磁共振脉冲序列原理与临床应用
[医学]磁共振常用脉冲序列及其临床应用-翁强
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描
缺点
受T2弛豫污染,T1对比不如SE T1WI 模糊效应 与GRE T1WI对比速度还不够快
主要用途
T1对比要求较低,以显示结构为主的部位 患者耐受差,要求加快扫描速度时 垂体动态增强扫描 体部屏气扫描
短回波链FSE T2WI
90° 180°
90° 180°
90° 180°
90° 180°
90° 180°
FSE ______________________________________________
90° 180° 180° 180°
90°
180° 180° 180°
90° 180° 180° 180°
K 空 间
SE
优点
与SE序列相比,成像速度加快 由于回波链较短,T2对比接近SE T2WI 对磁场不均匀性不敏感,没有明显的磁敏感性伪影
缺点
扫描速度还不够快,用于体部成像时易产生运动伪影
主要用途
颅脑 腹部(配合呼吸触发和脂肪抑制技术) 骨关节
中等回波链FSE T2WI
优点
扫描速度更快
优点
结构简单,信号变化容易解释 图像的组织对比好,信噪比高 对磁场不均匀敏感性低 最常用的T1WI序列之一,较少应用于T2WI
缺点
采集时间较长 体部易产生伪影 难进行动态增强扫描 激励次数(NEX)常需2次以上,进一步增加采集时间
临床应用
常用于颅脑、颈部、骨关节、软组织、 脊柱脊髓等部位的T1WI序列
Mz(纵向磁化矢量) 100%
50%
TR(ms)
TE决定图像的T2成分
磁共振简易原理、脉冲序列及临床应用
IR序列应用: ①主要用于产生T1WI和PDWI; ②形成重T1WI,成像中完全除去T2作用; ③除重T1WI外,主要用于脂肪抑制和水抑制。
201I9R/6-/1T01WI, 冠状面
SE-T1WI,横断
IR-T1WI,横断面
1.短TI反转恢复序列
脂肪组织T1非常短,IR序列采用短的TI值 (≤300ms)抑制脂肪信号,该序列称短TI反转恢 复序列(short TI inversion recovery,STIR);
B
长TR 时间ms
PDWI 组织信号高低取决 于质子含量高低; 脂肪及含水的组织 均呈较高信号;
2019/6/10
SE序列 临床应用
腕关节高分辨
2019/6/10
SE-T1WI
左枕叶脑脓肿
2019/6/10
SE-T1WI
SE-T1WI增强扫描
(二)快速自旋回波序列
快速自旋回波(fast spin-echo,FSE)序列:在一个TR 周期内先发射一个90°RF脉冲,然后相继发射多个 180°RF脉冲,形成多个自旋回波;
LAD RCA
RCA LAD
2019/6/10
Courtesy oRf iNgohrtthcworeostnearnryUanritveerysity Ho
在读出梯度方向施加一对强度相同、方向相反的梯度磁场,使 离散的相位重聚而产生回波,该回波被称梯度回波。
2019/6/10
常规GRE序列的结构
• (1)射频脉冲激发角度小于90 ° • (2)回波的产生依靠读出梯度场(即频率编
码梯度场)的切换
2019/6/10
GRE序列的基本特点
(1)采用小角度激发,加快成像速度; (2)采用梯度场切换采集回波信号,进一步加快采集速度; (3)反映的是T2*弛豫信息而非T2弛豫信息; (4)GRE序列的固有信噪比较低; (5)GRE序列对磁场的不均匀性敏感; (6)GRE序列中血流常呈高信号。
磁共振成像序列及临床、应用
T2WI
90
1脑
水
选择合适长的TE获得最好的T2对比
Mxy
合适长的TE 100% 一般TE选择两种组织生物 T2值附近可获得最好的T2对比
T2对比
时间(ms)
短TR(200-500ms) 短TE(<20ms)
T1WI
平 衡 状 态
T1WI
90
纵 向 弛 豫
脂
90
水
T1WI
•激发角度越大,纵向弛豫所需时间越长 •激发角度越大,T1成分越大,T1对比越大 •90度脉冲能产生最大的横向磁化矢量 •180度脉冲产生反向的纵向磁化矢量
纵 向 磁 化 矢 量 Time (ms) 90度脉冲后的纵向弛豫
纵 向 磁 化 矢 量
Time (ms) 180度脉冲后的纵向弛豫
与90度脉冲相比,180度脉冲能将组织的纵向 弛豫差别增加1倍,也就是说T1对比增加1倍
90度 脉冲
180度 脉冲
1 1 • • 4 4 2 3 3 3 2 2
1 1 2 3 4 4
•180度脉冲可使因主磁场恒定不均匀造成失 相质子的相位重聚,产生自旋回波。
• 复 相 脉 冲 的 作 用 模 拟
T2*与T2的差别
•用 180 度复相脉冲采集回波( MR 信号) 的序列称为自旋回波序列(SE序列)
长TR(>2000ms)、长TE(>50ms) 长TR (>2000ms) 、短TE(<20ms)
T1WI
T2WI PD
T1WI
T2WI
PD
SE序列的特点
•目前最常用的T1WI序列
•组织对比良好,SNR较高,伪影少 •信号变化容易解释
•T2WI少用SE序列(太慢、伪影重)
磁共振原理和临床应用
• 对脊柱退行性病变显示清晰,同时显示 继发的脊髓改变,对颈胸椎为首选
• 对椎体、椎旁病变优于CT,能早期发现 椎体的肿瘤和椎旁病变向椎管内侵犯
MRI临床应用--脊柱脊髓
• 能清晰显示手术后的改变,鉴别术 后腰背疼痛的原因如椎间盘复发、 手术疤痕
• 我们不能测到这个磁力,因为它平行于外磁场, 和外磁场处于同一方向。
MRI原理-射频脉冲RF和能量交换
• 给病人发射一个短促的电磁波,其目的是扰乱 沿外磁场方向宁静运动的质子
• 当质子频率和RF脉冲的频率相同时,就能进行 能量交换
• 把病人置入强外磁场中,沿着外磁场方向产生 一个新的磁矢量,施加RF脉冲后,产生一个新 的横向磁化,而纵向磁化减少,甚至可消失。
磁共振成像原理与临床应用
南京军区福州总医院医学影像科 陈自谦
MRI
• Magnetic Resonance Imaging, MRI
• 在40年代,两名美国科学家 菲利克斯·布洛赫(Felix Bloch) 和爱德华·普塞尔(Edward Purcell)分别独立地做了第一 个核磁共振的实验。
– 他们发现原子核在强磁场 中能够吸收无线电波的能 量,然后重新释放出能量 恢复到原来状态,这段时 间被称为“弛豫时间”。 通过分析这些无线电信号, 人们能够知道许多种分子 的结构和形状。
• 纯液体/水具有长T1 • 中等大小分子的T1短 • T1大约2-5-10倍于T2 • T1大约为300-2000ms
• 质子失去相位一致性, 发生T2弛豫
• 质子失去相位一致性 为外磁场不均匀性和 组织内部磁场不均匀 所致
• 液体/水的局部磁场 较均匀故T2时间长
磁共振成像技术的原理和医学应用
磁共振成像技术的原理和医学应用磁共振成像技术(Magnetic Resonance Imaging, MRI)是一种基于原子核磁共振现象的成像技术,已经成为现代医学检查的重要手段之一。
MRI以其非侵入性、高分辨率、多参数成像等特点,在身体不同部位疾病的早期诊断、治疗、研究及评估方面受到广泛关注。
本文将从MRI的原理、分类和医学应用三个方面进行阐述。
一、MRI的原理MRI是一种基于核磁共振现象的成像技术。
在磁场中,原子核因为量子力学效应的作用,会产生自旋,这个自旋具有磁性。
若对物质进行放射激发,则原子核将吸收能量并进入激发状态,待刺激结束后,会产生相移,但方向大小不会改变。
在加磁场的作用下,不同位置的原子核产生不同的共振信号,通过测量这些共振信号,可以得出物质内部的信号强度和空间位置信息。
MRI的成像需要一个高强度静态磁场(通常是1.5T或3.0T)和弱变化的高频交变电场(通常是射频脉冲)。
磁共振信号是由梯度磁场作用下,被激发的原子核沿着空间坐标方向释放的。
梯度磁场的作用是制造空间上的微弱变化,使成像对象内部的原子核可以感受到梯度磁场的方向和大小,从而产生不同位置、不同方向的MRI信号。
二、MRI的分类MRI按成像所需的时间长度可分为快速成像和慢速成像两类。
常用的快速成像技术有短时重复时间(Short Time Repetition,STIR)、体液抑制成像(Fluid Attenuation Inversion Recovery,FLAIR)和弥散加权成像(Diffusion Weighted Imaging,DWI)等。
慢速成像技术有T1加权成像(T1 Weighted Imaging,T1WI)、T2加权成像(T2 Weighted Imaging,T2WI)和常规序列成像等。
MRI按成像方式可分为断层成像和三维成像两类。
断层成像(Slice Imaging)是在一个平面内取得的图像,主要用于观察人体各组织在某个切片上的分布及形态特征。
磁共振各序列
磁共振不同序列的原理与应用磁共振成像(Magnetic Resonance Imaging,MRI)是一种基于核磁共振现象的医学成像技术,广泛用于医学领域。
磁共振成像利用磁场、梯度磁场和射频脉冲与人体内的水分子进行相互作用,通过检测信号来获取人体内部的结构和功能信息。
在磁共振成像过程中,各种序列的选择对于获得准确的图像是至关重要的。
下面将介绍几种常用的磁共振序列及其原理和临床应用。
1. T1加权图像T1加权图像是一种基本的磁共振成像序列,常用于显示组织的解剖结构。
T1加权图像主要利用不同组织中的原子核自旋松弛时间的差异来实现图像对比的调节。
在T1加权图像中,脂肪信号较高,水信号较低。
这种序列在显示解剖结构清晰、脑脊液与囊性病灶显示良好方面具有优势。
临床应用上,T1加权图像可以帮助医生评估肿瘤的位置、体积和浸润程度,对于诊断和治疗策略的制定具有重要价值。
2. T2加权图像T2加权图像是另一种常用的磁共振成像序列,可用于显示组织的水分含量和水分子热运动。
T2加权图像中,水信号较高,脂肪信号较低。
相比于T1加权图像,T2加权图像对于肿瘤、炎症和水肿等病变的显示更为敏感。
临床上,T2加权图像常用于检测和评估炎症损伤、水肿、水样囊肿等疾病。
此外,T2加权图像还对于评估心肌梗死的范围和程度、颅内结构及脊柱椎管疾病等有着重要的临床意义。
3. 弥散加权图像弥散加权图像是一种显示组织内部微小结构及水分子弥散状况的序列。
弥散加权图像通过测量水分子在组织中的扩散来提供不同的对比。
在该序列中,组织中的限制性扩散产生低信号,而自由扩散则产生高信号。
临床上,弥散加权图像常用于脑部和肝脏的评估。
特别是在脑卒中早期诊断、定位和判断卒中灶的大小、肝脏病变检测等方面具有重要的临床应用。
4. 动态对比增强序列动态对比增强序列是一种通过注射对比剂并连续扫描来观察组织对比剂的分布和动力学变化情况的序列。
动态对比增强序列可以帮助医生区分不同病变类型、评估血供和血管情况。
磁共振lava脉冲序列在腹部脏器成像中的应用
磁共振lava脉冲序列在腹部脏器成像中的应用磁共振lava脉冲序列1. 简介LAVA (Low-Angle VARiable-density Acquisition) 是一种能够提供低剖面角的磁共振变密度序列。
它的特点之一是能够减少磁共振工作站对噪声的敏感度,而且可以胜任复杂成像,如拉伸,道重建或者曲线配准等。
在腹部脏器成像中,LAVA脉冲序列通常被认为是有效的应用,由其具备减少波叠加和抑制零点迒移的能力。
2. 特点(1)脉冲序列来源于spin-echo TSE(turbo spin-echo TSE),它可用于增加结构矩阵尺寸,从而提高耐受性抗噪声。
(2)它能够动态的调整扫描的长度,从而在某一最佳角度获得更多的分辨率。
(3)它可以实现更快的扫描速度,提高清晰度,并减少低温校正这类情况出现。
(4)由于在LAVA脉冲序列中引入了轻微的脉冲之后,图像中的“零点迒移”衰减可以大大减少,这样就能够改善图像质量。
3. 在腹部脏器成像中的应用(1)LAVA脉冲序列可以有效改善图像质量,特别是用于检查肝脏和胆囊的外科应用。
(2)由于它的容量高、获得的结构矩阵的尺寸大和抗噪声的能力强,LAVA脉冲序列还可以用于以下临床任务:影像检测,如胃、十二指肠段落的描述,直肠的肿瘤检测以及肠胃道的障碍物的检测表明,LAVA脉冲序列可以有效地检测出在不同深度处的特征结构。
(3)在腹部脏器成像方面,LAVA脉冲序列显示出强大的容量和可扩展性,从而可以提高对每一个成像序列的高灵敏度和准确性,以及一般图像数据的容量,特别是涉及肝脏的图像,它的复杂性明显比较大。
4. 结论总体而言,LAVA脉冲序列在腹部脏器成像中有很多应用,它可以显著提高扫描速度,使用该序列可以有效解决“零点迒移”等问题,同时可以减少噪声对扫描结果的影响,同时还可以改善图像质量。
因此,LAVA脉冲序列是一种有效的腹部脏器成像方法。
磁共振基本序列及应用
磁共振基本序列及应用磁共振(Magnetic Resonance Imaging,MRI)是一种利用磁共振现象对人体进行成像的无创检查技术。
它在临床诊断中具有重要的应用价值,可以用于检测多种疾病,包括肿瘤、脑血管疾病、骨科疾病等。
磁共振成像技术的基本原理是利用人体内的原子核(大多是氢核)在强磁场和无线电波作用下的共振现象,生成图像。
磁共振成像的基本序列主要有横断面(T1加权和T2加权)、矢状面和冠状面。
不同的序列在成像原理、参数设置和图像显示方面有所区别,适用于不同部位和病变的检查。
T1加权序列是磁共振成像的基本序列之一,它通过特定的参数设置使得脂肪组织呈现高信号(白色),而水和其他组织呈现低信号(黑色)。
常用的脉冲序列有快速梯度回波(Fast Gradient Echo,FGE)和推迟梯度回波(Turbo Spin Echo,TSE)等。
T1加权序列适用于显示解剖结构,如脑灰质、白质和脑脊液。
T2加权序列是磁共振成像中另一个重要的基本序列,与T1加权序列相比,它在信号强度上相反。
T2加权成像使脑脊液和脑灰质呈现高信号,而脂肪和骨骼呈现低信号。
常用的脉冲序列有常规普通脉冲(T2WI)和涡旋涡旋回波(Fast Spin Echo,FSE)等。
T2加权序列适用于显示病变和水肿等病理改变。
此外,还有一些特殊的序列,如增强扫描序列和弥散加权序列。
增强扫描序列通过给患者注射对比剂,在血管和病变中增加信号强度,用于观察血管供应情况和病变的强化情况。
弥散加权序列通过测量水分子在磁场中的扩散情况,对组织的微观结构和组织改变进行观察。
磁共振成像技术在临床中有广泛应用。
首先,在神经科学领域,磁共振成像可以用于诊断脑梗死、脑出血、脑肿瘤等疾病,并能提供脑部结构和功能的信息。
其次,在骨科领域,磁共振成像可以用于检查关节、骨骼和软组织等,如关节退行性变、软组织肿瘤等。
再次,在心脏领域,磁共振成像可以用于观察心脏构造和心功能,并且对心肌炎、心肌梗死等疾病的检查有高度准确性。
磁共振dwi的原理及应用
磁共振DWI的原理及应用1. 介绍磁共振扩散加权成像(Diffusion-Weighted Imaging,DWI)是一种用于检测组织水分子运动状态的成像技术。
通过测量水分子在生物组织内的随机热运动,可以提供有关组织微结构及功能的信息。
本文将介绍磁共振DWI的原理及其在临床应用中的重要性。
2. 原理磁共振DWI的原理基于分子热运动对水分子的偏移造成的相位差异。
在常规磁共振成像中,脉冲序列通过对磁化强度和相位信息进行编码来生成图像。
而对于DWI,通过应用梯度场,在磁化感应的基础上加入梯度方向对水分子进行编码。
这样可以探测水分子在组织中的扩散运动。
3. 应用3.1 体内器官的病理检测•DWI可以用于检测与炎症相关的组织病理变化,如脑梗死、炎性肠病等。
通过检测组织的扩散系数,可以提供与病变强度和范围相关的信息。
•在肿瘤学中,DWI被广泛应用于检测肿瘤的早期诊断和治疗反应。
高度病态的组织通常会导致DWI成像中高信号区域的出现。
3.2 脑部疾病诊断•DWI广泛应用于脑部疾病的诊断,如脳梗死、脳炎等。
脑组织中的扩散系数变化可以提供关于缺血和细胞水肿的信息。
•在癫痫诊断中,DWI可以检测到癫痫灶附近的水肿,帮助确定病灶的位置和范围。
3.3 肝脏疾病诊断•DWI在肝脏疾病中的应用日益重要。
例如,肝癌和肝血供不良通常导致肝组织的扩散系数下降,可以通过DWI成像来检测和定量评估这些疾病。
3.4 心脏疾病的评估•DWI可用于评估心肌梗死区域的程度和扩散变化。
心肌梗死区域通常导致水分子的扩散减慢,可以通过DWI成像来定量评估。
3.5 肾脏疾病的评估•DWI可以用于评估肾脏疾病,如肾癌、肾血供不足和肾梗死等。
通过测量肾组织的扩散系数,可以提供关于肾功能和病理变化的定量信息。
4. 结论磁共振DWI作为一种非侵入性的成像技术,可以提供关于组织微结构和功能的有用信息。
其在医学诊断和临床应用中的重要性不断增加。
通过对DWI成像的分析和评估,可以帮助医生对疾病进行早期诊断、评估治疗反应以及指导治疗方案的制定。
MR常用脉冲序列及其临床应用
FIR T1WI (T1 FLAIR)
液体抑制反转恢复
用于脂肪抑制
脂肪组织T1值为200-250ms,宏观纵向磁化矢 量从反向最大到0需要时间为其T1的70%
STIR序列的TI=脂肪T1 X 70%=140-175ms TR>2000ms
临床应用
偏中心部位 形态不规则部位
COR T2 FS
50%
长TR(>2000ms)
长TE(>50ms)Mxy(横向磁化矢量)
100%
50%
TR(ms) TE(ms)
选择合适长的TE获得最好的T2对比
Mxy
100%
合适长的TE
一般TE选择两种组织T2值的平均 值附近可获得最好的T2对比
T2对比
TE(ms)
100%
Mz(纵向磁化矢量)
50%
短TR(200-600ms)
三维容积内插快速扰相GRE T1WI序列
西门子:容积内插体部检查(VIBE) GE:肝脏容积加速采集(LAVA) 飞利浦:T1高分辨力各向同性容积激发(THRIVE)
优点:
① 在层面较薄时可以保持较高的信噪比 ② 没有层间距,有利于小病灶的显示 ③ 可同时兼顾脏器实质成像和三维血管成像的需要
缺点:
长回波链FSE T2WI
优点
扫描速度快,可屏气扫描
缺点
ETL较长,图像模糊更明显 屏气不好者仍有伪影
主要用途
体部屏气T2WI 3D水成像
FSE的衍生序列
快速恢复FSE(FRFSE) 单次激发FSE序列(SS- FSE ) 半傅里叶采集单次激发FSE序列( HASTE )
FSE T1WI
优点
采集时间缩短,甚至可以进行屏气扫描
磁共振检查技术-脉冲序列
(二)FSE脉冲序列
在一次90°RF脉冲后施加多次180°重聚相位脉冲,取得 多次回波。 90°RF激励脉冲-180°重聚相位脉冲-回波-180°重 聚相位脉冲-回波-180°重聚相位脉冲……
T2 衰减曲线
T2* 衰减曲线(FID)
1800 900 1800 1800 1800 1800
SE-PDWI:TR=2000ms TE=30ms
SE-PDWI:TR=2000ms TE=25ms
SE序列不同加权像与TR、TE的关系
TR(ms) T1加权像 T2加权像 PD加权像 250-700(短) >700(长) >700(长) TE(ms) 10-25(短) >60(长) 10-25(短)
磁共振检查技术-脉冲序列
一、常用脉冲序列及其应用(第一节) 二、成像参数的选择(第二节)
重点讲述
三、流动现象的补偿技术(第二节) 四、伪影的补偿技术(第二节) 五、MRI对比剂的应用(第二节) 六、人体各解剖部位MRI检查技术示例 七、MRA的临床应用 八、心脏的MR检查 九、MR水成像技术及其临床应用 十、MRS临床应用实例 十一、功能MRI(fMRI)
Image A: TE = 423 ms
Image B: TE = 740 ms
Image C: TE= 1199 ms
TE控制着横向磁化恢复的程度,因而决定着图像的T2加权程度
二、IR脉冲序列
IR脉冲序列,180°反转脉冲-90°RF激励脉冲-180°
重聚相位脉冲-回波。取得良好的T1对比,主要用于获
SE-T2WI:TR=2000ms
SE-PDWI:TR=2000ms
TE=20ms
磁共振波谱MRS的原理和临床应用
MRI与MRS的区别: MRI尽量去除化学位移的作用,并突出反 映组织间T1、T2的差异,而MRS恰恰要利 用化学位移的作用来确定代谢物的种类和 含量。
1 1946年美国斯坦福F.布洛克和哈弗大学 E.M.帕塞尔小组均同时记录到液体样品和固 体样品的磁共振信号。 2 20世纪50年代桑德斯和柯克伍德首次成功 的利用MRS直接观测生物大分子40MHz的 核糖核酸酶的MRS。此后,又连续测到其 他蛋白质、核酸、磷脂等相应组分。
在研究生物大分子时,MRS有以下技术特 点: 1 不破坏生物高分子的结构(包括空间结构) 2 在溶液中测定符合生物体的常态,也可测 定固体样品,比较晶态和溶液态构象的异 同。 3 不仅可以用来研究构象而且可以用来研究 构象变化即构象动力学过程。
4 可以提供分子中个别基团的信息,对于比 较小的多肽和蛋白质已经可以通过二维的 MRS获得三维的结构的信息。 5 可用来研究活细胞和活组织。
MRS在生物体中研究范围很广: 1 确定生物分子的成分和浓度,特别是可不破坏组织细胞 而测得其组分;确定异构体比例;确定分子解离状态;确 定金属离子或配基是否处于结合状态;以及测定细胞内外 的PH值等。 2 热力学的研究:测定酶与底物、配基、抑制剂的结合常 数;测定可解离基团的PK值,特别是生物大分子中处于不 同微环境的同类残基的同类基团的不同PK值。
化学环境指的是,原子核所在的分子结构。同一种原子 核处在不同的分子结构中,甚至同一个分子结构的不同位 置或者不同的基团中,其周围的电子数和电子分布都将有 所不同,因而受到的磁屏蔽作用也不同。处于化合物中的 同一种原子核,由于所受磁屏蔽作用的程度不同,将具有 不同的共振频率,这就是所谓的化学位移现象,也是磁共 振波谱成像的基础。
核磁共振实验中三种基本脉冲序列的特点和应用07300300061武帅
核磁共振实验中三种基本脉冲序列的特点和应用0730******* 武帅材料物理摘要核磁共振实验中,不同射频脉冲会对样品产生不同的激励,这将导致得到的核磁共振信号的差异。
因此,射频脉冲序列的恰当选择对实验的结果有着很重要的影响。
在本实验中,我们主要使用了三种基本的核磁共振脉冲序列来激励大豆油样品,对其纵向和横向弛豫时间进行测量。
本文主要就这三种基本脉冲序列的特点、应用以及演变进行讨论和总结,以达到正确选择脉冲序列来合理测量样品性质的目的。
关键词核磁共振射频脉冲引言核磁共振原理:对置于外磁场中的自旋核系统,沿着垂直于外场的方向施加一个频率与拉莫尔频率相同的射频电磁场B1,在该作用下,磁化矢量以B1为轴做章动,即圆周运动。
施加的射频脉冲使得磁化矢量Mo偏离Z方向一个角度θ,θ=βB1τ,θ=90°的是90°射频脉冲,同样若θ=180°则为180°射频脉冲。
图1 核磁共振原理图1施加的射频脉冲使得宏观磁化矢量既以外磁场为轴进动,同时也要在该射频场的作用下章动,这使得宏观磁化矢量M的运动为一条球面螺旋线。
这种使得宏观磁化矢量发生偏转的现象即为核磁共振现象。
实验中我们使用的是NMI20Analyst 台式核磁共振成像仪,采用脉冲傅里叶变换法(FT-NMR),这种方法中的射频脉冲有一定的时间宽度,射频有一定带宽,相当于多个单频连续波核磁共振波谱仪在同时进行激励,因此在较大的范围内就可以观察到核磁共振现象(NMR)。
弛豫过程:系统从激励状态恢复到原始状态的过程就叫弛豫过程。
纵向弛豫时间T1,指的是自旋核释放激励过程中吸收的射频能量返回到基态的过程所用的时间,其快慢主要取决于自旋的原子核与周围分子之间的相互作用情况。
横向弛豫时间T2,指的是激励过程使质子进动相位的一致性逐渐散相(即失去相位一致性)的过程,其散相的有效程度与质子所处的周围分子结构的均匀性有关。
结构越均匀,散相效果越差。
磁共振asl序列
磁共振asl序列磁共振(MRI)是一种重要的医学成像技术,能够提供无创的高分辨率图像,用于检测和诊断多种疾病。
磁共振成像的核心是asl序列(arterial spin labeling sequence),这是一种用于测量脑血流的技术。
asl序列通过非常细微的磁场变化,来评估脑部的血液供应情况。
在本文中,我将详细介绍asl序列的原理和应用,以及其在临床中的重要性。
asl序列的原理基于血液的磁化特性。
在磁共振成像过程中,磁共振仪通过强大的磁场使大量的水分子在磁场中以同样的方向进行磁化。
然后,随着磁场的切换,这种磁化程度会发生变化。
asl序列则是通过改变血液磁化的方式来间接测定脑血流。
在asl序列中,通过标记动脉中的自旋(spin)来评估血液流速。
使用反转脉冲来标记动脉血液中的水分子,然后通过mri信号测定标记血流和非标记血流分别在脑组织中的传递速度,从而得到动脉血流的信息。
asl序列的应用非常广泛。
它被广泛用于脑血管疾病的诊断和疗效评估,如脑梗死、脑卒中、脑肿瘤等。
asl序列通过测量血液在脑部的流动速度和分布,可以提供准确的图像,帮助医生检测和评估脑血管疾病的程度和位置。
此外,asl序列还可以用于评估脑代谢和功能活动,如脑缺血、脑退化性疾病等。
通过asl序列,医生能够观察脑部的血液供应情况,提供更全面的脑功能评估。
asl序列的优势在于无需使用对比剂。
传统的mri成像通常需要使用对比剂来提高图像的对比度,但这些对比剂可能引发过敏反应或肾脏损伤等副作用。
相比之下,asl序列通过测量血液流速和分布来提供图像,无需使用对比剂,从而减少了患者的风险和不适。
此外,asl序列还可以通过多次重复测量,提供动态脑血流变化的信息。
尽管asl序列在诊断和疗效评估中具有广泛的应用前景,但仍然存在一些挑战和限制。
首先,asl序列对扫描时间和信噪比要求较高。
由于血液流速和信号强度较低,asl序列的扫描时间较长,容易受到呼吸运动等运动伪影的干扰。
MRS的原理和临床应用
MRS的原理和临床应用磁共振声能体系(Magnetic Resonance Spectroscopy,MRS)是一种基于核磁共振(Nuclear Magnetic Resonance,NMR)技术的谱学方法,用于研究生物体内各种物质的浓度、代谢水平以及分子结构。
与常见的磁共振成像(Magnetic Resonance Imaging,MRI)技术不同,MRS主要关注的是信号产生者的化学分子本身,它可以提供关于生物体内分子含量和代谢的信息,从而对生物体进行非侵入性的组织和代谢状态评估。
MRS的原理基于核磁共振现象,核磁共振是一种磁共振现象,其基本原理是核自旋在外磁场中被激发并释放能量的过程。
当核自旋受到外磁场的作用时,它具有不同的能级,其中能级之间的跃迁依赖于外加磁场的强度。
通过在外磁场中施加一种特定的脉冲序列,可以使得不同的核自旋产生不同的共振信号,这些信号可以被接收线圈捕捉到并转换成数据。
MRS技术可以在体内测量到许多核的共振信号,主要包括氢原子的共振信号(称为质子磁共振,Proton Magnetic Resonance,1H-MRS),以及磷、碳、氮、硫和氧等原子的共振信号。
这些信号的频率和强度可以提供体内不同物质的含量和分布信息。
MRS的临床应用广泛,主要包括以下几个方面:1.肿瘤诊断和治疗评估:MRS可以提供肿瘤组织内代谢物的浓度和代谢水平信息,从而对肿瘤进行定性和定量分析。
通过测量乳酸、胆碱、肌酸等代谢物的含量,可以实现对肿瘤的定位、分级和预后评估,以及肿瘤治疗的监测和评估。
2.神经代谢疾病诊断和研究:MRS可以用于研究和评估脑部神经疾病的代谢异常。
例如,通过测量谷氨酸和谷氨酸盐的比例,可以评估脑细胞的能量代谢情况,进而判断神经退行性疾病的程度和发展趋势。
3.心脏病诊断和研究:MRS可以用于评估心脏肌肉的代谢状态。
通过测量磷代谢物如磷酸肌酸和磷酸二酯等的含量和代谢速率,可以评估心脏肌肉的功能和损伤程度,提供对心脏病的更准确的诊断和治疗策略。
磁共振asl序列 -回复
磁共振asl序列-回复磁共振(ASL)序列是一种用于检测脑部功能活动的成像技术。
它通过监测血液在脑部供应区域的流量变化来测量神经活动水平。
在本文中,我们将逐步介绍磁共振(ASL)序列的原理、应用以及未来的发展。
第一步:介绍磁共振(ASL)序列的原理磁共振(ASL)序列利用了磁共振成像的原理,结合了血流动态测量的技术。
它使用一个带有脉冲梯度的磁场,通过血液中的自由氢原子(水分子)来跟踪脑部血流。
该序列使用重复激发脉冲,测量时间间隔,以及重复激发前后的信号强度差异,从而推断神经活动的水平。
第二步:讨论磁共振(ASL)序列的应用领域磁共振(ASL)序列可以用于广泛的神经影像学研究。
它主要用于以下领域:1. 功能定位:通过检测脑部各区域的血液供应变化,磁共振(ASL)序列可以帮助定位特定功能区域。
2. 神经网络研究:磁共振(ASL)可以用于研究大脑的神经网络,探索脑部各区域之间的连接强度。
3. 脑卒中研究:磁共振(ASL)序列可以用于评估脑卒中患者的血流,并且可以监测治疗后的脑功能恢复情况。
4. 神经退行性疾病:磁共振(ASL)序列可以被用于早期诊断和疾病进程监测,如阿尔茨海默病和帕金森病。
第三步:分析磁共振(ASL)序列的优点和局限性磁共振(ASL)序列的优点包括非侵入性、不需要注射对比剂、可以直接测量脑血流。
它还可以提供更准确的功能定位和更多关于神经活动的信息。
然而,磁共振(ASL)序列也存在一些局限性。
由于它对动脉自动入流信号的依赖,测量结果受到脉搏和呼吸等生理因素的影响。
此外,由于目前的硬件和技术限制,磁共振(ASL)序列的时间分辨率较低,对快速神经活动的研究受到一定限制。
第四步:展望磁共振(ASL)序列的未来发展虽然磁共振(ASL)序列在功能神经影像学领域取得了一定的突破,但仍面临着一些挑战。
未来的发展方向包括提高时间分辨率、优化数据分析算法以及进一步结合其他成像技术。
这将有助于克服目前的局限性,提高磁共振(ASL)序列的精度和可靠性。
磁共振常用脉冲序列及其临床应用-翁强-2022年学习资料
脉冲序列的基本概念-磁共振信号强度的影响因素-组织的质子密度-猛-化学位移-液体流动-水分子扩散运动-等
可调整的-成像参数-射频脉冲-梯度场-信号采集时刻-我们把射频脉冲、梯度场和信号采集时刻等相关各参数-的设 及其在时序上的排列称为MRI的脉冲序列-pulse sequence。
脉冲序列基本构成-90°-180-909-射频脉神-层面选择梯度-相位编码梯度-顿率编码梯度-MR信号-F D-回波-TE-TR-SE脉冲序列的基本构建-器禄壁-SE序列的射频脉冲由多次重复的90°脉冲和后随-第二 是层面选择梯度场,在90°脉冲和180°脉冲-时施加。第三行是相位编码梯度场,在90°脉冲后180°脉冲前 加。-第四行是频率编码梯度场,必须在回波产生的过程中施加。第五行是
快速成像-回波链中每个回-波信号的TE不同-特点-模糊效应
Mxy-1000--一-一一一--回波1强度-回波2强度-回波3强度度-回波4强度-可波5强度-:-TEI TE3-TES-时间ms-TE2-TE4
快速成像-SAR↑-检蹲↑-能量沉积增加-回波链中每个回-波信号的TE不同-特点-对磁场不均-模糊效应-匀 不敏感-脂肪组织-JP偶联-磁化转移效-强度增高
速自旋@冬[医学]磁共振常用脉冲序列及其临床应用-翁强
OGE:FSEfast spin echo-●西门子、飞利浦:TSEturbo spin
180o-180@-90-90c-::-▣波】回波2-回波3-▣波4-回波5-电-ETL-5-TR-ES: 波间隙-回波链中相邻两个回波中点之间的时间间隙-ETL:回波链长度-一次90°脉冲激发后所产生和采集的回波 目
快速成像-特点[医学]磁共振常用脉冲序列及其临床应用-翁强
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自旋回波扫描时间
Scan Time=TR*Phase*NEX
如果我们要采集一个256X256,NEX=2的图像 •T1图:0.4*256*2 = 3分24秒 •T2或PD图:4*256*2 = 30分钟!!!
提高扫描速度
SE
FSE
快速自旋回波 FSE
快速自旋回波(FSE)
T2 衰减曲线 T2* 衰减曲线
所有部位的T2,T1和PD采集都适用。
FSE-XL的图像特点及临床应用
所有部位的T2,T1和PD采集都适用。
FSE-XL的图像特点及临床应用
所有部位的T2,T1和PD采集都适用。
SE扫描层数
1层 2层 3层
…………
N层
FSE扫描层数
1层 2层
…………
N层
FSE在扫描少层数解剖位置的局限
1层 N层
仍然有空余 常规的处理办法:减小TR。但是在采 集T2的图像时,可能会减低其对比。
快速翻转自旋回波序列 Fast Recovery FSE
(FRFSE)
FRFSE-XL
保持T2对比,加快扫描速度
FSE-XL
减小图像模糊
提高扫描速度
SE
FSE
快速恢复快速自旋回波序列
传统FSE序列
1800 1800 1800
• 0.5NEX——相位编码数为正常的一半,利用K 空间的共轭对称性推算出另一半,SNR会降低。
SSFSE的图像特点及临床应用
• 成像速度快,可用于屏气扫描 和不能配合的患者及儿童,还 可用于定位像。
SPECTROSCOPY
Spin Echo EPI DW EPI
Gradient Echo EPI FLAIR EPI
SPIRAL
Spiral GRE
Spiral SPGR
PROBE-P PROBE-S PROSE Press CSI
Steam CSI Fid CSI (MRS) Echo CSI (MRS) Spin Echo (MRS)
MR 脉冲序列
基本概念
MR 序列
GE 脉冲序列
PULSE SEQUENCE
STANDARD
Spin Echo Localizer
Inversion Recovery
FAST SPIN ECHO
GRADIENT ECHO
GRE Fast GRE Fast GRE ET
SPGR Fast SPGR FIESTA
180 180
0
0
900
RF
…………...
1800 脉冲x N
1800 回聚脉冲
-900 脉冲将回聚的 横向磁化转到纵向
快速恢复快速自旋回波加强
(FRFSE-XL)
•可以使用很短的TR时间来采集T2图像。 •一般常规的T2图像都可以使用FRFSE-XL来采集。 •不能用来采集T1图像。
FRFSE的图像特点及临床应用
Accept
GE 脉冲序列
PULSE SEQUENCE
STANDARD
Spin Echo Localizer
Inversion Recovery
FAST SPIN ECHO
GRADIENT ECHO
GRE Fast GRE Fast GRE ET
SPGR Fast SPGR FIESTA
VASCULAR
VASCULAR
FSE SSFSE FSE-IR SSFSE-IR
FSE-XL FRFSE-XL T1 FLAIR T2 FLAIR
ECHO PLANAR
TOF-GRE TOF-SPGR Phase Contrast Fast TOF GRE
FastCard-GRE FastCard SPGR Fast 2D Phase Contrast Fast SSFSE-IR
FSE-XL FRFSE-XL T1 FLAIR T2 FLAIR
ECHO PLANAR
TOF-GRE TOF-SPGR Phase Contrast Fast TOF GRE
FastCard-GRE FastCard SPGR Fast 2D Phase Contrast Fast TOF SPGR
1800
1800
1800
1800
1800
900
几个概念:
回波间隔 回波链长度 有效回波
快速自旋回波(FSE)
Scan Time=TR*Phase*NEX / ETL
如果我们要采集一个256X256,NEX=2的图像 •T1图:0.4*256*2 / 3 = 1分8秒 •T2或PD图:4*256*2 / 16 = 2分钟
快速自旋回波加强(FSE-XL)
•FSE-XL图像比FSE清 晰,扫描层数更多。 •现在临床上采集T1、 T2或PD的图像常规都 使用FSE-XL序列,而 不再使用FSE序列。
FSE-XL FSE
FSE-XL的图像特点及临床应用
所有部位的T2,T1和PD采集都适用。
FSE-XL的图像特点及临床应用
T2W清晰显示椎体内血管瘤,T2W 压脂进一步突出病变,显示细节。
单次激发自旋回波序列 SSFSE
FRFSE-XL
保持T2对比,加快扫描速度
FSE-XL
减小图像模糊
提高扫描速度
提高采集速度
SE
FSE
SSFSE
SSFSE
…………
• 一次激发完成一层扫描所有数据的采集——每幅图像 成像不到1秒,图像较常规图像模糊。
快速自旋回波
多个180°脉冲所采集 的回波各不相同。在 重建图像的时,会出 现图像的模糊。回波 链越长,这种情况越 严重。
快速自旋回波图像
快速自旋回波序列加强 FSE-XL
减小图像模糊
提高扫描速度
SE
FSE
FSE-XL
快速自旋回波加强(FSE-XL)
FSE-XL FSE
缩短回波间隔,缩短回波时间,因 而增加了T2图像清晰度。
SPECTROSCOPY
Spin Echo EPI DW EPI
Gradient Echo EPI FLAIR EPI
SPIRAL
Spiral GRE
Spiral SPGR
PROBE-P PROBE-S PROSE Press CSI
Steam CSI Fid CSI (MRS) Echo CSI (MRS) Spin Echo (MRS)
Accept
SE家族
SE FSE FSE-IR
自旋回波 SE
自旋回波(SE)
1800 900
基本概念 TR TE
回波
TE
T2 衰减曲线 T2* 衰减曲线 实际信号衰减曲线
900
time
自旋回波临床应用
• 自旋回波能采集T1,T2,PD图像。 • 在临床上对于时间要求不高的T1的图像仍
然在使用SE序列。