD)=9,所以△OBC 的周长=8+9=17,故选择B. 【解后反思】平行四边形的对角线互相平分,平行四边形的对边相等,对角相等.【关键词】平行四边形的性质;;;;6.(2016浙江衢州,5,3分)如图,在▱ABCD 中,M 是BC 延长线上的一点,若∠A =135°,则∠MCD 的度数是( )A.45°B.55°C.65°D.75°【答案】A.【逐步提示】利用平行四边形和平行线的性质即求.MDC B A【解后反思】利用平行四边形的性质可以寻求线的平行关系,而平行线可以转换角的关系.【关键词】平行线的性质、平行四边形的性质、角的计算.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.二、填空题1. (2016天津,18,3分)如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(I)AE的长等于.(II)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度尺的直尺,画出线段PQ,并简要说明P,Q的位置是如何找到的(不要求证明) .【答案】(II)如图,AC 与网格线相交,得点P ;取格点M ,连接AM 并延长与BC 相交,得点Q .连接PQ ,线段PQ 即为所求.【逐步提示】本题考查了勾股定理,直角三角形的性质,矩形的性质,三角函数等知识.解题的关键是分析题意并构造出如图所示的三个全等的三角形.在解答本题时,应先从结论AP =PQ =PB 出发,通过构造全等三角形,分析出点P 与点Q 的形成过程,由此得出用直尺画出点P 与点Q 的方法.【解析】(I)AE.(II)如图,过A .Q 作铅垂线,过A .B .P 作水平线,构造三个全等且两直角边比为1:2的直角三角形.设BH =PK =QG =a ,则QH =PG =AK =2a .则①BN =BH +PG +PK =a +2a +a =4a ;②QR =QG +AK =a +2a =3a ;③AR =KP +PG =a +2a =3a .在网格中,∵BN =6,BN =4a ,∴a =1.5,∴AK =2a =3,过点K 的水平线与AC 的交点即为点P .∵QR =AR =2a ,∠ARQ =90°,∴∠RAQ =45°,∴点Q 在AM 的延长线上,由此可确定点Q .【解后反思】在解答有关格点的问题时,应注意分析已作图形的特点,通过逆推找出用于直尺作图的网格点或直线的交点,从而得出作图的过程.2.(2016浙江舟山,16,4分)如图,在直角坐标系中,点A.B分别在x轴、y轴上,点A的坐标为(-1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x 轴的非负半轴上运动,如果PQ=3,那么当点P运动一周时,点Q运动的总路程为.【答案】4【逐步提示】本题考查了解直角三角形的应用,解题的关键是根据题意能将点Q运动的总路程正确分解成几段路径之和. 根据已知条件在Rt△AOB中求出OB=3,AB=2. 设AB的中点为C,当点P运动一周时,点Q运动的总路程可以分解为点P从“O→B”、“B→C”、“C→A”、“A→O”四段路径之和.【解析】∵A(-1,0),∴OA=1.在Rt△AOB中,∠AOB=90°,∠ABO=30°,∴AB=2,OB= 3.设AB的中点为C.当点P从点O→B运动时,点Q运动的路径长(自右到左)为3;当点P从点B→C运动时,点Q运动的路径长(自左到右)为1;当点P从点C→A运动时,点Q运动的路径长(自右到左)为2-3;当点P从点A→O运动时,点Q运动的路径长(自左到右)为1;因此当点P运动一周时,点Q运动的总路程为3+1+2-3+1=4,故答案为4 .【解后反思】本题的难点是点P在B→A运动过程中,点Q运动的路径长,化解该难点的方法一是抓住“AB的中点C”这个特殊的零界点,而是关注点P到达A.C.B这三个特殊点时,线段AQ相应的长度,由此可确定点Q运动的路径长.【关键词】特殊角三角函数值的运用;点的位置的确定;实验操作题型;动线题型3.(2016四川省广安市,24,8分)在数学活动课上,老师要求学生在5×5的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,画四种图形,并直接写出其周长(所画图形相似的只算一种).周长=周长=以画出的直角三角形的两条直角边可以有以下几种关系:两直角边相等、一条直角边等于另一条直角边的2倍、一条直角边等于另一条直角边的3倍、一条直角边等于另一条直角边的4倍等.【详细解答】解:第一种(四选一):周长=周长=周长=周长=第二种(二选一):周长=周长=5第三种:第四种:第五种:周长=周长=周长=【解后反思】(1)在网格中通过画两个45°角的和画出直角;(2)相同边长的正方形网格,如果线段在网格线上,可以通过数网格得到线段的长度,如果线段不在网格线上,还需要结合勾股定理解决问题.【关键词】直角三角形;勾股定理;网格数学题型4.5.6.7.8.9.10.11.12.13.14.15.16.17.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.三、解答题1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.31.32.33.34.35.36.37.38.39.。

人教版贵州贵阳市中考数学一轮培优:第4单元 第15讲 等腰三角形和直角三角形

人教版贵州贵阳市中考数学一轮培优:第4单元 第15讲  等腰三角形和直角三角形

例4 已知Rt△ABC.
二、直角三角形的性质和判定
(1)若∠A=90°,AB=3,AC=2,则BC=________;13
(2)若AB=3,AC=2,则BC=_____1_3_或_;5
【解法提示】当BC是斜边时,BC= 22+32= 1;3
当AB是斜边时,BC= 32-22= 5.
(3)如图①,若∠BAC=90°,AB=12,BC=13,则
EF的长是( )
B
A. 3
B. 2
C. 3
D. 1
第1题图
2. (2011贵阳7题3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,
则AP长不可能是( )
D
A. 3.5
B. 4.2
C. 5.8
D. 7
第2题图
3. (2016贵阳15题4分)已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确 定,那么BC边长度x的取值范围为______________.x=4 2 或x≥8
2
12Βιβλιοθήκη 面积计算公式:S= 2 a2,a是三角形的腰长(直角边)
1.具有等腰三角形的所有性质
等边三角形 性质 2.三条边都相等,AB=AC=BC=a 3.三个内角相等,且每个内角都等于60°
4.是轴对称图形,有3条对称轴
数量关系:h= 3 a,S= a1h= a32,a是三角形任意一边的长
2
24
返回思维导图
个三角形是直角三角形
返回思维导图
直角三角形
面积 计算 公式
S= 1 ab= 1 ch,其中a、b为两个直角边,c为斜边,h为斜边上的高
22
公式应用:一般已知直角三角形的三边,求斜边上的高时,常用等面 积法,利用公式h= 进行ab求解

2016届中考数学第一轮知识点习题复习课件23

2016届中考数学第一轮知识点习题复习课件23
第3页,共28页。
4.在涉及折叠的相关问题中,若原图形中含有直角或折叠后产生直角, 常常把所求的量与已知条件利用折叠的性质,借助等量代换转化到一个 直角三角形中,利用勾股定理建立方程求解. 小结论:1.等腰三角形常用辅助线:底边上的高线或底边上的中线或顶角 平分线; 2.等边三角形面积= 43×边长 2; 3.30°的直角三角形三边的比为短直角边∶长直角边∶斜边=1∶ 3∶2.


(1)三边相等;
(1)三条边相等的三角形是等边三角形;

(2)各角相等,且都等于60°;
(2)三个角都相等的三角形是等等腰边三三角角形形;

(3)是轴对称图形,有三条对称轴
(3)有一个角等于60°的______________是等 边三角形

直 角 三
(1)两锐角之和等于90°;一半 (2)斜边上的中线等于斜边的______; (3)30°角所对的直角边等于斜边的一半;
DF2+CD2= ( 2)2+( 2)2=2,∵BE⊥AC,AE=EC,∴AF =CF=2,∴AD=AF+DF=2+ 2
第11页,共28页。
等腰三角形有关边角的讨论
【例1】 (1)(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形
的周长为( )
C
A.8或10 B.8
C.10 D.6或12
(2)(葫芦岛模拟)等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次
方程x2-12x+k=0的两个根,则k的值是( )
B
A.27 B.36 C.27或36 D.18
解析:分两种情况:①当其他两条边中有一个为3时,将x=3代入原方程,得
32-12×3+k=0,k=27,将k=27代入原方程,得x2-12x+27=0,解得x=3或9.3,

2016年贵州省贵阳市中考数学试卷-答案

2016年贵州省贵阳市中考数学试卷-答案

故选B.3<<<;故选D. 由图象可知,n b a m1ABC唯一确定,那么BC的长度x满足的条件是:x42x8=≥或.2a12 a1a -=+-1==(2)用A1、A2、A3、A4分别表示第一排、第二排、第三批、第四排日光灯,在△ABF和△CBE中,有AB CBABF CBE BF BE=⎧⎪∠=∠⎨⎪=⎩,∴ABF CBE(SAS)△≌△.(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴BFE FEB45∠=∠=︒,∴AFB180BFE135∠=︒-∠=︒,又∵ABF CBE△≌△,∴CEB AFB135∠=∠=︒,∴CEF CEB FEB1354590∠=∠-∠=︒-︒=︒,∴△CEF是直角三角形.【提示】(1)由四边形ABCD是正方形可得出AB CB=,ABC90∠=︒,再由△EBF是等腰直角三角形可得出BE BF=,通过角的计算可得出ABF CBE∠=∠,利用全等三角形的判定定理SAS即可证出ABF CBE△≌△;(2)根据△EBF是等腰直角三角形可得出BFE FEB∠=∠,通过角的计算可得出AFB135∠=︒,再根据全等三角形的性质可得出CEB AFB135∠=∠=︒,通过角的计算即可得出CEF90∠=︒,从而得出△CEF是直角三角形.【考点】正方形的性质,全等三角形的判定与性质,等腰直角三角形19.【答案】(1)由题意可得,此次抽查的学生有:3624%150÷=(人),故答案为:150;(2)如图所示:A等级的学生数是:15020%30⨯=,B等级占的百分比是:69150100%46%÷⨯=,D等级占的百分比是:15150100%10%÷⨯=,故补全的条形统计图和扇形统计图如右图所示,(3)1200(46%20%)792⨯+=(人),BD sin80︒, 1700sin80︒,AM AE, 1700sin80238.9m 29︒≈︒238.9m .AM23.【答案】(1)如图所示,AP 即为所求的∠CAB 的平分线;∴B 30∠=︒;1OE BE 22=⨯2π48π3603=,OE BE23=<<故答案为:2AD8(3)解:BE DF EF +=;理由如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示:∵ABC D 180∠+∠=︒,NBC ABC 180∠+∠=︒,∴NBC D ∠=∠,在△NBC 和△FDC 中,BN DF NBC D BC DC =⎧⎪∠=∠⎨⎪=⎩,∴NBC FDC(SAS)△≌△,∴CN CF =,NCB FCD ∠=∠,∵BCD 140∠=︒,ECF 70∠=︒,∴BCE FCD 70∠+∠=︒ ,∴ECN 70ECF ∠=︒=∠,在△NCE 和△FCE 中,CN CF ECN ECF CE CE =⎧⎪∠=∠⎨⎪=⎩,∴NCE FCE(SAS)△≌△,∴EN EF =,∵BE BN EN +=,∴BE DF EF +=.【提示】(1)延长AD 至E ,使D E A D =,由SAS 证明ACD EBD △≌△,得出BE AC 6==,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围;(2)延长FD 至点M ,使DM DF =,连接BM 、EM ,同(1)得BMD CFD △≌△,得出BM CF =,由线段垂直平分线的性质得出EM EF =,在△BME 中,由三角形的三边关系得出BE BM EM +>即可得出结论;(3)延长AB 至点N ,使B N D F =,连接CN ,证出NBC D ∠=∠,由SAS 证明NBC FDC △≌△得出CN CF =,NCB FCD ∠=∠,证出ECN 70ECF ∠=︒=∠,再由SAS 证明NCE FCE △≌△,得出EN EF =,即可得出24。

2016年贵州黔东南州中考数学考试含答案

2016年贵州黔东南州中考数学考试含答案

2016年贵州黔东南州中考数学考试含答案————————————————————————————————作者:————————————————————————————————日期:绝密★启用前贵州省黔东南州2016年初中毕业升学统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的相反数是( )A .2B .2-C .12D .12-2.如图,直线a b ∥,若140∠=,255∠=,则3∠等于( )A .85B .95C .105D .1153.已知一元二次方程2210x x --=的两根分别为m ,n ,则m n +的值为( )A .2-B .1-C .1D .24.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,若2AB =,60ABC ∠=,则BD 的长为( )A .2B .3C .3D .235.小明在某商店购买商品A 、B 共两次,这两次购买商品A 、B 的数量和费用如下表.购买商品A 的数量(个) 购买商品B 的数量(个) 购买总费用(元) 第一次购物 4 393第二次购物6 6 162若小丽需要购买3个商品A 和2个商品B ,则她要花费( )A .64元B .65元C .66元D .67元6.已知一次函数1y ax c =+和反比例函数2by x=的图象如图所示,则二次函数23y ax bx c =++的大致图象是( )ABCD7.不等式组,3x a x >⎧⎨<⎩的整数解有三个,则a 的取值范围是( )A .10a -≤<B .10a -<≤C .10a -≤≤D .10a -<<8.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么2()a b +的值为( )毕业学校_____________姓名________________-------------在--------------------此--------------------卷A .13B .19C .25D .1699.将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( ) A .2B .21+C .2D .110.如图,在等腰直角三角形ABC 中,90C ∠=,点O 是AB 的中点,且6AB =,将一块直角三角板的直角顶点放在点O 处,始终保持该直角三角板的两直角边分别与AC ,BC 相交,交点分别为D ,E ,则CD CE +等于( ) A .2B .3C .2D .6第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.tan60= .12.分解因式:3220x x x --= .13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件,现从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是 .14.如图,在ACB △中,50BAC ∠=,2AC =,3AB =,现将ACB △绕点A 逆时针旋转50得到11AC B △,则阴影部分的面积为 .15.如图,点A 是反比例函数11y x=(0)x >图象上一点,过点A 作x 轴的平行线,交反比例函数2ky x=(0)x >的图象于点B ,连接OA ,OB ,若OAB △的面积为2,则k 的值为 .16.如图,在平面直角坐标系xOy 中,矩形OABC 的边OA ,OC 分别在x 轴和y 轴上,3OC =,26OA =,D 是BC 的中点,将OCD △沿直线OD 折叠后得到OGD △,延长OG 交AB 于点E ,连接DE ,则点G 的坐标为 .三、解答题(本大题共8小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)计算:201()(π 3.14)|32|2cos302-+----.18.(本小题满分10分)先化简:22111()21x x x x x x x-+÷--+,然后x 在1-,0,1,2四个数中选一个你认为合适的数代入求值.19.(本小题满分8分)解方程:214111x x x ++=--.20.(本小题满分12分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学习时间为t (小时),:1A t <,:1 1.5B t ≤<,:1.52C t ≤<,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整; (2)本次抽样调查中,学习时间的中位数落在哪个等级内? (3)表示B 等级的扇形圆心角α的度数是多少?(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.21.(本小题满分10分)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD )恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30,在C 处测得电线杆顶端A 得仰角为45,斜坡与地面成60角,4m CD =,请你根据这些数据求电线杆的高()AB .(结果精确到1m ,参考数据:2 1.4≈,3 1.7≈).22.(本小题满分12分)如图,AB 是O 的直径,点P 在BA 的延长线上,弦CD AB ⊥,垂足为E ,且2PC PE PO =.(1)求证:PC 是O 的切线.(2)若12OE EA =::,6PA =,求O 的半径.23.(本小题满分12分)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优惠方法是:凡是一次买10只以上的,每多买一只,所买的的全部计算器每只就降价0.1元,例如:某人18只计算器,于是每只只降价0.1(1810)0.8⨯-=(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.________________-------------在-------------(1)求一次至少购买多少只计算器,才能以最低价购买?(2)写出该文具店一次销售(0)x x >1只时,所获利润y (元)与x (只)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别相交于点B ,C ,经过B ,C 两点的抛物线2y ax bx c =++与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线2x =.(1)求该抛物线的解析式;(2)连接PB ,PC ,求PBC ∆的面积;(3)连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与ABC △相似?若存在,求出点Q 的坐标;若不存在,请说明理由.贵州省黔东南州2016年初中毕业升学统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义,2-的相反数是2.选A.【提示】根据相反数的意义,只有符号不同的数为相反数,0的相反数是0. 【考点】相反数 2.【答案】B【解析】如下图,因为直线a b ∥,所以43∠=∠。

2016届全国中考数学优教通精品课件(26份)-15

2016届全国中考数学优教通精品课件(26份)-15

于 0;(2)注意二次根式的性质( a)2=a(a≥0)和 a2=|a|的区别,判断出各 式的正负性,再化简.
需要更完整的资源请到 新世纪教 育网 -
[对应训练] 1 1.(1)(2015· 随州)若代数式 + x有意义,则实数 x 的取 x-1 值范围是( D ) A.x≠1 B.x≥0
4.最简二次根式 运算结果中的二次根式,一般都要化成最简二次根式.最简二次根式
,需满足两个条件:
(1)被开方数不含分母; (2)被开方数中不含开得尽方的因数或因式.
5.二次根式的估值 根式估值时,一般先对根式平方,找出与平方后所得数字相邻的 两个开得尽方的整数,并对其进行开方,就可以确定这个根式在哪两 个整数之间.例如,估算 17在哪两个整数之间时,先对 17平方,找 出与 17 相邻的两个开得尽方的整数 16 和 25, 因为 16<17<25, 所以 16 < 17< 25,即 4< 17<5. 需要更完整的资源请到
二次根式概念与性质 【例 1】 (1)下列各式 2,3 5,- 3, -7, x2+1中, B ) C.4 个 D.5 个 2k-1 成立,则实数 k 的范围是( k-3 D )
一定是二次根式的有( A.2 个 B.3 个
2k-1 (2)等式 = k-3
1 A.k>3 或 k< B.0<k<3 2 1 C.k≥ D.k>3 2
a(a>0) ; __________ 2 (3) a =|a|= _________ 0(a=0) ; . . -a(a<0) W 资源请到 新世纪教 育网 -
3.二次根式的运算 (1)二次根式加减法的实质是合并同类根式; (2)二次根式的乘法: a· b=____ ab;(a≥0,b≥0)

2016年贵州省贵阳市中考数学试卷(含答案与解析)

2016年贵州省贵阳市中考数学试卷(含答案与解析)

绝密★启用前贵州省贵阳市2016年初中毕业生学业考试数学本试卷满分150分,考试时间120分钟.第I卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的数中,与6-的和为0的数是()A.6B.6-C.16D.16-2.空气的密度为30.00129g/cm,0.00129这个数用科学记数法可表示为()A.20.12910-⨯B.21.2910-⨯C.31.2910-⨯D.112.910-⨯3.如图,直线a b∥,点B在直线a上,AB BC⊥.若1=38∠,则2∠的度数为 ( )A.38B.52C.76D.1424.2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神舟专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机地从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是()A.110B.15C.310D.255.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是 ()A B C D6.2016年6月4—5日贵州省第九届“贵青杯”—“乐韵华彩”全省中小学生器乐交流比赛在省青少年活动中心举行,有45支队参赛,他们参赛的成绩各不相同,要取前23名获奖.某代表队已经知道了自己的成绩,他们想要知道自己是否获奖,只需再知道这45支队成绩的-()A.中位数B.平均数C.最高分D.方差7.如图,在ABC△中,DE BC∥,13ADAB=,12BC=.则DE的长是( )A.3B.4C.5D.68.小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cmB.43cmC.63cmD.83cm9.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回到家.图中的折线段OA AB BC——是她出发后所在位置离家的距离(km)s与行走时间(min)t之间的函数关系.则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A B C D10.若m,n()n m<是关于x的一元二次方程1()()0x a x b---=的两个根,且b a<,则m,n,b,a的大小关系是()A.m a b n<<<B.a m n b<<<C.b n m a<<<D.n b a m<<<毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共22页)数学试卷第2页(共22页)数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第Ⅱ卷(非选择题 共120分)二、填空题(本大题共5小题,每小题4分,共20分.请把答案填在题中的横线上)11.不等式组321,48x x -⎧⎨⎩<<的解集为 .12.现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .13.已知点(1,)M a 和点(2,)N b 是一次函数21y x =-+图象上的两点,则a 与b 的大小关系是 .14.如图,已知O 的半径为6cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,=2cm BP ,则tan OPA ∠的值是 .15.已知ABC △,45BAC ∠=,8AB =要使满足条件的ABC △唯一确定,那么BC 边长度x 的取值范围为 .三、解答题(本大题共10小题,共100分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分8分) 先化简,再求值:22111211a a a a a a ++-÷--+-,其中21a .17.(本小题满分10分)教室里有4排日光灯,每排灯各由一个开关控制,但灯的排数序号与开关序号不一定对应,其中控制第二排灯的开关已坏(闭合开关时灯也不亮). (1)将4个开关都闭合时,教室里所有灯都亮起的概率是 ;(2)在4个开关都闭合的情况下,不知情的雷老师准备做光学实验,由于灯光太强,他需要关掉部分灯,于是随机将4个开关中的2个断开,请用列表或画树状图的方法,求恰好关掉第一排与第三排灯的概率.18.(本小题满分10分)如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点.EBF △是等腰直角三角形,其中90EBF =∠,连接CE ,CF . (1)求证:ABF CBE △≌△;(2)判断CEF △的形状,并说明理由.19.(本小题满分10分)某校为了解该校九年级学生2016年适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图.请根据统计图中的信息解答下列问题:(说明:A 等级:135分~150分,B 等级:120分~135分,C 等级:90分~120分, D 等级:0分~90分)(1)此次抽查的学生人数为 ; (2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.20.(本小题满分10分)为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛.为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球的2倍少9元. (1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?21.(本小题满分8分) -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第6页(共22页)“蘑菇石”是贵州省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观平台DE观景,然后再沿着坡角为29的斜坡由E步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE BC∥,1700mBD=,80DBC=∠.求斜坡AE的长度.(结果精确到0.1m)22.(本小题满分10分)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数(0)ky xx=>的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.23.(本小题满分10分)如图,O是ABC△的外接圆,AB是O的直径,8AB=.(1)利用尺规,作CAB∠的平分线,交O于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,连接CD,OD,若AC CD=,求B∠的度数;(3)在(2)的条件下,OD交BC于点E.求由线段ED,BE,BD所围成区域的面积.(其中BD表示劣弧.结果保留π和根号)24.(本小题满分12分)(1)阅读理解:如图1,在ABC△中,若10AB=,6AC=,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE AD=,再连续BE(或将ACD△绕着点D逆时针旋转180得到EBD△).把AB,AC,2AD集中在ABE△中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)解决问题:如图2,在ABC△中,D是BC边上的中点,DE DF⊥于点D,DE交AB于点E,DF交AC于点F.求证:BE CF EF+>;(3)问题扩展:如图3,在四边形ABCD中,180B D+=∠∠,CB CD=,140BCD=∠,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.图1图2图325.(本小题满分12分)如图,直线55y x=+交x轴于点A,交y轴于点C,过A,C两点的二次函数24y ax x c=++的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND x⊥轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数24y ax x c=++图象的顶点,点(4,)M m是该二次函数图象上一点,在x轴、y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.温馨提示:在直角坐标系中,若点P,Q的坐标分别为11(,)P x y,22(,)Q x y,当PQ平行x轴时,线段PQ长度可由公式12||PQ x x=-求出;当PQ平行y轴时,线段PQ的长度可由公式12||PQ y y=-求出.毕业学校_____________姓名________________考生号_____________________________________________数学试卷第5页(共22页)b,∴2MBC52∠=∠=︒;故选B.数学试卷第7页(共22页)数学试卷第8页(共22页)数学试卷第9页(共22页) 数学试卷 第10页(共22页)【提示】作等边三角形任意两条边上的高,交点即为圆心,将等边三角形的边长用含半径的代数式表示出来,列出方程进行即可解决问题. 【考点】三角形的外接圆与外心,等边三角形的性质 9.【答案】B【解析】观察s 关于t 的函数图象,发现:在图象AB 段,该时间段蕊蕊妈妈离家的距离相等,即绕以家为圆心的圆弧进行运动,∴可以大致描述蕊蕊妈妈行走的路线是B.故选B.【提示】根据给定s 关于t 的函数图象,分析AB 段可得出该段时间蕊蕊妈妈绕以家为圆心的圆弧进行运动,由此即可得出结论. 【考点】函数的图象 10.【答案】D【解析】如图抛物线y (x a)(x b)=--与x 轴交于点(a,0),(b,0),抛物线与直线y 1=的交点为(n,1),(m,1),由图象可知,n b a m <<<;故选D.【提示】利用图象法,画出抛物线y (x a)(x b)=--与直线y 1=,即可解决问题. 【考点】抛物线与x 轴的交点第Ⅱ卷二、填空题 11.【答案】x 1<【解析】解第一个不等式得x 1<,解第二个不等式得x 2<;故不等式组的解集为:x 1<;【解析】作OM AB ⊥于M ,如图所示:1使△ABC唯一确定,那么BC的长度x满足的条件是:x42x8=≥或.2a12a1a-=+-==212(2)用A1、A2、A3、A4分别表示第一排、第二排、第三批、第四排日光灯,数学试卷第11页(共22页)数学试卷第12页(共22页)数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴ABF CBE ∠=∠.在△ABF 和△CBE 中,有AB CB ABF CBE BF BE =⎧⎪∠=∠⎨⎪=⎩,∴ABF CBE(SAS)△≌△.(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴BFE FEB 45∠=∠=︒,∴AFB 180BFE 135∠=︒-∠=︒, 又∵ABF CBE △≌△,∴CEB AFB 135∠=∠=︒,∴CEF CEB FEB 1354590∠=∠-∠=︒-︒=︒,∴△CEF 是直角三角形.【提示】(1)由四边形ABCD 是正方形可得出AB CB =,ABC 90∠=︒,再由△EBF 是等腰直角三角形可得出BE BF =,通过角的计算可得出ABF CBE ∠=∠,利用全等三角形的判定定理SAS 即可证出ABF CBE △≌△;(2)根据△EBF 是等腰直角三角形可得出BFE FEB ∠=∠,通过角的计算可得出AFB 135∠=︒,再根据全等三角形的性质可得出CEB AFB 135∠=∠=︒,通过角的计算即可得出CEF 90∠=︒,从而得出△CEF 是直角三角形. 【考点】正方形的性质,全等三角形的判定与性质,等腰直角三角形 19.【答案】(1)由题意可得,此次抽查的学生有:3624%150÷=(人), 故答案为:150; (2)如图所示:A 等级的学生数是:15020%30⨯=,B 等级占的百分比是:69150100%46%÷⨯=, D 等级占的百分比是:15150100%10%÷⨯=, 故补全的条形统计图和扇形统计图如右图所示, (3)1200(46%20%)792⨯+=(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人. 【提示】(1)根据统计图可知,C 等级有36人,占调查人数的24%,从而可以得到本次抽查的学生数;(2)根据(1)中求得的抽查人数可以求得A 等级的学生数,B 等级和D 等级占的百分比,从而可以将统计图补充完整;(3)根据统计图中的数据可以估计这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.【考点】条形统计图,用样本估计总体,扇形统计图20.【答案】(1)一个足球的单价103元,一个篮球的单价56元 (2)学校最多可以买9个足球【解析】(1)设一个足球的单价x 元、一个篮球的单价为y 元,根据题意得x y 159x 2y 9+=⎧⎨=-⎩,解得:x 103y 56=⎧⎨=⎩,答:一个足球的单价103元,一个篮球的单价56元;数学试卷 第15页(共22页) 数学试卷 第16页(共22页)BD sin80︒, 1700sin80︒,AE1700sin80238.9m 29︒≈︒答:斜坡AE 的长度约为238.9m .3数学试卷 第17页(共22页) 数学试卷 第18页(共22页)23.【答案】(1)如图所示,AP 即为所求的∠CAB 的平分线;∴B 30∠=︒;1OE BE 22=⨯2π48π3603=,OE BE 23=故答案为:2AD 8<<数学试卷 第19页(共22页) 数学试卷 第20页(共22页)(3)解:BE DF EF +=;理由如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示:∵ABC D 180∠+∠=︒,NBC ABC 180∠+∠=︒,∴NBC D ∠=∠,在△NBC 和△FDC 中,BN DF NBC D BC DC =⎧⎪∠=∠⎨⎪=⎩,∴NBC FDC(SAS)△≌△,∴CN CF =,NCB FCD ∠=∠, ∵BCD 140∠=︒,ECF 70∠=︒,∴BCE FCD 70∠+∠=︒ , ∴ECN 70ECF ∠=︒=∠,在△NCE 和△FCE 中,CN CF ECN ECF CE CE =⎧⎪∠=∠⎨⎪=⎩,∴NCE FCE(SAS)△≌△,∴EN EF =, ∵BE BN EN +=,∴BE DF EF +=.【提示】(1)延长AD 至E ,使DE AD =,由SAS 证明ACD EBD △≌△,得出BE AC 6==,在△ABE 中,由三角形的三边关系求出AE 的取值范围,即可得出AD 的取值范围; (2)延长FD 至点M ,使DM DF =,连接BM 、EM ,同(1)得BMD CFD △≌△,得出BM CF =,由线段垂直平分线的性质得出EM EF =,在△BME 中,由三角形的数学试卷 第21页(共22页) 数学试卷 第22页(共22页)【考点】二次函数综合题。

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题(附答案)

2016年中考模拟数学试题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果. 一、细心填一填(本大题共有14小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.13-的相反数是 ,16的算术平方根是 . 2. 分解因式:29x -= .3. 据无锡市假日办发布的信息,“五一”黄金周无锡旅游市场接待量出现罕见的“井喷”,1日至7日全市旅游总收入达23.21亿元,把这一数据用科学记数法表示为 亿元. 4.如果x =1是方程x a x 243-=+的解,那么a = . 5. 函数11y x =-中,自变量x 的取值范围是 . 6. 不等式组31530x x -<⎧⎨+≥⎩的解集是 .7. 如图,两条直线AB 、CD 相交于点O ,若∠1=35o,则∠2= °.8. 如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件: , 使△ADE 与△ABC 相似.9. 如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O 的直径为__________cm .10. 若两圆的半径是方程2780x x -+=的两个根,且圆心距等于7,则两圆的位置关系是___________________.11. 为了调查太湖大道清扬路口某时段的汽车流量,交警记录了一个星期同一时段通过该路口的汽车辆数,记录的情况如下表:那么这一个星期在该时段通过该路口的汽车平均每天为_______辆.12. 无锡电视台“第一看点”节目从接到的5000个热线电话中,抽取10名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是 .A (第7题) E D CB A (第8题) (第9题) 班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)13. 小明自制一个无底圆锥形纸帽,圆锥底面圆的半径为5cm ,母线长为16cm ,那么围成这个纸帽的面积(不计接缝)是_________2cm (结果保留三个有效数字). 14. 用黑白两种颜色的正方形纸片,按如下规律拼成一列图案,则(1)第5个图案中有白色纸片 张;(2)第n 个图案中有白色纸片 张.二、精心选一选(本大题共有6小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!)15.下列运算中,正确的是 ( ) A .4222a a a =+ B .236a a a •= C .236a a a =÷ D .()4222b a ab =16.下列运算正确的是 ( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++ D.221y x x y x y-=--+17.某物体的三视图如下,那么该物体形状可能是 ( )A .长方体B . 圆锥体C .立方体D . 圆柱体 18.下列事件中,属于随机事件的是 ( ) A .掷一枚普通正六面体骰子所得点数不超过6 B .买一张体育彩票中奖C .太阳从西边落下D .口袋中装有10个红球,从中摸出一个白球. 19.一个钢球沿坡角31o的斜坡向上滚动了5米,此时钢球距地面的高度是( )米 A.5sin 31oB.5cos31oC.5tan31oD.正视图左视图俯视图第3个第2个第1个20.二次函数2y ax bx c =++的图象如图所示,则下列各式:①0abc <;②0a b c ++<;③a c b +>;④2c ba -<中成立的个数是 ( ) A . 1个 B . 2个 C . 3个 D . 4个三、认真答一答(本大题共有8小题,共62分.解答需写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本题满分8分)(1)计算:221-⎪⎭⎫ ⎝⎛-ο45sin 2 +121+; (2)解方程:11222=--+x x22. (本题满分6分)已知:如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 延长线上的一点,D 为AC 边上的一点,且CE =CD .求证:AE =BDEDC B A 班级 姓名 准考号------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)23. (本题满分7分) “石头、剪刀、布”是同学们广为熟悉的游戏,小明和小林在游戏时,双方约定每一次游戏时只能出“石头”、“剪刀”、“布”这三种手势中的一种.假设双方每次都是等可能地出这三种手势.(1)用树状图(或列表法)表示一次游戏中所有可能出现的情况. (2)一次游戏中两人出现不同手势的概率是多少?24. (本题满分7分)如图,点O 、A 、B 的坐标分别为O )0,0(、A )0,3(-、B )2,4(-,将 △OAB 绕点O 顺时针旋转90°得△B A O ''. (1)请在方格中画出△B A O ''; (2)A '的坐标为( , ),B B '= .x25. (本题满分7分)初三(1)班的何谐同学即将毕业,5月底就要填报升学志愿了,为此她就本班同学的升学志愿作了一次调查统计,通过采集数据后,绘制了两幅不完整的统计图,请根据图中提供的信息,解答下列问题: (1)初三(1)班的总人数是多少?(2)请你把图1、图2的统计图补充完整.(3)若何谐所在年级共有620名学生,请你估计一下全年级想就读职高的学生人数.26. (本题满分9分)今年无锡城市建设又有大手笔:首条穿越太湖内湖---蠡湖的湖底隧道将于年底建成.现有甲、乙两工程队从隧道两端同时开挖,第4天时两队挖的隧道长度相等.施工期间,乙队因另有任务提前离开,余下的工程由甲队单独完成,直至隧道挖通.如图是甲、乙两队所挖隧道的长度y (米)与开挖时间t (天)之间的函数图象,请根据图象提供的信息解答下列问题:(1) 蠡湖隧道的全长是多少米?(2) 乙工程队施工多少天时,两队所挖隧道的长相差10米?图1别图2乙甲班级 姓名 准考号 ------------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)27. (本题满分9分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =ο90,且AB =BC ,以BC 为直径的⊙O 切AD 于E . (1) 试求AEDE的值; (2) 过点E 作EF ∥AB 交BC 于F ,连结EC .若EC CF =1,求梯形ABCD 的面积.28. (本题满分9分)已知:如图,在平面直角坐标系中,点A 和点B 的坐标分别是A )2,0(,B )6,4(-. (1) 在x 轴上找一点C ,使它到点A 、点B 的距离之和(即CA +CB )最小,并求出点C 的坐标.(2) 求过A 、B 、C 三点的抛物线的函数关系式.(3) 把(2)中的抛物线先向右平移1个单位,再沿y 轴方向平移多少个单位,才能使抛物线与直线BC 只有一个公共点?C BAO四、实践与探索(本大题共有2小题,满分18分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!)29. (本题满分8分)某研究性学习小组在一次研讨时,将一足够大的等边△AEF 纸片的顶点A 与菱形ABCD 的顶点A 重合,AE 、AF 分别与菱形的边BC 、CD 交于点M 、N .纸片由图①所示位置绕点A 逆时针旋转,设旋转角为α(︒≤≤︒600α),菱形ABCD 的边长为4.(1) 该小组一名成员发现:当︒=0α和︒=60α(即图①、图③所示)时,等边△AEF 纸片与菱形ABCD 的重叠部分的面积恰好是菱形面积的一半,于是他们猜想: 在图②所示位置,上述结论仍然成立,即菱形四边形S S AMCN 21=. 你认为他们的猜想成立吗?若成立,给出证明;若不成立,请说明理由.(2) 连结MN ,当旋转角α为多少度时,△AMN 的面积最小?此时最小面积为多少?请说明理由.EBF图③图②B F 图① 班级 姓名 准考号 -------------------------------------------------------------------------------------------------------------------------------------------------------------- (密封线内不准答题)30. (本题满分10分)直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如 图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.xx初三数学试题参考答案 2016.5一、填空题1.31,4 2.)3)(3(-+x x 3.110321.2⨯ 4.9 5.1≠x 6.23<≤-x 7.145 8.ACABAE AD C AED B ADE =∠=∠∠=∠或或 9.3.6 10.外切 11.90 12.0.002 13.251 14.16, 13+n二、选择题15.D 16.D 17.D 18.B 19.A 20.B 三、解答题21.(1)原式=122224-+⋅- --------(3分) =3 -------(4分)(2)去分母得 )1)(2()2(2)1(2-+=+--x x x x -------(1分) 整理得 042=++x x -------(2分)∵0161<-=∆ -------(3分) ∴原方程无解 -------(4分) 22.∵BC AC = -------(1分) ︒=∠=∠90ACE ACB -------(2分) CD CE = -------(3分)∴△ACE ≌△BCD (SAS ) -------(5分) ∴BD AE = -------(6分) 23.-------(5分)∴P (出现不同手势)=3296= -------(7分)24.(1)图画对 -------(3分) 25.(1)人50%5025=÷ -------(2分) (2))3,0('A -------(5分) (2)图补正确 -------(5分) 102'=BB -------(7分) (3)人2485020620=⨯-------(7分) 26.(1)法①:由图象可知,乙6天挖了480米 法②:设)60(≤≤=t kt y 乙石头剪刀 布石头剪刀 剪刀 布 石头布 剪刀 布 石头 小林 小明∴乙每天挖80米 ∴4天挖320米 (1分) ∴k 6480= 即甲第4天时也挖了320米 ∴80=k ∴甲从第2天开始每天挖米7024180320=-- (2分) ∴t y 80=乙 -----(1分)∴从第2天到第8天甲挖了米420670=⨯ 米时乙320,4==y t故甲共挖420+180=600米 ----(3分) 设b at y +=甲 )82(≤≤t ∴隧道全长600+480=1080米 ----(4分) 则可得 2a+b=1804a+b=32∴70=a ,40=b ∴4070+=t y 甲 ----(2分) 当t=8时,米甲60040560=+=y (3分)∴隧道全长600+480=1080米 ----(4分)(2)当20≤≤t 时,由图可求得t y 90=甲 ---------(5分)∴t t t y y 108090=-=-乙甲,1010=t∴1=t ----------(6分) 当42≤≤t 时,4010804070+-=-+=-t t t y y 乙甲104010=+-t ∴3=t ----------(7分)当64≤≤t 时,4010407080-=--=-t t t y y 甲乙104010=-t ∴5=t ----------(8分)答:乙队施工1天或3天或5天时,两队所挖隧道长相差10米。

2016年中考数学真题及答案解析

2016年中考数学真题及答案解析

2016年中考数学真题及答案解析一. 选择题1. 如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13-D. 132. 下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a b C. 2ab D. 3ab3. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男 生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =, 那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 6. 如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外, 那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r <<二. 填空题7. 计算:3a a ÷= 8. 函数32y x =-的定义域是9. 2=的解是10. 如果12a =,3b =-,那么代数式2a b +的值为 11. 不等式组2510x x <⎧⎨-<⎩的解集是12. 如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是13. 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值 随着x 的值增大而减小,那么k 的取值范围是14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷 一次骰子,向上的一面出现的点数是3的倍数的概率是15. 在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是17. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为 60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为米(精确到1 1.73≈)18. 如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. 计算:12211|4()3---;20. 解方程:214124x x -=--;21. 如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =, DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值;22. 某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续 搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如 图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表 示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解 答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时, 那么B 种机器人比A 种机器人多搬运了多少千克?23. 已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =;(1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形;24. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B , 与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ; (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;25. 如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =, 点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函 数解析式,并写出x 的取值范围;参考答案一. 选择题1. D2. A3. C4. C5. A6. B二. 填空题7. 2a 8. 2x ≠ 9. 5x = 10. 2- 11. 1x < 12.94 13. 0k > 14. 13 15. 1416. 600017. 208 18. 12三. 解答题19. 解:原式1296=--= 20. 解:去分母,得2244x x +-=-; 移项、整理得220x x --=;经检验:12x =是增根,舍去;21x =-是原方程的根; 所以,原方程的根是1x =-;21. 解(1)∵2AD CD =,3AC = ∴2AD = 在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,∴45A ∠=︒,AB =;∵DE AB ⊥ ∴90AED ∠=︒,45ADE A ∠=∠=︒,∴cos 45AE AD =⋅︒=∴BE AB AE =-=BE 的长是 (2)过点E 作EH BC ⊥,垂足为点H ; 在Rt BEH ∆中,90EHB ∠=︒,45B ∠=︒,∴cos452EH BH EB ==⋅︒=,又3BC =, ∴1CH =; 在Rt ECH ∆中,1cot 2CH ECB EH ∠==,即ECB ∠的余切值是12; 22. 解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤); (2)设A y 关于x 的函数解析式为2A y k x =(20k ≠), 由题意,得21803k =,即260k = ∴60A y x =; 当5x =时,560300A y =⨯=(千克), 当6x =时,90690450B y =⨯-=(千克), 450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克23. 证明:(1)在⊙O 中,∵AB AC = ∴AB AC = ∴B ACB ∠=∠; ∵AE ∥BC ∴EAC ACB ∠=∠ ∴B EAC ∠=∠; 又∵BD AE = ∴ABD ∆≌CAE ∆ ∴AD CE =; (2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径 ∴AH BC ⊥ ∴BH CH =;∵AD AG = ∴DH HG = ∴BH DH CH GH -=-,即BD CG =; ∵BD AE = ∴CG AE =;又∵CG ∥AE ∴四边形AGCE 是平行四边形;24. 解:(1)∵抛物线25y ax bx =+-与y 轴交于点C ∴(0,5)C - ∴5OC =; ∵5OC OB = ∴1OB =;又点B 在x 轴的负半轴上 ∴(1,0)B -; ∵抛物线经过点(4,5)A -和点(1,0)B -, ∴1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩;∴这条抛物线的表达式为245y x x =--;(2)由245y x x =--,得顶点D 的坐标是(2,9)-; 联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=; ∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H ;∵1102ABC S AB CH ∆=⨯⨯=,AB = ∴CH =;在Rt BCH ∆中,90BHC ∠=︒,BC =BH ==∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BOBEO EO∠=; ∵BEO ABC ∠=∠ ∴23BO EO =,得32EO = ∴点E 的坐标为3(0,)2;25. 解:(1)过点D 作DH AB ⊥,垂足为点H ;在Rt DAH ∆中,90AHD ∠=︒,15AD =,12DH =;∴9AH ==;又∵16AB = ∴7CD BH AB AH ==-=;(2)∵AEG DEA ∠=∠,又AGE DAE ∠=∠ ∴AEG ∆∽DEA ∆; 由AEG ∆是以EG 为腰的等腰三角形,可得DEA ∆是以AE 为腰的等腰三角形; ① 若AE AD =,∵15AD = ∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ∴11522AQ AD == 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠== ∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,DE ==∵AEG ∆∽DEA ∆ ∴AE EGDE AE =∴2EG =∴2DG =∵DF ∥AE ∴DF DG AE EG =,222212(9)y x x xx +--=; ∴22518x y x -=,x 的取值范围为2592x <<;。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档