山东省青岛市平度市长乐镇长乐中学八年级数学下册 4.3 公式法(二)教学案 (新版)北师大版
北师大版八年级下册数学4.3《公式法(2)》教学设计
4.3.2 公式法(二)●教学目标(一)教学知识点1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.(三)情感与价值观要求通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.●教学重点让学生掌握多步骤、多方法分解因式方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.●教学方法观察—发现—运用法●教具准备投影片两张第一张(记作§4.3.2 A)第二张(记作§4.3.2 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.投影(§4.3.2 A)项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.[生](1)是.(2)不是;因为4x不是x与2y乘积的2倍;(3)是;(4)不是.ab不是a与b乘积的2倍.(5)不是,x2与-9的符号不统一.(6)是.2.例题讲解[例1]把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m +n)+9.[师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.解:(1)x2+14x+49=x2+2×7x+72=(x+7)2(2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2.[例2]把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.。
北师大版八年级数学下册4.3《公式法》教案
(五)总结回顾(用时5分钟)
今天的学习,我们了解了公式法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对公式法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“公式法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调完全平方公式、平方差公式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与公式法相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示完全平方公式的应用和基本原理。
北师大版八年级数学下册4.3《公式法》教案
一、教学内容
本节课选自北师大版八年级数学下册第四章第三节《公式法》。教学内容主要包括以下方面:
1.完全平方公式:a² + 2ab + b² = (a + b)²、a² - 2ab + b² = (a - b)²;
2.平方差公式:a² - b² = (a + b)(a - b);
2.教学难点
-理解并记忆各种公式的结构,尤其是立方和与立方差公式的应用。
初中北师大版数学八年级下册4.3【教学设计】《公式法》
《公式法》教学设计公式法是义务教育课程标准实验教科书(北师版)《数学》八年级下册第四章第三节内容,本章主要是研究代数式的因式分解的方法和应用;本节要求使学生会用完全平方公式分解因式.使学生学习多步骤,多方法的分解因式.。
所以本节的重点是能观察出多项式的公因式,并根据分配律把公因式提出来。
【知识与能力目标】1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.【过程与方法目标】在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.【情感态度价值观目标】通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.【教学重点】让学生掌握多步骤、多方法分解因式方法.【教学难点】让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.教师准备课件、多媒体;学生准备;练习本;Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.。
北师大版数学八年级下册4.3公式法(第2课时) 教学设计(含教学反思)
理解完全平方公式的结构特点
教学方法
任务驱动的小组合作教学
教学准备
多媒体课件、三角板、计算器等
教学过程
一、自学反馈:
1.小组交流:小组内成员展示自己的自学活动作业,说一说自己想法。
2.选一个小组汇报交流方法,其他组学生提问、补充。
二、聚焦问题
问题1:完全平方公式ຫໍສະໝຸດ 内容是做么?问题2:完全平方公式有哪些特点?
1.把下列各式因式分解:
(1)–2xy–x2–y2(2)4–12(x–y)+9(x–y)2
课堂小结
小组交流,谈一谈如何运用平方差公式进行因式分解?你有哪些体会与收获?
课后作业
习题4.5第1、2题
教学反思
因式分解虽然与整式的乘法是互逆运算,但是对于学生而言,它是一个新的知识,学生在前面的学习中虽然已经掌握平方差公式和完全平方公式,然而受思维定势的影响,学生对公式的逆用会产生混淆,学生的惯性思维是:平方差公式是(a+b)(a-b)=a2-b2,完全平方公式是(a±b)2=a2±2ab+b2,一旦要将公式逆向,部分学生就比较难以接受,特别是学习能力较弱的学生,难度就更大一些。在练习中,根据学生的个体差异,有效分层,开展课内技能训练,让每个学生都学有所成.
北师大版数学八年级下册
《4.3公式法(第2课时)》教学设计
课题名
用完全平方公式进行因式分解
教学
目标
1、了解运用公式法分解因式的意义。
2、会用公式法(完全平方公式)分解因式。
3、经历通过整式乘法的完全平方公式逆向得出运用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力
教学重点
会用完全平方公式进行因式分解
三、研究分享
八年级数学下册 4.3.2 公式法导学案(新版)北师大版
八年级数学下册 4.3.2 公式法导学案(新版)北
师大版
4、3 公式法(2)
【学习目标】
1、会用公式法进行因式分解。
2、了解因式分解的步骤。
【学习重点】
会用公式法进行因式分解。
【学习难点】
熟练应用公式法进行因式分解。
【学习过程】
一、提出问题,创设情境探讨新知:
把这两个公式反过来,就得到:(1)(2)把它们当做公式,就可以把某些多项式进行因式分解,这种因式分解的方法叫做公式法。
二、深入研究,合作创新例1 因式分解:
例2
三、小组合作,应用新知
1、辨析运用(1)下列多项式能否平方差公式进行因式分解的是(1)4x2+9y2 (2)81x4-y4 (3)-16x2+y2 (4)-x2-y2
(5)a2+2ab+b2 归纳:可运用平方差公式进行因式分解的多项式特点是:①恰好两项②一项正,一项负③可化为的形式。
2、下列各多项式能否运用完全平方公式分解因式?(1)-
2xy+x2+y2 (2)-x2+4xy-4y2 (3)
a2+2ab+4b2 (4)a2+a+归纳:完全平方式的特征是:①三项②两平方项同号③另一项可化为的形式。
四、当堂检测(1)
(2)
(3)
(4)
(4)
(6)
(7)
(8)
(9)
(10)
五、课堂小结:
这节课你的收获是?六、课后作业:
《练习册》A本P32-33七、教学反思:。
八年级数学下册 4.3 公式法(2)学案(新版)北师大版
八年级数学下册 4.3 公式法(2)学案(新
版)北师大版
4、3公式法(2)学习目标:把握完全平方公式特征,会运用完全平方公式进行因式分解;重点和难点:利用整体思想进行因式分解;学习过程:
一、阅读教材101-103页的内容,请回答以下问题:
1、形如的式子称为完全平方式,它只有个号的平方项,中间是平方项底数积的倍;简称:首平方,尾平方,积的2倍在中央,符号看前方。
2、试一试,把下列各式填上适当的项,配成完全平方式:(1);(2);(3);并把因式分解=,与同桌交流是怎么完成的。
3、,;
二、合作探究学习
1、探究1:因式分解:(1);(2);(3);
2、探究2:因式分解:(1);(2)
3、探究3:已知、、为的三边,且满足,试判断的形状。
三、当堂检测:
1、教材102页随堂练习1-2题
2、利用因式分解进行简便运算:(1)(2)
3、已知,则的值为;
四、课堂小结:能用完全平方公式分解因式的多项式的特征是什么?
五、课后作业:
1、教材100页习题
4、51-2题。
2、下列多项式中,不能用完全平方公式因式分解的是()
A、
B、
C、
D、
3、因式分解:
;
4、李明想把多项式加上一个单项式后,使它能成为一个整式的完全平方式,请你帮他想一想,加上的单项式可以是;(请填上一个你认为正确的即可)。
5、解答下列各题(1)已知,求、的值;(2)已知、、为的三边,且满足,求证:、。
新北师大版八年级下册数学 《公式法(2)》教案
4.3公式法(二)本节是因式分解的第3小节,占两个课时,这是第二课时,它主要让学生经历通过逆向运用整式乘法的完全平方公式得出因式分解的完全平方公式的过程,发展学生的观察能力和逆向思维能力,让学生进一步了解分解因式与整式的乘法运算之间的互逆关系.一、学生知识状况分析学生的技能基础:学生对因式分解的概念、方法等有了必要的认识和理解,并在整式乘法的公式中,学生已经学习了完全平方公式,这为今天的深入学习提供了必要的基础.学生活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识,本节课采用的活动方法是学生非常熟悉的观察、对比、讨论等方法,学生有较好的活动经验.二、教学任务分析学生在学习了用平方差公式进行因式分解的基础上,本节课又安排了用完全平方公式进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。
因此,本课时的教学目标是:知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用完全平方公式进行因式分解;(3)使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.数学能力:(1)发展学生的观察能力和逆向思维能力;(2)培养学生对完全平方公式的运用能力.情感与态度:通过观察,推导分解因式与整式乘法的关系,让学生感受事物间的因果联系.三、教学过程分析本节课设计了六个教学环节:做一做——辨一辨——试一试——想一想——反馈练习——学生反思.第一环节 做一做活动内容:填空:(1)(a+b )(a-b ) = ;(2)(a +b )2= ;(3)(a –b )2= ;根据上面式子填空:(1)a 2–b 2= ;(2)a 2–2ab +b 2= ;(3)a 2+2ab +b 2= ;结 论:形如a 2+2ab +b 2 与a 2–2ab +b 2的式子称为完全平方式.活动目的:学生通过观察,把整式乘法中的完全平方公式进行逆向运用,发展学生的观察能力与逆向思维能力,第(1)组a 2–b 2是起提示作用.注意事项:学生通过观察能找到第一组式子与第二组式子之间的对应关系. 第二环节 辨一辨活动内容:观察下列哪些式子是完全平方式?如果是,请将它们进行因式分解.(1)x 2–4y 2 (2)x 2+4xy –4y 2 (3)4m 2–6mn +9n 2 (4)m 2+6mn +9n 2 结论:找完全平方式可以紧扣下列口诀:首平方、尾平方,首尾相乘两倍在中央;完全平方式可以进行因式分解,a 2–2ab +b 2=(a –b )2 a 2+2ab +b 2=(a+b )2活动目的:加深学生对完全平方式特征的理解,并由此得出因式分解的完全平方公式. 注意事项:由于有了七年级的整式乘法的学习基础,同时对照口诀,大多数学生能顺利识别完全平方式,但少部分同学由于对完全平方公式的特征的理解模糊,不能很好地掌握完全平方公式,这需要老师更加耐心地引导和启发.第三环节 试一试活动内容:把下列各式因式分解:(1)x 2–4x +4 (2)9a 2+6ab +b 2(3)m 2–9132+m (4)()()1682++++n m n m 活动目的:(1)培养学生对平方差公式的应用能力;(2)让学生理解在完全平方公式中的a 与b 不仅可以表示单项式,也可以表示多项式.注意事项:学生对第(3)小题含有分数的完全平方公式应用起来有一定的困难,有的学生由于受解方程的影响,习惯首先去分母,再因式分解,这是很多学生经常犯的一个错误.第四环节 想一想活动内容:将下列各式因式分解:(1)3ax 2+6axy +3ay 2 (2)–x 2–4y 2+4xy活动目的:使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.注意事项:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解.第五环节 反馈练习活动内容:1、判断正误:(1)x 2+y 2=(x+y )2 ( )(2)x 2–y 2= (x –y )2 ( )(3)x 2–2xy –y 2= (x –y )2 ( )(4)–x 2–2xy –y 2=–(x+y )2 ( )2、下列多项式中,哪些是完全平方式?请把是完全平方式的多项式分解因式:(1)x 2–x +41 (2)9a 2b 2–3ab +1 (3)229341n mn m ++ (4)251056+-x x 3、把下列各式因式分解:(1)m 2–12mn +36n 2 (2)16a 4+24a 2b 2+9b 4(3)–2xy –x 2–y 2 (4)4–12(x –y )+9(x –y )2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的特征是否清楚,对完全平方公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏.注意事项:当完全平方公式中的a与b表示两个或两个以上字母时,学生运用起来有一定的困难,此时,教师应结合完全平方公式的特征给学生以有效的学法指导.第六环节学生反思活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系?结论:由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.活动目的:通过学生的回顾与反思,强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解.注意事项:学生认识到了以下事实:(1)有公因式则先提取公因式;(2)整式乘法的完全平方公式与因式分解的完全平方公式是互逆关系;(3)完全平方公式中的a与b既可以是单项式,又可以是多项式;课后练习:课本第103页习题4.5第1、2、3题;思考题:习题4.5第4题(给学有余力的同学做)四、教学反思逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维.它是数学思维的一个重要原则,是创造思维的一个组成部分,也是进行思维训练的载体,培养学生逆向思维过程也是培养学生思维敏捷性的过程.数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯.因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展.整式乘法中的完全平方公式从左到右转换为从右到左就形成因式分解的完全平方公式,这样的转换正是由正向思维转到逆向思维的能力的体现.。
北师大版八年级下册3公式法第四章:4.3运用公式法课程设计 (2)
北师大版八年级下册3公式法第四章:4.3运用公式法课程设计一、课程目标1.理解公式法的基本概念和作用;2.掌握公式法在解决问题中的应用方法;3.通过课堂练习和实例分析,提高学生的思维能力和解决问题的能力。
二、课程内容1.公式法基本概念;2.公式法解决线性方程组问题;3.公式法解决比例问题;4.公式法解决百分数问题。
三、课程设计第一部分:导入(10分钟)1.创设情境,引导学生了解公式的意义和作用;2.通过举例说明公式应用的实际意义,提高学生的兴趣和学习积极性。
第二部分:教学(30分钟)1.讲解公式法的基本概念和步骤;2.给出线性方程组问题、比例问题、百分数问题,通过演示和讲解,引导学生运用公式法解决问题。
第三部分:练习(50分钟)1.分发练习题,学生自主解题,同时留意解题过程中公式运用方法;2.课堂上重点讲解解题思路和方法,解决学生疑难问题;3.督促学生认真做好课后作业。
第四部分:归纳总结(10分钟)1.引导学生总结公式法解决问题的基本思路和方法;2.再次强调公式法的作用和实际应用价值。
四、教学方法本节课采用讲授、演示、练习等多种教学方法,兼顾知识点的讲解和解决问题的能力训练。
特别要注意引导学生自主学习和思考,积极参与课堂互动,增强学生对公式法的理解和掌握。
五、教学重点和难点重点1.公式法的基本概念和运用方法;2.案例分析中公式的运用。
难点1.如何将实际问题转化为线性方程组问题、比例问题、百分数问题;2.公式的灵活运用。
六、教学评估本课程设计采用练习和作业等形式进行评估:1.设计适当难度的练习题目,考核学生对公式法的掌握程度;2.课后留作业,以检验学生平时所学和掌握的内容。
七、课后作业1.完成练习题;2.针对已经学习的公式,自己设计一道题目,附上解题过程和结果。
八、教学资源本节课所需教学资源包括:1.PowerPoint演示文稿;2.练习题集。
九、教学反思公式法是初中数学一项重要的应用技能,而且在高中数学中也有广泛的应用。
八年级数学下册《公式法》教案、教学设计
(3)教师引导学生总结公式法的适用范围和注意事项。
(三)学生小组讨论
1.教学内容:组织学生进行小组讨论,共同探讨公式法的应用。
教学过程:
(1)教师将学生分成若干小组,每组分配一个具有代表性的问题,让学生运用公式法解决。
(2)学生在小组内讨论解题思路,共同完成问题。
(3)各小组展示解题过程和答案,其他小组进行评价、提问。
(4)布置课后作业,巩固所学知识。
五、作业布置
为了巩固本节课所学知识,培养学生的数学思维能力,特布置以下作业:
1.基础练习题:完成课本第56页第1-6题,要求学生在解题过程中熟练运用公式法,注意书写格式规范,保持解答过程的简洁。
2.提高题:完成课本第56页第7-10题,这部分题目难度有所提高,旨在让学生在解决复杂问题时,能够灵活运用公式法,提高解题能力。
3.实践题:结合生活实际,自编一道涉及公式法的问题,并运用所学知识解决问题。要求学生在解题过程中,注意运用数学语言进行描述,锻炼数学表达能力和逻辑思维能力。
4.小组讨论题:以小组为单位,共同探讨以下问题:如何运用公式法解决二次方程相关问题?总结出解决这类问题的方法和技巧。每个小组整理一份讨论报告,并在下节课上进行分享。
(三)情感态度与价值观
1.激发学生对数学的兴趣,培养学生积极、主动学习的态度。
2.通过公式法的学习,让学生体会数学的简洁美,增强学生对数学学科的好奇心和求知欲。
3.培养学生面对困难时,勇于挑战、善于思考的良好品质,增强学生的自信心。
4.强调数学在生活中的应用,使学生认识到数学知识对个人和社会的价值,提高学生的社会责任感。
(2)注重培养学生的数学思维,引导他们在解题过程中善于发现规律,提高解题能力。
2019-2020学年八年级数学下册《1543公式法(二)》学案.doc
2019-2020学年八年级数学下册《1543公式法(二)》学案学习目标1.用完全平方公式分解因式2.理解完全平方公式的特点.3.能较熟悉地运用完全平方公式分解因式.4.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.5.能灵活应用提公因式法、公式法分解因式.6.通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.学习重点:用完全平方公式分解因式学习难点:灵活应用公式分解因式.一、学前准备问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?问题2:把下列各式分解因式.(1)a2+2ab+b2(2)a2-2ab+b2二、探究学习:(一)自主探究下列各式是不是完全平方式?(1)a2-4a+4(2)x2+4x+4y2(3)4a2+2ab+14b2(4)a2-ab+b2(5)x2-6x-9(6)a2+a+0.25(二)合作探究分解因式:(1)16x2+24x+9 (2)-x2+4xy-4y2分解因式:(1)3ax2+6axy+3ay2(2)(a+b)2-12(a+b)+36三、回顾、思考1、请你对本节课所学知识作个小结,你有哪些收获?2、预习时的疑惑解决了吗?还有哪些疑惑?3、你认为老师上课时还有哪些需要注意的地方?四、自我测试把下列多项式分解因式:(1)6a-a2-9;(2)-8ab-16a2-b2;(3)2a2-a3-a;(4)4x2+20(x-x2)+25(1-x)2五、应用与拓展六、我反思,我进步七、作业批改记录:。
公式法(二) 教案
北师大版数学八年级下册4.3.2公式法教学设计(a-b)2 = a2-2ab+b2因式分解:a2+2ab+b2= (a+b)2a2-2ab+b2= (a-b)2完全平方式的特点:1、必须是三项式2、有两个“项”的平方3、有这两“项”的2倍或-2倍口诀:“头”平方, “尾”平方, “头”“尾”两倍中间放。
例3.把下列完全平方式因式分解变式3:(1)-a3b3+2a2b3-ab3(2)9 - 12(a-b) + 4 (a-b)2拓展提高:已知x2+4x+y2-2y+5=0,求xy的值。
作业布置:1、分解因式(1)x2+12xy+36y2(2)32a4+48a2b2+18b4 (3)-2xy-x2-y2(4)12-36(x-y)+27(x-y)22、如果x2+mxy+16y2是一个完全平方式,那么m 的值为()A、6B、±6C、8D、±8 问学生回答,总结出公式法的要点和易错点。
小组讨论,时间3min,总结出完全平方式的特点。
自己总结口诀法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。
让学生积极参与数学再创造活动,化特殊为一般,培养数学建模思想,化归思想。
鼓励学生用自己的语言表述,从而提高学生的语言组织与表达能力。
为此结合两个公式的特征,可用顺口溜强化记忆。
课堂小结因式分解提问学生自己总结归纳本节课总结。
的内容,帮助学生整理思路,消化知识,构造严谨的知识体系。
板书 4.3.2 公式法(二)a2+2 ab+b2 =(a+b)2a2 -2 ab+b2= (a - b)2例题变式。
八年级数学下册 4.3.2 公式法教案1 (新版)北师大版
课题 4.3公式法(2)教学目标:1.能够正确识别符合用公式法分解的多项式,会运用完全平方公式分解因式.2.经历探索运用完全平方公式因式分解的过程,体会逆向思维在数学中的应用,同时了解换元的思想方法.3.探索多项式因式分解的步骤与方法,体会化归思想的应用. 教学重难点:重点:用完全平方公式进行分解因式.难点:根据多项式的特点,恰当地安排步骤,灵活地选用不同方法进行因式分解. 课前准备:多媒体课件. 教学过程:一、温故知新,引入新课问题1:我们学习了哪些因式分解的方法? 问题2:把下列各式分解因式:(1)ax 4-9ay 2; (2)x 4-16.问题3:整式乘法中,我们除了学过平方差公式外,还学过了哪个乘法公式? 处理方式:学生独立思考、交流,问题1学生回答,问题2学生黑板板演,其余学生独立完成,师生共同纠错,并强调注意事项.问题3教师引导学生回答,为新课引入铺垫.预设学生回答.1.提取公因式法和运用平方差公式法.2.解:(1)ax 4-9ay 2=a (x 4-9y 2)=a (x 2+3y )(x 2-3y )(2)x 4-16=(x 2+4)(x 2-4)=(x 2+4)(x 2+2)(x 2-2)3.完全平方公式:222()2a b a ab b ±=±+.过渡:我们能够利用平方差公式分解因式,那么能不能用完全平方公式分解因式呢? 本节课我们就一起探究这个问题.设计意图:复习以习题的形式回忆两种提公因式和平方差公式分解因式的方法,有利于学生衔接前后知识,形成清晰的知识脉络,为学生后面的学习作好铺垫.二、合作探究,获取新知活动内容1:类比利用平方差公式因式分解,把乘法公式(a +b )2=a 2+2ab +b 2, (a -b )2=a 2-2ab +b 2反过来,就得到a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2.请结合a 2+2ab +b 2=(a +b )2,a 2-2ab +b 2=(a -b )2,完成以下探究问题. (1)完全平方公式特点:左边: . 右边: .(2)形如a 2+2ab +b 2,a 2-2ab +b 2的式子我们称为 .处理方式:类比利用平方差公式分解因式,让学生以小组讨论、合作交流的方式探讨完全平方公式的特点,及什么是完全平方式,小组展示结论,教师依据学生回答中出现的问题点评并强调公式a 2+2ab +b 2=(a +b )2与a 2-2ab +b 2=(a -b )2,叫做因式分解的完全平方公式;a 2+2ab +b 2,a 2-2ab +b 2叫做完全平方式.预设学生回答.1.完全平方公式特点:左边是三项式,其中首末两项分别是两个数(或两个式子)的完全平方.这两项的符号相同,中间一项是这两个数(或两个式子)的积的2倍,符号正负均可.右边是这两个数(或两个式子)的和(或者差)的平方. 2. 形如a 2+2ab +b 2,a 2-2ab +b 2的式子称为完全平方式.设计意图:通过小组合作学习,让学生在已有知识的基础上,加深对完全平方公式的理解,对完全平方式特征的认识,进一步感受因式分解与整式乘法的关系.巩固训练1:1.下列各式是不是完全平方式?若不是,请说明理由.()2144a a -+;()22244x x y ++;()2134x x -+;()224a ab b -+. 2.已知2249x kxy y ++是一个完全平方式,则k 是多少?处理方式:学生独立做题,然后小组交流,教师选代表回答并及时矫正.对于第二题可适当提醒学生考虑完全平方式的两种形式.预设学生回答.1.(1)是.(2)不是;因为4x 不是x 与2y 乘积的2倍; (3)是;(4)不是;因为ab 不是a 与b 乘积的2倍.2. k 是±12,因为kxy 是完全平方式中的乘积的2倍对应的项,而完全平方式有两种形式,符号可正可负.所以它对应的答案有两个.设计意图:通过题目练习一方面加深学生对完全平方式特征的理解,并能顺利的辨别哪些是完全平方式,为利用完全平方式分解因式打下基础.另一方面教师可以更好的了解学生的掌握情况,以便及时的调整教学.活动内容2:通过对a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2和a2-b2=(a+b)(a-b)的学习,结合整式乘法,你能说说什么是因式分解的公式法吗?处理方式:学生小组讨论后尝试归纳,教师总结点评,明确运用平方差公式和完全平方公式进行因式分解.预设学生回答.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.设计意图:通过小组合作学习,让学生在理解的基础上,加深对公式法进行因式分解的认识,正确把握各公式的特征,并根据多项式的形式和特点灵活选择用公式进行因式分解.巩固训练2:下列各式:①-x2-16y2 ②-a+9b2 ③m2-4n2 ④-x4+y4 ⑤x2+y2+2xy ⑥- a2-2ab+b2 ⑦m2-4mn+4n2 ⑧4a2-2a+1其中,能用公式法因式分解的个数是().A.5 B.4 C.3 D.2处理方式:学生独立完成后,小组展示答案,教师点评.三、学以致用,解决问题例3 把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m+n)+9.处理方式:让学生观察例题两式的特点,引导学生对照完全平方公式,明确公式中的a、b在x2+14x+49与(m+n)2-6(m+n)+9中分别是什么(a、b可以是单相式,也可以是多项式),并尝试用语言表述加以理解,如x2+2×7×x+72是x与7两数的平方和,加上这两数积的2倍.小组讨论后由学生分别口述解题过程,教师借助多媒体展示解题过程,让学生进一步理解并规范如何使用完全平方公式进行因式分解.解:(1)x2+14x+49= x2+ 2×x×7+ 72= (x + 7)2.↓↓↓↓↓↓↓a2+2×a×b+ b2=(a + b)2(2)(m+n)2-6(m+n)+9=(m+n)2-2·(m+n)×3+32=[(m+n)-3]2巩固训练3:把下列各式分解因式:(1)x2y2-2xy+1;(2)4-12(x-y)+9(x-y)2.处理方式:选2名学生板演,其他同学在练习本上完成,教师巡视指导.学生完成后,同位交换练习,教师点评矫正.预设学生回答.解:(1)x2y2-2xy+1=(xy)2-2xy+1=(xy-1)2;(2)4-12(x-y)+9(x-y)2=22-2×2×3(x-y)+[3(x-y)]2=[2-3(x-y)]2=(2-3x+3y)2.设计意图:培养学生对完全平方公式分解因式的应用能力,让学生理解在完全平方公式中的a与b不仅可以表示单项式,也可以表示多项式.例4 把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.处理方式:让学生观察题目特点,展开小组讨论,教师引导学生体会在因式分解中,多项式有公因式要先提公因式,再进一步因式分解;当首项是二次项且系数为负数时,一般应先提出“-”号或整个负数.学生口述解题过程,师及时点评并多媒体展示解题过程.解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2) =3a(x+y)2;(2)-x2-4y2+4xy=-(x2+4y2-4xy)=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2.巩固训练4:把下列各式分解因式:(1)-2xy-x2-y2;(2)2mx2-4mx+2m.处理方式:找两名学生板演,其他同学在练习本上完成,教师巡视学生并辅导,做完后教师展示出答案.预设学生.解:(1)-2xy-x2-y2=-(x2+2xy+y2)(2)2mx2-4mx+2m=2m(x2-2x+1)=2m(x-1)2.设计意图:使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.思考:通过你所学的因式分解的知识,想一想对于一个多项式,你如何对它进行因式分解呢?处理方式:引导学生展开小组讨论,学生代表展示,教师多媒体总结.因式分解的一般步骤:(1)如果多项式各项含有公因式,应先提公因式;(2)如果多项式各项不含有公因式,可以尝试用公式法因式分解;(3)如果上述方法都不能因式分解,可以尝试整理多项式,然后分解;(4)因式分解必须分解到每一个因式都不能分解为止.四、回顾反思,盘点收获通过本节课的学习,你都掌握了哪些知识?你还有什么困惑?请你先想一想,再说一说.处理方式:学生畅所欲言.我的收获......我的困惑......……设计意图:通过学生的回顾与反思,强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解.五、达标测试,深化提高A组:1.下列多项式中,能用完全平方式分解的是()A.a2+2ax+4x2; B.a2-4ax2+4x2;C.-2x+1+4x2; D.x4+4+4x2.2.正方形的面积为a2+2a+1,则它的周长是()A.a+1 B.a+4 C.4a+1 D.4a+43.若16x2-mx y+9y2是一个完全平方式,那么m的值是 .4.把下列各式因式分解:(1)a2b-2ab+b;(2)(x+y)2-12z(x+y)+36z2.B组:5.已知x,y是一个等腰三角形的两边长,且满足x2+y2-4x-6y+13=0,求这个等腰三角形的周长.参考答案:1.D 2.D 3.±24 4.b(a-1)2;(x+y-6z)25.7或8.设计意图:通过学生的反馈测试,使教师能全面了解学生对完全平方公式的特征是否清楚,对利用完全平方公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便能及时地进行查缺补漏,由于学生的学习基础与能力有较大的差异,对不同层次的学生提出不同的要求,可使每个学生都能在原来的基础上获得较大的发展.六、布置作业,课堂延伸必做题:课本第103页习题4.5 第1、2题.选做题:课本第103页习题4.5 第3题.板书设计:。
2019-2020学年八年级数学下册4.3公式法第2课时学案新版北师大版.doc
下列各式是完全平方式的有( ).
结论:找完全平方式可 以紧扣下列口诀:首平方、尾平方,首尾相乘两倍在中央;
完全平方式可以进行因式分解,
a2–2ab+b2=(a–b)2a2+2ab+b2=(a+b)2
四、通过刚才的学习,你能尝 试解决以下问题吗?
因式分解:
(1)x2+14x+ 49(2)(m+n)2–6(m+n)+ 9
能用完全平方公式进行因式分解。
难点
利用完全平方公式进行因式分解,学会数学的“互逆”、换元、整体的思想。
教学流程
学校年级组二备
教师课前备课
自主学习,尝试解决一、预习交流:1源自自学阅读:课本101—102页内容。
2、填空:
(1)(x-5)2=;
(2)(3x+y)2=;
(3)(3m+2n)2=。
问题1:它们的结果有什么共同特征?
2、(选做题)
用简便方法计算:
2019-2020学年八年级数学下册4.3公式法第2课时学案新版北师大版
课题:第四章分解因式第3节运用公式法(第2课时)
学习目标
1、理解完全平方公式的特点;
2、能较熟悉地运用完全平方公式分解因式;
3、经历探索利用完全平方公式进行因式分 解的过程,发展逆向思维,渗透数学的“互逆”、换元、整体的思想。
重点
9a2b2-3ab+12,
2、因式分解x2-10x+25=( )( )
3、把下列各式因式分解:
学习小结,整理归纳
七、归纳提升:
从今天的课程中,你学到了哪些知识?掌握了哪些方法?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关 系?
推荐K12学习八年级数学下册4.3.2公式法教案2新版北师大版
推荐K12学习八年级数学下册4.3.2公式法教案2新版北师大版试卷+教案+习题课题: 4.3.2公式法教学目标:1.会用公式法(直接运用公式不超过两次)分解因式(指数是正整数).2.经历通过整式乘法的完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和思考问题的习惯.总结因式分解的一般分解步骤.3.培养学生灵活的运用知识的能力和积极思考的良好行为,体会因式分解在数学学科中的地位和价值教学重点与难点:重点:掌握运用完全平方公式进行分解因式.难点:灵活地运用公式法或已学过的提公因式法进行因式分解,及正确判断因式分解的彻底性问题.课前准备:多媒体课件教学过程:二、创设情境,导入新课活动内容1:观察下图并回答问题.1.如图(1)老李去年承包了一块边长为a的正方形菜地,今年把菜地进行了扩建,建成了一个边长增加了b米的大正方形,问现在菜地的面积是多少?(试问你有几种表达方式)2.如图(2)一老人有四个儿子,二儿子和三儿子是孪生兄弟.老人出门时给他们一张图纸,要他们按图纸分地.①分别表示老二、老三、老四土地的长、宽和面积. ②用两种方法表示老大土地的面积. ③上述两种方法表示的面积有何关系?处理方式: 问题1由学生口答教师板书完成如(a+b)2=a2+2ab+b2,问题2先让学生列出算式①ab.ab.b2,②(a-b) 2 和a2-2ab+b2, ③ (a-b)2=a2-2ab+b2,然后让一名学生在黑板上板书过程,其余学生在练习本上完成.完成后教师引导学生分析两个等式左边和右边的特点,从而引入出新课.引导性语言举例:你能说说(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2是左边、右边各是什么形式?公式的右边边为多项式,左边为乘积的形式,从左向右的变形这是我们七试卷+教案+习题老四试卷+教案+习题年级学习什么公式?逆运用后变为a+2ab+b=(a+b),a-2ab+b=(a-b)的形式.此时公式的左边为多项式,右边为乘积的形式,这种变形我们称为什么?设计意图: 明确在实际情境下,通过计算面积得出因式分解的完全平方公式,并通过整式乘法的完全平方公式的比较,加深对因式分解的完全平方公式的认识.了解运用公式法的意义.活动内容2:展示学习目标1.理解完全平方公式的特点并会用完全平方公式分解因式.2.能灵活应用提公因式法、公式法分解因式.处理方式: 学生共同阅读,教师强调重点和难点.设计意图:学生明确本节课学习内容,带着任务有目的的学习. 二、探究学习,感悟新知活动内容1:(多媒体出示)请同学们观察a+2ab+b=(a+b),a-2ab+b=(a-b)完成以下探究问题,并与同伴交流. 1.两个公式的共同特征:左边为_______,多项式有_____项,其中有两项的符号____,并且这两项可化为两个数(或整式)的______,另一项为这两个数(或整式)的乘积的_____倍.右边为__________. 2.在以上公式中涉及几个数或式子? 分别代表什么?处理方式:学生讨论交流,学生之间互相补充.教师适时点评,强调:我们把公式a2222222222222±2ab+b2=(a±b)2称为因式分解的完全平方公式,平方差公式法和完全平方公式法统称公式法.同时形象的表示为“■±2■・△+△=(■±△)”.与平方差公式一样,a、b可代表数,也可以代表代数式,这里既可为多项式,也可为单项式.设计意图:本活动的设计意图先从观察多项式入手引导学生通过自主探究、合作交流,分析公式特征,让学生准确掌握公式,以便下一步熟练而灵活地利用公式分解因式,在这一过程中让学生再次感受因式分解与整式乘法的关系.活动内容2:(多媒体出示)你能根据公式的特点解决以下问题吗?(多媒体出示)1.判断下列各式是不是完全平方式.222(1)x2?y2;(2)x2?2xy?y2;(3)x2?2xy?y2;(4)x2?2xy?y2;(5)?x2?2xy?y2.试卷+教案+习题试卷+教案+习题2.请补上一项,使下列多项式成为完全平方式.?1?? 2?? 3?? 4?? 5?x2?_____?y2;4a2?9b2?______;x2?_____?4y2;1a2?_____?b2;4x4?2x2y?_____.3.通过对以上问题的解决,你能说说一个多项式若能够运用完全平方公式进行因式分解,它应满足什么条件吗?处理方式:在老师的指导下,让学生通过自己的归纳找到因式分解中完全平方公式的特征,并能利用相关结论进行实例练习,完善学生对公式特征的相关描述并得出结论.同时要求学生对于不能利用完全平方公式进行分解因式的式子给出相应的解释.也可以师生共同总结:判断一个多项式是否为完全平方式,要考虑三个条件,项数是三项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.也可以用下列口诀:首平方、尾平方,首尾相乘两倍在中央.设计意图:通过两道练习题让学生自己再一次归纳找到因式分解中完全平方公式的特征,加深对能够运用完全平方公式因式分解的多项式特点的认识.三、例题解析,应用新知活动内容1:我们能够判断一个多项式能否使用完全平方公式进行因式分解,你能顺利的利用完全平方公式进行因式分解吗?请同学们观察例1中的各个多项式的特点,想一想如何进行因式分解.(多媒体出示例1)例1.把下列各式因式分解:(1)x2?14x?49(3)(m?n)2?6(m?n)?9(2)4a2?12ab?9b2(4)(m?2n)2?2(2n?m)(m?n)?(m?n)2处理方式:先给学生足够时间观察例1各式的特点,(1),(3)学生尝试板书解决,(2),(4)学生口述解题过程,教师板书.最后教师可进行有针对性的提问,让学生明确公式中的a、b在x2+14x +49、4a2+12a+9b、(m+n)2-6(m+n)+9、(m-2)2-2(m-2)(m+n)+(m+n)2 中分别指什么;可以写成哪两个数或式完全平方的形式.学生完成后教师可借助多媒体展示下图,让学生进一步理解并规范如何使用完全平方公式进行因式分解.(多媒体出示,同时给学生1分钟时间反思体会)试卷+教案+习题试卷+教案+习题解: 2?14x?49(1)x?x2?2?7?x?72?(x?7)2 a2?2?a?b?b2?(a?b)2(2)4a?12ab?9b22?(2a)2?2?2a?3b?(3b)2?(2a?3b)2a2?2?a?b?b2?(a?b)22 (3)(m?n)?6(m?n)?9?(m?n)2?2?(m?n)?3?32??(m?n)?3??(m?n?3)2a2?2?a?b?b2?(a?b)22(4)(m?2n)2?2(2n? m)(m?n)?(m?n)2?(m?2n)2?2?(m?2n)?(m?n)?(m?n)2 ??(m?2n)?(m?n)?2?(2m?n)2巩固训练1:把下列各式因式分解(1) a-4a+4;(2))x+4xy+4y;;(3)(a+b)-6(a+b)+9.处理方式:让三名学生主动到黑板板演,其他学生在练习本上完成.教师巡视,适时点拨.学生完成后及时点评,借助多媒体展示学生出现的问题进行矫正.参考答案:(1)a-4a+4 =a-2・a・b+2 = (a-2).(2)x+4xy+4y=x+2・x・y+(2y)=(x+2y).(3)(a+b)-6(a+b)+9=(a+b)�C2・ (a+b)・3+3= (a+b-3).设计意图:例1的设计主要是直接利用完全平方公式因式分解,让学生体会公式中的a,22222222222222222b在此例中分别是什么.通过巩固练习加深对知识的理解与应用.活动内容2:(合作探究)通过以上解题过程,我们发现公式中a、b可以是一个数,也可以是一个单项式,也就是说可以是一个单项式,也可以是多项式的情况进行因式分解.是否任何一个三项式都可以直接使用完全平方公式分解呢?请同学们观察例2,你能尝试将它进行因式分解吗?(多媒体出示例2,学生以小组为单位合作探究,教师巡视,寻找最佳学习小组,同时利用实物投影展示.各小组答案,教师适时鼓励.)例2.把下列各式因式分解:试卷+教案+习题试卷+教案+习题 (1)3ax2?6axy?3ay2(2)?x2?4y2?4xy处理方式:学生首先独立思考,小组内交流做法,实物投影展示,同时小组代表总结经验为:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.解:(1)3ax+6axy+3ay2222=3a (x+2xy+y) ------------(提公因式)=3a (x+2・x・y+y) ------------------------------(运用完全平方公式) =3a(x+y).解:(2)―x-4y+4xy =―(x+4y-4xy)=―�zx-2・x・2y+(2y)�{=―(x-2y)22222222222.你能说说本题的解题过程吗?学生思考后回答:先提公因式,再运用完全平方公式分解.设计意图:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解. 巩固训练3:把下列多项式因式分解.(1) -8ab-16a-b;(2)2a-a-a;处理方式:两名学生板演,其余学生在练习本上完成.完成后,让学生对板演的同学进行评价,教师及时点评表扬.设计意图:主要是引导学生体会因式分解的基本步骤:多项式中若含有公因式,就要先提出公因式;然后再进一步分解,直至不能再分解为止.四、联系拓广,能力提高活动内容:1. 用简便方法计算:2021?4010?2021?20212.将4x?1再加上一个整式,使它成为完全平方式,你有几种方法?3.一天,小明在纸上写了一个算式为4x +8x+11,并对小刚说:“无论x取何值,这个代数式的值都是正值,你不信试一试?”22223222试卷+教案+习题感谢您的阅读,祝您生活愉快。
八年级数学下册第四章因式分解3公式法教案
3.公式法第1课时一、教学目标1.知识与技能(1)理解平方差公式的本质:即结构的不变性,字母的可变性;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,渗透数学的互逆、换元、整体的思想,感受数学知识的完整性.3.情感态度及价值观在探究的过程中培养学生独立思考的习惯,在交流的过程中学会向别人清晰地表达自己的思维和想法,在解决问题的过程中让学生深刻感受到“数学是有用的”.二、教学重点、难点重点:用平方差公式进行因式分解.难点:揭示平方差公式的结构特征和平法差公式的灵活运用.三、教具准备课件.四、教学过程填空:(1)(x+5)(x –5) = ;(2)(3x+y )(3x –y )= ;(3)(3m +2n )(3m –2n )= .它们的结果有什么共同特征?尝试将它们的结果分别写成两个因式的乘积:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力.注意事项:由于学生对乘法公式中的平方差公式比较熟悉,学生通过观察与对比,能很快得出第一(二)探究新知1.多媒体出示,让学生观察、讨论,得出结论..____________________49_;____________________9__;____________________2522222=-=-=-n m y x x结论:整式乘法公式的逆向变形得到分解因式的方法.这种分解因式的方法称为运用公式法.活动目的:引导学生从第一环节的感性认识上升到理性认识,区别整式乘法与分解因式的同时,认识学习新的分解因式的方法——公式法.注意事项:能正确理解两者的联系与区别即可.2.找特征:))((22b a b a b a -+=-.(1)公式左边:(是一个将要被分解因式的多项式)★被分解的多项式含有两项,且这两项异号,并且能写成两个数的平方差的形式.(2)公式右边:(是分解因式的结果).★分解的结果是两个底数的和乘以两个底数的差的形式.3.试一试(多媒体出示)下列多项式能转化成两个数的平方差的形式吗?如果能,请将其转化成两个数的平方差的形式.(1)m 2-81;(2)1-16b 2;(3)4m 2+9;(4)a 2x 2-25y 2;(5)-x 2-25y 2.让学生通过自己的归纳找到因式分解中平方差公式的特征,并能利用相关结论进行实例练习.注意事项:在老师的指导下,完善学生对公式特征的相关描述并得出结论.同时要求学生对于不能利用平方差公式进行分解因式的式子给出相应的解释.(三)范例讲解例1 把下列各式因式分解:(1)25–16x 2 ; (2)9a 2–241b .教师例题讲解,明确思维方法,给出书写范例.注意事项: 使学生明确运用平方差公式进行分解因式的实质是找到“a”和“b”.(四)练习1.判断正误:(1)x 2+y 2=(x+y )(x –y ). ( )(2)x 2–y 2=(x+y )(x –y ) . ( )(3)–x 2+y 2=–(x +y )(x –y ). ( )(4)–x 2–y 2=–(x+y )(x –y ) . ( )2.把下列各式因式分解:(1)-9+4x 2;(3)0.25q 2-121p 2; (4)p 4-1.通过学生的反馈练习,使教师能全面了解学生对平方差公式的特征是否清楚,对平方差公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏.(五)能力提升1.把下列各式因式分解:; ; .2.简便计算:(六)课堂小结从今天的课程中,你学到了哪些知识? 掌握了哪些方法?学生认识到了以下事实:(1)有公因式(包括负号)则先提取公因式;(2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系;(3)平方差公式中的a 与b 既可以是单项式,又可以是多项式;(七)教学反思探索分解因式的方法实际上是对正是乘法的再认识,而本节正是对平方差公式的再认识:(1)本节课的教学设计借助于学生已有的整式乘法运算的基础,给学生留有充分探索与交流的时间和空间,让他们经历从整式乘法到分解因式的转换过程并能用符号合理的表示出分解因式的关系式,同时感受到这种互逆变形的过程和数学知识的整体性.(2)有意识的培养学生逆向思考问题的习惯,不仅对提高解题能力有益,更重要的是改善学生学习数学的思维方式,有助于形成良好的思维习惯,激发学生的创新开拓精神,培养良好的思维习性,提高学习效果、学习兴趣,及思维能力和整体素质.22241)2(z y x -2)2(254)1(n m --22)()(9)2(n m n m --+2394)3(xy x -(3)保证基本的运算技能的训练,避免复杂的题型训练.第2课时一、教学目标1.知识与技能(1)使学生了解运用公式法分解因式的意义;(2)会用公式法(直接用公式不超过两次)分解因式(指数是正整数);(3)使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.2.过程与方法经历通过整式乘法的完全平方公式逆向得出运用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力.3.情感态度及价值观培养学生灵活的运用知识的能力和积极思考的良好行为,体会因式分解在数学学科中的地位和价值.二、教学重点、难点重点:用完全平方公式进行因式分解.难点:揭示完全平方公式的结构特征和选用合适的方法进行因式分解.三、教具准备课件.四、教学过程(一)复习回顾回顾完全平方公式,直入主题将完全平方公式倒置得新的分解因式方法.在上一课时平方差公式倒置学习的基础上,学生比较容易理解和接受此课时的学习铺垫内容.(二)学习新知总结归纳完全平方公式的基本特征,讲授新知形如222b ab a +±的多项式称为完全平方式.注意事项:举例说明便于学生理解.同时归纳总结,由分解因式与整式乘法的互逆关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(三)落实基础1.判断下列各式是不是完全平方式.2.请补上一项,使下列多项式成为完全平方式.结论:找完全平方式可以紧扣下列口诀:首平方、尾平方,首尾相乘两倍在中央;完全平方式可以进行因式分解:a 2–2ab +b 2=(a –b )2 ;a 2+2ab +b 2=(a+b )2.加深学生对完全平方式特征的理解,为后面的分解因式作铺垫.(四) 范例讲解例1把下列各式因式分解:2222222222(1)(2)2(3)2(4)2(5)2x y x xy y x xy y x xy y x xy y +++-++--+-;;;;.()()()()()22222222421_____249______3_____414_____452_____x y a b x y a b x x y ++++-+++++;;;;.2; . 教师引导,师生共同完成.让学生理解在完全平方公式中的a 与b 不仅可以表示单项式,也可以表示多项式. 例2 把下列各式因式分解:; . 对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:(1)有公因式,先提公因式;(2)再用公式法进行因式分解.(五) 随堂练习1.判别下列各式是不是完全平方式,若是说出相应的a 、b 各表示什么?2.把下列各式因式分解:(1)m 2–12mn +36n 2; (2)16a 4+24a 2b 2+9b 4;(3)–2xy –x 2–y 2 ; (4)4–12(x –y )+9(x –y )2.3.用简便方法计算:222003200340102005+⨯-4.一天,小明在纸上写了一个算式为4x 2 +8x+11,并对小刚说:“无论x 取何值,这个代数式的值都是正值,你不信试一试?”(六)课堂小结从今天的课程中,你学到了哪些知识? 掌握了哪些方法?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系?学生认识到了以下事实: 229124)2(b ab a +-9)(6))(3(2++-+n m n m 22)())(2(2)2)(4(n m n m m n n m +++---xyy x 44)2(22+--22363)1(ay axy ax ++2222222(1)69(2)14(3)24(4)441(5)14(6)4129x x a x x x x m m y xy x -++-++-+--+;;;;;.(七)教学反思本节课我们学习了运用公式法分解因式的第二种方法,即逆用完全平方公式分解因式的方法,使用该方法的关键就是观察完全平方式的结构特征:两数的平方和与这两个数的乘积的2倍,具体应用时要特别关注第二项的符号.把一个多项式进行因式分解的一般方法是:先看有无公因式可提取,然后再尝试用公式法分解因式,直到最终结果再也不能分解因式为止.运算类型的课往往比较枯燥,学生容易产生浮躁的心理,不利于知识的掌握与运算能力的提高.本节课的设计尽量做了平实无华,将新知教学层层深入,适当的巩固练习,每一个环节让学生感觉不吃力.同时设计过程中注意题型的变化,引导学生暴露学习中的问题,这样易于激发学生的兴趣,使学生的思维不断被拓展,从而达到强化所学知识和提高能力的目的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.请补上一项,使下列多项式成为完全平方式.
第四环节范例学习
活动内容:
例1.把下列各式因式分解:
学习内容
学习随记
例1.把下列各式因式分解:
例2.把下列各式因式分解:
第五环节随堂练习
活动内容:
1.判别下列各式是不是完全平方式,若是说出相应的a 、b各表示什么?
2、把下列各式因式分解:
拓展作业:两个连续奇数的平方差能被8整除吗?为什么?
公式法
学习 内容
学习随记
本节课的具体教学目标为:
使学生了解运用公式法分解因式的 意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.
教学过程
第一环节复习回顾
活动内容:
回顾完全平方公式,直入主题将完全平方公式倒置得新的Biblioteka 解因式方法.第七环节自主小结
活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?你认为分解因式中的平方差公式以及完全平方公式与 乘法公式有什么关系?
结论:由分解因式与整式乘法的关系可以看出 ,如果把乘法公式反 过来,那么就可以 用来把某些多项式分解因式,这种分解因式的 方法叫做运用公式法.
课后作业:完 成课后习题;
第二环节学习新知
活动内容:
总结归纳完全平方公式的基本特征,讲授新知形如 的多项式称为完全平方式.
注意事项:举例说明便于学生理解.同 时归纳总结,由分解因式与整式乘法的互逆关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。
第三环节落实基础
活动内容:
(1)m2–12mn+36n2(2)16a4+24a2b2+9b4
(3)–2xy–x2–y2(4)4–12(x–y)+9(x–y)2
第六环节联系拓广 活动内容:
1. 用简便方法计算:
2.将 再加上一个整式,使它成为完全平方式,你有几种方法?
3.一天,小明在纸上写了一个算式为4x2 +8x+11,并对小刚说:“无论x取何值,这个代数式的值 都是正值,你不信试一试?”